Clostridium perfringens phospholipase C, an archetypal bacterial virulence factor, induces the formation of extracellular traps by human neutrophils

Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseas...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cellular and infection microbiology Vol. 13; p. 1278718
Main Authors Badilla-Vargas, Lisa, Pereira, Reynaldo, Molina-Mora, José Arturo, Alape-Girón, Alberto, Flores-Díaz, Marietta
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 27.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. Clostridium perfringens is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for C. perfringens growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and C. perfringens secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP 3 ) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the C. perfringens secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.
AbstractList Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. Clostridium perfringens is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for C. perfringens growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and C. perfringens secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP 3 ) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the C. perfringens secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.
Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. Clostridium perfringens is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for C. perfringens growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and C. perfringens secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP3) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the C. perfringens secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. Clostridium perfringens is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for C. perfringens growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and C. perfringens secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP3) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the C. perfringens secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.
Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP ) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.
Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. Clostridium perfringens is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for C. perfringens growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and C. perfringens secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP3) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the C. perfringens secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.
Author Pereira, Reynaldo
Badilla-Vargas, Lisa
Molina-Mora, José Arturo
Flores-Díaz, Marietta
Alape-Girón, Alberto
AuthorAffiliation 2 Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica , San José , Costa Rica
4 Centro de investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
3 Centro Nacional de alta Tecnología, Consejo Nacional de Rectores (CONARE) , San José , Costa Rica
1 Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
AuthorAffiliation_xml – name: 2 Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica , San José , Costa Rica
– name: 3 Centro Nacional de alta Tecnología, Consejo Nacional de Rectores (CONARE) , San José , Costa Rica
– name: 1 Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
– name: 4 Centro de investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
Author_xml – sequence: 1
  givenname: Lisa
  surname: Badilla-Vargas
  fullname: Badilla-Vargas, Lisa
– sequence: 2
  givenname: Reynaldo
  surname: Pereira
  fullname: Pereira, Reynaldo
– sequence: 3
  givenname: José Arturo
  surname: Molina-Mora
  fullname: Molina-Mora, José Arturo
– sequence: 4
  givenname: Alberto
  surname: Alape-Girón
  fullname: Alape-Girón, Alberto
– sequence: 5
  givenname: Marietta
  surname: Flores-Díaz
  fullname: Flores-Díaz, Marietta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37965263$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu3CAUhq0qVZOmeYEuKpZdZKbmMGC8qqpRL5EiddOuEYbjGSIMLthR5j36wGUujZIuioQ4Ovzn43L-19VZiAGr6i2tl4zJ9kNv3NAtoQa2pNDIhsoX1QUA4wtopTx7Ep9XVznf1WU0NciWvarOWdMKDoJdVL_XPuYpOevmgYyY-uTCBkMm4zbmMr0bdUayviY6EJ3MFqfdqD3ptJkwuRLduzR7DAZJX3IxXRMX7Gwwk2lbcjENenIxkNgTfJiSNuj97HUiJR4z6XZkOw8FHnCeUhy3zuc31cte-4xXp_Wy-vnl84_1t8Xt968360-3C7NiMC0sUG75qqOaAtTWSqmN7HTbQ1dDxxEYtI21teiNQA62FcAFpdBzYLKRyC6rmyPXRn2nxuQGnXYqaqcOiZg2SqfJGY-KNsx2lBmkRqxAa42CGy05r1tOLesL6-ORNc7dgNZgKO_zz6DPd4Lbqk28V7QWK9q0UAjvT4QUf82YJzW4vP8tHTDOWZXe1UywRogifff0sMdT_va1COAoMCnmnLB_lNBa7f2jDv5Re_-ok39KkfynyLjp0LxyYef_V_oHfXrP7g
CitedBy_id crossref_primary_10_1186_s12934_025_02644_w
Cites_doi 10.1038/s41592-018-0260-3
10.1074/jbc.M115.677443
10.3390/biom5020702
10.1080/21505594.2018.1520544
10.1371/journal.pone.0103125
10.1016/j.micres.2020.126644
10.1002/2211-5463.13320
10.1093/infdis/jis496
10.3390/ijms24054896
10.1016/j.toxicon.2022.02.024
10.1016/j.cyto.2023.156276
10.3109/00365529009095500
10.1111/j.1365-2958.1994.tb01063.x
10.1371/journal.pone.0086475
10.1146/annurev-cellbio-020520-111016
10.1099/mic.0.072199-0
10.1016/j.tim.2022.10.002
10.3791/1724
10.1016/j.tim.2018.10.006
10.3389/fcvm.2019.00085
10.1046/j.1432-1327.2000.01588.x
10.1111/febs.15589
10.1016/j.femsle.2004.11.019
10.1080/08830185.2021.1921174
10.1086/315756
10.3389/fmicb.2016.00402
10.1093/nar/gkaa1100
10.1016/j.redox.2015.08.010
10.1371/journal.pone.0038059
10.3390/cells11182889
10.1128/mbio.00473-18
10.1016/j.freeradbiomed.2015.10.398
10.3389/fimmu.2022.953129
10.1096/fj.201902981R
10.1152/physrev.00012.2018
10.1016/j.cellimm.2022.104640
10.1038/nri.2017.105
10.1086/315757
10.1128/microbiolspec.GPP3-0012-2018
10.1016/j.micpath.2022.105728
10.3389/fmicb.2022.798853
10.1093/nar/gkz991
10.1016/j.anaerobe.2018.04.011
10.1038/s41426-018-0144-8
10.3389/fimmu.2023.1113214
10.3389/fimmu.2022.963955
10.1111/mmi.14442
10.1152/ajpcell.00053.2020
10.1007/s00253-021-11547-w
10.1111/j.1365-2958.2011.07550.x
10.1080/21505594.2021.1886777
10.1038/s41584-018-0039-z
10.1016/j.celrep.2014.06.044
10.1056/NEJMra1600673
10.3389/fimmu.2022.899890
10.7554/eLife.24437
10.1128/am.27.6.1031-1033.1974
10.1038/s41418-023-01124-1
10.1128/iai.00200-19
10.1038/nchembio.496
10.3389/fimmu.2022.838011
10.1099/jmm.0.46390-0
10.1021/acs.jafc.3c01242
10.1038/s41423-018-0024-0
10.1099/mic.0.031955-0
ContentType Journal Article
Copyright Copyright © 2023 Badilla-Vargas, Pereira, Molina-Mora, Alape-Girón and Flores-Díaz.
Copyright © 2023 Badilla-Vargas, Pereira, Molina-Mora, Alape-Girón and Flores-Díaz 2023 Badilla-Vargas, Pereira, Molina-Mora, Alape-Girón and Flores-Díaz
Copyright_xml – notice: Copyright © 2023 Badilla-Vargas, Pereira, Molina-Mora, Alape-Girón and Flores-Díaz.
– notice: Copyright © 2023 Badilla-Vargas, Pereira, Molina-Mora, Alape-Girón and Flores-Díaz 2023 Badilla-Vargas, Pereira, Molina-Mora, Alape-Girón and Flores-Díaz
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fcimb.2023.1278718
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2235-2988
ExternalDocumentID oai_doaj_org_article_173db13ce1c642aaae65ca8550951d3f
PMC10641792
37965263
10_3389_fcimb_2023_1278718
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
INR
KQ8
M48
M~E
OK1
PGMZT
RPM
CGR
CUY
CVF
ECM
EIF
IAO
IEA
IHR
IHW
INH
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c432t-d215d54b1a1220dd88ac8ba9f2b02b5e23297dd06fc6e52d96256112f523878e3
IEDL.DBID M48
ISSN 2235-2988
IngestDate Wed Aug 27 01:18:26 EDT 2025
Thu Aug 21 18:36:23 EDT 2025
Thu Jul 10 18:20:49 EDT 2025
Thu Jan 02 22:41:29 EST 2025
Thu Apr 24 22:58:31 EDT 2025
Tue Jul 01 01:07:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords phospholipase
NETs
antioxidants
bacterial pathogenesis
bacterial toxins
gas gangrene
secretome
Clostridium perfringens
Language English
License Copyright © 2023 Badilla-Vargas, Pereira, Molina-Mora, Alape-Girón and Flores-Díaz.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-d215d54b1a1220dd88ac8ba9f2b02b5e23297dd06fc6e52d96256112f523878e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Oonagh Shannon, Malmö University, Sweden; Dorothee Kretschmer, University of Tübingen, Germany
Edited by: Simon Clarke, University of Reading, United Kingdom
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcimb.2023.1278718
PMID 37965263
PQID 2890363766
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_173db13ce1c642aaae65ca8550951d3f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10641792
proquest_miscellaneous_2890363766
pubmed_primary_37965263
crossref_primary_10_3389_fcimb_2023_1278718
crossref_citationtrail_10_3389_fcimb_2023_1278718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-27
PublicationDateYYYYMMDD 2023-10-27
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-27
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cellular and infection microbiology
PublicationTitleAlternate Front Cell Infect Microbiol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kiu (B26) 2018; 7
de Buhr (B13) 2014; 160
Von Köckritz-Blickwede (B58) 2016; 7
Metzler (B37) 2014; 8
Low (B32) 2018; 9
Ríos-López (B47) 2021; 243
Schultz (B50) 2022; 13
Okumura (B43) 2005; 242
Di Virgilio (B16) 2020; 318
Monturiol-Gross (B38) 2012; 206
Janssen (B24) 2022; 171
Liew (B28) 2019; 99
Zheng (B61) 2015; 290
Stevens (B53) 2017; 377
Lu (B33) 2020; 48
Rood (B48) 2018; 53
Liu (B30) 2023; 169
Porschen (B46) 1974; 27
Monturiol-Gross (B39) 2014; 9
Stoiber (B54) 2015; 5
Soh (B52) 2020; 113
Chang (B9) 2011; 79
Zhu (B63) 2022; 13
Alape-Girón (B1) 2000; 267
Bryant (B8) 2000; 182
Hakkim (B22) 2011; 7
Damascena (B11) 2022; 11
Lomonte (B31) 2022; 210
Torres-Ruiz (B56) 2023; 14
de Bont (B12) 2019; 16
Fischetti (B19) 2019; 7
Zucoloto (B64) 2019; 6
Mehdizadeh Gohari (B36) 2021; 12
Bryant (B7) 2000; 182
Mazzoleni (B35) 2021; 35
Morales-Primo (B41) 2022; 41
Bryant (B6) 2006; 55
de Jesus Gonzalez-Contreras (B14) 2022; 382
Gustafson (B21) 1990; 25
Liao (B27) 2022; 13
Brinkmann (B5) 2010; 36
Thiam (B55) 2020; 36
Zúñiga-Pereira (B65) 2019; 87
Rosazza (B49) 2021; 288
Fan (B18) 2012; 7
Singh (B51) 2023; 30
Zakataeva (B60) 2021; 105
Tran (B57) 2019; 16
Björnsdottir (B4) 2015; 89
Papayannopoulos (B44) 2018; 18
Poli (B45) 2023; 31
Kenny (B25) 2017; 6
Görlach (B20) 2015; 6
Bateman (B3) 2021; 49
Wienkamp (B59) 2022; 13
Demkow (B15) 2023; 24
Liu (B29) 2023; 71
Lyristis (B34) 1994; 12
Zhu (B62) 2022; 13
Morita (B42) 2014; 9
Apel (B2) 2018; 14
Hasegawa (B23) 2010; 156
Ebner (B17) 2019; 27
Monturiol-Gross (B40) 2021; 11
Dai (B10) 2018; 9
References_xml – volume: 16
  start-page: 63
  year: 2019
  ident: B57
  article-title: Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0260-3
– volume: 290
  start-page: 31126
  year: 2015
  ident: B61
  article-title: Streptococcal 5′-nucleotidase A (S5nA), a novel streptococcus pyogenes virulence factor that facilitates immune evasion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.677443
– volume: 5
  start-page: 702
  year: 2015
  ident: B54
  article-title: The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans
  publication-title: Biomolecules
  doi: 10.3390/biom5020702
– volume: 9
  start-page: 1509
  year: 2018
  ident: B10
  article-title: Streptococcus suis synthesizes deoxyadenosine and adenosine by 5’-nucleotidase to dampen host immune responses
  publication-title: Virulence
  doi: 10.1080/21505594.2018.1520544
– volume: 9
  year: 2014
  ident: B42
  article-title: Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity
  publication-title: PloS One
  doi: 10.1371/journal.pone.0103125
– volume: 243
  year: 2021
  ident: B47
  article-title: Avoiding the trap: Mechanisms developed by pathogens to escape neutrophil extracellular traps
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2020.126644
– volume: 11
  start-page: 3262
  year: 2021
  ident: B40
  article-title: Bacterial phospholipases C with dual activity: phosphatidylcholinesterase and sphingomyelinase
  publication-title: FEBS Open Bio.
  doi: 10.1002/2211-5463.13320
– volume: 206
  start-page: 1218
  year: 2012
  ident: B38
  article-title: Reactive oxygen species and the MEK/ERK pathway are involved in the toxicity of Clostridium perfringens α-toxin, a prototype bacterial phospholipase C
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis496
– volume: 24
  start-page: 4896
  year: 2023
  ident: B15
  article-title: Molecular mechanisms of neutrophil extracellular trap (NETs) degradation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24054896
– volume: 210
  start-page: 123
  year: 2022
  ident: B31
  article-title: Solving the microheterogeneity of Bothrops asper myotoxin-II by high-resolution mass spectrometry: Insights into C-terminal region variability in Lys49-phospholipase A2 homologs
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2022.02.024
– volume: 169
  year: 2023
  ident: B30
  article-title: Phagocyte extracellular traps formation contributes to host defense against Clostridium perfringens infection
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2023.156276
– volume: 25
  start-page: 363
  year: 1990
  ident: B21
  article-title: Phospholipase C from Clostridium perfringens stimulates phospholipase A2-mediated arachidonic acid release in cultured intestinal epithelial cells (INT 407)
  publication-title: Scand. J. Gastroenterol.
  doi: 10.3109/00365529009095500
– volume: 12
  start-page: 761
  year: 1994
  ident: B34
  article-title: Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1994.tb01063.x
– volume: 9
  year: 2014
  ident: B39
  article-title: Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NFκB activation
  publication-title: PloS One
  doi: 10.1371/journal.pone.0086475
– volume: 36
  start-page: 191
  year: 2020
  ident: B55
  article-title: Cellular mechanisms of NETosis
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-020520-111016
– volume: 160
  start-page: 385
  year: 2014
  ident: B13
  article-title: Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity
  publication-title: Microbiol. (Reading).
  doi: 10.1099/mic.0.072199-0
– volume: 31
  start-page: 280
  year: 2023
  ident: B45
  article-title: Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2022.10.002
– volume: 36
  year: 2010
  ident: B5
  article-title: Neutrophil extracellular traps: how to generate and visualize them
  publication-title: JoVE (J. Vis. Exp.).
  doi: 10.3791/1724
– volume: 27
  start-page: 176
  year: 2019
  ident: B17
  article-title: Bacterial excretion of cytoplasmic proteins (ECP): occurrence, mechanism, and function
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2018.10.006
– volume: 6
  year: 2019
  ident: B64
  article-title: Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2019.00085
– volume: 267
  start-page: 5191
  year: 2000
  ident: B1
  article-title: Identification of residues critical for toxicity in Clostridium perfringens phospholipase C, the key toxin in gas gangrene
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.2000.01588.x
– volume: 288
  start-page: 3334
  year: 2021
  ident: B49
  article-title: NET formation–mechanisms and how they relate to other cell death pathways
  publication-title: FEBS J.
  doi: 10.1111/febs.15589
– volume: 242
  start-page: 281
  year: 2005
  ident: B43
  article-title: Identification and characterization of a cell-wall anchored DNase gene in Clostridium perfringens
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/j.femsle.2004.11.019
– volume: 41
  start-page: 253
  year: 2022
  ident: B41
  article-title: Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles
  publication-title: Int. Rev. Immunol.
  doi: 10.1080/08830185.2021.1921174
– volume: 182
  start-page: 799
  year: 2000
  ident: B7
  article-title: Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens
  publication-title: J. Infect. Dis.
  doi: 10.1086/315756
– volume: 7
  year: 2016
  ident: B58
  article-title: Interaction of bacterial exotoxins with neutrophil extracellular traps: impact for the infected host
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00402
– volume: 49
  start-page: D480
  year: 2021
  ident: B3
  article-title: UniProt: the universal protein knowledgebase in 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1100
– volume: 6
  start-page: 260
  year: 2015
  ident: B20
  article-title: Calcium and ROS: A mutual interplay
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.08.010
– volume: 7
  year: 2012
  ident: B18
  article-title: Ecto-5′-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis
  publication-title: PloS One
  doi: 10.1371/journal.pone.0038059
– volume: 11
  start-page: 2889
  year: 2022
  ident: B11
  article-title: Neutrophil activated by the famous and potent PMA (Phorbol myristate acetate)
  publication-title: Cells
  doi: 10.3390/cells11182889
– volume: 9
  start-page: e00473
  year: 2018
  ident: B32
  article-title: Concurrent host-pathogen transcriptional responses in a Clostridium perfringens murine myonecrosis infection
  publication-title: MBio
  doi: 10.1128/mbio.00473-18
– volume: 89
  start-page: 1024
  year: 2015
  ident: B4
  article-title: Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.10.398
– volume: 13
  year: 2022
  ident: B59
  article-title: Platelets in the NETworks interweaving inflammation and thrombosis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.953129
– volume: 35
  year: 2021
  ident: B35
  article-title: Staphylococcus aureus Panton-Valentine Leukocidin triggers an alternative NETosis process targeting mitochondria
  publication-title: FASEB J.
  doi: 10.1096/fj.201902981R
– volume: 99
  start-page: 1223
  year: 2019
  ident: B28
  article-title: The neutrophil's role during health and disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00012.2018
– volume: 382
  year: 2022
  ident: B14
  article-title: Neutrophil extracellular traps: Modulation mechanisms by pathogens
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2022.104640
– volume: 18
  start-page: 134
  year: 2018
  ident: B44
  article-title: Neutrophil extracellular traps in immunity and disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.105
– volume: 182
  start-page: 808
  year: 2000
  ident: B8
  article-title: Clostridial gas gangrene. II. Phospholipase C-Induced activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene
  publication-title: J. Infect. Dis.
  doi: 10.1086/315757
– volume: 7
  start-page: 7
  year: 2019
  ident: B19
  article-title: Surface proteins on gram-positive bacteria
  publication-title: Microbiol. Spectr.
  doi: 10.1128/microbiolspec.GPP3-0012-2018
– volume: 171
  year: 2022
  ident: B24
  article-title: Unweaving the NET: Microbial strategies for neutrophil extracellular trap evasion
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2022.105728
– volume: 13
  year: 2022
  ident: B50
  article-title: Role of extracellular trap release during bacterial and viral infection
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.798853
– volume: 48
  start-page: D265
  year: 2020
  ident: B33
  article-title: CDD/SPARCLE: the conserved domain database in 2020
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz991
– volume: 53
  start-page: 5
  year: 2018
  ident: B48
  article-title: Expansion of the Clostridium perfringens toxin-based typing scheme
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2018.04.011
– volume: 7
  start-page: 141
  year: 2018
  ident: B26
  article-title: An update on the human and animal enteric pathogen Clostridium perfringens
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/s41426-018-0144-8
– volume: 14
  year: 2023
  ident: B56
  article-title: Inflammatory myopathies and beyond: The dual role of neutrophils in muscle damage and regeneration
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1113214
– volume: 13
  year: 2022
  ident: B63
  article-title: Dysregulation of neutrophil death in sepsis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.963955
– volume: 113
  start-page: 691
  year: 2020
  ident: B52
  article-title: Cell wall-anchored 5′-nucleotidases in Gram-positive cocci
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.14442
– volume: 318
  start-page: C832
  year: 2020
  ident: B16
  article-title: Purinergic signaling, DAMPs, and inflammation
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00053.2020
– volume: 105
  start-page: 7661
  year: 2021
  ident: B60
  article-title: Microbial 5′-nucleotidases: their characteristics, roles in cellular metabolism, and possible practical applications
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-021-11547-w
– volume: 79
  start-page: 1629
  year: 2011
  ident: B9
  article-title: Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07550.x
– volume: 12
  start-page: 723
  year: 2021
  ident: B36
  article-title: Pathogenicity and virulence of Clostridium perfringens
  publication-title: Virulence
  doi: 10.1080/21505594.2021.1886777
– volume: 14
  start-page: 467
  year: 2018
  ident: B2
  article-title: The role of neutrophil extracellular traps in rheumatic diseases
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-018-0039-z
– volume: 8
  start-page: 883
  year: 2014
  ident: B37
  article-title: A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.06.044
– volume: 377
  start-page: 2253
  year: 2017
  ident: B53
  article-title: Necrotizing soft-tissue infections
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1600673
– volume: 13
  year: 2022
  ident: B27
  article-title: Pathogen-derived nucleases: an effective weapon for escaping extracellular traps
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.899890
– volume: 6
  year: 2017
  ident: B25
  article-title: Diverse stimuli engage different neutrophil extracellular trap pathways
  publication-title: Elife
  doi: 10.7554/eLife.24437
– volume: 27
  start-page: 1031
  year: 1974
  ident: B46
  article-title: Extracellular deoxyribonuclease production by anaerobic bacteria
  publication-title: Appl. Microbiol.
  doi: 10.1128/am.27.6.1031-1033.1974
– volume: 30
  start-page: 861
  year: 2023
  ident: B51
  article-title: Moonlighting chromatin: when DNA escapes nuclear control
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-023-01124-1
– volume: 87
  start-page: e00200
  year: 2019
  ident: B65
  article-title: Deficient Skeletal Muscle Regeneration after Injury Induced by a Clostridium perfringens Strain Associated with Gas Gangrene
  publication-title: Infect. Immun.
  doi: 10.1128/iai.00200-19
– volume: 7
  start-page: 75
  year: 2011
  ident: B22
  article-title: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.496
– volume: 13
  year: 2022
  ident: B62
  article-title: NETosis and neutrophil extracellular traps in COVID-19: immunothrombosis and beyond
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.838011
– volume: 55
  start-page: 495
  year: 2006
  ident: B6
  article-title: Clostridium perfringens phospholipase C-induced platelet/leukocyte interactions impede neutrophil diapedesis
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.46390-0
– volume: 71
  start-page: 7119
  year: 2023
  ident: B29
  article-title: G Protein-Coupled Receptor 120 Mediates Host defense against Clostridium perfringens Infection through Regulating NOD-like Receptor Family Pyrin Domain-Containing 3 Inflammasome Activation
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.3c01242
– volume: 16
  start-page: 19
  year: 2019
  ident: B12
  article-title: NETosis, complement, and coagulation: a triangular relationship
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-018-0024-0
– volume: 156
  start-page: 184
  year: 2010
  ident: B23
  article-title: Characterization of a virulence-associated and cell-wall-located DNase of Streptococcus pyogenes
  publication-title: Microbiol. (Reading).
  doi: 10.1099/mic.0.031955-0
SSID ssj0000702893
Score 2.3192074
Snippet Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1278718
SubjectTerms Animals
bacterial pathogenesis
bacterial toxins
Cellular and Infection Microbiology
Clostridium perfringens
Extracellular Traps - metabolism
Gas Gangrene - metabolism
Gas Gangrene - pathology
Humans
NETs
Neutrophils
phospholipase
Proteomics
secretome
Type C Phospholipases - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNE0fbtqiQm-Nk7Veto_t0hBy6KmB3IxkSaxhY5u1Xdj_kR-cGclZdktpLz0YhC3bQjOehzX6PkI-i8JzL5xIM1P6VEinU1Moleacl0JyjV4Lqy1-qKsbcX0rb_eovrAmLMIDx4m7yHJuTcZrl9UQKmutnZK1RhguiA0s92h9weftJVPBBue4gsbjLhnIwsoLXzd35hzJws8zBlqKLB97nigA9v8pyvy9WHLP-1y-IM_nsJF-jcM9Jk9c-5I8jUSS2xNyv1x3SMBhm-mO9g60LeyZGmi_6gY41k0P3oouz6huaYDvGLc9PM9ErGZo_Wo2U9h_RCMDzxmFZB3EPlCIEOluiyPtPAVzvtH4wx8rWCm0-4GaLQ1sf7R107jp-lWzHl6Rm8vvP5dX6cy3kNaCszG14P6tFCbTGWMLa4tC14XRpWdmwYx0EHyVubUL5WvlJLMl5E4K4jUPyWyRF46_Jkdt17q3hDIuuJFcaCusKDNpuOfOlUYstKu10QnJHue-qmcwcuTEWFeQlKC8qiCvCuVVzfJKyJfdPX2E4vhr728o0l1PhNEOJ0C5qlm5qn8pV0I-PSpEBZ8dTq1uXTcNFa7PcgXWWSXkTVSQ3at4XirJFE9IcaA6B2M5vNI2qwDtDQk6UsKxd_9j9KfkGc4IelqWvydH42ZyHyCEGs3H8LU8AJWsHfQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Clostridium perfringens phospholipase C, an archetypal bacterial virulence factor, induces the formation of extracellular traps by human neutrophils
URI https://www.ncbi.nlm.nih.gov/pubmed/37965263
https://www.proquest.com/docview/2890363766
https://pubmed.ncbi.nlm.nih.gov/PMC10641792
https://doaj.org/article/173db13ce1c642aaae65ca8550951d3f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7riuCLeN96WSL45nacXJq2DyI6uCyCPjmwbyVpUqfQbWsv4vwPf7DnpJ3BkdUHHwqhbdpyLjnfaZLzEfJSJoUopJMhM2kRysjp0CRKhbEQqYyExqiFqy0-q4u1_HgZXR6RHd3RLMD-2tQO-aTWXbX48W37Fhz-DWacEG9fF3l5ZRbIA75gHAyQJTfITYhMMTIafJrhvh-ZY5xXE9Pemb90PYhPvoz_ddjzzyWUv8Wk87vkzgwm6btJ-_fIkavvk1sTveT2Afm5qhqk5bDleEVbBzbod1L1tN00PRxV2UIMo6szqmvqi3oM2xaeZ6YKztD6Xnaj35VEJ16eMwopPBhDTwE30v3GR9oUFAb5TuM0AK5rpdBue2q21HMA0tqNQ9e0m7LqH5L1-Ycvq4twZmEIcyn4EFoABTaShmnG-dLaJNF5YnRacLPkJnIAydLY2qUqcuUiblPIqBSguAJS3CROnHhEjuumdieEciGFiYTUVlqZssiIQjiXGrnULtdGB4TtZJ_lc4lyZMqoMkhVUF-Z11eG-spmfQXk1b5POxXo-Ofd71Gl-zuxuLY_0XRfs9lXMxYLa5jIHcshO9NaOxXlGiu_ARy1ogjIi51BZOCMKFpdu2bsM5y1FQrGbBWQx5OB7F8l4lRFXImAJAemc_Ath1fqcuMLfkPajkRx_Mn_d31KbqMcMOry-Bk5HrrRPQc4NZhT_xvi1HvKL_N7JeE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clostridium+perfringens+phospholipase+C%2C+an+archetypal+bacterial+virulence+factor%2C+induces+the+formation+of+extracellular+traps+by+human+neutrophils&rft.jtitle=Frontiers+in+cellular+and+infection+microbiology&rft.au=Badilla-Vargas%2C+Lisa&rft.au=Pereira%2C+Reynaldo&rft.au=Molina-Mora%2C+Jos%C3%A9+Arturo&rft.au=Alape-Gir%C3%B3n%2C+Alberto&rft.date=2023-10-27&rft.pub=Frontiers+Media+S.A&rft.eissn=2235-2988&rft.volume=13&rft_id=info:doi/10.3389%2Ffcimb.2023.1278718&rft.externalDocID=PMC10641792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2235-2988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2235-2988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2235-2988&client=summon