Patient similarity by joint matrix trifactorization to identify subgroups in acute myeloid leukemia
Abstract Objective Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse c...
Saved in:
Published in | JAMIA open Vol. 1; no. 1; pp. 75 - 86 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Objective
Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge.
Materials and Methods
In this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods.
Results
In the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data.
Discussion
In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology.
Conclusion
The better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine. |
---|---|
AbstractList | Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge.
In this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods.
In the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data.
In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology.
The better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine. Abstract Objective Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge. Materials and Methods In this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods. Results In the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data. Discussion In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology. Conclusion The better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine. OBJECTIVEComputing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge. MATERIALS AND METHODSIn this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods. RESULTSIn the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data. DISCUSSIONIn case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology. CONCLUSIONThe better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine. |
Author | Marini, S Demartini, A Bellazzi, R Vitali, F Montoli, S Zambelli, A Pala, D |
AuthorAffiliation | 4 Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA 3 Department of Medicine, The University of Arizona, Tucson, AZ, USA 1 Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, Arizona, USA 2 BIO5 Institute, The University of Arizona, Tucson, Arizona, USA 7 Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, BG, Italy 8 IRCCS Istituti Clinici Scientifici Maugeri, Pavia, PV, Italy 5 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy 6 Centre for Health Technologies, University of Pavia, PV, Italy |
AuthorAffiliation_xml | – name: 1 Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, Arizona, USA – name: 3 Department of Medicine, The University of Arizona, Tucson, AZ, USA – name: 7 Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, BG, Italy – name: 6 Centre for Health Technologies, University of Pavia, PV, Italy – name: 2 BIO5 Institute, The University of Arizona, Tucson, Arizona, USA – name: 4 Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA – name: 8 IRCCS Istituti Clinici Scientifici Maugeri, Pavia, PV, Italy – name: 5 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy |
Author_xml | – sequence: 1 givenname: F orcidid: 0000-0003-2916-6402 surname: Vitali fullname: Vitali, F organization: Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, Arizona, USA – sequence: 2 givenname: S surname: Marini fullname: Marini, S organization: Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA – sequence: 3 givenname: D surname: Pala fullname: Pala, D organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy – sequence: 4 givenname: A surname: Demartini fullname: Demartini, A organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy – sequence: 5 givenname: S surname: Montoli fullname: Montoli, S organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy – sequence: 6 givenname: A surname: Zambelli fullname: Zambelli, A organization: Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, BG, Italy – sequence: 7 givenname: R surname: Bellazzi fullname: Bellazzi, R email: riccardo.bellazzi@unipv.it organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31984320$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1PxCAUJEbjx7p3T4ajiVmF0nbLxcRs_EpM9KBnAvSxsrZlBWqsv150daMnLzzCmxkmM3tos3MdIHRAyQklnJ0uZGulW0J36txASLWBdrNimk-ygtHNX_cdNA5hQQihnPOSkW20wyivcpaRXaTvZbTQRRxsaxvpbRywGvDC2fTWyujtG06HkTo6b98T2HU4OmzrRLJmwKFXc-_6ZcC2w1L3EXA7QONsjRvonyF53EdbRjYBxt9zhB4vLx5m15Pbu6ub2fntRCcvcaKneV6YUlFTl1JmqiyYoYzVwLgsGUyZUrQueKYgN9NKQ8FrqEhJTMVUXRlgI3S20l32qoVaJ4deNmLpbSv9IJy04u-ms09i7l5FyYuvQEbo6FvAu5ceQhStDRqaRnbg-iAylqf8Ms6KBCUrqPYuBA9m_Q0l4rMesa5HrOpJlMPf9taEnzIS4HgFSHH-L_cBisSkMA |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btab579 crossref_primary_10_1016_j_jbi_2020_103398 crossref_primary_10_1371_journal_pone_0217994 crossref_primary_10_1093_bioinformatics_bty746 crossref_primary_10_1109_TCBB_2022_3225300 crossref_primary_10_3389_fmolb_2021_666705 crossref_primary_10_1093_bioinformatics_btab487 crossref_primary_10_3390_jpm11080699 crossref_primary_10_1093_bib_bbac207 crossref_primary_10_1016_j_jbi_2019_103194 crossref_primary_10_1016_j_ijmedinf_2019_104073 crossref_primary_10_1093_gigascience_giac029 crossref_primary_10_1002_wsbm_1623 crossref_primary_10_1038_s41467_019_08797_8 |
Cites_doi | 10.5194/gmd-7-1247-2014 10.1145/2408736.2408740 10.1182/blood-2005-05-2168 10.3389/fphys.2016.00561 10.1186/s12859-015-0554-8 10.1038/nature08987 10.1101/cshperspect.a008581 10.1200/JCO.2011.39.2886 10.1093/nar/gku1011 10.1007/s10994-016-5563-y 10.1038/nature06914 10.1093/nar/28.1.27 10.4161/sysb.29072 10.1186/s13073-016-0281-4 10.1056/NEJMp1500523 10.1200/JCO.2007.15.1068 10.1093/nar/gkt1068 10.1371/journal.pone.0152792 10.1200/JCO.2008.18.1370 10.1371/journal.pone.0162407 10.1214/aos/1176350951 10.1200/JCO.2012.45.5626 10.1109/TCBB.2014.2377729 10.1056/NEJMra1406184 10.1109/TPAMI.2014.2343973 10.1038/srep03202 10.1093/nar/gkw943 10.1093/database/bat018 10.1200/JCO.2010.28.3762 10.1093/nar/30.1.163 10.1093/bioinformatics/btt547 10.1200/JCO.2014.60.4165 10.1093/nar/gku1204 10.1109/TKDE.2012.51 10.1093/nar/gku1205 10.1109/TNNLS.2014.2376974 10.2307/2529872 10.1158/0008-5472.CAN-04-1923 10.1056/NEJM199909303411407 10.1093/nar/gng015 10.1016/j.mayocp.2015.08.017 10.1056/NEJMoa074306 10.1007/978-3-642-80328-4_13 10.1162/neco.2006.18.7.1527 10.1145/2408736.2408739 10.1016/S1470-2045(15)00188-6 10.1038/nmeth.2810 10.1371/journal.pcbi.1004552 10.1126/scisignal.2004088 10.1093/bioinformatics/btp543 10.18632/oncotarget.9571 10.1016/j.jbi.2016.07.021 10.1038/nature15819 10.1016/0169-7439(87)80084-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2018 The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2018 – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. |
DBID | TOX NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/jamiaopen/ooy008 |
DatabaseName | Oxford University Press Journals Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2574-2531 |
EndPage | 86 |
ExternalDocumentID | 10_1093_jamiaopen_ooy008 31984320 10.1093/jamiaopen/ooy008 |
Genre | Journal Article |
GroupedDBID | 0R~ AAFWJ AAPXW AAVAP ABPTD ABXVV ACGFS ADBBV AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS BAYMD BCNDV BTTYL EBS EJD GROUPED_DOAJ IAO KSI M~E O9- OK1 ROX RPM TOX ABEJV ITC NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c432t-c7445f6b1fd6aa2b653f133de39a63e73bb1d592be4f78ce59de8060f83bd8fe3 |
IEDL.DBID | RPM |
ISSN | 2574-2531 |
IngestDate | Tue Apr 09 21:39:54 EDT 2024 Wed Jul 17 03:54:02 EDT 2024 Fri Aug 23 03:21:27 EDT 2024 Tue Oct 29 04:34:50 EDT 2024 Wed Aug 28 03:20:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | matrix trifactorization patient similarity acute myeloid leukemia (AML) precision medicine data integration |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-c7445f6b1fd6aa2b653f133de39a63e73bb1d592be4f78ce59de8060f83bd8fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 F. Vitali and S. Marini contributed equally to the work. |
ORCID | 0000-0003-2916-6402 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951984/ |
PMID | 31984320 |
PQID | 2346302935 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6951984 proquest_miscellaneous_2346302935 crossref_primary_10_1093_jamiaopen_ooy008 pubmed_primary_31984320 oup_primary_10_1093_jamiaopen_ooy008 |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | JAMIA open |
PublicationTitleAlternate | JAMIA Open |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Ruffini (2020013108073955000_ooy008-B33) 2017 Gaidzik (2020013108073955000_ooy008-B65) 2012; 30 Amberger (2020013108073955000_ooy008-B60) 2015; 43 Ye (2020013108073955000_ooy008-B58) 2012; 14 Dinse (2020013108073955000_ooy008-B56) 1982; 38 Lowenberg (2020013108073955000_ooy008-B53) 1999; 341 Kanehisa (2020013108073955000_ooy008-B41) 2000; 28 Le Tourneau (2020013108073955000_ooy008-B10) 2015; 16 Hartigan (2020013108073955000_ooy008-B55) 1975 Zitnik (2020013108073955000_ooy008-B26) 2015; 11 Zitnik (2020013108073955000_ooy008-B30) 2015; 37 Zitnik (2020013108073955000_ooy008-B25) 2013; 3 Kibbe (2020013108073955000_ooy008-B42) 2014; 43 Wold (2020013108073955000_ooy008-B50) 1987; 2 Hinton (2020013108073955000_ooy008-B52) 2006; 18 Collins (2020013108073955000_ooy008-B1) 2015; 372 Pellagatti (2020013108073955000_ooy008-B6) 2013; 31 Xu (2020013108073955000_ooy008-B17) 2016; 11 Zitnik (2020013108073955000_ooy008-B27) 2014 Wang (2020013108073955000_ooy008-B37) 2013; 25 Biankin (2020013108073955000_ooy008-B12) 2015; 526 (2020013108073955000_ooy008-B23) 2008 Irizarry (2020013108073955000_ooy008-B44) 2003; 31 Bentires-Alj (2020013108073955000_ooy008-B64) 2004; 64 Parker (2020013108073955000_ooy008-B5) 2009; 27 Chin (2020013108073955000_ooy008-B3) 2008; 452 Liang (2020013108073955000_ooy008-B20) 2015; 12 Brown (2020013108073955000_ooy008-B14) 2016; 7 Group E-ACR (2020013108073955000_ooy008-B8) 2016 Verhaak (2020013108073955000_ooy008-B62) 2005; 106 Shen (2020013108073955000_ooy008-B15) 2009; 25 Wang (2020013108073955000_ooy008-B19) 2014; 11 Meric-Bernstam (2020013108073955000_ooy008-B7) 2015; 33 Rappaport (2020013108073955000_ooy008-B46) 2013; 2013 Planey (2020013108073955000_ooy008-B22) 2016; 8 Vitali (2020013108073955000_ooy008-B29) 2016; 11 Lu (2020013108073955000_ooy008-B2) 2014; 4 Virtanen S, Klami A, Khan AK, Kaski S. Bayesian group factor analysis (2020013108073955000_ooy008-B35) 2012 Žitnik (2020013108073955000_ooy008-B28) 2014; 2 2020013108073955000_ooy008-B9 Scott (2020013108073955000_ooy008-B59) 1992 Law (2020013108073955000_ooy008-B66) 2014; 42 Khan (2020013108073955000_ooy008-B34) 2016; 105 Ow (2020013108073955000_ooy008-B16) 2016; 7 Pinero (2020013108073955000_ooy008-B38) 2017; 45 Chai (2020013108073955000_ooy008-B49) 2014; 7 Klami (2020013108073955000_ooy008-B32) Hudson (2020013108073955000_ooy008-B39) 2010; 464 Hinton (2020013108073955000_ooy008-B51) 2010; 9 Gray (2020013108073955000_ooy008-B57) 1988; 16 Prasad (2020013108073955000_ooy008-B11) 2015; 90 Gao (2020013108073955000_ooy008-B43) 2013; 6 (2020013108073955000_ooy008-B24) 2014 Singh AP, Gordon JG. Relational learning via collective matrix factorization (2020013108073955000_ooy008-B31) 2008 Sun (2020013108073955000_ooy008-B13) 2012; 14 Klami (2020013108073955000_ooy008-B36) 2015; 26 Hewett (2020013108073955000_ooy008-B67) 2002; 30 Brown (2020013108073955000_ooy008-B48) 1998 Paschka (2020013108073955000_ooy008-B61) 2010; 28 Dohner (2020013108073955000_ooy008-B54) 2015; 373 Girardi (2020013108073955000_ooy008-B18) 2016; 63 Cokelaer (2020013108073955000_ooy008-B47) 2013; 29 Schlenk (2020013108073955000_ooy008-B63) 2008; 358 Sparano (2020013108073955000_ooy008-B4) 2008; 26 Gligorijevic (2020013108073955000_ooy008-B21) 2016; 21 Limongelli (2020013108073955000_ooy008-B45) 2015; 16 Chatr-Aryamontri (2020013108073955000_ooy008-B40) 2014; 43 |
References_xml | – year: 2008 ident: 2020013108073955000_ooy008-B31 contributor: fullname: Singh AP, Gordon JG. Relational learning via collective matrix factorization – volume: 7 start-page: 1247 issue: 3 year: 2014 ident: 2020013108073955000_ooy008-B49 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature publication-title: Geosci Model Dev doi: 10.5194/gmd-7-1247-2014 contributor: fullname: Chai – volume: 14 start-page: 16 issue: 1 year: 2012 ident: 2020013108073955000_ooy008-B13 article-title: Supervised patient similarity measure of heterogeneous patient records publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/2408736.2408740 contributor: fullname: Sun – volume: 106 start-page: 3747 issue: 12 year: 2005 ident: 2020013108073955000_ooy008-B62 article-title: Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance publication-title: Blood doi: 10.1182/blood-2005-05-2168 contributor: fullname: Verhaak – volume: 7 start-page: 561. year: 2016 ident: 2020013108073955000_ooy008-B14 article-title: Patient similarity: emerging concepts in systems and precision medicine publication-title: Front Physiol doi: 10.3389/fphys.2016.00561 contributor: fullname: Brown – volume: 16 start-page: 123 issue: 1 year: 2015 ident: 2020013108073955000_ooy008-B45 article-title: PaPI: pseudo amino acid composition to score human protein-coding variants publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0554-8 contributor: fullname: Limongelli – volume: 464 start-page: 993 issue: 7291 year: 2010 ident: 2020013108073955000_ooy008-B39 article-title: International network of cancer genome projects publication-title: Nature doi: 10.1038/nature08987 contributor: fullname: Hudson – volume: 4 start-page: a008581. issue: 9 year: 2014 ident: 2020013108073955000_ooy008-B2 article-title: Personalized medicine and human genetic diversity publication-title: Cold Spring Harbor Perspect Med doi: 10.1101/cshperspect.a008581 contributor: fullname: Lu – volume: 30 start-page: 1350 issue: 12 year: 2012 ident: 2020013108073955000_ooy008-B65 article-title: TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group publication-title: J Clin Oncol doi: 10.1200/JCO.2011.39.2886 contributor: fullname: Gaidzik – volume: 43 start-page: D1071 issue: D1 year: 2014 ident: 2020013108073955000_ooy008-B42 article-title: Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1011 contributor: fullname: Kibbe – volume: 105 start-page: 233 issue: 2 year: 2016 ident: 2020013108073955000_ooy008-B34 article-title: Bayesian multi-tensor factorization publication-title: Mach Learn doi: 10.1007/s10994-016-5563-y contributor: fullname: Khan – year: 2016 ident: 2020013108073955000_ooy008-B8 contributor: fullname: Group E-ACR – volume: 452 start-page: 553 issue: 7187 year: 2008 ident: 2020013108073955000_ooy008-B3 article-title: Translating insights from the cancer genome into clinical practice publication-title: Nature doi: 10.1038/nature06914 contributor: fullname: Chin – year: 2008 ident: 2020013108073955000_ooy008-B23 – year: 2014 ident: 2020013108073955000_ooy008-B27 article-title: Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold publication-title: Pac Symp Biocomput contributor: fullname: Zitnik – volume: 9 start-page: 926 issue: 1 year: 2010 ident: 2020013108073955000_ooy008-B51 article-title: A practical guide to training restricted Boltzmann machines publication-title: Momentum contributor: fullname: Hinton – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 2020013108073955000_ooy008-B41 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 contributor: fullname: Kanehisa – ident: 2020013108073955000_ooy008-B32 contributor: fullname: Klami – volume: 2 start-page: 16 issue: 1 year: 2014 ident: 2020013108073955000_ooy008-B28 article-title: Matrix factorization-based data fusion for drug-induced liver injury prediction publication-title: Syst Biomed doi: 10.4161/sysb.29072 contributor: fullname: Žitnik – volume: 8 start-page: 27. issue: 1 year: 2016 ident: 2020013108073955000_ooy008-B22 article-title: CoINcIDE: a framework for discovery of patient subtypes across multiple datasets publication-title: Genome Med doi: 10.1186/s13073-016-0281-4 contributor: fullname: Planey – volume: 372 start-page: 793 issue: 9 year: 2015 ident: 2020013108073955000_ooy008-B1 article-title: A new initiative on precision medicine publication-title: N Engl J Med doi: 10.1056/NEJMp1500523 contributor: fullname: Collins – volume: 26 start-page: 721 issue: 5 year: 2008 ident: 2020013108073955000_ooy008-B4 article-title: Development of the 21-gene assay and its application in clinical practice and clinical trials publication-title: J Clin Oncol doi: 10.1200/JCO.2007.15.1068 contributor: fullname: Sparano – volume: 42 start-page: D1091 issue: D1 year: 2014 ident: 2020013108073955000_ooy008-B66 article-title: DrugBank 4.0: shedding new light on drug metabolism publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1068 contributor: fullname: Law – volume: 11 start-page: e0152792. issue: 4 year: 2016 ident: 2020013108073955000_ooy008-B17 article-title: Identifying cancer subtypes from miRNA-TF-mRNA regulatory networks and expression data publication-title: PLoS One doi: 10.1371/journal.pone.0152792 contributor: fullname: Xu – volume: 27 start-page: 1160 issue: 8 year: 2009 ident: 2020013108073955000_ooy008-B5 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol doi: 10.1200/JCO.2008.18.1370 contributor: fullname: Parker – volume-title: Clustering Algorithms year: 1975 ident: 2020013108073955000_ooy008-B55 contributor: fullname: Hartigan – volume: 11 start-page: e0162407. issue: 9 year: 2016 ident: 2020013108073955000_ooy008-B29 article-title: A network-based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer publication-title: PLoS One doi: 10.1371/journal.pone.0162407 contributor: fullname: Vitali – year: 2012 ident: 2020013108073955000_ooy008-B35 contributor: fullname: Virtanen S, Klami A, Khan AK, Kaski S. Bayesian group factor analysis – volume: 16 start-page: 1141 year: 1988 ident: 2020013108073955000_ooy008-B57 article-title: A class of K-sample tests for comparing the cumulative incidence of a competing risk publication-title: Ann Stat doi: 10.1214/aos/1176350951 contributor: fullname: Gray – volume: 31 start-page: 3557 issue: 28 year: 2013 ident: 2020013108073955000_ooy008-B6 article-title: Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes publication-title: J Clin Oncol doi: 10.1200/JCO.2012.45.5626 contributor: fullname: Pellagatti – volume: 12 start-page: 928 issue: 4 year: 2015 ident: 2020013108073955000_ooy008-B20 article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach publication-title: IEEE/ACM Trans Comput Biol and Bioinf doi: 10.1109/TCBB.2014.2377729 contributor: fullname: Liang – volume: 373 start-page: 1136 issue: 12 year: 2015 ident: 2020013108073955000_ooy008-B54 article-title: Acute myeloid leukemia publication-title: N Engl J Med doi: 10.1056/NEJMra1406184 contributor: fullname: Dohner – volume: 37 start-page: 41 issue: 1 year: 2015 ident: 2020013108073955000_ooy008-B30 article-title: Data fusion by matrix factorization publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2343973 contributor: fullname: Zitnik – volume: 3 start-page: 3202 issue: 1 year: 2013 ident: 2020013108073955000_ooy008-B25 article-title: Discovering disease-disease associations by fusing systems-level molecular data publication-title: Sci Rep doi: 10.1038/srep03202 contributor: fullname: Zitnik – volume: 45 start-page: D833 issue: D1 year: 2017 ident: 2020013108073955000_ooy008-B38 article-title: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw943 contributor: fullname: Pinero – volume: 2013 start-page: bat018 year: 2013 ident: 2020013108073955000_ooy008-B46 article-title: MalaCards: an integrated compendium for diseases and their annotation publication-title: Database doi: 10.1093/database/bat018 contributor: fullname: Rappaport – volume: 28 start-page: 3636 issue: 22 year: 2010 ident: 2020013108073955000_ooy008-B61 article-title: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication publication-title: J Clin Oncol doi: 10.1200/JCO.2010.28.3762 contributor: fullname: Paschka – volume: 30 start-page: 163 issue: 1 year: 2002 ident: 2020013108073955000_ooy008-B67 article-title: PharmGKB: the pharmacogenetics knowledge base publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.163 contributor: fullname: Hewett – volume: 29 start-page: 3241 issue: 24 year: 2013 ident: 2020013108073955000_ooy008-B47 article-title: BioServices: a common Python package to access biological Web Services programmatically publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt547 contributor: fullname: Cokelaer – volume: 33 start-page: 2753 issue: 25 year: 2015 ident: 2020013108073955000_ooy008-B7 article-title: Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials publication-title: J Clin Oncol doi: 10.1200/JCO.2014.60.4165 contributor: fullname: Meric-Bernstam – volume: 43 start-page: D470 issue: D1 year: 2014 ident: 2020013108073955000_ooy008-B40 article-title: The BioGRID interaction database: 2015 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1204 contributor: fullname: Chatr-Aryamontri – volume: 25 start-page: 1336 issue: 6 year: 2013 ident: 2020013108073955000_ooy008-B37 article-title: Nonnegative matrix factorization: a comprehensive review publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.51 contributor: fullname: Wang – year: 2014 ident: 2020013108073955000_ooy008-B24 – volume: 43 start-page: D789 issue: D1 year: 2015 ident: 2020013108073955000_ooy008-B60 article-title: OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1205 contributor: fullname: Amberger – year: 1992 ident: 2020013108073955000_ooy008-B59 contributor: fullname: Scott – volume: 26 start-page: 2136 issue: 9 year: 2015 ident: 2020013108073955000_ooy008-B36 article-title: Group factor analysis publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2376974 contributor: fullname: Klami – volume: 38 start-page: 921 issue: 4 year: 1982 ident: 2020013108073955000_ooy008-B56 article-title: Nonparametric estimation of lifetime and disease onset distributions from incomplete observations publication-title: Biometrics doi: 10.2307/2529872 contributor: fullname: Dinse – volume: 64 start-page: 8816 issue: 24 year: 2004 ident: 2020013108073955000_ooy008-B64 article-title: Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1923 contributor: fullname: Bentires-Alj – volume: 341 start-page: 1051 issue: 14 year: 1999 ident: 2020013108073955000_ooy008-B53 article-title: Acute myeloid leukemia publication-title: N Engl J Med doi: 10.1056/NEJM199909303411407 contributor: fullname: Lowenberg – volume: 31 start-page: e15 issue: 4 year: 2003 ident: 2020013108073955000_ooy008-B44 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 contributor: fullname: Irizarry – volume: 90 start-page: 1639 issue: 12 year: 2015 ident: 2020013108073955000_ooy008-B11 article-title: Characteristics of exceptional or super responders to cancer drugs publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2015.08.017 contributor: fullname: Prasad – volume: 358 start-page: 1909 issue: 18 year: 2008 ident: 2020013108073955000_ooy008-B63 article-title: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia publication-title: N Engl J Med doi: 10.1056/NEJMoa074306 contributor: fullname: Schlenk – volume: 21 start-page: 321 year: 2016 ident: 2020013108073955000_ooy008-B21 article-title: Patient-specific data fusion for cancer stratification and personalised treatment publication-title: Pac Symp Biocomput contributor: fullname: Gligorijevic – start-page: 155 volume-title: Coefficient of Variation. Applied Multivariate Statistics in Geohydrology and Related Sciences year: 1998 ident: 2020013108073955000_ooy008-B48 doi: 10.1007/978-3-642-80328-4_13 contributor: fullname: Brown – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 2020013108073955000_ooy008-B52 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 contributor: fullname: Hinton – volume: 14 start-page: 4 issue: 1 year: 2012 ident: 2020013108073955000_ooy008-B58 article-title: Sparse methods for biomedical data publication-title: SIGKDD Explor Newsl doi: 10.1145/2408736.2408739 contributor: fullname: Ye – volume: 16 start-page: 1324 issue: 13 year: 2015 ident: 2020013108073955000_ooy008-B10 article-title: Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(15)00188-6 contributor: fullname: Le Tourneau – volume: 11 start-page: 333 issue: 3 year: 2014 ident: 2020013108073955000_ooy008-B19 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods doi: 10.1038/nmeth.2810 contributor: fullname: Wang – volume: 11 start-page: e1004552 issue: 10 year: 2015 ident: 2020013108073955000_ooy008-B26 article-title: Gene prioritization by compressive data fusion and chaining publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004552 contributor: fullname: Zitnik – ident: 2020013108073955000_ooy008-B9 – volume: 6 start-page: pl1. issue: 269 year: 2013 ident: 2020013108073955000_ooy008-B43 article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal publication-title: Sci Signal doi: 10.1126/scisignal.2004088 contributor: fullname: Gao – volume: 25 start-page: 2906 issue: 22 year: 2009 ident: 2020013108073955000_ooy008-B15 article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btp543 contributor: fullname: Shen – volume: 7 start-page: 40200 issue: 26 year: 2016 ident: 2020013108073955000_ooy008-B16 article-title: Big data and computational biology strategy for personalized prognosis publication-title: Oncotarget doi: 10.18632/oncotarget.9571 contributor: fullname: Ow – volume: 63 start-page: 66 year: 2016 ident: 2020013108073955000_ooy008-B18 article-title: Using concept hierarchies to improve calculation of patient similarity publication-title: J Biomed Inform doi: 10.1016/j.jbi.2016.07.021 contributor: fullname: Girardi – volume: 526 start-page: 361 issue: 7573 year: 2015 ident: 2020013108073955000_ooy008-B12 article-title: Patient-centric trials for therapeutic development in precision oncology publication-title: Nature doi: 10.1038/nature15819 contributor: fullname: Biankin – year: 2017 ident: 2020013108073955000_ooy008-B33 contributor: fullname: Ruffini – volume: 2 start-page: 37 issue: 1-3 year: 1987 ident: 2020013108073955000_ooy008-B50 article-title: Principal component analysis publication-title: Chemom Intell Lab Syst doi: 10.1016/0169-7439(87)80084-9 contributor: fullname: Wold |
SSID | ssj0001999630 |
Score | 2.1768064 |
Snippet | Abstract
Objective
Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification,... Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to... Abstract Objective Computing patients’ similarity is of great interest in precision oncology since it supports clustering and subgroup identification,... OBJECTIVEComputing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 75 |
SubjectTerms | Research and Applications |
Title | Patient similarity by joint matrix trifactorization to identify subgroups in acute myeloid leukemia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31984320 https://search.proquest.com/docview/2346302935 https://pubmed.ncbi.nlm.nih.gov/PMC6951984 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SHEouJSVpu026KJBLD856V37pWJaGEMjjkMDejGSNqNq1HbI2dP99RrK97OZUctHB1hhrZsx843kBXCRiKpDsSGBEGgeEwE2gDPKg0KHmhcRY-WkNt3fJ9VN0s4gXexAPtTA-ab9Q9rJalpeV_e1zK5_LYjLkiU0ebucJwQKRRZN92CcF3XLR_Y8VB-F52IckyWF3HYasdMOoJnW9Jpt3CB-4o-duyPeWNdqpcNsCmm_zJbcM0NURfOyRI_vZveEn2MPqGIqHri8qW9nSkpNKmJqpNftTW7pWuvb7_xgt3VSdvuSSNTWzvj7XrNmqVb6wY8VsxWTRNsjKNS5rq9kS279IZzqBp6tfj_ProJ-bEBR0piYo0iiKTaKmRidSzlQSc0OuqEYuZMIx5UpNdSxmCiOTZq4OS2MWJqHJuNIZSeozHFR1hV-BCZVpQjSYGklfuyHPO0tnoUQUaUh0YgQ_Bv7lz117jLwLa_N8w_a8Y_sILug4_7HtfJBATqru4heywrpd5TMekWAJn8Qj-NJJZPO0QaAjSHdktdng2mjv3iHt8u20e2369m7KUzgkGJV1SbxncNC8tPidoEqjxt7FH3sFpfXxfvEK1nvzbw |
link.rule.ids | 230,315,730,783,787,867,888,1607,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvBcRry8tIvXDIbnadl4-oolqgW_XQot4i2xkL001SsYnE8usZx8lqtyfgkkNiW7G_ceabeB4Ax4mYCiQ9EhiRxgExcBMogzzQRVhwLTFWXbWGxXkyv4q-XMfXexAPsTCd075Wdlwty3Flv3e-lbelngx-YpOLxUlCtEBk0eQe3Kf9GiZbRnr3a8WReB72h5JksrscQ1a6clSTul6T1juAB9yNwF2Z7y19tBPjtkU173pMbqmg00fwbXh573lyM24bNda_7-R1_OfZPYbDnpSyj_7xE9jD6inoC59yla1sacn-JbrO1Jr9qC3dK11m_1-MLr5gTx_NyZqa2S7016zZqlVdzMiK2YpJ3TbIyjUua1uwJbY3SIv1DK5OP12ezIO-JEOgabGaQKdRFJtETU2RSDlTScwNWbkFciETjilXalrEYqYwMmnmQrwKJIBCk3FVZCQEz2G_qit8CUyorCCyhKmR9CExZNRn6SyUiCINqZ8YwYcBmPzWZ97I_Yk5zzd45h7PERzTdP6i2fsB2px2kTsakRXW7Sqf8YgkhqhPPIIXHurNaIOkjCDdEYJNA5ehe_cJQdtl6u6hPPrvnu_g4fxycZaffT7_-goOiK1l3lf4New3P1t8Q4yoUW87-f8Dy8oTbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aFEIufdDXNn2okEsPXntXfkjHknZJHwl7aCD0YvSkatb20rUh21_fsWUv3pxKLj7YkkCakecbaeYbgJOUz7hBOxJYniUBInAbSGtooHSkqRImkV21hvOL9Owy_nqVXI1KfXVB-0q6abkqpqX71cVWrgsVDnFi4fL8NEVYwFkcrrUN78MD3LMRGznq3fFKC-Rp1F9Motve8gw50ZakCqtqi5bvCA5pOwptS32PbNJentsIbt6OmhyZocUj-DlMwEefXE-bWk7V31vcjnea4WN42INT8tE3eQL3TPkU1NJTr5KNKxz6wQjbidyS35XDd0XL8H9D8OEL9_RZnaSuiOtSgO2WbBrZ5Y5siCuJUE1tSLE1q8ppsjLNtcEFewaXi88_Ts-CvjRDoHDB6kBlcZzYVM6sToWYyzShFr1dbSgXKTUZlXKmEz6XJrYZa1O9tGFRGllGpWaoDM_hoKxK8xIIl0wjaDKZFfhDsejcs2weCWN4FmE_PoEPg3DytWfgyP3NOc13Ms29TCdwgtP5j2bvB_HmuJvaKxJRmqrZ5HMao9YgBEom8MKLezfaoC0TyPYUYdegZere_4Li7Ri7e3G-unPPd3C4_LTIv3-5-HYMRwjamA8Zfg0H9Z_GvEFgVMu33Rb4BzH2Fe8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+similarity+by+joint+matrix+trifactorization+to+identify+subgroups+in+acute+myeloid+leukemia&rft.jtitle=JAMIA+open&rft.au=Vitali%2C+F&rft.au=Marini%2C+S&rft.au=Pala%2C+D&rft.au=Demartini%2C+A&rft.date=2018-07-01&rft.eissn=2574-2531&rft.volume=1&rft.issue=1&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1093%2Fjamiaopen%2Fooy008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-2531&client=summon |