Patient similarity by joint matrix trifactorization to identify subgroups in acute myeloid leukemia

Abstract Objective Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse c...

Full description

Saved in:
Bibliographic Details
Published inJAMIA open Vol. 1; no. 1; pp. 75 - 86
Main Authors Vitali, F, Marini, S, Pala, D, Demartini, A, Montoli, S, Zambelli, A, Bellazzi, R
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Objective Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge. Materials and Methods In this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods. Results In the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data. Discussion In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology. Conclusion The better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine.
AbstractList Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge. In this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods. In the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data. In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology. The better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine.
Abstract Objective Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge. Materials and Methods In this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods. Results In the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data. Discussion In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology. Conclusion The better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine.
OBJECTIVEComputing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge. MATERIALS AND METHODSIn this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods. RESULTSIn the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data. DISCUSSIONIn case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology. CONCLUSIONThe better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine.
Author Marini, S
Demartini, A
Bellazzi, R
Vitali, F
Montoli, S
Zambelli, A
Pala, D
AuthorAffiliation 4 Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
3 Department of Medicine, The University of Arizona, Tucson, AZ, USA
1 Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, Arizona, USA
2 BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
7 Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
8 IRCCS Istituti Clinici Scientifici Maugeri, Pavia, PV, Italy
5 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy
6 Centre for Health Technologies, University of Pavia, PV, Italy
AuthorAffiliation_xml – name: 1 Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, Arizona, USA
– name: 3 Department of Medicine, The University of Arizona, Tucson, AZ, USA
– name: 7 Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
– name: 6 Centre for Health Technologies, University of Pavia, PV, Italy
– name: 2 BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
– name: 4 Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
– name: 8 IRCCS Istituti Clinici Scientifici Maugeri, Pavia, PV, Italy
– name: 5 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy
Author_xml – sequence: 1
  givenname: F
  orcidid: 0000-0003-2916-6402
  surname: Vitali
  fullname: Vitali, F
  organization: Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, Arizona, USA
– sequence: 2
  givenname: S
  surname: Marini
  fullname: Marini, S
  organization: Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
– sequence: 3
  givenname: D
  surname: Pala
  fullname: Pala, D
  organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy
– sequence: 4
  givenname: A
  surname: Demartini
  fullname: Demartini, A
  organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy
– sequence: 5
  givenname: S
  surname: Montoli
  fullname: Montoli, S
  organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy
– sequence: 6
  givenname: A
  surname: Zambelli
  fullname: Zambelli, A
  organization: Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
– sequence: 7
  givenname: R
  surname: Bellazzi
  fullname: Bellazzi, R
  email: riccardo.bellazzi@unipv.it
  organization: Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31984320$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1PxCAUJEbjx7p3T4ajiVmF0nbLxcRs_EpM9KBnAvSxsrZlBWqsv150daMnLzzCmxkmM3tos3MdIHRAyQklnJ0uZGulW0J36txASLWBdrNimk-ygtHNX_cdNA5hQQihnPOSkW20wyivcpaRXaTvZbTQRRxsaxvpbRywGvDC2fTWyujtG06HkTo6b98T2HU4OmzrRLJmwKFXc-_6ZcC2w1L3EXA7QONsjRvonyF53EdbRjYBxt9zhB4vLx5m15Pbu6ub2fntRCcvcaKneV6YUlFTl1JmqiyYoYzVwLgsGUyZUrQueKYgN9NKQ8FrqEhJTMVUXRlgI3S20l32qoVaJ4deNmLpbSv9IJy04u-ms09i7l5FyYuvQEbo6FvAu5ceQhStDRqaRnbg-iAylqf8Ms6KBCUrqPYuBA9m_Q0l4rMesa5HrOpJlMPf9taEnzIS4HgFSHH-L_cBisSkMA
CitedBy_id crossref_primary_10_1093_bioinformatics_btab579
crossref_primary_10_1016_j_jbi_2020_103398
crossref_primary_10_1371_journal_pone_0217994
crossref_primary_10_1093_bioinformatics_bty746
crossref_primary_10_1109_TCBB_2022_3225300
crossref_primary_10_3389_fmolb_2021_666705
crossref_primary_10_1093_bioinformatics_btab487
crossref_primary_10_3390_jpm11080699
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_1016_j_jbi_2019_103194
crossref_primary_10_1016_j_ijmedinf_2019_104073
crossref_primary_10_1093_gigascience_giac029
crossref_primary_10_1002_wsbm_1623
crossref_primary_10_1038_s41467_019_08797_8
Cites_doi 10.5194/gmd-7-1247-2014
10.1145/2408736.2408740
10.1182/blood-2005-05-2168
10.3389/fphys.2016.00561
10.1186/s12859-015-0554-8
10.1038/nature08987
10.1101/cshperspect.a008581
10.1200/JCO.2011.39.2886
10.1093/nar/gku1011
10.1007/s10994-016-5563-y
10.1038/nature06914
10.1093/nar/28.1.27
10.4161/sysb.29072
10.1186/s13073-016-0281-4
10.1056/NEJMp1500523
10.1200/JCO.2007.15.1068
10.1093/nar/gkt1068
10.1371/journal.pone.0152792
10.1200/JCO.2008.18.1370
10.1371/journal.pone.0162407
10.1214/aos/1176350951
10.1200/JCO.2012.45.5626
10.1109/TCBB.2014.2377729
10.1056/NEJMra1406184
10.1109/TPAMI.2014.2343973
10.1038/srep03202
10.1093/nar/gkw943
10.1093/database/bat018
10.1200/JCO.2010.28.3762
10.1093/nar/30.1.163
10.1093/bioinformatics/btt547
10.1200/JCO.2014.60.4165
10.1093/nar/gku1204
10.1109/TKDE.2012.51
10.1093/nar/gku1205
10.1109/TNNLS.2014.2376974
10.2307/2529872
10.1158/0008-5472.CAN-04-1923
10.1056/NEJM199909303411407
10.1093/nar/gng015
10.1016/j.mayocp.2015.08.017
10.1056/NEJMoa074306
10.1007/978-3-642-80328-4_13
10.1162/neco.2006.18.7.1527
10.1145/2408736.2408739
10.1016/S1470-2045(15)00188-6
10.1038/nmeth.2810
10.1371/journal.pcbi.1004552
10.1126/scisignal.2004088
10.1093/bioinformatics/btp543
10.18632/oncotarget.9571
10.1016/j.jbi.2016.07.021
10.1038/nature15819
10.1016/0169-7439(87)80084-9
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2018
The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2018
– notice: The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association.
DBID TOX
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/jamiaopen/ooy008
DatabaseName Oxford University Press Journals Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2574-2531
EndPage 86
ExternalDocumentID 10_1093_jamiaopen_ooy008
31984320
10.1093/jamiaopen/ooy008
Genre Journal Article
GroupedDBID 0R~
AAFWJ
AAPXW
AAVAP
ABPTD
ABXVV
ACGFS
ADBBV
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
BAYMD
BCNDV
BTTYL
EBS
EJD
GROUPED_DOAJ
IAO
KSI
M~E
O9-
OK1
ROX
RPM
TOX
ABEJV
ITC
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c432t-c7445f6b1fd6aa2b653f133de39a63e73bb1d592be4f78ce59de8060f83bd8fe3
IEDL.DBID RPM
ISSN 2574-2531
IngestDate Tue Apr 09 21:39:54 EDT 2024
Wed Jul 17 03:54:02 EDT 2024
Fri Aug 23 03:21:27 EDT 2024
Tue Oct 29 04:34:50 EDT 2024
Wed Aug 28 03:20:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords matrix trifactorization
patient similarity
acute myeloid leukemia (AML)
precision medicine
data integration
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-c7445f6b1fd6aa2b653f133de39a63e73bb1d592be4f78ce59de8060f83bd8fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
F. Vitali and S. Marini contributed equally to the work.
ORCID 0000-0003-2916-6402
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951984/
PMID 31984320
PQID 2346302935
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6951984
proquest_miscellaneous_2346302935
crossref_primary_10_1093_jamiaopen_ooy008
pubmed_primary_31984320
oup_primary_10_1093_jamiaopen_ooy008
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JAMIA open
PublicationTitleAlternate JAMIA Open
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ruffini (2020013108073955000_ooy008-B33) 2017
Gaidzik (2020013108073955000_ooy008-B65) 2012; 30
Amberger (2020013108073955000_ooy008-B60) 2015; 43
Ye (2020013108073955000_ooy008-B58) 2012; 14
Dinse (2020013108073955000_ooy008-B56) 1982; 38
Lowenberg (2020013108073955000_ooy008-B53) 1999; 341
Kanehisa (2020013108073955000_ooy008-B41) 2000; 28
Le Tourneau (2020013108073955000_ooy008-B10) 2015; 16
Hartigan (2020013108073955000_ooy008-B55) 1975
Zitnik (2020013108073955000_ooy008-B26) 2015; 11
Zitnik (2020013108073955000_ooy008-B30) 2015; 37
Zitnik (2020013108073955000_ooy008-B25) 2013; 3
Kibbe (2020013108073955000_ooy008-B42) 2014; 43
Wold (2020013108073955000_ooy008-B50) 1987; 2
Hinton (2020013108073955000_ooy008-B52) 2006; 18
Collins (2020013108073955000_ooy008-B1) 2015; 372
Pellagatti (2020013108073955000_ooy008-B6) 2013; 31
Xu (2020013108073955000_ooy008-B17) 2016; 11
Zitnik (2020013108073955000_ooy008-B27) 2014
Wang (2020013108073955000_ooy008-B37) 2013; 25
Biankin (2020013108073955000_ooy008-B12) 2015; 526
(2020013108073955000_ooy008-B23) 2008
Irizarry (2020013108073955000_ooy008-B44) 2003; 31
Bentires-Alj (2020013108073955000_ooy008-B64) 2004; 64
Parker (2020013108073955000_ooy008-B5) 2009; 27
Chin (2020013108073955000_ooy008-B3) 2008; 452
Liang (2020013108073955000_ooy008-B20) 2015; 12
Brown (2020013108073955000_ooy008-B14) 2016; 7
Group E-ACR (2020013108073955000_ooy008-B8) 2016
Verhaak (2020013108073955000_ooy008-B62) 2005; 106
Shen (2020013108073955000_ooy008-B15) 2009; 25
Wang (2020013108073955000_ooy008-B19) 2014; 11
Meric-Bernstam (2020013108073955000_ooy008-B7) 2015; 33
Rappaport (2020013108073955000_ooy008-B46) 2013; 2013
Planey (2020013108073955000_ooy008-B22) 2016; 8
Vitali (2020013108073955000_ooy008-B29) 2016; 11
Lu (2020013108073955000_ooy008-B2) 2014; 4
Virtanen S, Klami A, Khan AK, Kaski S. Bayesian group factor analysis (2020013108073955000_ooy008-B35) 2012
Žitnik (2020013108073955000_ooy008-B28) 2014; 2
2020013108073955000_ooy008-B9
Scott (2020013108073955000_ooy008-B59) 1992
Law (2020013108073955000_ooy008-B66) 2014; 42
Khan (2020013108073955000_ooy008-B34) 2016; 105
Ow (2020013108073955000_ooy008-B16) 2016; 7
Pinero (2020013108073955000_ooy008-B38) 2017; 45
Chai (2020013108073955000_ooy008-B49) 2014; 7
Klami (2020013108073955000_ooy008-B32)
Hudson (2020013108073955000_ooy008-B39) 2010; 464
Hinton (2020013108073955000_ooy008-B51) 2010; 9
Gray (2020013108073955000_ooy008-B57) 1988; 16
Prasad (2020013108073955000_ooy008-B11) 2015; 90
Gao (2020013108073955000_ooy008-B43) 2013; 6
(2020013108073955000_ooy008-B24) 2014
Singh AP, Gordon JG. Relational learning via collective matrix factorization (2020013108073955000_ooy008-B31) 2008
Sun (2020013108073955000_ooy008-B13) 2012; 14
Klami (2020013108073955000_ooy008-B36) 2015; 26
Hewett (2020013108073955000_ooy008-B67) 2002; 30
Brown (2020013108073955000_ooy008-B48) 1998
Paschka (2020013108073955000_ooy008-B61) 2010; 28
Dohner (2020013108073955000_ooy008-B54) 2015; 373
Girardi (2020013108073955000_ooy008-B18) 2016; 63
Cokelaer (2020013108073955000_ooy008-B47) 2013; 29
Schlenk (2020013108073955000_ooy008-B63) 2008; 358
Sparano (2020013108073955000_ooy008-B4) 2008; 26
Gligorijevic (2020013108073955000_ooy008-B21) 2016; 21
Limongelli (2020013108073955000_ooy008-B45) 2015; 16
Chatr-Aryamontri (2020013108073955000_ooy008-B40) 2014; 43
References_xml – year: 2008
  ident: 2020013108073955000_ooy008-B31
  contributor:
    fullname: Singh AP, Gordon JG. Relational learning via collective matrix factorization
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  ident: 2020013108073955000_ooy008-B49
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-7-1247-2014
  contributor:
    fullname: Chai
– volume: 14
  start-page: 16
  issue: 1
  year: 2012
  ident: 2020013108073955000_ooy008-B13
  article-title: Supervised patient similarity measure of heterogeneous patient records
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/2408736.2408740
  contributor:
    fullname: Sun
– volume: 106
  start-page: 3747
  issue: 12
  year: 2005
  ident: 2020013108073955000_ooy008-B62
  article-title: Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance
  publication-title: Blood
  doi: 10.1182/blood-2005-05-2168
  contributor:
    fullname: Verhaak
– volume: 7
  start-page: 561.
  year: 2016
  ident: 2020013108073955000_ooy008-B14
  article-title: Patient similarity: emerging concepts in systems and precision medicine
  publication-title: Front Physiol
  doi: 10.3389/fphys.2016.00561
  contributor:
    fullname: Brown
– volume: 16
  start-page: 123
  issue: 1
  year: 2015
  ident: 2020013108073955000_ooy008-B45
  article-title: PaPI: pseudo amino acid composition to score human protein-coding variants
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0554-8
  contributor:
    fullname: Limongelli
– volume: 464
  start-page: 993
  issue: 7291
  year: 2010
  ident: 2020013108073955000_ooy008-B39
  article-title: International network of cancer genome projects
  publication-title: Nature
  doi: 10.1038/nature08987
  contributor:
    fullname: Hudson
– volume: 4
  start-page: a008581.
  issue: 9
  year: 2014
  ident: 2020013108073955000_ooy008-B2
  article-title: Personalized medicine and human genetic diversity
  publication-title: Cold Spring Harbor Perspect Med
  doi: 10.1101/cshperspect.a008581
  contributor:
    fullname: Lu
– volume: 30
  start-page: 1350
  issue: 12
  year: 2012
  ident: 2020013108073955000_ooy008-B65
  article-title: TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.39.2886
  contributor:
    fullname: Gaidzik
– volume: 43
  start-page: D1071
  issue: D1
  year: 2014
  ident: 2020013108073955000_ooy008-B42
  article-title: Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1011
  contributor:
    fullname: Kibbe
– volume: 105
  start-page: 233
  issue: 2
  year: 2016
  ident: 2020013108073955000_ooy008-B34
  article-title: Bayesian multi-tensor factorization
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5563-y
  contributor:
    fullname: Khan
– year: 2016
  ident: 2020013108073955000_ooy008-B8
  contributor:
    fullname: Group E-ACR
– volume: 452
  start-page: 553
  issue: 7187
  year: 2008
  ident: 2020013108073955000_ooy008-B3
  article-title: Translating insights from the cancer genome into clinical practice
  publication-title: Nature
  doi: 10.1038/nature06914
  contributor:
    fullname: Chin
– year: 2008
  ident: 2020013108073955000_ooy008-B23
– year: 2014
  ident: 2020013108073955000_ooy008-B27
  article-title: Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold
  publication-title: Pac Symp Biocomput
  contributor:
    fullname: Zitnik
– volume: 9
  start-page: 926
  issue: 1
  year: 2010
  ident: 2020013108073955000_ooy008-B51
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Momentum
  contributor:
    fullname: Hinton
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 2020013108073955000_ooy008-B41
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
  contributor:
    fullname: Kanehisa
– ident: 2020013108073955000_ooy008-B32
  contributor:
    fullname: Klami
– volume: 2
  start-page: 16
  issue: 1
  year: 2014
  ident: 2020013108073955000_ooy008-B28
  article-title: Matrix factorization-based data fusion for drug-induced liver injury prediction
  publication-title: Syst Biomed
  doi: 10.4161/sysb.29072
  contributor:
    fullname: Žitnik
– volume: 8
  start-page: 27.
  issue: 1
  year: 2016
  ident: 2020013108073955000_ooy008-B22
  article-title: CoINcIDE: a framework for discovery of patient subtypes across multiple datasets
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0281-4
  contributor:
    fullname: Planey
– volume: 372
  start-page: 793
  issue: 9
  year: 2015
  ident: 2020013108073955000_ooy008-B1
  article-title: A new initiative on precision medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1500523
  contributor:
    fullname: Collins
– volume: 26
  start-page: 721
  issue: 5
  year: 2008
  ident: 2020013108073955000_ooy008-B4
  article-title: Development of the 21-gene assay and its application in clinical practice and clinical trials
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2007.15.1068
  contributor:
    fullname: Sparano
– volume: 42
  start-page: D1091
  issue: D1
  year: 2014
  ident: 2020013108073955000_ooy008-B66
  article-title: DrugBank 4.0: shedding new light on drug metabolism
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1068
  contributor:
    fullname: Law
– volume: 11
  start-page: e0152792.
  issue: 4
  year: 2016
  ident: 2020013108073955000_ooy008-B17
  article-title: Identifying cancer subtypes from miRNA-TF-mRNA regulatory networks and expression data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152792
  contributor:
    fullname: Xu
– volume: 27
  start-page: 1160
  issue: 8
  year: 2009
  ident: 2020013108073955000_ooy008-B5
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.18.1370
  contributor:
    fullname: Parker
– volume-title: Clustering Algorithms
  year: 1975
  ident: 2020013108073955000_ooy008-B55
  contributor:
    fullname: Hartigan
– volume: 11
  start-page: e0162407.
  issue: 9
  year: 2016
  ident: 2020013108073955000_ooy008-B29
  article-title: A network-based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162407
  contributor:
    fullname: Vitali
– year: 2012
  ident: 2020013108073955000_ooy008-B35
  contributor:
    fullname: Virtanen S, Klami A, Khan AK, Kaski S. Bayesian group factor analysis
– volume: 16
  start-page: 1141
  year: 1988
  ident: 2020013108073955000_ooy008-B57
  article-title: A class of K-sample tests for comparing the cumulative incidence of a competing risk
  publication-title: Ann Stat
  doi: 10.1214/aos/1176350951
  contributor:
    fullname: Gray
– volume: 31
  start-page: 3557
  issue: 28
  year: 2013
  ident: 2020013108073955000_ooy008-B6
  article-title: Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.45.5626
  contributor:
    fullname: Pellagatti
– volume: 12
  start-page: 928
  issue: 4
  year: 2015
  ident: 2020013108073955000_ooy008-B20
  article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach
  publication-title: IEEE/ACM Trans Comput Biol and Bioinf
  doi: 10.1109/TCBB.2014.2377729
  contributor:
    fullname: Liang
– volume: 373
  start-page: 1136
  issue: 12
  year: 2015
  ident: 2020013108073955000_ooy008-B54
  article-title: Acute myeloid leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1406184
  contributor:
    fullname: Dohner
– volume: 37
  start-page: 41
  issue: 1
  year: 2015
  ident: 2020013108073955000_ooy008-B30
  article-title: Data fusion by matrix factorization
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2343973
  contributor:
    fullname: Zitnik
– volume: 3
  start-page: 3202
  issue: 1
  year: 2013
  ident: 2020013108073955000_ooy008-B25
  article-title: Discovering disease-disease associations by fusing systems-level molecular data
  publication-title: Sci Rep
  doi: 10.1038/srep03202
  contributor:
    fullname: Zitnik
– volume: 45
  start-page: D833
  issue: D1
  year: 2017
  ident: 2020013108073955000_ooy008-B38
  article-title: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw943
  contributor:
    fullname: Pinero
– volume: 2013
  start-page: bat018
  year: 2013
  ident: 2020013108073955000_ooy008-B46
  article-title: MalaCards: an integrated compendium for diseases and their annotation
  publication-title: Database
  doi: 10.1093/database/bat018
  contributor:
    fullname: Rappaport
– volume: 28
  start-page: 3636
  issue: 22
  year: 2010
  ident: 2020013108073955000_ooy008-B61
  article-title: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2010.28.3762
  contributor:
    fullname: Paschka
– volume: 30
  start-page: 163
  issue: 1
  year: 2002
  ident: 2020013108073955000_ooy008-B67
  article-title: PharmGKB: the pharmacogenetics knowledge base
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.163
  contributor:
    fullname: Hewett
– volume: 29
  start-page: 3241
  issue: 24
  year: 2013
  ident: 2020013108073955000_ooy008-B47
  article-title: BioServices: a common Python package to access biological Web Services programmatically
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt547
  contributor:
    fullname: Cokelaer
– volume: 33
  start-page: 2753
  issue: 25
  year: 2015
  ident: 2020013108073955000_ooy008-B7
  article-title: Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.60.4165
  contributor:
    fullname: Meric-Bernstam
– volume: 43
  start-page: D470
  issue: D1
  year: 2014
  ident: 2020013108073955000_ooy008-B40
  article-title: The BioGRID interaction database: 2015 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1204
  contributor:
    fullname: Chatr-Aryamontri
– volume: 25
  start-page: 1336
  issue: 6
  year: 2013
  ident: 2020013108073955000_ooy008-B37
  article-title: Nonnegative matrix factorization: a comprehensive review
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.51
  contributor:
    fullname: Wang
– year: 2014
  ident: 2020013108073955000_ooy008-B24
– volume: 43
  start-page: D789
  issue: D1
  year: 2015
  ident: 2020013108073955000_ooy008-B60
  article-title: OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1205
  contributor:
    fullname: Amberger
– year: 1992
  ident: 2020013108073955000_ooy008-B59
  contributor:
    fullname: Scott
– volume: 26
  start-page: 2136
  issue: 9
  year: 2015
  ident: 2020013108073955000_ooy008-B36
  article-title: Group factor analysis
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2376974
  contributor:
    fullname: Klami
– volume: 38
  start-page: 921
  issue: 4
  year: 1982
  ident: 2020013108073955000_ooy008-B56
  article-title: Nonparametric estimation of lifetime and disease onset distributions from incomplete observations
  publication-title: Biometrics
  doi: 10.2307/2529872
  contributor:
    fullname: Dinse
– volume: 64
  start-page: 8816
  issue: 24
  year: 2004
  ident: 2020013108073955000_ooy008-B64
  article-title: Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-1923
  contributor:
    fullname: Bentires-Alj
– volume: 341
  start-page: 1051
  issue: 14
  year: 1999
  ident: 2020013108073955000_ooy008-B53
  article-title: Acute myeloid leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199909303411407
  contributor:
    fullname: Lowenberg
– volume: 31
  start-page: e15
  issue: 4
  year: 2003
  ident: 2020013108073955000_ooy008-B44
  article-title: Summaries of Affymetrix GeneChip probe level data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gng015
  contributor:
    fullname: Irizarry
– volume: 90
  start-page: 1639
  issue: 12
  year: 2015
  ident: 2020013108073955000_ooy008-B11
  article-title: Characteristics of exceptional or super responders to cancer drugs
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2015.08.017
  contributor:
    fullname: Prasad
– volume: 358
  start-page: 1909
  issue: 18
  year: 2008
  ident: 2020013108073955000_ooy008-B63
  article-title: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa074306
  contributor:
    fullname: Schlenk
– volume: 21
  start-page: 321
  year: 2016
  ident: 2020013108073955000_ooy008-B21
  article-title: Patient-specific data fusion for cancer stratification and personalised treatment
  publication-title: Pac Symp Biocomput
  contributor:
    fullname: Gligorijevic
– start-page: 155
  volume-title: Coefficient of Variation. Applied Multivariate Statistics in Geohydrology and Related Sciences
  year: 1998
  ident: 2020013108073955000_ooy008-B48
  doi: 10.1007/978-3-642-80328-4_13
  contributor:
    fullname: Brown
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 2020013108073955000_ooy008-B52
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
  contributor:
    fullname: Hinton
– volume: 14
  start-page: 4
  issue: 1
  year: 2012
  ident: 2020013108073955000_ooy008-B58
  article-title: Sparse methods for biomedical data
  publication-title: SIGKDD Explor Newsl
  doi: 10.1145/2408736.2408739
  contributor:
    fullname: Ye
– volume: 16
  start-page: 1324
  issue: 13
  year: 2015
  ident: 2020013108073955000_ooy008-B10
  article-title: Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(15)00188-6
  contributor:
    fullname: Le Tourneau
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: 2020013108073955000_ooy008-B19
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
  contributor:
    fullname: Wang
– volume: 11
  start-page: e1004552
  issue: 10
  year: 2015
  ident: 2020013108073955000_ooy008-B26
  article-title: Gene prioritization by compressive data fusion and chaining
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004552
  contributor:
    fullname: Zitnik
– ident: 2020013108073955000_ooy008-B9
– volume: 6
  start-page: pl1.
  issue: 269
  year: 2013
  ident: 2020013108073955000_ooy008-B43
  article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2004088
  contributor:
    fullname: Gao
– volume: 25
  start-page: 2906
  issue: 22
  year: 2009
  ident: 2020013108073955000_ooy008-B15
  article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btp543
  contributor:
    fullname: Shen
– volume: 7
  start-page: 40200
  issue: 26
  year: 2016
  ident: 2020013108073955000_ooy008-B16
  article-title: Big data and computational biology strategy for personalized prognosis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9571
  contributor:
    fullname: Ow
– volume: 63
  start-page: 66
  year: 2016
  ident: 2020013108073955000_ooy008-B18
  article-title: Using concept hierarchies to improve calculation of patient similarity
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2016.07.021
  contributor:
    fullname: Girardi
– volume: 526
  start-page: 361
  issue: 7573
  year: 2015
  ident: 2020013108073955000_ooy008-B12
  article-title: Patient-centric trials for therapeutic development in precision oncology
  publication-title: Nature
  doi: 10.1038/nature15819
  contributor:
    fullname: Biankin
– year: 2017
  ident: 2020013108073955000_ooy008-B33
  contributor:
    fullname: Ruffini
– volume: 2
  start-page: 37
  issue: 1-3
  year: 1987
  ident: 2020013108073955000_ooy008-B50
  article-title: Principal component analysis
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/0169-7439(87)80084-9
  contributor:
    fullname: Wold
SSID ssj0001999630
Score 2.1768064
Snippet Abstract Objective Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification,...
Computing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to...
Abstract Objective Computing patients’ similarity is of great interest in precision oncology since it supports clustering and subgroup identification,...
OBJECTIVEComputing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 75
SubjectTerms Research and Applications
Title Patient similarity by joint matrix trifactorization to identify subgroups in acute myeloid leukemia
URI https://www.ncbi.nlm.nih.gov/pubmed/31984320
https://search.proquest.com/docview/2346302935
https://pubmed.ncbi.nlm.nih.gov/PMC6951984
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SHEouJSVpu026KJBLD856V37pWJaGEMjjkMDejGSNqNq1HbI2dP99RrK97OZUctHB1hhrZsx843kBXCRiKpDsSGBEGgeEwE2gDPKg0KHmhcRY-WkNt3fJ9VN0s4gXexAPtTA-ab9Q9rJalpeV_e1zK5_LYjLkiU0ebucJwQKRRZN92CcF3XLR_Y8VB-F52IckyWF3HYasdMOoJnW9Jpt3CB-4o-duyPeWNdqpcNsCmm_zJbcM0NURfOyRI_vZveEn2MPqGIqHri8qW9nSkpNKmJqpNftTW7pWuvb7_xgt3VSdvuSSNTWzvj7XrNmqVb6wY8VsxWTRNsjKNS5rq9kS279IZzqBp6tfj_ProJ-bEBR0piYo0iiKTaKmRidSzlQSc0OuqEYuZMIx5UpNdSxmCiOTZq4OS2MWJqHJuNIZSeozHFR1hV-BCZVpQjSYGklfuyHPO0tnoUQUaUh0YgQ_Bv7lz117jLwLa_N8w_a8Y_sILug4_7HtfJBATqru4heywrpd5TMekWAJn8Qj-NJJZPO0QaAjSHdktdng2mjv3iHt8u20e2369m7KUzgkGJV1SbxncNC8tPidoEqjxt7FH3sFpfXxfvEK1nvzbw
link.rule.ids 230,315,730,783,787,867,888,1607,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvBcRry8tIvXDIbnadl4-oolqgW_XQot4i2xkL001SsYnE8usZx8lqtyfgkkNiW7G_ceabeB4Ax4mYCiQ9EhiRxgExcBMogzzQRVhwLTFWXbWGxXkyv4q-XMfXexAPsTCd075Wdlwty3Flv3e-lbelngx-YpOLxUlCtEBk0eQe3Kf9GiZbRnr3a8WReB72h5JksrscQ1a6clSTul6T1juAB9yNwF2Z7y19tBPjtkU173pMbqmg00fwbXh573lyM24bNda_7-R1_OfZPYbDnpSyj_7xE9jD6inoC59yla1sacn-JbrO1Jr9qC3dK11m_1-MLr5gTx_NyZqa2S7016zZqlVdzMiK2YpJ3TbIyjUua1uwJbY3SIv1DK5OP12ezIO-JEOgabGaQKdRFJtETU2RSDlTScwNWbkFciETjilXalrEYqYwMmnmQrwKJIBCk3FVZCQEz2G_qit8CUyorCCyhKmR9CExZNRn6SyUiCINqZ8YwYcBmPzWZ97I_Yk5zzd45h7PERzTdP6i2fsB2px2kTsakRXW7Sqf8YgkhqhPPIIXHurNaIOkjCDdEYJNA5ehe_cJQdtl6u6hPPrvnu_g4fxycZaffT7_-goOiK1l3lf4New3P1t8Q4yoUW87-f8Dy8oTbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aFEIufdDXNn2okEsPXntXfkjHknZJHwl7aCD0YvSkatb20rUh21_fsWUv3pxKLj7YkkCakecbaeYbgJOUz7hBOxJYniUBInAbSGtooHSkqRImkV21hvOL9Owy_nqVXI1KfXVB-0q6abkqpqX71cVWrgsVDnFi4fL8NEVYwFkcrrUN78MD3LMRGznq3fFKC-Rp1F9Motve8gw50ZakCqtqi5bvCA5pOwptS32PbNJentsIbt6OmhyZocUj-DlMwEefXE-bWk7V31vcjnea4WN42INT8tE3eQL3TPkU1NJTr5KNKxz6wQjbidyS35XDd0XL8H9D8OEL9_RZnaSuiOtSgO2WbBrZ5Y5siCuJUE1tSLE1q8ppsjLNtcEFewaXi88_Ts-CvjRDoHDB6kBlcZzYVM6sToWYyzShFr1dbSgXKTUZlXKmEz6XJrYZa1O9tGFRGllGpWaoDM_hoKxK8xIIl0wjaDKZFfhDsejcs2weCWN4FmE_PoEPg3DytWfgyP3NOc13Ms29TCdwgtP5j2bvB_HmuJvaKxJRmqrZ5HMao9YgBEom8MKLezfaoC0TyPYUYdegZere_4Li7Ri7e3G-unPPd3C4_LTIv3-5-HYMRwjamA8Zfg0H9Z_GvEFgVMu33Rb4BzH2Fe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+similarity+by+joint+matrix+trifactorization+to+identify+subgroups+in+acute+myeloid+leukemia&rft.jtitle=JAMIA+open&rft.au=Vitali%2C+F&rft.au=Marini%2C+S&rft.au=Pala%2C+D&rft.au=Demartini%2C+A&rft.date=2018-07-01&rft.eissn=2574-2531&rft.volume=1&rft.issue=1&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1093%2Fjamiaopen%2Fooy008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-2531&client=summon