Ultrafast control of vortex microlasers
For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 367; no. 6481; pp. 1018 - 1021 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
28.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang
et al.
exploited the idea of bound states in the continuum, effectively a high–quality (
Q
) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information.
Science
, this issue p.
1018
Ultrafast vortex lasers with highly directional output and single-mode operation have been realized.
The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies. |
---|---|
AbstractList | For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang
et al.
exploited the idea of bound states in the continuum, effectively a high–quality (
Q
) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information.
Science
, this issue p.
1018
Ultrafast vortex lasers with highly directional output and single-mode operation have been realized.
The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies. Ultrafast vortex microlasersFor applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang et al. exploited the idea of bound states in the continuum, effectively a high–quality (Q) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information.Science, this issue p. 1018The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies. The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies. The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies. |
Author | Huang, Can Ge, Li Zhang, Nan Zhang, Chen Han, Jiecai Song, Qinghai Fan, Yubin Kivshar, Yuri Xiao, Shumin Wang, Yuhan Liu, Yilin Qu, Geyang Ji, Hongjun |
Author_xml | – sequence: 1 givenname: Can orcidid: 0000-0002-9528-5939 surname: Huang fullname: Huang, Can organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 2 givenname: Chen surname: Zhang fullname: Zhang, Chen organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 3 givenname: Shumin orcidid: 0000-0002-0751-9556 surname: Xiao fullname: Xiao, Shumin organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China., National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China – sequence: 4 givenname: Yuhan orcidid: 0000-0002-1508-9867 surname: Wang fullname: Wang, Yuhan organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 5 givenname: Yubin orcidid: 0000-0002-6505-3432 surname: Fan fullname: Fan, Yubin organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 6 givenname: Yilin surname: Liu fullname: Liu, Yilin organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 7 givenname: Nan orcidid: 0000-0002-2011-5986 surname: Zhang fullname: Zhang, Nan organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 8 givenname: Geyang orcidid: 0000-0002-5607-7467 surname: Qu fullname: Qu, Geyang organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 9 givenname: Hongjun orcidid: 0000-0002-4159-6838 surname: Ji fullname: Ji, Hongjun organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 10 givenname: Jiecai surname: Han fullname: Han, Jiecai organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China – sequence: 11 givenname: Li orcidid: 0000-0002-1922-4464 surname: Ge fullname: Ge, Li organization: The Graduate Center, CUNY, New York, NY 10016, USA., Department of Physics and Astronomy, College of Staten Island, CUNY, Staten Island, NY 10314, USA – sequence: 12 givenname: Yuri orcidid: 0000-0002-3410-812X surname: Kivshar fullname: Kivshar, Yuri organization: Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia – sequence: 13 givenname: Qinghai orcidid: 0000-0003-1048-411X surname: Song fullname: Song, Qinghai organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China., Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32108108$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1rwyAYh2V0rB_bebcR2GG7pNX4kXgcZV9Q2GU9ixqFlCR2asb238_S9FIYCC_o83t932cOJr3rDQC3CC4RKtgq6Mb02iylkoTy8gLMEOQ05wXEEzCDELO8giWdgnkIOwjTG8dXYIoLBKt0ZuBh20YvrQwx066P3rWZs9m389H8ZF2j04UMxodrcGllG8zNWBdg-_L8uX7LNx-v7-unTa4JLmKuWWFrTQmXaRpKFC6NZgRbU1FNZFGWSNW00txwawlhXCuFEWe1VoTaGhO8AI_HvnvvvgYTouiaoE3byt64IYgCM445YZAl9P4M3bnB92m6A8XS_4zTRN2N1KA6U4u9bzrpf8VJQQLoEUi7huCNFbqJMjYHG7JpBYLioFqMqsWoOuVWZ7lT6_8SfycmgpY |
CitedBy_id | crossref_primary_10_3367_UFNe_2021_12_039120 crossref_primary_10_1021_acs_nanolett_0c01975 crossref_primary_10_1021_acs_nanolett_2c01919 crossref_primary_10_1021_acs_nanolett_4c03040 crossref_primary_10_1002_lpor_202100617 crossref_primary_10_1016_j_rinp_2023_107088 crossref_primary_10_1021_acsaom_3c00195 crossref_primary_10_1364_OL_479431 crossref_primary_10_1038_s41567_021_01189_0 crossref_primary_10_1002_adfm_202215007 crossref_primary_10_1021_acsphotonics_2c01522 crossref_primary_10_1016_j_matt_2021_05_002 crossref_primary_10_1002_adom_202201906 crossref_primary_10_1021_acsnano_2c09883 crossref_primary_10_1088_1361_6463_ac9399 crossref_primary_10_1021_acsnano_3c02786 crossref_primary_10_1021_acsnano_4c03164 crossref_primary_10_1038_s41377_023_01231_1 crossref_primary_10_1088_1674_1056_ac728d crossref_primary_10_1126_sciadv_abc0711 crossref_primary_10_1002_adfm_202102210 crossref_primary_10_1007_s00340_022_07958_w crossref_primary_10_1021_acsphotonics_2c01658 crossref_primary_10_1063_5_0226286 crossref_primary_10_1002_smll_202102694 crossref_primary_10_1103_PhysRevB_107_165142 crossref_primary_10_1088_1674_4926_43_5_050202 crossref_primary_10_1002_adom_202300416 crossref_primary_10_1103_PhysRevA_107_013504 crossref_primary_10_1364_OPN_31_12_000036 crossref_primary_10_1007_s11433_022_1957_3 crossref_primary_10_3788_PI_2024_R05 crossref_primary_10_1038_s42254_024_00715_2 crossref_primary_10_3788_PI_2024_R04 crossref_primary_10_1002_adom_202001469 crossref_primary_10_29026_oea_2024_230186 crossref_primary_10_1021_acs_nanolett_1c03696 crossref_primary_10_3367_UFNr_2021_12_039120 crossref_primary_10_1021_acsnano_0c06050 crossref_primary_10_1038_s41427_022_00408_1 crossref_primary_10_3788_LOP232221 crossref_primary_10_3788_COL202523_023601 crossref_primary_10_3788_PI_2024_R01 crossref_primary_10_1002_adfm_202202277 crossref_primary_10_1103_PhysRevLett_129_264301 crossref_primary_10_1007_s13320_024_0711_7 crossref_primary_10_1364_OL_402834 crossref_primary_10_1364_OE_518062 crossref_primary_10_1002_advs_202403176 crossref_primary_10_1038_s41566_022_00986_0 crossref_primary_10_1364_OE_531000 crossref_primary_10_1063_5_0116880 crossref_primary_10_1002_adom_202302513 crossref_primary_10_1002_adom_202401592 crossref_primary_10_1002_lpor_202200597 crossref_primary_10_1002_adma_202100775 crossref_primary_10_1002_adom_202102386 crossref_primary_10_1021_acs_chemmater_4c00015 crossref_primary_10_1364_OME_500196 crossref_primary_10_1515_nanoph_2021_0083 crossref_primary_10_3390_nano12040653 crossref_primary_10_1021_acs_jpcc_0c07712 crossref_primary_10_1364_OE_500765 crossref_primary_10_1515_nanoph_2023_0319 crossref_primary_10_1016_j_optcom_2024_131402 crossref_primary_10_1038_s41377_023_01090_w crossref_primary_10_1364_OPTICA_486582 crossref_primary_10_3788_AOS221877 crossref_primary_10_1038_s41586_025_08632_9 crossref_primary_10_1088_1361_6463_ad5734 crossref_primary_10_1038_s41467_020_18669_1 crossref_primary_10_1093_nsr_nwac234 crossref_primary_10_1103_PhysRevB_108_165305 crossref_primary_10_1002_adfm_202415823 crossref_primary_10_1103_PhysRevLett_132_044001 crossref_primary_10_1364_PRJ_424247 crossref_primary_10_1038_s41377_024_01548_5 crossref_primary_10_1364_OPTICA_478616 crossref_primary_10_1002_adom_202402798 crossref_primary_10_1103_PhysRevLett_127_176101 crossref_primary_10_1002_adma_202302170 crossref_primary_10_1021_acs_nanolett_2c00712 crossref_primary_10_1103_PhysRevLett_130_093801 crossref_primary_10_1515_nanoph_2023_0673 crossref_primary_10_1364_OE_492848 crossref_primary_10_1021_acs_chemrev_2c00012 crossref_primary_10_1021_acsphotonics_2c01562 crossref_primary_10_1126_science_abj0039 crossref_primary_10_1515_nanoph_2020_0207 crossref_primary_10_1038_s41377_024_01417_1 crossref_primary_10_1515_nanoph_2024_0196 crossref_primary_10_1021_acsami_2c02577 crossref_primary_10_1016_j_physrep_2023_01_001 crossref_primary_10_1038_s41377_021_00612_8 crossref_primary_10_1063_5_0065397 crossref_primary_10_1002_adom_202300475 crossref_primary_10_1126_sciadv_ade7556 crossref_primary_10_1038_s41566_024_01418_x crossref_primary_10_1063_5_0204694 crossref_primary_10_1038_s41467_023_43068_7 crossref_primary_10_1016_j_inoche_2023_110991 crossref_primary_10_1021_acs_nanolett_3c03301 crossref_primary_10_1038_s41467_024_53433_9 crossref_primary_10_1364_AOP_531166 crossref_primary_10_1002_adma_202414174 crossref_primary_10_1039_D0RA08881A crossref_primary_10_1002_lpor_202400964 crossref_primary_10_1016_j_optmat_2024_114839 crossref_primary_10_1021_acsnano_1c02204 crossref_primary_10_1364_OL_462909 crossref_primary_10_1002_adma_202211284 crossref_primary_10_1038_s41467_021_25130_4 crossref_primary_10_1002_lpor_202200308 crossref_primary_10_1063_5_0023338 crossref_primary_10_1038_s41467_024_47669_8 crossref_primary_10_1364_OPTICA_418864 crossref_primary_10_1016_j_jsv_2024_118856 crossref_primary_10_1088_1361_6528_ad26db crossref_primary_10_1515_nanoph_2020_0343 crossref_primary_10_31857_S1234567824100057 crossref_primary_10_3390_ma16052113 crossref_primary_10_1021_acsphotonics_2c01461 crossref_primary_10_3390_mi13122040 crossref_primary_10_1002_adma_202203889 crossref_primary_10_1063_5_0193124 crossref_primary_10_1007_s11433_023_2223_5 crossref_primary_10_1021_acsnano_0c07011 crossref_primary_10_1021_acsphotonics_1c01931 crossref_primary_10_1021_acs_nanolett_4c00954 crossref_primary_10_1038_s42005_020_00414_1 crossref_primary_10_1088_1361_6463_ac055a crossref_primary_10_1002_adom_202002126 crossref_primary_10_1063_5_0150674 crossref_primary_10_1021_acsami_4c09254 crossref_primary_10_1063_5_0047616 crossref_primary_10_1016_j_progsurf_2020_100584 crossref_primary_10_1093_nsr_nwac043 crossref_primary_10_1002_adom_202101497 crossref_primary_10_1002_smsc_202300273 crossref_primary_10_1364_OL_431047 crossref_primary_10_3788_AOS230558 crossref_primary_10_1103_PhysRevApplied_20_L011003 crossref_primary_10_1021_acsphotonics_3c00018 crossref_primary_10_1016_j_optlastec_2025_112817 crossref_primary_10_1002_adfm_202425931 crossref_primary_10_1364_OL_445453 crossref_primary_10_1364_OE_453493 crossref_primary_10_1063_5_0057793 crossref_primary_10_1103_PhysRevLett_134_013805 crossref_primary_10_1038_s41566_021_00806_x crossref_primary_10_1103_PhysRevB_109_205403 crossref_primary_10_1364_PRJ_497954 crossref_primary_10_1063_5_0046546 crossref_primary_10_1038_s42005_023_01245_6 crossref_primary_10_1002_adom_202302782 crossref_primary_10_1038_s41467_025_58050_8 crossref_primary_10_1038_s41586_023_06789_9 crossref_primary_10_1063_5_0009272 crossref_primary_10_1002_lpor_202200564 crossref_primary_10_1038_s41467_022_35599_2 crossref_primary_10_1364_PRJ_485625 crossref_primary_10_1016_j_rinp_2022_105698 crossref_primary_10_1103_PhysRevApplied_20_054059 crossref_primary_10_1088_2040_8986_ac5dd6 crossref_primary_10_3389_fphy_2022_862962 crossref_primary_10_1002_adfm_202405976 crossref_primary_10_1038_s41566_024_01476_1 crossref_primary_10_1016_j_optcom_2025_131799 crossref_primary_10_3390_mi14101817 crossref_primary_10_1103_PhysRevA_105_033504 crossref_primary_10_3788_AOS240428 crossref_primary_10_1002_lpor_202300350 crossref_primary_10_1109_JSEN_2023_3347223 crossref_primary_10_1088_1361_6463_acdf6a crossref_primary_10_1021_acsami_4c03770 crossref_primary_10_1021_acsnano_2c09482 crossref_primary_10_1002_adfm_202314953 crossref_primary_10_1364_OL_529503 crossref_primary_10_1021_acs_nanolett_3c04797 crossref_primary_10_1002_lpor_202200611 crossref_primary_10_1364_OL_485042 crossref_primary_10_1021_acs_jpcc_2c03174 crossref_primary_10_1002_adfm_202200385 crossref_primary_10_1021_acsphotonics_2c01013 crossref_primary_10_1002_adma_202109157 crossref_primary_10_1021_acsphotonics_2c01496 crossref_primary_10_1007_s11433_021_1668_y crossref_primary_10_1038_s41377_020_00352_1 crossref_primary_10_1021_acs_nanolett_4c03690 crossref_primary_10_1364_OE_420001 crossref_primary_10_34133_ultrafastscience_0074 crossref_primary_10_1103_PhysRevLett_132_046601 crossref_primary_10_1021_acs_nanolett_3c02148 crossref_primary_10_1002_lpor_202301206 crossref_primary_10_1038_s41467_021_26406_5 crossref_primary_10_1364_PRJ_432919 crossref_primary_10_1103_PhysRevB_105_165304 crossref_primary_10_1002_adom_202401643 crossref_primary_10_3788_PI_2023_R09 crossref_primary_10_1088_1361_6463_ace78b crossref_primary_10_1038_s41467_022_32697_z crossref_primary_10_1126_sciadv_adr5375 crossref_primary_10_1002_adfm_202203680 crossref_primary_10_1016_j_chphma_2024_03_004 crossref_primary_10_1016_j_optlastec_2023_109537 crossref_primary_10_1109_JPHOT_2022_3212000 crossref_primary_10_1007_s10853_024_09450_6 crossref_primary_10_1021_acsnano_0c05710 crossref_primary_10_1038_s41565_020_0768_4 crossref_primary_10_1088_2040_8986_acea92 crossref_primary_10_1021_acsnano_3c09793 crossref_primary_10_1002_adom_202200753 crossref_primary_10_3390_nano11092343 crossref_primary_10_1039_D1RA06538F crossref_primary_10_1364_OL_410608 crossref_primary_10_1103_PhysRevApplied_16_064036 crossref_primary_10_1039_D3EE00646H crossref_primary_10_1088_1402_4896_ad7bfa crossref_primary_10_1002_advs_202200953 crossref_primary_10_1021_acs_nanolett_2c04238 crossref_primary_10_3390_nano15060451 crossref_primary_10_1021_acs_nanolett_3c04348 crossref_primary_10_1002_adpr_202000012 crossref_primary_10_1063_5_0105365 crossref_primary_10_1186_s43593_021_00005_9 crossref_primary_10_1039_D3CP02414H crossref_primary_10_1103_PhysRevB_107_165406 crossref_primary_10_1364_OME_467655 crossref_primary_10_1016_j_chip_2024_100109 crossref_primary_10_1038_s41598_022_25945_1 crossref_primary_10_1021_acsphotonics_2c00071 crossref_primary_10_1063_5_0091280 crossref_primary_10_1103_PhysRevLett_126_117402 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_1021_acs_nanolett_1c04065 crossref_primary_10_1021_acs_nanolett_4c04217 crossref_primary_10_1515_nanoph_2021_0616 crossref_primary_10_1002_lpor_202301233 crossref_primary_10_1039_D2MA00910B crossref_primary_10_1002_adom_202000690 crossref_primary_10_1364_OE_503399 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122435 crossref_primary_10_1038_s41586_024_07674_9 crossref_primary_10_1016_j_omx_2022_100214 crossref_primary_10_1063_5_0035104 crossref_primary_10_1021_acs_nanolett_1c00828 crossref_primary_10_1364_OE_530418 crossref_primary_10_1103_PhysRevApplied_18_014079 crossref_primary_10_1364_PRJ_409884 crossref_primary_10_1007_s40766_021_00015_w crossref_primary_10_1088_1674_1056_ac8ce5 crossref_primary_10_3788_AOS240632 crossref_primary_10_1126_science_adm7442 crossref_primary_10_1039_D4NR00547C crossref_primary_10_3390_photonics12030247 crossref_primary_10_1016_j_fmre_2023_03_017 crossref_primary_10_1038_s41467_020_17096_6 crossref_primary_10_1039_D1CC01084K crossref_primary_10_1038_s41567_021_01165_8 crossref_primary_10_1038_s41566_022_01126_4 crossref_primary_10_1126_sciadv_ade8817 crossref_primary_10_1038_s41563_023_01531_2 crossref_primary_10_1116_5_0016007 crossref_primary_10_3788_gzxb20235208_0826002 crossref_primary_10_1016_j_optcom_2024_131172 crossref_primary_10_1016_j_optcom_2025_131693 crossref_primary_10_1364_OL_496039 crossref_primary_10_1021_acsnano_1c00673 crossref_primary_10_1002_lpor_202100197 crossref_primary_10_1002_advs_202206236 crossref_primary_10_1016_j_chip_2024_100121 crossref_primary_10_1109_JLT_2022_3226814 crossref_primary_10_1016_j_scriptamat_2022_115229 crossref_primary_10_1364_OL_537421 crossref_primary_10_1038_s42005_020_0353_z crossref_primary_10_1002_adma_202207617 crossref_primary_10_1021_acs_nanolett_3c03288 crossref_primary_10_1364_OL_394333 crossref_primary_10_1364_PRJ_483038 crossref_primary_10_1103_PhysRevLett_129_236101 crossref_primary_10_1364_PRJ_462474 crossref_primary_10_1126_science_aba8996 crossref_primary_10_1364_OE_456362 crossref_primary_10_1088_0256_307X_38_8_084203 crossref_primary_10_1002_adma_202109255 crossref_primary_10_1117_1_AP_3_3_034002 crossref_primary_10_1126_sciadv_adf6649 crossref_primary_10_1002_smll_202102596 crossref_primary_10_1021_acsami_0c17655 crossref_primary_10_1134_S0021364024601015 crossref_primary_10_1515_nanoph_2022_0387 crossref_primary_10_1038_s41377_023_01212_4 crossref_primary_10_1021_acsmaterialslett_4c00365 crossref_primary_10_1515_nanoph_2022_0143 crossref_primary_10_1073_pnas_2019578118 crossref_primary_10_1103_PhysRevB_104_085126 crossref_primary_10_1002_adom_202001327 crossref_primary_10_1002_lpor_202000411 crossref_primary_10_1126_sciadv_abk1117 crossref_primary_10_1364_AOP_414320 crossref_primary_10_1002_adom_202201634 crossref_primary_10_1016_j_esci_2024_100253 crossref_primary_10_1002_adpr_202200120 crossref_primary_10_1109_JLT_2021_3081727 crossref_primary_10_1038_s41377_024_01561_8 crossref_primary_10_1021_acsnano_2c04628 crossref_primary_10_1002_lpor_202401327 crossref_primary_10_1080_09500340_2024_2442656 crossref_primary_10_1364_OL_451421 crossref_primary_10_1103_PhysRevB_106_245406 crossref_primary_10_1016_j_ijleo_2022_168927 crossref_primary_10_1038_s41467_022_30451_z crossref_primary_10_1002_adma_202207430 crossref_primary_10_1364_AO_471587 crossref_primary_10_1002_adom_202201590 crossref_primary_10_3788_COL202422_103601 crossref_primary_10_1002_adma_202207317 crossref_primary_10_1364_OL_484472 crossref_primary_10_1039_D2NR05031E crossref_primary_10_1021_acs_nanolett_2c04860 crossref_primary_10_1002_lpor_202000449 crossref_primary_10_37188_lam_2024_005 crossref_primary_10_1103_PhysRevLett_131_013801 crossref_primary_10_1038_s41377_020_00415_3 crossref_primary_10_1103_PhysRevApplied_14_021001 crossref_primary_10_1109_JPHOT_2024_3378672 crossref_primary_10_1016_j_photonics_2022_101103 crossref_primary_10_1007_s11433_024_2493_5 crossref_primary_10_1021_acs_nanolett_0c03593 crossref_primary_10_3390_photonics9060371 crossref_primary_10_1021_acsphotonics_4c00297 crossref_primary_10_1103_PhysRevLett_132_183801 crossref_primary_10_1103_PhysRevB_104_075149 crossref_primary_10_1364_OE_482420 crossref_primary_10_1039_D2CS00322H crossref_primary_10_1103_PhysRevB_109_155301 crossref_primary_10_1038_s41467_022_29253_0 crossref_primary_10_1117_1_APN_1_1_016005 crossref_primary_10_1038_s41467_024_53952_5 crossref_primary_10_1088_1361_6455_ad838b crossref_primary_10_1364_OL_458285 crossref_primary_10_1103_PhysRevA_109_023525 crossref_primary_10_1515_nanoph_2021_0638 crossref_primary_10_1126_science_abq7870 crossref_primary_10_1038_s41467_021_24502_0 crossref_primary_10_1002_adom_202201328 crossref_primary_10_1021_acs_jpclett_2c02605 crossref_primary_10_1038_s41377_022_00923_4 crossref_primary_10_1002_adma_202413559 crossref_primary_10_1073_pnas_2101605118 crossref_primary_10_1039_D1NR06084H crossref_primary_10_1038_s41565_023_01319_0 crossref_primary_10_1088_1674_1056_acd2c1 crossref_primary_10_1002_adfm_202413098 crossref_primary_10_1021_acs_jpclett_5c00298 crossref_primary_10_1364_OL_487655 crossref_primary_10_1364_OE_542816 crossref_primary_10_1002_lpor_202000338 crossref_primary_10_1021_acs_nanolett_3c05038 crossref_primary_10_1021_acsnano_2c05634 crossref_primary_10_1063_5_0057904 crossref_primary_10_1364_OE_433058 crossref_primary_10_3788_AOS230902 crossref_primary_10_1038_s41377_021_00578_7 crossref_primary_10_1002_adom_202300909 crossref_primary_10_1038_s42005_024_01808_1 crossref_primary_10_1039_D4TA00587B crossref_primary_10_1016_j_optlastec_2023_110144 crossref_primary_10_1002_adma_202000306 crossref_primary_10_1515_nanoph_2024_0630 crossref_primary_10_1088_1367_2630_ac66f8 crossref_primary_10_1021_acsami_2c17675 crossref_primary_10_1515_nanoph_2024_0514 crossref_primary_10_1002_adma_202400214 crossref_primary_10_1103_PhysRevLett_128_253901 crossref_primary_10_1021_acsphotonics_2c00901 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1016_j_matt_2023_05_043 crossref_primary_10_1021_acsnano_4c12107 crossref_primary_10_1021_acs_nanolett_1c01504 crossref_primary_10_1088_1361_6633_abefb9 crossref_primary_10_1364_OL_507991 crossref_primary_10_1103_PhysRevB_107_045305 crossref_primary_10_1364_OL_510932 crossref_primary_10_1021_acsphotonics_2c00800 crossref_primary_10_34133_ultrafastscience_0033 crossref_primary_10_1021_acsnano_2c11013 crossref_primary_10_1038_s41467_022_34307_4 crossref_primary_10_1038_s41467_024_51148_5 crossref_primary_10_1021_acs_nanolett_3c00727 crossref_primary_10_1088_1361_6463_ac05f9 crossref_primary_10_3390_ma16227112 crossref_primary_10_1038_s41467_022_32117_2 crossref_primary_10_1364_PRJ_427094 crossref_primary_10_1088_2515_7647_abc60e crossref_primary_10_1002_anie_202007361 crossref_primary_10_1038_s41377_021_00707_2 crossref_primary_10_1021_acsphotonics_4c00137 crossref_primary_10_1002_adom_202202584 crossref_primary_10_1002_adma_202300344 crossref_primary_10_1002_lpor_202100118 crossref_primary_10_1002_andp_202400250 crossref_primary_10_1088_1367_2630_ac52c0 crossref_primary_10_12677_app_2024_144021 crossref_primary_10_1038_s41467_023_39227_5 crossref_primary_10_1103_PhysRevA_106_013719 crossref_primary_10_1038_s41467_021_26253_4 crossref_primary_10_1103_PhysRevLett_133_213802 crossref_primary_10_1364_OL_545899 crossref_primary_10_1002_adma_202102232 crossref_primary_10_1364_OE_545174 crossref_primary_10_1002_lpor_202300527 crossref_primary_10_1021_acs_chemrev_1c01029 crossref_primary_10_1063_5_0200778 crossref_primary_10_1002_ange_202007361 crossref_primary_10_1364_PRJ_471905 crossref_primary_10_1021_acs_jpclett_4c02604 crossref_primary_10_1515_nanoph_2021_0560 crossref_primary_10_1103_PhysRevApplied_14_044048 crossref_primary_10_1021_acsnano_1c07114 crossref_primary_10_1063_5_0085422 crossref_primary_10_3390_nano15020145 crossref_primary_10_1364_OE_458382 crossref_primary_10_1103_PhysRevLett_129_173901 crossref_primary_10_1117_1_JBO_29_S1_S11524 crossref_primary_10_1364_OSAC_422063 crossref_primary_10_1002_lpor_202300533 crossref_primary_10_1515_nanoph_2021_0684 crossref_primary_10_1021_acs_nanolett_1c01975 crossref_primary_10_29026_oes_2023_230006 crossref_primary_10_1364_OL_504476 crossref_primary_10_1515_nanoph_2023_0195 crossref_primary_10_1038_s41467_024_47475_2 crossref_primary_10_1002_adfm_202211841 crossref_primary_10_1002_adma_202106692 crossref_primary_10_1021_acs_nanolett_4c06157 crossref_primary_10_1364_OE_547207 crossref_primary_10_1103_PhysRevLett_127_266101 crossref_primary_10_1002_lpor_202100574 crossref_primary_10_1021_acsnano_0c06463 crossref_primary_10_1038_s41467_024_45565_9 crossref_primary_10_1021_acs_nanolett_3c02938 crossref_primary_10_1002_aesr_202300157 crossref_primary_10_1002_adfm_202308957 crossref_primary_10_29026_oea_2024_240138 crossref_primary_10_1021_acs_nanolett_3c00510 crossref_primary_10_1002_adom_202100143 crossref_primary_10_34133_research_0597 crossref_primary_10_1016_j_nocx_2023_100182 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1038_s41467_025_57738_1 crossref_primary_10_1016_j_rinp_2024_107767 crossref_primary_10_3390_cryst12081052 crossref_primary_10_1002_lpor_202400402 crossref_primary_10_1515_nanoph_2021_0260 crossref_primary_10_1038_s41467_021_24686_5 crossref_primary_10_1515_nanoph_2020_0654 crossref_primary_10_1038_s42005_024_01777_5 crossref_primary_10_1063_5_0127904 crossref_primary_10_1002_adom_202202152 crossref_primary_10_1364_PRJ_533613 crossref_primary_10_1021_acsphotonics_1c00605 crossref_primary_10_1021_acsphotonics_1c00968 crossref_primary_10_1364_OE_431814 crossref_primary_10_1021_acs_nanolett_1c02880 crossref_primary_10_1142_S2810922824300022 crossref_primary_10_1021_acs_nanolett_1c03853 crossref_primary_10_1515_nanoph_2021_0265 crossref_primary_10_1515_nanoph_2021_0387 crossref_primary_10_1002_adom_202203118 crossref_primary_10_1515_nanoph_2023_0373 crossref_primary_10_1021_jacs_4c14899 crossref_primary_10_1088_2040_8986_ac7d5f crossref_primary_10_1364_PRJ_480671 crossref_primary_10_1002_adom_202101120 crossref_primary_10_1016_j_rinp_2023_107102 crossref_primary_10_1021_acsami_4c18202 crossref_primary_10_1039_D3EE02591H crossref_primary_10_3389_fphy_2021_688284 crossref_primary_10_1002_adma_202002585 crossref_primary_10_1021_acsnano_5c02465 crossref_primary_10_1021_acs_nanolett_4c00871 crossref_primary_10_1007_s12648_023_02922_6 crossref_primary_10_1103_PhysRevLett_127_043901 crossref_primary_10_1002_adpr_202400060 crossref_primary_10_1016_j_optlaseng_2024_108621 crossref_primary_10_1021_acsami_1c08287 crossref_primary_10_1021_acs_nanolett_1c02618 crossref_primary_10_1038_s41377_023_01130_5 crossref_primary_10_1063_5_0189135 crossref_primary_10_1002_adma_202500226 crossref_primary_10_1021_acsphotonics_1c01840 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1364_OL_485506 crossref_primary_10_1364_PRJ_403444 crossref_primary_10_1016_j_optlastec_2025_112575 crossref_primary_10_1021_acsphotonics_2c00618 crossref_primary_10_1021_acsphotonics_5c00421 crossref_primary_10_1088_2515_7647_ac4ee4 crossref_primary_10_1038_s41566_023_01338_2 crossref_primary_10_1038_s42005_022_00884_5 crossref_primary_10_1016_j_optcom_2021_127615 crossref_primary_10_1515_nanoph_2021_0368 crossref_primary_10_29026_oea_2024_240043 crossref_primary_10_1364_PRJ_415655 crossref_primary_10_1002_adom_202101308 crossref_primary_10_1364_OE_485473 crossref_primary_10_1021_acs_jpcc_1c01492 crossref_primary_10_1016_j_scib_2020_05_011 crossref_primary_10_1021_acsnano_1c05421 crossref_primary_10_1103_PhysRevLett_132_253802 crossref_primary_10_1038_s42254_023_00642_8 crossref_primary_10_1021_acs_nanolett_4c03921 crossref_primary_10_1021_acsphotonics_1c01511 crossref_primary_10_1021_acs_nanolett_0c02462 crossref_primary_10_1021_acsphotonics_3c00561 crossref_primary_10_1103_PhysRevE_109_054703 crossref_primary_10_1364_PRJ_426827 crossref_primary_10_1021_acs_nanolett_4c02836 crossref_primary_10_1364_OE_390497 crossref_primary_10_1002_adpr_202100182 crossref_primary_10_1021_acsphotonics_4c01994 crossref_primary_10_1039_D3MA00953J crossref_primary_10_1126_science_abb8091 crossref_primary_10_1364_PRJ_413229 crossref_primary_10_3390_photonics9110880 crossref_primary_10_1515_nanoph_2023_0583 crossref_primary_10_1103_PhysRevLett_133_140202 crossref_primary_10_1364_OE_547894 crossref_primary_10_1364_OE_543279 crossref_primary_10_1016_j_scib_2020_05_009 crossref_primary_10_1039_D3NR03241H crossref_primary_10_1515_nanoph_2022_0608 crossref_primary_10_1364_OL_541438 crossref_primary_10_1002_adma_202201413 crossref_primary_10_1103_PhysRevB_107_205422 crossref_primary_10_1002_adfm_202304666 crossref_primary_10_1021_acsanm_2c00188 crossref_primary_10_1021_acs_nanolett_4c04904 crossref_primary_10_1021_acs_nanolett_2c04936 crossref_primary_10_1021_acs_nanolett_1c03656 crossref_primary_10_1103_PhysRevB_110_035420 crossref_primary_10_1364_OE_463340 crossref_primary_10_29026_oea_2024_230148 crossref_primary_10_1002_adom_202100112 crossref_primary_10_1038_s41467_023_38367_y crossref_primary_10_1364_OE_522480 crossref_primary_10_1364_OL_475818 crossref_primary_10_1007_s40820_023_01140_3 crossref_primary_10_1126_sciadv_abk3075 crossref_primary_10_1002_lpor_202300929 crossref_primary_10_1364_PRJ_456381 crossref_primary_10_1103_PhysRevLett_132_113801 crossref_primary_10_1021_acsphotonics_1c01416 crossref_primary_10_1126_sciadv_adj3476 crossref_primary_10_1021_acs_nanolett_3c00459 crossref_primary_10_1088_1402_4896_acd72b crossref_primary_10_1364_PRJ_404743 crossref_primary_10_1109_JPHOT_2022_3190133 crossref_primary_10_29026_oea_2024_240075 crossref_primary_10_1364_PRJ_470657 crossref_primary_10_1002_smll_202205950 crossref_primary_10_1007_s11433_022_1937_8 crossref_primary_10_1007_s11433_023_2299_9 crossref_primary_10_1002_adpr_202100144 crossref_primary_10_1103_PhysRevLett_133_086901 crossref_primary_10_1002_adom_202400170 crossref_primary_10_1364_OE_515816 crossref_primary_10_1364_OPTICA_529425 crossref_primary_10_3367_UFNr_2021_07_039028 crossref_primary_10_1088_1361_6455_ad930c crossref_primary_10_1039_D1NR07909C crossref_primary_10_1103_PhysRevLett_133_036201 crossref_primary_10_1002_adom_202400296 crossref_primary_10_1021_acs_nanolett_3c00463 crossref_primary_10_1038_s41377_022_00971_w crossref_primary_10_1016_j_fmre_2022_06_009 |
Cites_doi | 10.1038/s41467-018-03237-5 10.1103/PhysRevLett.123.116104 10.1021/acsnano.7b07703 10.1103/PhysRevLett.118.267401 10.1038/s41586-019-1157-8 10.1038/natrevmats.2016.48 10.1038/s41566-019-0380-z 10.1038/s41586-019-1664-7 10.1038/nphoton.2014.75 10.1021/nl503057g 10.1126/science.1258479 10.1038/s41565-018-0245-5 10.1038/nphoton.2016.37 10.1364/JOSAA.34.000949 10.1038/s41566-018-0177-5 10.1103/PhysRevLett.119.243901 10.1038/s41563-019-0304-9 10.1126/science.1226528 10.1126/science.aao5392 10.1364/AOP.3.000161 10.1126/science.aaf8533 10.1103/PhysRevB.65.235112 10.1038/nature12289 10.1117/12.2290428 10.1103/PhysRevA.45.8185 10.1103/PhysRevLett.96.163905 10.1126/science.aaz3985 10.1103/PhysRevLett.113.037401 10.1126/science.1061738 10.1126/science.aan6359 10.1103/PhysRevLett.113.257401 10.1103/PhysRevLett.120.186103 10.1038/nature20799 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aba4597 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1021 |
ExternalDocumentID | 32108108 10_1126_science_aba4597 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c432t-c62fdc549a59754b37ec643fe85c4a2771bd58c9e9ff4469cbb3196dcb45fd343 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 22:26:33 EDT 2025 Fri Jul 25 10:32:22 EDT 2025 Wed Feb 19 02:30:17 EST 2025 Tue Jul 01 01:35:10 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6481 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-c62fdc549a59754b37ec643fe85c4a2771bd58c9e9ff4469cbb3196dcb45fd343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4159-6838 0000-0002-0751-9556 0000-0002-2011-5986 0000-0002-1922-4464 0000-0002-3410-812X 0000-0002-1508-9867 0000-0003-1048-411X 0000-0002-9528-5939 0000-0002-5607-7467 0000-0002-6505-3432 |
OpenAccessLink | https://openresearch-repository.anu.edu.au/bitstreams/8ecdda4f-798b-48a3-891c-b8c698d9b983/download |
PMID | 32108108 |
PQID | 2366975695 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2369394606 proquest_journals_2366975695 pubmed_primary_32108108 crossref_citationtrail_10_1126_science_aba4597 crossref_primary_10_1126_science_aba4597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-28 20200228 |
PublicationDateYYYYMMDD | 2020-02-28 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 von Neumann J. (e_1_3_2_14_2) 1929; 30 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_35_2 doi: 10.1038/s41467-018-03237-5 – ident: e_1_3_2_27_2 doi: 10.1103/PhysRevLett.123.116104 – ident: e_1_3_2_7_2 doi: 10.1021/acsnano.7b07703 – ident: e_1_3_2_33_2 doi: 10.1103/PhysRevLett.118.267401 – ident: e_1_3_2_9_2 doi: 10.1038/s41586-019-1157-8 – ident: e_1_3_2_15_2 doi: 10.1038/natrevmats.2016.48 – ident: e_1_3_2_8_2 doi: 10.1038/s41566-019-0380-z – ident: e_1_3_2_20_2 doi: 10.1038/s41586-019-1664-7 – ident: e_1_3_2_25_2 doi: 10.1038/nphoton.2014.75 – ident: e_1_3_2_37_2 doi: 10.1021/nl503057g – ident: e_1_3_2_13_2 doi: 10.1126/science.1258479 – ident: e_1_3_2_31_2 doi: 10.1038/s41565-018-0245-5 – ident: e_1_3_2_12_2 doi: 10.1038/nphoton.2016.37 – ident: e_1_3_2_30_2 – ident: e_1_3_2_34_2 doi: 10.1364/JOSAA.34.000949 – volume: 30 start-page: 465 year: 1929 ident: e_1_3_2_14_2 article-title: Über merkwürdige diskret Eigenwerte publication-title: Phys. Z. – ident: e_1_3_2_22_2 doi: 10.1038/s41566-018-0177-5 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.119.243901 – ident: e_1_3_2_5_2 doi: 10.1038/s41563-019-0304-9 – ident: e_1_3_2_11_2 doi: 10.1126/science.1226528 – ident: e_1_3_2_10_2 doi: 10.1126/science.aao5392 – ident: e_1_3_2_4_2 doi: 10.1364/AOP.3.000161 – ident: e_1_3_2_6_2 doi: 10.1126/science.aaf8533 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevB.65.235112 – ident: e_1_3_2_19_2 doi: 10.1038/nature12289 – ident: e_1_3_2_29_2 doi: 10.1117/12.2290428 – ident: e_1_3_2_3_2 doi: 10.1103/PhysRevA.45.8185 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevLett.96.163905 – ident: e_1_3_2_18_2 doi: 10.1126/science.aaz3985 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevLett.113.037401 – ident: e_1_3_2_36_2 doi: 10.1126/science.1061738 – ident: e_1_3_2_2_2 doi: 10.1126/science.aan6359 – ident: e_1_3_2_21_2 doi: 10.1103/PhysRevLett.113.257401 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.120.186103 – ident: e_1_3_2_17_2 doi: 10.1038/nature20799 |
SSID | ssj0009593 |
Score | 2.7166872 |
Snippet | For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small... The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex... Ultrafast vortex microlasersFor applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1018 |
SubjectTerms | Electron beams Energy Energy consumption Footprints High speed Information processing Integration Lasers Lasing Linear polarization Microlasers Optical communication Optical switching Perovskites Quantum computing Quantum phenomena Room temperature Single mode operation Switches Terahertz frequencies Tradeoffs Vortices |
Title | Ultrafast control of vortex microlasers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32108108 https://www.proquest.com/docview/2366975695 https://www.proquest.com/docview/2369394606 |
Volume | 367 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJ9BeEBtfhYGChMQQStXGdpY8doWpQoIXVlGeItux1UlrO60pAv56zvHFyaRVAl6iyB_58O9yvrvcB8Cbk1waIUuU3NKMx7hD8Bg1WxUzZUspNO4g0imKn7-k0xn_NBfztipqHV1SqYH-fWtcyf-gim2Iq4uS_Qdkw0WxAc8RXzwiwnj8K4xnl9W1tHJTBY9zFP1-OPfZn--XztMORWPycG8E0OZbRsEy_KzpQBS8DsfeN6BxFaBpHbvBdEuW5klLX8H6PFm0EWbzC1mbY78utsuL0PqNRn7fLmg-mR5Qz2xDuY1nl0NX6TEZsi4_Zb6-BhFOyn1JFmKQLkHY7Zy7U2vSDKSSXHjH3Q6OV8saSBd2lI2GWbuFBcfCpusu7CWoNyQ92Buffjg9u5GHmTI8dWKnmvvtw_3mCjfllB3KRy2EnD-EB6Q9RGNPCgdwx6wO4Z6vJ_rrEA4Ipk10TOnE3z2Ct4FKIqKSaG0jTyVRh0oew-zs4_lkGlN5jFhzllSxThNbatTvJT654IqdGI3ypTWZ0Fzi649UKTKdm9xaVPpzrZTjt6VWXNiScfYEeqv1yjyDSGRDhXLdKK3tJZblzNqMW1PykcxZyfowaBaj0JQ73pUwuSxqHTJJC1rIghayD8dhwpVPm7J76FGzugV9W5siYWmKL5Xmog-vQzdyPvc7S67MeluPyVnOUQPvw1OPSrhXg-LznT0vYL8l6SPoVddb8xLly0q9Ipr5AyZFevs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+control+of+vortex+microlasers&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Huang%2C+Can&rft.au=Zhang%2C+Chen&rft.au=Xiao%2C+Shumin&rft.au=Wang%2C+Yuhan&rft.date=2020-02-28&rft.eissn=1095-9203&rft.volume=367&rft.issue=6481&rft.spage=1018&rft_id=info:doi/10.1126%2Fscience.aba4597&rft_id=info%3Apmid%2F32108108&rft.externalDocID=32108108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |