Ultrafast control of vortex microlasers

For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 367; no. 6481; pp. 1018 - 1021
Main Authors Huang, Can, Zhang, Chen, Xiao, Shumin, Wang, Yuhan, Fan, Yubin, Liu, Yilin, Zhang, Nan, Qu, Geyang, Ji, Hongjun, Han, Jiecai, Ge, Li, Kivshar, Yuri, Song, Qinghai
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 28.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang et al. exploited the idea of bound states in the continuum, effectively a high–quality ( Q ) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information. Science , this issue p. 1018 Ultrafast vortex lasers with highly directional output and single-mode operation have been realized. The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.
AbstractList For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang et al. exploited the idea of bound states in the continuum, effectively a high–quality ( Q ) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information. Science , this issue p. 1018 Ultrafast vortex lasers with highly directional output and single-mode operation have been realized. The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.
Ultrafast vortex microlasersFor applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang et al. exploited the idea of bound states in the continuum, effectively a high–quality (Q) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information.Science, this issue p. 1018The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.
The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.
The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.
Author Huang, Can
Ge, Li
Zhang, Nan
Zhang, Chen
Han, Jiecai
Song, Qinghai
Fan, Yubin
Kivshar, Yuri
Xiao, Shumin
Wang, Yuhan
Liu, Yilin
Qu, Geyang
Ji, Hongjun
Author_xml – sequence: 1
  givenname: Can
  orcidid: 0000-0002-9528-5939
  surname: Huang
  fullname: Huang, Can
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 2
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 3
  givenname: Shumin
  orcidid: 0000-0002-0751-9556
  surname: Xiao
  fullname: Xiao, Shumin
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China., National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
– sequence: 4
  givenname: Yuhan
  orcidid: 0000-0002-1508-9867
  surname: Wang
  fullname: Wang, Yuhan
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 5
  givenname: Yubin
  orcidid: 0000-0002-6505-3432
  surname: Fan
  fullname: Fan, Yubin
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 6
  givenname: Yilin
  surname: Liu
  fullname: Liu, Yilin
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 7
  givenname: Nan
  orcidid: 0000-0002-2011-5986
  surname: Zhang
  fullname: Zhang, Nan
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 8
  givenname: Geyang
  orcidid: 0000-0002-5607-7467
  surname: Qu
  fullname: Qu, Geyang
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 9
  givenname: Hongjun
  orcidid: 0000-0002-4159-6838
  surname: Ji
  fullname: Ji, Hongjun
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 10
  givenname: Jiecai
  surname: Han
  fullname: Han, Jiecai
  organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
– sequence: 11
  givenname: Li
  orcidid: 0000-0002-1922-4464
  surname: Ge
  fullname: Ge, Li
  organization: The Graduate Center, CUNY, New York, NY 10016, USA., Department of Physics and Astronomy, College of Staten Island, CUNY, Staten Island, NY 10314, USA
– sequence: 12
  givenname: Yuri
  orcidid: 0000-0002-3410-812X
  surname: Kivshar
  fullname: Kivshar, Yuri
  organization: Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
– sequence: 13
  givenname: Qinghai
  orcidid: 0000-0003-1048-411X
  surname: Song
  fullname: Song, Qinghai
  organization: State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China., Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32108108$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1rwyAYh2V0rB_bebcR2GG7pNX4kXgcZV9Q2GU9ixqFlCR2asb238_S9FIYCC_o83t932cOJr3rDQC3CC4RKtgq6Mb02iylkoTy8gLMEOQ05wXEEzCDELO8giWdgnkIOwjTG8dXYIoLBKt0ZuBh20YvrQwx066P3rWZs9m389H8ZF2j04UMxodrcGllG8zNWBdg-_L8uX7LNx-v7-unTa4JLmKuWWFrTQmXaRpKFC6NZgRbU1FNZFGWSNW00txwawlhXCuFEWe1VoTaGhO8AI_HvnvvvgYTouiaoE3byt64IYgCM445YZAl9P4M3bnB92m6A8XS_4zTRN2N1KA6U4u9bzrpf8VJQQLoEUi7huCNFbqJMjYHG7JpBYLioFqMqsWoOuVWZ7lT6_8SfycmgpY
CitedBy_id crossref_primary_10_3367_UFNe_2021_12_039120
crossref_primary_10_1021_acs_nanolett_0c01975
crossref_primary_10_1021_acs_nanolett_2c01919
crossref_primary_10_1021_acs_nanolett_4c03040
crossref_primary_10_1002_lpor_202100617
crossref_primary_10_1016_j_rinp_2023_107088
crossref_primary_10_1021_acsaom_3c00195
crossref_primary_10_1364_OL_479431
crossref_primary_10_1038_s41567_021_01189_0
crossref_primary_10_1002_adfm_202215007
crossref_primary_10_1021_acsphotonics_2c01522
crossref_primary_10_1016_j_matt_2021_05_002
crossref_primary_10_1002_adom_202201906
crossref_primary_10_1021_acsnano_2c09883
crossref_primary_10_1088_1361_6463_ac9399
crossref_primary_10_1021_acsnano_3c02786
crossref_primary_10_1021_acsnano_4c03164
crossref_primary_10_1038_s41377_023_01231_1
crossref_primary_10_1088_1674_1056_ac728d
crossref_primary_10_1126_sciadv_abc0711
crossref_primary_10_1002_adfm_202102210
crossref_primary_10_1007_s00340_022_07958_w
crossref_primary_10_1021_acsphotonics_2c01658
crossref_primary_10_1063_5_0226286
crossref_primary_10_1002_smll_202102694
crossref_primary_10_1103_PhysRevB_107_165142
crossref_primary_10_1088_1674_4926_43_5_050202
crossref_primary_10_1002_adom_202300416
crossref_primary_10_1103_PhysRevA_107_013504
crossref_primary_10_1364_OPN_31_12_000036
crossref_primary_10_1007_s11433_022_1957_3
crossref_primary_10_3788_PI_2024_R05
crossref_primary_10_1038_s42254_024_00715_2
crossref_primary_10_3788_PI_2024_R04
crossref_primary_10_1002_adom_202001469
crossref_primary_10_29026_oea_2024_230186
crossref_primary_10_1021_acs_nanolett_1c03696
crossref_primary_10_3367_UFNr_2021_12_039120
crossref_primary_10_1021_acsnano_0c06050
crossref_primary_10_1038_s41427_022_00408_1
crossref_primary_10_3788_LOP232221
crossref_primary_10_3788_COL202523_023601
crossref_primary_10_3788_PI_2024_R01
crossref_primary_10_1002_adfm_202202277
crossref_primary_10_1103_PhysRevLett_129_264301
crossref_primary_10_1007_s13320_024_0711_7
crossref_primary_10_1364_OL_402834
crossref_primary_10_1364_OE_518062
crossref_primary_10_1002_advs_202403176
crossref_primary_10_1038_s41566_022_00986_0
crossref_primary_10_1364_OE_531000
crossref_primary_10_1063_5_0116880
crossref_primary_10_1002_adom_202302513
crossref_primary_10_1002_adom_202401592
crossref_primary_10_1002_lpor_202200597
crossref_primary_10_1002_adma_202100775
crossref_primary_10_1002_adom_202102386
crossref_primary_10_1021_acs_chemmater_4c00015
crossref_primary_10_1364_OME_500196
crossref_primary_10_1515_nanoph_2021_0083
crossref_primary_10_3390_nano12040653
crossref_primary_10_1021_acs_jpcc_0c07712
crossref_primary_10_1364_OE_500765
crossref_primary_10_1515_nanoph_2023_0319
crossref_primary_10_1016_j_optcom_2024_131402
crossref_primary_10_1038_s41377_023_01090_w
crossref_primary_10_1364_OPTICA_486582
crossref_primary_10_3788_AOS221877
crossref_primary_10_1038_s41586_025_08632_9
crossref_primary_10_1088_1361_6463_ad5734
crossref_primary_10_1038_s41467_020_18669_1
crossref_primary_10_1093_nsr_nwac234
crossref_primary_10_1103_PhysRevB_108_165305
crossref_primary_10_1002_adfm_202415823
crossref_primary_10_1103_PhysRevLett_132_044001
crossref_primary_10_1364_PRJ_424247
crossref_primary_10_1038_s41377_024_01548_5
crossref_primary_10_1364_OPTICA_478616
crossref_primary_10_1002_adom_202402798
crossref_primary_10_1103_PhysRevLett_127_176101
crossref_primary_10_1002_adma_202302170
crossref_primary_10_1021_acs_nanolett_2c00712
crossref_primary_10_1103_PhysRevLett_130_093801
crossref_primary_10_1515_nanoph_2023_0673
crossref_primary_10_1364_OE_492848
crossref_primary_10_1021_acs_chemrev_2c00012
crossref_primary_10_1021_acsphotonics_2c01562
crossref_primary_10_1126_science_abj0039
crossref_primary_10_1515_nanoph_2020_0207
crossref_primary_10_1038_s41377_024_01417_1
crossref_primary_10_1515_nanoph_2024_0196
crossref_primary_10_1021_acsami_2c02577
crossref_primary_10_1016_j_physrep_2023_01_001
crossref_primary_10_1038_s41377_021_00612_8
crossref_primary_10_1063_5_0065397
crossref_primary_10_1002_adom_202300475
crossref_primary_10_1126_sciadv_ade7556
crossref_primary_10_1038_s41566_024_01418_x
crossref_primary_10_1063_5_0204694
crossref_primary_10_1038_s41467_023_43068_7
crossref_primary_10_1016_j_inoche_2023_110991
crossref_primary_10_1021_acs_nanolett_3c03301
crossref_primary_10_1038_s41467_024_53433_9
crossref_primary_10_1364_AOP_531166
crossref_primary_10_1002_adma_202414174
crossref_primary_10_1039_D0RA08881A
crossref_primary_10_1002_lpor_202400964
crossref_primary_10_1016_j_optmat_2024_114839
crossref_primary_10_1021_acsnano_1c02204
crossref_primary_10_1364_OL_462909
crossref_primary_10_1002_adma_202211284
crossref_primary_10_1038_s41467_021_25130_4
crossref_primary_10_1002_lpor_202200308
crossref_primary_10_1063_5_0023338
crossref_primary_10_1038_s41467_024_47669_8
crossref_primary_10_1364_OPTICA_418864
crossref_primary_10_1016_j_jsv_2024_118856
crossref_primary_10_1088_1361_6528_ad26db
crossref_primary_10_1515_nanoph_2020_0343
crossref_primary_10_31857_S1234567824100057
crossref_primary_10_3390_ma16052113
crossref_primary_10_1021_acsphotonics_2c01461
crossref_primary_10_3390_mi13122040
crossref_primary_10_1002_adma_202203889
crossref_primary_10_1063_5_0193124
crossref_primary_10_1007_s11433_023_2223_5
crossref_primary_10_1021_acsnano_0c07011
crossref_primary_10_1021_acsphotonics_1c01931
crossref_primary_10_1021_acs_nanolett_4c00954
crossref_primary_10_1038_s42005_020_00414_1
crossref_primary_10_1088_1361_6463_ac055a
crossref_primary_10_1002_adom_202002126
crossref_primary_10_1063_5_0150674
crossref_primary_10_1021_acsami_4c09254
crossref_primary_10_1063_5_0047616
crossref_primary_10_1016_j_progsurf_2020_100584
crossref_primary_10_1093_nsr_nwac043
crossref_primary_10_1002_adom_202101497
crossref_primary_10_1002_smsc_202300273
crossref_primary_10_1364_OL_431047
crossref_primary_10_3788_AOS230558
crossref_primary_10_1103_PhysRevApplied_20_L011003
crossref_primary_10_1021_acsphotonics_3c00018
crossref_primary_10_1016_j_optlastec_2025_112817
crossref_primary_10_1002_adfm_202425931
crossref_primary_10_1364_OL_445453
crossref_primary_10_1364_OE_453493
crossref_primary_10_1063_5_0057793
crossref_primary_10_1103_PhysRevLett_134_013805
crossref_primary_10_1038_s41566_021_00806_x
crossref_primary_10_1103_PhysRevB_109_205403
crossref_primary_10_1364_PRJ_497954
crossref_primary_10_1063_5_0046546
crossref_primary_10_1038_s42005_023_01245_6
crossref_primary_10_1002_adom_202302782
crossref_primary_10_1038_s41467_025_58050_8
crossref_primary_10_1038_s41586_023_06789_9
crossref_primary_10_1063_5_0009272
crossref_primary_10_1002_lpor_202200564
crossref_primary_10_1038_s41467_022_35599_2
crossref_primary_10_1364_PRJ_485625
crossref_primary_10_1016_j_rinp_2022_105698
crossref_primary_10_1103_PhysRevApplied_20_054059
crossref_primary_10_1088_2040_8986_ac5dd6
crossref_primary_10_3389_fphy_2022_862962
crossref_primary_10_1002_adfm_202405976
crossref_primary_10_1038_s41566_024_01476_1
crossref_primary_10_1016_j_optcom_2025_131799
crossref_primary_10_3390_mi14101817
crossref_primary_10_1103_PhysRevA_105_033504
crossref_primary_10_3788_AOS240428
crossref_primary_10_1002_lpor_202300350
crossref_primary_10_1109_JSEN_2023_3347223
crossref_primary_10_1088_1361_6463_acdf6a
crossref_primary_10_1021_acsami_4c03770
crossref_primary_10_1021_acsnano_2c09482
crossref_primary_10_1002_adfm_202314953
crossref_primary_10_1364_OL_529503
crossref_primary_10_1021_acs_nanolett_3c04797
crossref_primary_10_1002_lpor_202200611
crossref_primary_10_1364_OL_485042
crossref_primary_10_1021_acs_jpcc_2c03174
crossref_primary_10_1002_adfm_202200385
crossref_primary_10_1021_acsphotonics_2c01013
crossref_primary_10_1002_adma_202109157
crossref_primary_10_1021_acsphotonics_2c01496
crossref_primary_10_1007_s11433_021_1668_y
crossref_primary_10_1038_s41377_020_00352_1
crossref_primary_10_1021_acs_nanolett_4c03690
crossref_primary_10_1364_OE_420001
crossref_primary_10_34133_ultrafastscience_0074
crossref_primary_10_1103_PhysRevLett_132_046601
crossref_primary_10_1021_acs_nanolett_3c02148
crossref_primary_10_1002_lpor_202301206
crossref_primary_10_1038_s41467_021_26406_5
crossref_primary_10_1364_PRJ_432919
crossref_primary_10_1103_PhysRevB_105_165304
crossref_primary_10_1002_adom_202401643
crossref_primary_10_3788_PI_2023_R09
crossref_primary_10_1088_1361_6463_ace78b
crossref_primary_10_1038_s41467_022_32697_z
crossref_primary_10_1126_sciadv_adr5375
crossref_primary_10_1002_adfm_202203680
crossref_primary_10_1016_j_chphma_2024_03_004
crossref_primary_10_1016_j_optlastec_2023_109537
crossref_primary_10_1109_JPHOT_2022_3212000
crossref_primary_10_1007_s10853_024_09450_6
crossref_primary_10_1021_acsnano_0c05710
crossref_primary_10_1038_s41565_020_0768_4
crossref_primary_10_1088_2040_8986_acea92
crossref_primary_10_1021_acsnano_3c09793
crossref_primary_10_1002_adom_202200753
crossref_primary_10_3390_nano11092343
crossref_primary_10_1039_D1RA06538F
crossref_primary_10_1364_OL_410608
crossref_primary_10_1103_PhysRevApplied_16_064036
crossref_primary_10_1039_D3EE00646H
crossref_primary_10_1088_1402_4896_ad7bfa
crossref_primary_10_1002_advs_202200953
crossref_primary_10_1021_acs_nanolett_2c04238
crossref_primary_10_3390_nano15060451
crossref_primary_10_1021_acs_nanolett_3c04348
crossref_primary_10_1002_adpr_202000012
crossref_primary_10_1063_5_0105365
crossref_primary_10_1186_s43593_021_00005_9
crossref_primary_10_1039_D3CP02414H
crossref_primary_10_1103_PhysRevB_107_165406
crossref_primary_10_1364_OME_467655
crossref_primary_10_1016_j_chip_2024_100109
crossref_primary_10_1038_s41598_022_25945_1
crossref_primary_10_1021_acsphotonics_2c00071
crossref_primary_10_1063_5_0091280
crossref_primary_10_1103_PhysRevLett_126_117402
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_1021_acs_nanolett_1c04065
crossref_primary_10_1021_acs_nanolett_4c04217
crossref_primary_10_1515_nanoph_2021_0616
crossref_primary_10_1002_lpor_202301233
crossref_primary_10_1039_D2MA00910B
crossref_primary_10_1002_adom_202000690
crossref_primary_10_1364_OE_503399
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122435
crossref_primary_10_1038_s41586_024_07674_9
crossref_primary_10_1016_j_omx_2022_100214
crossref_primary_10_1063_5_0035104
crossref_primary_10_1021_acs_nanolett_1c00828
crossref_primary_10_1364_OE_530418
crossref_primary_10_1103_PhysRevApplied_18_014079
crossref_primary_10_1364_PRJ_409884
crossref_primary_10_1007_s40766_021_00015_w
crossref_primary_10_1088_1674_1056_ac8ce5
crossref_primary_10_3788_AOS240632
crossref_primary_10_1126_science_adm7442
crossref_primary_10_1039_D4NR00547C
crossref_primary_10_3390_photonics12030247
crossref_primary_10_1016_j_fmre_2023_03_017
crossref_primary_10_1038_s41467_020_17096_6
crossref_primary_10_1039_D1CC01084K
crossref_primary_10_1038_s41567_021_01165_8
crossref_primary_10_1038_s41566_022_01126_4
crossref_primary_10_1126_sciadv_ade8817
crossref_primary_10_1038_s41563_023_01531_2
crossref_primary_10_1116_5_0016007
crossref_primary_10_3788_gzxb20235208_0826002
crossref_primary_10_1016_j_optcom_2024_131172
crossref_primary_10_1016_j_optcom_2025_131693
crossref_primary_10_1364_OL_496039
crossref_primary_10_1021_acsnano_1c00673
crossref_primary_10_1002_lpor_202100197
crossref_primary_10_1002_advs_202206236
crossref_primary_10_1016_j_chip_2024_100121
crossref_primary_10_1109_JLT_2022_3226814
crossref_primary_10_1016_j_scriptamat_2022_115229
crossref_primary_10_1364_OL_537421
crossref_primary_10_1038_s42005_020_0353_z
crossref_primary_10_1002_adma_202207617
crossref_primary_10_1021_acs_nanolett_3c03288
crossref_primary_10_1364_OL_394333
crossref_primary_10_1364_PRJ_483038
crossref_primary_10_1103_PhysRevLett_129_236101
crossref_primary_10_1364_PRJ_462474
crossref_primary_10_1126_science_aba8996
crossref_primary_10_1364_OE_456362
crossref_primary_10_1088_0256_307X_38_8_084203
crossref_primary_10_1002_adma_202109255
crossref_primary_10_1117_1_AP_3_3_034002
crossref_primary_10_1126_sciadv_adf6649
crossref_primary_10_1002_smll_202102596
crossref_primary_10_1021_acsami_0c17655
crossref_primary_10_1134_S0021364024601015
crossref_primary_10_1515_nanoph_2022_0387
crossref_primary_10_1038_s41377_023_01212_4
crossref_primary_10_1021_acsmaterialslett_4c00365
crossref_primary_10_1515_nanoph_2022_0143
crossref_primary_10_1073_pnas_2019578118
crossref_primary_10_1103_PhysRevB_104_085126
crossref_primary_10_1002_adom_202001327
crossref_primary_10_1002_lpor_202000411
crossref_primary_10_1126_sciadv_abk1117
crossref_primary_10_1364_AOP_414320
crossref_primary_10_1002_adom_202201634
crossref_primary_10_1016_j_esci_2024_100253
crossref_primary_10_1002_adpr_202200120
crossref_primary_10_1109_JLT_2021_3081727
crossref_primary_10_1038_s41377_024_01561_8
crossref_primary_10_1021_acsnano_2c04628
crossref_primary_10_1002_lpor_202401327
crossref_primary_10_1080_09500340_2024_2442656
crossref_primary_10_1364_OL_451421
crossref_primary_10_1103_PhysRevB_106_245406
crossref_primary_10_1016_j_ijleo_2022_168927
crossref_primary_10_1038_s41467_022_30451_z
crossref_primary_10_1002_adma_202207430
crossref_primary_10_1364_AO_471587
crossref_primary_10_1002_adom_202201590
crossref_primary_10_3788_COL202422_103601
crossref_primary_10_1002_adma_202207317
crossref_primary_10_1364_OL_484472
crossref_primary_10_1039_D2NR05031E
crossref_primary_10_1021_acs_nanolett_2c04860
crossref_primary_10_1002_lpor_202000449
crossref_primary_10_37188_lam_2024_005
crossref_primary_10_1103_PhysRevLett_131_013801
crossref_primary_10_1038_s41377_020_00415_3
crossref_primary_10_1103_PhysRevApplied_14_021001
crossref_primary_10_1109_JPHOT_2024_3378672
crossref_primary_10_1016_j_photonics_2022_101103
crossref_primary_10_1007_s11433_024_2493_5
crossref_primary_10_1021_acs_nanolett_0c03593
crossref_primary_10_3390_photonics9060371
crossref_primary_10_1021_acsphotonics_4c00297
crossref_primary_10_1103_PhysRevLett_132_183801
crossref_primary_10_1103_PhysRevB_104_075149
crossref_primary_10_1364_OE_482420
crossref_primary_10_1039_D2CS00322H
crossref_primary_10_1103_PhysRevB_109_155301
crossref_primary_10_1038_s41467_022_29253_0
crossref_primary_10_1117_1_APN_1_1_016005
crossref_primary_10_1038_s41467_024_53952_5
crossref_primary_10_1088_1361_6455_ad838b
crossref_primary_10_1364_OL_458285
crossref_primary_10_1103_PhysRevA_109_023525
crossref_primary_10_1515_nanoph_2021_0638
crossref_primary_10_1126_science_abq7870
crossref_primary_10_1038_s41467_021_24502_0
crossref_primary_10_1002_adom_202201328
crossref_primary_10_1021_acs_jpclett_2c02605
crossref_primary_10_1038_s41377_022_00923_4
crossref_primary_10_1002_adma_202413559
crossref_primary_10_1073_pnas_2101605118
crossref_primary_10_1039_D1NR06084H
crossref_primary_10_1038_s41565_023_01319_0
crossref_primary_10_1088_1674_1056_acd2c1
crossref_primary_10_1002_adfm_202413098
crossref_primary_10_1021_acs_jpclett_5c00298
crossref_primary_10_1364_OL_487655
crossref_primary_10_1364_OE_542816
crossref_primary_10_1002_lpor_202000338
crossref_primary_10_1021_acs_nanolett_3c05038
crossref_primary_10_1021_acsnano_2c05634
crossref_primary_10_1063_5_0057904
crossref_primary_10_1364_OE_433058
crossref_primary_10_3788_AOS230902
crossref_primary_10_1038_s41377_021_00578_7
crossref_primary_10_1002_adom_202300909
crossref_primary_10_1038_s42005_024_01808_1
crossref_primary_10_1039_D4TA00587B
crossref_primary_10_1016_j_optlastec_2023_110144
crossref_primary_10_1002_adma_202000306
crossref_primary_10_1515_nanoph_2024_0630
crossref_primary_10_1088_1367_2630_ac66f8
crossref_primary_10_1021_acsami_2c17675
crossref_primary_10_1515_nanoph_2024_0514
crossref_primary_10_1002_adma_202400214
crossref_primary_10_1103_PhysRevLett_128_253901
crossref_primary_10_1021_acsphotonics_2c00901
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1016_j_matt_2023_05_043
crossref_primary_10_1021_acsnano_4c12107
crossref_primary_10_1021_acs_nanolett_1c01504
crossref_primary_10_1088_1361_6633_abefb9
crossref_primary_10_1364_OL_507991
crossref_primary_10_1103_PhysRevB_107_045305
crossref_primary_10_1364_OL_510932
crossref_primary_10_1021_acsphotonics_2c00800
crossref_primary_10_34133_ultrafastscience_0033
crossref_primary_10_1021_acsnano_2c11013
crossref_primary_10_1038_s41467_022_34307_4
crossref_primary_10_1038_s41467_024_51148_5
crossref_primary_10_1021_acs_nanolett_3c00727
crossref_primary_10_1088_1361_6463_ac05f9
crossref_primary_10_3390_ma16227112
crossref_primary_10_1038_s41467_022_32117_2
crossref_primary_10_1364_PRJ_427094
crossref_primary_10_1088_2515_7647_abc60e
crossref_primary_10_1002_anie_202007361
crossref_primary_10_1038_s41377_021_00707_2
crossref_primary_10_1021_acsphotonics_4c00137
crossref_primary_10_1002_adom_202202584
crossref_primary_10_1002_adma_202300344
crossref_primary_10_1002_lpor_202100118
crossref_primary_10_1002_andp_202400250
crossref_primary_10_1088_1367_2630_ac52c0
crossref_primary_10_12677_app_2024_144021
crossref_primary_10_1038_s41467_023_39227_5
crossref_primary_10_1103_PhysRevA_106_013719
crossref_primary_10_1038_s41467_021_26253_4
crossref_primary_10_1103_PhysRevLett_133_213802
crossref_primary_10_1364_OL_545899
crossref_primary_10_1002_adma_202102232
crossref_primary_10_1364_OE_545174
crossref_primary_10_1002_lpor_202300527
crossref_primary_10_1021_acs_chemrev_1c01029
crossref_primary_10_1063_5_0200778
crossref_primary_10_1002_ange_202007361
crossref_primary_10_1364_PRJ_471905
crossref_primary_10_1021_acs_jpclett_4c02604
crossref_primary_10_1515_nanoph_2021_0560
crossref_primary_10_1103_PhysRevApplied_14_044048
crossref_primary_10_1021_acsnano_1c07114
crossref_primary_10_1063_5_0085422
crossref_primary_10_3390_nano15020145
crossref_primary_10_1364_OE_458382
crossref_primary_10_1103_PhysRevLett_129_173901
crossref_primary_10_1117_1_JBO_29_S1_S11524
crossref_primary_10_1364_OSAC_422063
crossref_primary_10_1002_lpor_202300533
crossref_primary_10_1515_nanoph_2021_0684
crossref_primary_10_1021_acs_nanolett_1c01975
crossref_primary_10_29026_oes_2023_230006
crossref_primary_10_1364_OL_504476
crossref_primary_10_1515_nanoph_2023_0195
crossref_primary_10_1038_s41467_024_47475_2
crossref_primary_10_1002_adfm_202211841
crossref_primary_10_1002_adma_202106692
crossref_primary_10_1021_acs_nanolett_4c06157
crossref_primary_10_1364_OE_547207
crossref_primary_10_1103_PhysRevLett_127_266101
crossref_primary_10_1002_lpor_202100574
crossref_primary_10_1021_acsnano_0c06463
crossref_primary_10_1038_s41467_024_45565_9
crossref_primary_10_1021_acs_nanolett_3c02938
crossref_primary_10_1002_aesr_202300157
crossref_primary_10_1002_adfm_202308957
crossref_primary_10_29026_oea_2024_240138
crossref_primary_10_1021_acs_nanolett_3c00510
crossref_primary_10_1002_adom_202100143
crossref_primary_10_34133_research_0597
crossref_primary_10_1016_j_nocx_2023_100182
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1038_s41467_025_57738_1
crossref_primary_10_1016_j_rinp_2024_107767
crossref_primary_10_3390_cryst12081052
crossref_primary_10_1002_lpor_202400402
crossref_primary_10_1515_nanoph_2021_0260
crossref_primary_10_1038_s41467_021_24686_5
crossref_primary_10_1515_nanoph_2020_0654
crossref_primary_10_1038_s42005_024_01777_5
crossref_primary_10_1063_5_0127904
crossref_primary_10_1002_adom_202202152
crossref_primary_10_1364_PRJ_533613
crossref_primary_10_1021_acsphotonics_1c00605
crossref_primary_10_1021_acsphotonics_1c00968
crossref_primary_10_1364_OE_431814
crossref_primary_10_1021_acs_nanolett_1c02880
crossref_primary_10_1142_S2810922824300022
crossref_primary_10_1021_acs_nanolett_1c03853
crossref_primary_10_1515_nanoph_2021_0265
crossref_primary_10_1515_nanoph_2021_0387
crossref_primary_10_1002_adom_202203118
crossref_primary_10_1515_nanoph_2023_0373
crossref_primary_10_1021_jacs_4c14899
crossref_primary_10_1088_2040_8986_ac7d5f
crossref_primary_10_1364_PRJ_480671
crossref_primary_10_1002_adom_202101120
crossref_primary_10_1016_j_rinp_2023_107102
crossref_primary_10_1021_acsami_4c18202
crossref_primary_10_1039_D3EE02591H
crossref_primary_10_3389_fphy_2021_688284
crossref_primary_10_1002_adma_202002585
crossref_primary_10_1021_acsnano_5c02465
crossref_primary_10_1021_acs_nanolett_4c00871
crossref_primary_10_1007_s12648_023_02922_6
crossref_primary_10_1103_PhysRevLett_127_043901
crossref_primary_10_1002_adpr_202400060
crossref_primary_10_1016_j_optlaseng_2024_108621
crossref_primary_10_1021_acsami_1c08287
crossref_primary_10_1021_acs_nanolett_1c02618
crossref_primary_10_1038_s41377_023_01130_5
crossref_primary_10_1063_5_0189135
crossref_primary_10_1002_adma_202500226
crossref_primary_10_1021_acsphotonics_1c01840
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1364_OL_485506
crossref_primary_10_1364_PRJ_403444
crossref_primary_10_1016_j_optlastec_2025_112575
crossref_primary_10_1021_acsphotonics_2c00618
crossref_primary_10_1021_acsphotonics_5c00421
crossref_primary_10_1088_2515_7647_ac4ee4
crossref_primary_10_1038_s41566_023_01338_2
crossref_primary_10_1038_s42005_022_00884_5
crossref_primary_10_1016_j_optcom_2021_127615
crossref_primary_10_1515_nanoph_2021_0368
crossref_primary_10_29026_oea_2024_240043
crossref_primary_10_1364_PRJ_415655
crossref_primary_10_1002_adom_202101308
crossref_primary_10_1364_OE_485473
crossref_primary_10_1021_acs_jpcc_1c01492
crossref_primary_10_1016_j_scib_2020_05_011
crossref_primary_10_1021_acsnano_1c05421
crossref_primary_10_1103_PhysRevLett_132_253802
crossref_primary_10_1038_s42254_023_00642_8
crossref_primary_10_1021_acs_nanolett_4c03921
crossref_primary_10_1021_acsphotonics_1c01511
crossref_primary_10_1021_acs_nanolett_0c02462
crossref_primary_10_1021_acsphotonics_3c00561
crossref_primary_10_1103_PhysRevE_109_054703
crossref_primary_10_1364_PRJ_426827
crossref_primary_10_1021_acs_nanolett_4c02836
crossref_primary_10_1364_OE_390497
crossref_primary_10_1002_adpr_202100182
crossref_primary_10_1021_acsphotonics_4c01994
crossref_primary_10_1039_D3MA00953J
crossref_primary_10_1126_science_abb8091
crossref_primary_10_1364_PRJ_413229
crossref_primary_10_3390_photonics9110880
crossref_primary_10_1515_nanoph_2023_0583
crossref_primary_10_1103_PhysRevLett_133_140202
crossref_primary_10_1364_OE_547894
crossref_primary_10_1364_OE_543279
crossref_primary_10_1016_j_scib_2020_05_009
crossref_primary_10_1039_D3NR03241H
crossref_primary_10_1515_nanoph_2022_0608
crossref_primary_10_1364_OL_541438
crossref_primary_10_1002_adma_202201413
crossref_primary_10_1103_PhysRevB_107_205422
crossref_primary_10_1002_adfm_202304666
crossref_primary_10_1021_acsanm_2c00188
crossref_primary_10_1021_acs_nanolett_4c04904
crossref_primary_10_1021_acs_nanolett_2c04936
crossref_primary_10_1021_acs_nanolett_1c03656
crossref_primary_10_1103_PhysRevB_110_035420
crossref_primary_10_1364_OE_463340
crossref_primary_10_29026_oea_2024_230148
crossref_primary_10_1002_adom_202100112
crossref_primary_10_1038_s41467_023_38367_y
crossref_primary_10_1364_OE_522480
crossref_primary_10_1364_OL_475818
crossref_primary_10_1007_s40820_023_01140_3
crossref_primary_10_1126_sciadv_abk3075
crossref_primary_10_1002_lpor_202300929
crossref_primary_10_1364_PRJ_456381
crossref_primary_10_1103_PhysRevLett_132_113801
crossref_primary_10_1021_acsphotonics_1c01416
crossref_primary_10_1126_sciadv_adj3476
crossref_primary_10_1021_acs_nanolett_3c00459
crossref_primary_10_1088_1402_4896_acd72b
crossref_primary_10_1364_PRJ_404743
crossref_primary_10_1109_JPHOT_2022_3190133
crossref_primary_10_29026_oea_2024_240075
crossref_primary_10_1364_PRJ_470657
crossref_primary_10_1002_smll_202205950
crossref_primary_10_1007_s11433_022_1937_8
crossref_primary_10_1007_s11433_023_2299_9
crossref_primary_10_1002_adpr_202100144
crossref_primary_10_1103_PhysRevLett_133_086901
crossref_primary_10_1002_adom_202400170
crossref_primary_10_1364_OE_515816
crossref_primary_10_1364_OPTICA_529425
crossref_primary_10_3367_UFNr_2021_07_039028
crossref_primary_10_1088_1361_6455_ad930c
crossref_primary_10_1039_D1NR07909C
crossref_primary_10_1103_PhysRevLett_133_036201
crossref_primary_10_1002_adom_202400296
crossref_primary_10_1021_acs_nanolett_3c00463
crossref_primary_10_1038_s41377_022_00971_w
crossref_primary_10_1016_j_fmre_2022_06_009
Cites_doi 10.1038/s41467-018-03237-5
10.1103/PhysRevLett.123.116104
10.1021/acsnano.7b07703
10.1103/PhysRevLett.118.267401
10.1038/s41586-019-1157-8
10.1038/natrevmats.2016.48
10.1038/s41566-019-0380-z
10.1038/s41586-019-1664-7
10.1038/nphoton.2014.75
10.1021/nl503057g
10.1126/science.1258479
10.1038/s41565-018-0245-5
10.1038/nphoton.2016.37
10.1364/JOSAA.34.000949
10.1038/s41566-018-0177-5
10.1103/PhysRevLett.119.243901
10.1038/s41563-019-0304-9
10.1126/science.1226528
10.1126/science.aao5392
10.1364/AOP.3.000161
10.1126/science.aaf8533
10.1103/PhysRevB.65.235112
10.1038/nature12289
10.1117/12.2290428
10.1103/PhysRevA.45.8185
10.1103/PhysRevLett.96.163905
10.1126/science.aaz3985
10.1103/PhysRevLett.113.037401
10.1126/science.1061738
10.1126/science.aan6359
10.1103/PhysRevLett.113.257401
10.1103/PhysRevLett.120.186103
10.1038/nature20799
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aba4597
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1021
ExternalDocumentID 32108108
10_1126_science_aba4597
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c432t-c62fdc549a59754b37ec643fe85c4a2771bd58c9e9ff4469cbb3196dcb45fd343
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 22:26:33 EDT 2025
Fri Jul 25 10:32:22 EDT 2025
Wed Feb 19 02:30:17 EST 2025
Tue Jul 01 01:35:10 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6481
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-c62fdc549a59754b37ec643fe85c4a2771bd58c9e9ff4469cbb3196dcb45fd343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4159-6838
0000-0002-0751-9556
0000-0002-2011-5986
0000-0002-1922-4464
0000-0002-3410-812X
0000-0002-1508-9867
0000-0003-1048-411X
0000-0002-9528-5939
0000-0002-5607-7467
0000-0002-6505-3432
OpenAccessLink https://openresearch-repository.anu.edu.au/bitstreams/8ecdda4f-798b-48a3-891c-b8c698d9b983/download
PMID 32108108
PQID 2366975695
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2369394606
proquest_journals_2366975695
pubmed_primary_32108108
crossref_citationtrail_10_1126_science_aba4597
crossref_primary_10_1126_science_aba4597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-28
20200228
PublicationDateYYYYMMDD 2020-02-28
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
von Neumann J. (e_1_3_2_14_2) 1929; 30
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_35_2
  doi: 10.1038/s41467-018-03237-5
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevLett.123.116104
– ident: e_1_3_2_7_2
  doi: 10.1021/acsnano.7b07703
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevLett.118.267401
– ident: e_1_3_2_9_2
  doi: 10.1038/s41586-019-1157-8
– ident: e_1_3_2_15_2
  doi: 10.1038/natrevmats.2016.48
– ident: e_1_3_2_8_2
  doi: 10.1038/s41566-019-0380-z
– ident: e_1_3_2_20_2
  doi: 10.1038/s41586-019-1664-7
– ident: e_1_3_2_25_2
  doi: 10.1038/nphoton.2014.75
– ident: e_1_3_2_37_2
  doi: 10.1021/nl503057g
– ident: e_1_3_2_13_2
  doi: 10.1126/science.1258479
– ident: e_1_3_2_31_2
  doi: 10.1038/s41565-018-0245-5
– ident: e_1_3_2_12_2
  doi: 10.1038/nphoton.2016.37
– ident: e_1_3_2_30_2
– ident: e_1_3_2_34_2
  doi: 10.1364/JOSAA.34.000949
– volume: 30
  start-page: 465
  year: 1929
  ident: e_1_3_2_14_2
  article-title: Über merkwürdige diskret Eigenwerte
  publication-title: Phys. Z.
– ident: e_1_3_2_22_2
  doi: 10.1038/s41566-018-0177-5
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.119.243901
– ident: e_1_3_2_5_2
  doi: 10.1038/s41563-019-0304-9
– ident: e_1_3_2_11_2
  doi: 10.1126/science.1226528
– ident: e_1_3_2_10_2
  doi: 10.1126/science.aao5392
– ident: e_1_3_2_4_2
  doi: 10.1364/AOP.3.000161
– ident: e_1_3_2_6_2
  doi: 10.1126/science.aaf8533
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevB.65.235112
– ident: e_1_3_2_19_2
  doi: 10.1038/nature12289
– ident: e_1_3_2_29_2
  doi: 10.1117/12.2290428
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevA.45.8185
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevLett.96.163905
– ident: e_1_3_2_18_2
  doi: 10.1126/science.aaz3985
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevLett.113.037401
– ident: e_1_3_2_36_2
  doi: 10.1126/science.1061738
– ident: e_1_3_2_2_2
  doi: 10.1126/science.aan6359
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevLett.113.257401
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.120.186103
– ident: e_1_3_2_17_2
  doi: 10.1038/nature20799
SSID ssj0009593
Score 2.7166872
Snippet For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small...
The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex...
Ultrafast vortex microlasersFor applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1018
SubjectTerms Electron beams
Energy
Energy consumption
Footprints
High speed
Information processing
Integration
Lasers
Lasing
Linear polarization
Microlasers
Optical communication
Optical switching
Perovskites
Quantum computing
Quantum phenomena
Room temperature
Single mode operation
Switches
Terahertz frequencies
Tradeoffs
Vortices
Title Ultrafast control of vortex microlasers
URI https://www.ncbi.nlm.nih.gov/pubmed/32108108
https://www.proquest.com/docview/2366975695
https://www.proquest.com/docview/2369394606
Volume 367
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJ9BeEBtfhYGChMQQStXGdpY8doWpQoIXVlGeItux1UlrO60pAv56zvHFyaRVAl6iyB_58O9yvrvcB8Cbk1waIUuU3NKMx7hD8Bg1WxUzZUspNO4g0imKn7-k0xn_NBfztipqHV1SqYH-fWtcyf-gim2Iq4uS_Qdkw0WxAc8RXzwiwnj8K4xnl9W1tHJTBY9zFP1-OPfZn--XztMORWPycG8E0OZbRsEy_KzpQBS8DsfeN6BxFaBpHbvBdEuW5klLX8H6PFm0EWbzC1mbY78utsuL0PqNRn7fLmg-mR5Qz2xDuY1nl0NX6TEZsi4_Zb6-BhFOyn1JFmKQLkHY7Zy7U2vSDKSSXHjH3Q6OV8saSBd2lI2GWbuFBcfCpusu7CWoNyQ92Buffjg9u5GHmTI8dWKnmvvtw_3mCjfllB3KRy2EnD-EB6Q9RGNPCgdwx6wO4Z6vJ_rrEA4Ipk10TOnE3z2Ct4FKIqKSaG0jTyVRh0oew-zs4_lkGlN5jFhzllSxThNbatTvJT654IqdGI3ypTWZ0Fzi649UKTKdm9xaVPpzrZTjt6VWXNiScfYEeqv1yjyDSGRDhXLdKK3tJZblzNqMW1PykcxZyfowaBaj0JQ73pUwuSxqHTJJC1rIghayD8dhwpVPm7J76FGzugV9W5siYWmKL5Xmog-vQzdyPvc7S67MeluPyVnOUQPvw1OPSrhXg-LznT0vYL8l6SPoVddb8xLly0q9Ipr5AyZFevs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+control+of+vortex+microlasers&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Huang%2C+Can&rft.au=Zhang%2C+Chen&rft.au=Xiao%2C+Shumin&rft.au=Wang%2C+Yuhan&rft.date=2020-02-28&rft.eissn=1095-9203&rft.volume=367&rft.issue=6481&rft.spage=1018&rft_id=info:doi/10.1126%2Fscience.aba4597&rft_id=info%3Apmid%2F32108108&rft.externalDocID=32108108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon