Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite
[Display omitted] Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe0/Cu0) nanocomposite. MMT-nFe0/Cu0 was characterized using SEM, TEM, XRD, FTIR, N2 adsorption–desorption isotherms and XPS. The results demonst...
Saved in:
Published in | Journal of colloid and interface science Vol. 606; no. Pt 2; pp. 941 - 952 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe0/Cu0) nanocomposite. MMT-nFe0/Cu0 was characterized using SEM, TEM, XRD, FTIR, N2 adsorption–desorption isotherms and XPS. The results demonstrated that highly dispersed nanoscale Fe0/Cu0 (nFe0/Cu0) were successfully introduced into the montmorillonite (MMT) layers. In the reaction process, the combination of Cu0 and Fe0 acted as a galvanic cell, and electrocorrosion not only speeded up the reaction rate, but also increased reduction activity of nFe0. MMT-nFe0/Cu0 as an excellent carrier had good functions in dispersing nFe0 and Cu0 particles, pH buffering and could keep nFe0 and Cu0 particles from being released. Besides, no iron ions and very low concentrations of copper ions released in the reaction system, which greatly avoided the influence of secondary environmental pollution. |
---|---|
AbstractList | Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe⁰/Cu⁰) nanocomposite. MMT-nFe⁰/Cu⁰ was characterized using SEM, TEM, XRD, FTIR, N₂ adsorption–desorption isotherms and XPS. The results demonstrated that highly dispersed nanoscale Fe⁰/Cu⁰ (nFe⁰/Cu⁰) were successfully introduced into the montmorillonite (MMT) layers. In the reaction process, the combination of Cu⁰ and Fe⁰ acted as a galvanic cell, and electrocorrosion not only speeded up the reaction rate, but also increased reduction activity of nFe⁰. MMT-nFe⁰/Cu⁰ as an excellent carrier had good functions in dispersing nFe⁰ and Cu⁰ particles, pH buffering and could keep nFe⁰ and Cu⁰ particles from being released. Besides, no iron ions and very low concentrations of copper ions released in the reaction system, which greatly avoided the influence of secondary environmental pollution. Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe0/Cu0) nanocomposite. MMT-nFe0/Cu0 was characterized using SEM, TEM, XRD, FTIR, N2 adsorption-desorption isotherms and XPS. The results demonstrated that highly dispersed nanoscale Fe0/Cu0 (nFe0/Cu0) were successfully introduced into the montmorillonite (MMT) layers. In the reaction process, the combination of Cu0 and Fe0 acted as a galvanic cell, and electrocorrosion not only speeded up the reaction rate, but also increased reduction activity of nFe0. MMT-nFe0/Cu0 as an excellent carrier had good functions in dispersing nFe0 and Cu0 particles, pH buffering and could keep nFe0 and Cu0 particles from being released. Besides, no iron ions and very low concentrations of copper ions released in the reaction system, which greatly avoided the influence of secondary environmental pollution.Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe0/Cu0) nanocomposite. MMT-nFe0/Cu0 was characterized using SEM, TEM, XRD, FTIR, N2 adsorption-desorption isotherms and XPS. The results demonstrated that highly dispersed nanoscale Fe0/Cu0 (nFe0/Cu0) were successfully introduced into the montmorillonite (MMT) layers. In the reaction process, the combination of Cu0 and Fe0 acted as a galvanic cell, and electrocorrosion not only speeded up the reaction rate, but also increased reduction activity of nFe0. MMT-nFe0/Cu0 as an excellent carrier had good functions in dispersing nFe0 and Cu0 particles, pH buffering and could keep nFe0 and Cu0 particles from being released. Besides, no iron ions and very low concentrations of copper ions released in the reaction system, which greatly avoided the influence of secondary environmental pollution. [Display omitted] Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe0/Cu0) nanocomposite. MMT-nFe0/Cu0 was characterized using SEM, TEM, XRD, FTIR, N2 adsorption–desorption isotherms and XPS. The results demonstrated that highly dispersed nanoscale Fe0/Cu0 (nFe0/Cu0) were successfully introduced into the montmorillonite (MMT) layers. In the reaction process, the combination of Cu0 and Fe0 acted as a galvanic cell, and electrocorrosion not only speeded up the reaction rate, but also increased reduction activity of nFe0. MMT-nFe0/Cu0 as an excellent carrier had good functions in dispersing nFe0 and Cu0 particles, pH buffering and could keep nFe0 and Cu0 particles from being released. Besides, no iron ions and very low concentrations of copper ions released in the reaction system, which greatly avoided the influence of secondary environmental pollution. |
Author | Gong, Yishu Zhang, Xiaodong Du, Baobao Yu, Lan Lin, Naipeng Wang, Yin |
Author_xml | – sequence: 1 givenname: Yin surname: Wang fullname: Wang, Yin – sequence: 2 givenname: Yishu surname: Gong fullname: Gong, Yishu – sequence: 3 givenname: Naipeng surname: Lin fullname: Lin, Naipeng – sequence: 4 givenname: Lan surname: Yu fullname: Yu, Lan – sequence: 5 givenname: Baobao surname: Du fullname: Du, Baobao – sequence: 6 givenname: Xiaodong surname: Zhang fullname: Zhang, Xiaodong email: zhangxiaodong@usst.edu.cn |
BookMark | eNqFkc1u1DAUhS1UJKaFF2DlZVkk9U-cxBIbNCpQqRIbYGs5zo24I8cebE-l9g14axwNKxbtylfy-Y50zrkkFyEGIOQ9Zy1nvL85tAeHuRVM8JaNLRvUK7LjTKtm4ExekB2rP40e9PCGXOZ8YIxzpfSO_LkNv2xwMNMEa3ywnsaF7tP1z7sPdElxpfb3CeIp0xz9qWAMdHqkudgJPT5VKtgQs7Me6BOkSKsBhEIxVaENM3XxeIREJ1yhVG8MBVJV21LRNYayxoTex4AF3pLXi_UZ3v17r8iPz7ff91-b-29f7vaf7hvXSVEaKzvXL1r30zjOXM5sUs7Jeio5i2VWTHRi4UL3nIuhHwelOqhpdcc7rW03yityffY9pliz5WJWzA68t2ELakQv-5Fz2YuXpWpgtWQmNtfxLHUp5pxgMQ6L3QoryaI3nJltKHMw21BmG8qw0dShKir-Q48JV5sen4c-niGoVT0gJJMdwjYkJnDFzBGfw_8Cr22v2w |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_105087 crossref_primary_10_1016_j_cej_2023_142676 crossref_primary_10_1016_j_jece_2024_111885 crossref_primary_10_1039_D3NJ00979C crossref_primary_10_1007_s10562_024_04622_0 crossref_primary_10_1016_j_apcata_2022_119008 crossref_primary_10_1016_j_materresbull_2021_111689 crossref_primary_10_1016_j_jmrt_2022_01_048 crossref_primary_10_1016_j_chemosphere_2023_140846 crossref_primary_10_1002_cnma_202200439 crossref_primary_10_1134_S1070363224020129 crossref_primary_10_1039_D3RA02865H crossref_primary_10_1016_j_apsusc_2022_153312 crossref_primary_10_1016_j_micromeso_2023_112853 crossref_primary_10_1016_j_jhazmat_2023_132887 crossref_primary_10_1002_app_53886 crossref_primary_10_1016_j_jece_2024_112040 crossref_primary_10_1080_15226514_2021_2025038 crossref_primary_10_1016_j_jenvman_2024_121761 crossref_primary_10_1016_j_surfin_2022_102564 crossref_primary_10_1016_j_jtice_2021_11_004 crossref_primary_10_1021_acsomega_2c06268 crossref_primary_10_1016_j_jcis_2023_12_007 crossref_primary_10_1016_j_jece_2024_112328 crossref_primary_10_1016_j_mne_2024_100240 crossref_primary_10_1016_j_chemosphere_2022_137335 crossref_primary_10_1007_s42114_023_00781_7 crossref_primary_10_1016_j_aej_2023_10_038 crossref_primary_10_1016_j_envres_2022_113973 crossref_primary_10_1002_adsu_202300225 crossref_primary_10_1016_j_arabjc_2022_104309 crossref_primary_10_1016_j_seppur_2022_122437 crossref_primary_10_1016_j_colsurfa_2022_129697 crossref_primary_10_1371_journal_pone_0318180 crossref_primary_10_3390_en16010523 crossref_primary_10_1590_1980_5373_mr_2022_0626 crossref_primary_10_1016_j_chemosphere_2022_133614 crossref_primary_10_1016_j_inoche_2023_111781 crossref_primary_10_1016_j_ijbiomac_2022_06_148 crossref_primary_10_1080_10601325_2024_2349600 crossref_primary_10_1016_j_jece_2023_111502 crossref_primary_10_1021_acs_langmuir_2c01320 crossref_primary_10_1016_j_chemosphere_2023_138716 crossref_primary_10_1016_j_jcis_2022_10_122 crossref_primary_10_1016_j_arabjc_2023_105145 crossref_primary_10_1016_j_indcrop_2022_114528 crossref_primary_10_1016_j_chemosphere_2021_133103 crossref_primary_10_1016_j_ecoenv_2024_116373 crossref_primary_10_1016_j_envpol_2022_118871 crossref_primary_10_1016_j_scitotenv_2024_171778 crossref_primary_10_1016_j_colsurfa_2022_130604 crossref_primary_10_1016_j_jcis_2021_11_015 crossref_primary_10_1016_j_chemphys_2024_112492 crossref_primary_10_1016_j_jallcom_2021_163568 crossref_primary_10_1039_D3NJ00598D crossref_primary_10_1016_j_molliq_2023_123089 crossref_primary_10_1016_j_chemosphere_2023_140343 crossref_primary_10_1039_D2NJ04395E crossref_primary_10_1016_j_ijhydene_2023_11_037 crossref_primary_10_1016_j_sajce_2023_07_006 crossref_primary_10_1038_s41545_023_00295_1 crossref_primary_10_1016_j_inoche_2023_110721 crossref_primary_10_1007_s42250_021_00295_z crossref_primary_10_1016_j_apt_2022_103546 crossref_primary_10_1016_j_chemosphere_2023_140732 crossref_primary_10_1016_j_jenvman_2022_114664 crossref_primary_10_1038_s44172_024_00267_4 crossref_primary_10_1021_acs_inorgchem_4c00928 crossref_primary_10_1039_D2NJ03348H crossref_primary_10_1080_15226514_2023_2246591 crossref_primary_10_1016_j_ijbiomac_2023_124145 crossref_primary_10_1016_j_colsurfa_2022_129599 crossref_primary_10_1016_j_colsurfa_2023_131393 crossref_primary_10_1515_gps_2022_8127 crossref_primary_10_1016_j_porgcoat_2022_106738 crossref_primary_10_1016_j_apcata_2023_119042 crossref_primary_10_1016_j_catcom_2023_106643 crossref_primary_10_1007_s11270_022_06030_9 crossref_primary_10_1016_j_jhazmat_2021_127640 crossref_primary_10_1016_j_cep_2022_109135 crossref_primary_10_1016_j_molliq_2021_118355 crossref_primary_10_1039_D3TA01307C crossref_primary_10_1016_j_ijhydene_2021_10_024 crossref_primary_10_1016_j_jpcs_2023_111787 crossref_primary_10_1039_D3NJ05213C crossref_primary_10_1016_j_jhazmat_2021_127637 crossref_primary_10_1016_j_materresbull_2023_112508 crossref_primary_10_1016_j_seppur_2022_122631 crossref_primary_10_1039_D2NJ04296G crossref_primary_10_1016_j_matchemphys_2022_127065 crossref_primary_10_1016_j_colsurfa_2022_129765 crossref_primary_10_1007_s13399_022_02569_z crossref_primary_10_1016_j_apsusc_2023_158263 crossref_primary_10_1016_j_jtice_2023_104891 crossref_primary_10_1016_j_envres_2023_115571 crossref_primary_10_1016_j_molstruc_2023_135716 crossref_primary_10_1016_j_jhazmat_2023_132172 crossref_primary_10_1039_D3EW00138E crossref_primary_10_1016_j_chemosphere_2023_140758 crossref_primary_10_1002_adhm_202403582 crossref_primary_10_1016_j_cej_2025_160995 crossref_primary_10_1002_cnma_202300481 crossref_primary_10_1016_j_micromeso_2022_112300 crossref_primary_10_1016_j_chemosphere_2023_138043 crossref_primary_10_1021_acsbiomaterials_2c00748 crossref_primary_10_1039_D2GC04546J crossref_primary_10_3390_polym16233257 crossref_primary_10_1016_j_colsurfa_2022_130912 crossref_primary_10_1016_j_psep_2023_06_012 crossref_primary_10_1016_j_jhazmat_2022_129923 crossref_primary_10_1016_j_jclepro_2024_143739 crossref_primary_10_1039_D3QI00823A crossref_primary_10_1016_j_dwt_2024_100347 crossref_primary_10_1016_j_jallcom_2023_169835 crossref_primary_10_1039_D3NJ01395B crossref_primary_10_1016_j_jece_2024_112955 crossref_primary_10_1016_j_jece_2023_110059 crossref_primary_10_1039_D3NJ04299E crossref_primary_10_1039_D2NJ02313J crossref_primary_10_1016_j_chemosphere_2023_140155 crossref_primary_10_1016_j_chemosphere_2023_140395 crossref_primary_10_1016_j_surfin_2023_103507 crossref_primary_10_1016_j_scitotenv_2024_176193 crossref_primary_10_1016_j_surfin_2021_101647 crossref_primary_10_1016_j_jcis_2024_10_139 crossref_primary_10_1080_10934529_2023_2215679 crossref_primary_10_1016_j_inoche_2023_111982 crossref_primary_10_1016_j_memsci_2023_122394 crossref_primary_10_1016_j_jwpe_2023_103913 crossref_primary_10_1038_s41598_023_36592_5 crossref_primary_10_1016_j_arabjc_2022_104415 crossref_primary_10_1016_j_inoche_2024_112278 crossref_primary_10_1007_s10876_023_02508_6 crossref_primary_10_1016_j_apsusc_2022_155635 crossref_primary_10_1016_j_indcrop_2023_117234 crossref_primary_10_3390_polym17030311 crossref_primary_10_1016_j_seppur_2022_121217 crossref_primary_10_1016_j_jhazmat_2023_131739 crossref_primary_10_1016_j_watres_2024_121621 crossref_primary_10_1002_jccs_202200507 crossref_primary_10_1016_j_ijbiomac_2023_126118 crossref_primary_10_1016_j_ijbiomac_2023_127206 crossref_primary_10_1016_j_chemosphere_2023_140665 crossref_primary_10_3390_catal13010148 crossref_primary_10_1016_j_jwpe_2023_104289 crossref_primary_10_1016_j_cjche_2023_08_006 crossref_primary_10_1016_j_inoche_2023_110403 crossref_primary_10_1016_j_seppur_2024_129006 crossref_primary_10_1016_j_seppur_2024_129402 crossref_primary_10_1080_00986445_2024_2324428 crossref_primary_10_1016_j_cej_2022_139931 crossref_primary_10_3390_separations10020077 crossref_primary_10_1007_s44169_023_00043_z crossref_primary_10_2139_ssrn_4183290 crossref_primary_10_1002_adsu_202300444 crossref_primary_10_1038_s41598_024_62378_4 crossref_primary_10_3390_ijerph192416414 crossref_primary_10_1007_s11270_022_05987_x |
Cites_doi | 10.1016/j.mcat.2021.111633 10.1016/j.cattod.2019.08.025 10.1016/j.seppur.2019.115869 10.1016/j.scitotenv.2017.03.282 10.1016/j.cej.2020.124063 10.1016/j.chemosphere.2018.07.198 10.1016/j.jhazmat.2015.05.047 10.1016/j.chemosphere.2017.04.025 10.1016/j.cej.2017.07.147 10.1016/j.cej.2012.01.095 10.1016/j.jhazmat.2019.120742 10.1016/j.cej.2019.122559 10.1038/s41598-020-58866-y 10.1016/j.cej.2016.05.072 10.1016/j.jhazmat.2009.08.129 10.1016/j.jece.2018.10.048 10.1016/j.cej.2019.02.058 10.1016/j.watres.2017.07.013 10.1016/j.cej.2012.03.004 10.1016/j.clay.2016.02.008 10.1016/j.pce.2010.03.020 10.1021/es300516e 10.1016/j.jcis.2018.08.075 10.1016/j.watres.2016.06.009 10.1016/j.jhazmat.2017.03.002 10.1016/j.cej.2013.06.031 10.1016/j.apcatb.2013.08.020 10.1016/j.cej.2014.10.080 10.1016/j.cej.2021.129934 10.1016/j.jcis.2021.03.046 10.1016/j.scitotenv.2009.05.051 10.1021/es903801r 10.1080/10408430601057611 10.1016/j.cej.2020.126057 10.1016/j.cej.2014.01.093 10.1016/j.scitotenv.2020.136822 10.1016/j.apcatb.2009.04.024 10.1039/C6TA10007D 10.1016/j.molliq.2021.116108 10.1016/j.apsusc.2018.02.085 10.1016/j.jcis.2020.04.042 10.1016/j.cej.2014.05.139 10.1002/ejoc.201001735 10.1016/j.chemosphere.2016.11.057 10.1016/j.scitotenv.2020.138625 10.1016/j.jhazmat.2016.08.049 10.1016/j.materresbull.2009.05.005 10.1016/j.jhazmat.2019.01.080 10.1021/am507815t 10.1016/j.colsurfa.2014.06.017 10.1016/j.seppur.2020.116732 10.1016/j.cej.2015.06.065 10.1016/j.gca.2013.04.008 10.1016/j.cej.2015.04.044 10.1016/j.matlet.2020.127527 10.1016/j.jhazmat.2015.05.006 10.1016/j.chemosphere.2021.130663 10.1021/acsami.1c03350 10.1016/j.apcatb.2016.05.008 10.1016/j.cej.2012.12.026 10.1016/j.chemosphere.2019.07.032 10.1016/j.jhazmat.2020.122686 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.08.075 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 952 |
ExternalDocumentID | 10_1016_j_jcis_2021_08_075 S002197972101300X |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-a34c6f996b88d13d0b5cc38d153d2fd50242f12961127687554e001941499a483 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Aug 21 01:27:37 EDT 2025 Sun Aug 24 03:36:54 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Tue Jul 01 01:19:09 EDT 2025 Fri Feb 23 02:43:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Cr(VI) Montmorillonite Copper Nanoscale zero valent iron Galvanic cell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-a34c6f996b88d13d0b5cc38d153d2fd50242f12961127687554e001941499a483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2570109028 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2636811362 proquest_miscellaneous_2570109028 crossref_citationtrail_10_1016_j_jcis_2021_08_075 crossref_primary_10_1016_j_jcis_2021_08_075 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_08_075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-15 |
PublicationDateYYYYMMDD | 2022-01-15 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chen, Chen, Xu, Xu, Chen, Jia, Chen (b0110) 2017; 330 Sun, Song, Li, Li (b0135) 2016; 283 Rokicińska, Natkański, Dudek, Drozdek, Lityńska-Dobrzyńska, Kuśtrowski (b0080) 2016; 195 Dong, Ning, Li, Wang, Wang, Zhang, Tian, Li, Chen, Xie (b0180) 2020; 230 Qian, Liu, Zhang, Chen, Ouyang, Han, Yan, Chen (b0215) 2019; 533 Xu, Li, Qian, Jiang (b0075) 2020; 387 Wei, Tu, Yuan, Bi, Xiao, Theng, Wang, Ok (b0295) 2019; 368 Zhou, Li, Chen, Liu, Wang, Na (b0335) 2014; 4 Wang, Yu, Wang, Wang, Zhang (b0145) 2020; 726 Zhang, Li, Li, Sheng, Zhang, Zheng (b0330) 2012; 185–186 Wang, Du, Wang, Wang, Gu, Zhang (b0065) 2018; 6 Xiong, Hang, Gao, Guo, Gu (b0205) 2014; 254 Wu, Wang, Chen, Li, Hu, Wang, Wu (b0175) 2021; 13 Zhang, Jiang, Zhang, Xie (b0100) 2013; 229 Wiśniewska, Fijałkowska, Szewczuk-Karpisz (b0285) 2018; 211 Alonso, Melkonian, Moglie, Yus (b0245) 2011; 2011 Montesinos, Quici, Halac, Leyva, Custo, Bengio, Zampieri, Litter (b0010) 2014; 244 Tian, Liang, Yang, Sun (b0240) 2019; 239 Jia, Wang (b0170) 2012; 191 Lv, Hu, Tang, Sheng, Jiang, Xu (b0325) 2013; 218 Xiong, Lai, Yang, Zhou, Wang, Fang (b0160) 2015; 297 Gholami, Dinpazhoh, Khataee, Hassani, Bhatnagar (b0220) 2020; 381 Wang, Wang, Lin, Wang, Zhang (b0090) 2021; 594 Lai (b0130) 2014; 144 Yang, Ji, Li, Zheng, Bi, Yang, Xu, Zhang (b0310) 2021; 420 Wang, Wang, Wang, Zhang, Zhang (b0095) 2020; 401 Zhang, Zhu, Song, Wang, Han, Zhao, Fan, Zhou, Zhang (b0190) 2020; 267 Timofeeva, Khankhasaeva, Talsi, Panchenko, Golovin, Dashinamzhilova, Tsybulya (b0225) 2009; 90 Yang, Zheng, Ji, Xu, Zhang (b0305) 2020; 395 Zhu, Li, Ma, Shang (b0140) 2016; 302 Yuan, Liu, Fan, Yang, Zhu, Ge, Zhu, He (b0020) 2010; 173 Du, Bao, Lu, Werner (b0025) 2016; 102 Lv, Zhou, Zhou, Liu, Li, Yang, Lou, Baig, Wu, Xu (b0275) 2018; 442 Wu, Peng, Hou, Tang, Wang, Xu (b0280) 1987; 240 Liu, Chen, Cao, Li, Di Zhang, Li, Meng, Yin (b0315) 2020; 241 Wu, Yi, Li, Fang, Tsang (b0055) 2016; 320 Kameshima, Koike, Isobe, Nakajima, Okada (b0085) 2009; 44 Hong, Guo, Gao, Gu (b0250) 2017; 180 Yang, Di Zheng, Ren, Zhang (b0050) 2017; 123 Wang, Cissoko, Zhou, Xu (b0320) 2011; 36 Kumar, Verma (b0255) 2020; 348 Li, Elliott, Zhang (b0045) 2006; 31 Bi, Zhang, Du, Yue, Wang, Li, Liu, Huang (b0340) 2021; 509 Wang, Yu, Wang, Wang, Zhang (b0120) 2020; 574 Gu, Jia, Li, Teppen, Boyd (b0155) 2010; 44 Chen, Wang, Li, Liu, Yang, Gui (b0210) 2020; 267 Geng, Jin, Li, Qi (b0035) 2009; 407 Liu, Xu, Wang, Qu, Yan (b0185) 2020; 381 Gong, Gai, Tang, Fu, Wang, Zeng (b0270) 2017; 595 Yu, Gu, Boyd, Liu, Sun, Teppen, Li (b0200) 2012; 46 Mu, Ai, Zhang, Song (b0015) 2015; 7 Wen, Zhang, Dai (b0235) 2014; 457 Fu, Cheng, Dionysiou, Tang (b0030) 2015; 298 Xiao, Gao, Yue, Gao, Li (b0165) 2015; 262 Ruan, Liu, Ning, Zhao, Fan (b0070) 2020; 715 Zhang, Bi, Zhu, Yang, Zhao, Chen, Lv, Wang, Xu, Liu (b0230) 2021; 297 Ding, Fu, Cheng, Lu, Tang (b0115) 2017; 169 Jia, Zhang, Huang, Wang, Xu (b0105) 2019; 366 Liu, Lu, Sprik, Cheng, Meijer, Wang (b0265) 2013; 117 Ahmed, Na, Fai, Al-Ansari, Naushad (b0300) 2020; 10 Wang, Lin, Gong, Wang, Zhang (b0290) 2021; 280 Teng, Fan, Wang, Bai, Liu, Liu, Deng, Kong, Yang, Zhao, Zhang (b0060) 2017; 5 Yue, Zhang, Jiang, Chen, Yang, Bi, Wang (b0040) 2021; 335 Wang, Hua, Su (b0260) 2016; 124–125 Dong, Deng, Xie, Zhang, Jiang, Cheng, Hou, Zeng (b0005) 2017; 332 Chang, Lian, Zhu (b0125) 1987; 159 Zhang, Guo, Huang, Li, Gu (b0150) 2015; 276 Chen, Tian, Li, Li, Hong, Sheng, Wang, Gu (b0195) 2019; 235 Wen (10.1016/j.jcis.2021.08.075_b0235) 2014; 457 Mu (10.1016/j.jcis.2021.08.075_b0015) 2015; 7 Gong (10.1016/j.jcis.2021.08.075_b0270) 2017; 595 Wang (10.1016/j.jcis.2021.08.075_b0260) 2016; 124–125 Du (10.1016/j.jcis.2021.08.075_b0025) 2016; 102 Zhang (10.1016/j.jcis.2021.08.075_b0150) 2015; 276 Wang (10.1016/j.jcis.2021.08.075_b0320) 2011; 36 Gholami (10.1016/j.jcis.2021.08.075_b0220) 2020; 381 Chen (10.1016/j.jcis.2021.08.075_b0210) 2020; 267 Zhang (10.1016/j.jcis.2021.08.075_b0100) 2013; 229 Kumar (10.1016/j.jcis.2021.08.075_b0255) 2020; 348 Yu (10.1016/j.jcis.2021.08.075_b0200) 2012; 46 Wang (10.1016/j.jcis.2021.08.075_b0065) 2018; 6 Timofeeva (10.1016/j.jcis.2021.08.075_b0225) 2009; 90 Zhang (10.1016/j.jcis.2021.08.075_b0190) 2020; 267 Xiong (10.1016/j.jcis.2021.08.075_b0160) 2015; 297 Wu (10.1016/j.jcis.2021.08.075_b0280) 1987; 240 Ahmed (10.1016/j.jcis.2021.08.075_b0300) 2020; 10 Liu (10.1016/j.jcis.2021.08.075_b0315) 2020; 241 Chang (10.1016/j.jcis.2021.08.075_b0125) 1987; 159 Wu (10.1016/j.jcis.2021.08.075_b0175) 2021; 13 Ruan (10.1016/j.jcis.2021.08.075_b0070) 2020; 715 Liu (10.1016/j.jcis.2021.08.075_b0265) 2013; 117 Yang (10.1016/j.jcis.2021.08.075_b0050) 2017; 123 Liu (10.1016/j.jcis.2021.08.075_b0185) 2020; 381 Zhang (10.1016/j.jcis.2021.08.075_b0230) 2021; 297 Yang (10.1016/j.jcis.2021.08.075_b0305) 2020; 395 Zhang (10.1016/j.jcis.2021.08.075_b0330) 2012; 185–186 Gu (10.1016/j.jcis.2021.08.075_b0155) 2010; 44 Alonso (10.1016/j.jcis.2021.08.075_b0245) 2011; 2011 Fu (10.1016/j.jcis.2021.08.075_b0030) 2015; 298 Zhu (10.1016/j.jcis.2021.08.075_b0140) 2016; 302 Wu (10.1016/j.jcis.2021.08.075_b0055) 2016; 320 Lv (10.1016/j.jcis.2021.08.075_b0325) 2013; 218 Bi (10.1016/j.jcis.2021.08.075_b0340) 2021; 509 Geng (10.1016/j.jcis.2021.08.075_b0035) 2009; 407 Lai (10.1016/j.jcis.2021.08.075_b0130) 2014; 144 Jia (10.1016/j.jcis.2021.08.075_b0170) 2012; 191 Xiao (10.1016/j.jcis.2021.08.075_b0165) 2015; 262 Yuan (10.1016/j.jcis.2021.08.075_b0020) 2010; 173 Wang (10.1016/j.jcis.2021.08.075_b0290) 2021; 280 Dong (10.1016/j.jcis.2021.08.075_b0005) 2017; 332 Qian (10.1016/j.jcis.2021.08.075_b0215) 2019; 533 Wang (10.1016/j.jcis.2021.08.075_b0090) 2021; 594 Jia (10.1016/j.jcis.2021.08.075_b0105) 2019; 366 Wang (10.1016/j.jcis.2021.08.075_b0120) 2020; 574 Li (10.1016/j.jcis.2021.08.075_b0045) 2006; 31 Chen (10.1016/j.jcis.2021.08.075_b0110) 2017; 330 Yang (10.1016/j.jcis.2021.08.075_b0310) 2021; 420 Wei (10.1016/j.jcis.2021.08.075_b0295) 2019; 368 Teng (10.1016/j.jcis.2021.08.075_b0060) 2017; 5 Kameshima (10.1016/j.jcis.2021.08.075_b0085) 2009; 44 Montesinos (10.1016/j.jcis.2021.08.075_b0010) 2014; 244 Wang (10.1016/j.jcis.2021.08.075_b0145) 2020; 726 Chen (10.1016/j.jcis.2021.08.075_b0195) 2019; 235 Lv (10.1016/j.jcis.2021.08.075_b0275) 2018; 442 Zhou (10.1016/j.jcis.2021.08.075_b0335) 2014; 4 Xu (10.1016/j.jcis.2021.08.075_b0075) 2020; 387 Xiong (10.1016/j.jcis.2021.08.075_b0205) 2014; 254 Yue (10.1016/j.jcis.2021.08.075_b0040) 2021; 335 Hong (10.1016/j.jcis.2021.08.075_b0250) 2017; 180 Wiśniewska (10.1016/j.jcis.2021.08.075_b0285) 2018; 211 Wang (10.1016/j.jcis.2021.08.075_b0095) 2020; 401 Tian (10.1016/j.jcis.2021.08.075_b0240) 2019; 239 Dong (10.1016/j.jcis.2021.08.075_b0180) 2020; 230 Sun (10.1016/j.jcis.2021.08.075_b0135) 2016; 283 Ding (10.1016/j.jcis.2021.08.075_b0115) 2017; 169 Rokicińska (10.1016/j.jcis.2021.08.075_b0080) 2016; 195 |
References_xml | – volume: 2011 start-page: 2524 year: 2011 end-page: 2530 ident: b0245 article-title: Homocoupling of Terminal Alkynes Catalysed by Ultrafine Copper Nanoparticles on Titania publication-title: Eur. J. Org. Chem. – volume: 320 start-page: 341 year: 2016 end-page: 349 ident: b0055 article-title: Excellently reactive Ni/Fe bimetallic catalyst supported by biochar for the remediation of decabromodiphenyl contaminated soil: Reactivity, mechanism, pathways and reducing secondary risks publication-title: J. Hazard. Mater. – volume: 297 start-page: 261 year: 2015 end-page: 268 ident: b0160 article-title: Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration publication-title: J. Hazard. Mater. – volume: 44 start-page: 4258 year: 2010 end-page: 4263 ident: b0155 article-title: Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates publication-title: Environ. Sci. Technol. – volume: 211 start-page: 524 year: 2018 end-page: 534 ident: b0285 article-title: The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions publication-title: Chemosphere – volume: 276 start-page: 122 year: 2015 end-page: 129 ident: b0150 article-title: Degradation of selected polychlorinated biphenyls by montmorillonite clay-templated Fe publication-title: Chem. Eng. J. – volume: 298 start-page: 261 year: 2015 end-page: 269 ident: b0030 article-title: Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism publication-title: J. Hazard. Mater. – volume: 117 start-page: 180 year: 2013 end-page: 190 ident: b0265 article-title: Acidity of edge surface sites of montmorillonite and kaolinite publication-title: Geochim. Cosmochim. Acta – volume: 381 year: 2020 ident: b0185 article-title: Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry publication-title: Chem. Eng. J. – volume: 4 start-page: 50699 year: 2014 end-page: 50707 ident: b0335 article-title: Enhanced Cr(VI) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: characterization, kinetics and mechanism publication-title: The Royal Society of Chemistry’s – volume: 335 year: 2021 ident: b0040 article-title: Recent advances in strategies to modify MIL-125 (Ti) and its environmental applications publication-title: J. Mol. Liq. – volume: 594 start-page: 446 year: 2021 end-page: 459 ident: b0090 article-title: Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst publication-title: J. Colloid Interface Sci. – volume: 191 start-page: 202 year: 2012 end-page: 209 ident: b0170 article-title: Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite publication-title: Chem. Eng. J. – volume: 185–186 start-page: 243 year: 2012 end-page: 249 ident: b0330 article-title: Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron publication-title: Chem. Eng. J. – volume: 244 start-page: 569 year: 2014 end-page: 575 ident: b0010 article-title: Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure publication-title: Chem. Eng. J. – volume: 7 start-page: 1997 year: 2015 end-page: 2005 ident: b0015 article-title: Insight into core-shell dependent anoxic Cr(VI) removal with Fe@Fe publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 8969 year: 2012 end-page: 8975 ident: b0200 article-title: Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron publication-title: Environ. Sci. Technol. – volume: 407 start-page: 4994 year: 2009 end-page: 5000 ident: b0035 article-title: Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water publication-title: The Science of the Total Environment – volume: 123 start-page: 704 year: 2017 end-page: 714 ident: b0050 article-title: Xin, Zero-valent aluminum for reductive removal of aqueous pollutants over a wide pH range: Performance and mechanism especially at near-neutral pH publication-title: Water Res. – volume: 574 start-page: 74 year: 2020 end-page: 86 ident: b0120 article-title: Reactivity of carbon spheres templated Ce/LaCo publication-title: J. Colloid Interface Sci. – volume: 36 start-page: 442 year: 2011 end-page: 446 ident: b0320 article-title: Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe publication-title: Physics and Chemistry of the Earth, Parts A/B/C – volume: 366 start-page: 200 year: 2019 end-page: 207 ident: b0105 article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): Characterization, performance, and mechanisms publication-title: Chem. Eng. J. – volume: 726 year: 2020 ident: b0145 article-title: A novel cellulose hydrogel coating with nanoscale Fe0 for Cr(VI) adsorption and reduction publication-title: The Science of the total environment – volume: 348 start-page: 194 year: 2020 end-page: 202 ident: b0255 article-title: Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr(VI) in wet air publication-title: Catal. Today – volume: 90 start-page: 618 year: 2009 end-page: 627 ident: b0225 article-title: The effect of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as catalysts in phenol peroxide oxidation publication-title: Appl. Catal. B – volume: 218 start-page: 55 year: 2013 end-page: 64 ident: b0325 article-title: Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe publication-title: Chem. Eng. J. – volume: 180 start-page: 335 year: 2017 end-page: 342 ident: b0250 article-title: Rapid degradation of atrazine by hydroxyl radical induced from montmorillonite templated subnano-sized zero-valent copper publication-title: Chemosphere – volume: 381 year: 2020 ident: b0220 article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium publication-title: J. Hazard. Mater. – volume: 169 start-page: 297 year: 2017 end-page: 307 ident: b0115 article-title: Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism publication-title: Chemosphere – volume: 159 start-page: 2507 year: 1987 end-page: 2514 ident: b0125 article-title: Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support, Environmental Pollution (Barking publication-title: Essex – volume: 267 year: 2020 ident: b0210 article-title: Removal of hexavalent chromium by bentonite supported organosolv lignin-stabilized zero-valent iron nanoparticles from wastewater publication-title: J. Cleaner Prod. – volume: 6 start-page: 6881 year: 2018 end-page: 6890 ident: b0065 article-title: Synthesis and characterization of a high capacity ionic modified hydrogel adsorbent and its application in the removal of Cr(VI) from aqueous solution publication-title: Journal of Environmental Chemical Engineering – volume: 230 year: 2020 ident: b0180 article-title: A comparative study on the activation of persulfate by bare and surface-stabilized nanoscale zero-valent iron for the removal of sulfamethazine publication-title: Sep. Purif. Technol. – volume: 280 start-page: 30663 year: 2021 ident: b0290 article-title: Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms publication-title: Chemosphere – volume: 457 start-page: 433 year: 2014 end-page: 440 ident: b0235 article-title: Removal of phosphate from aqueous solution using nanoscale zerovalent iron publication-title: Colloids Surf., A – volume: 302 start-page: 663 year: 2016 end-page: 669 ident: b0140 article-title: Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles publication-title: Chem. Eng. J. – volume: 267 year: 2020 ident: b0190 article-title: 3D reduced graphene oxide hybrid nano-copper scaffolds with a high antibacterial performance publication-title: Mater. Lett. – volume: 31 start-page: 111 year: 2006 end-page: 122 ident: b0045 article-title: Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 332 start-page: 79 year: 2017 end-page: 86 ident: b0005 article-title: Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution publication-title: J. Hazard. Mater. – volume: 401 year: 2020 ident: b0095 article-title: Efficient reactivity of LaCu publication-title: Chem. Eng. J. – volume: 509 year: 2021 ident: b0340 article-title: Influenc, e of pretreatment conditions on low-temperature CO oxidation over Pd supported UiO-66 catalysts publication-title: Molecular Catalysis – volume: 240 start-page: 717 year: 1987 end-page: 724 ident: b0280 article-title: Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron, Environmental Pollution (Barking publication-title: Essex – volume: 13 start-page: 22448 year: 2021 end-page: 22456 ident: b0175 article-title: Unravelling the Role of Strong Metal−Support Interactions in Boosting the Activity toward Hydrogen Evolution Reaction on Ir Nanoparticle/N-Doped Carbon Nanosheet Catalysts publication-title: Applied Materials & Interfaces – volume: 395 year: 2020 ident: b0305 article-title: Insights to perfluorooctanoic acid adsorption micro-mechanism over Febased metal organic frameworks: Combining computational calculation with response surface methodology publication-title: J. Hazard. Mater. – volume: 283 start-page: 366 year: 2016 end-page: 374 ident: b0135 article-title: Fe/Cu bimetallic catalysis for reductive degradation of nitrobenzene under oxic conditions publication-title: Chem. Eng. J. – volume: 420 year: 2021 ident: b0310 article-title: Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres publication-title: Chem. Eng. J. – volume: 533 start-page: 428 year: 2019 end-page: 436 ident: b0215 article-title: Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron publication-title: J. Colloid Interface Sci. – volume: 124–125 start-page: 111 year: 2016 end-page: 118 ident: b0260 article-title: Sridhar Komarneni, Cr(VI) adsorption by montmorillonite nanocomposites publication-title: Appl. Clay Sci. – volume: 368 start-page: 541 year: 2019 end-page: 549 ident: b0295 article-title: Carbon-coated montmorillonite nanocomposite for the removal of chromium(VI) from aqueous solutions publication-title: J. Hazard. Mater. – volume: 241 year: 2020 ident: b0315 article-title: Chromium (VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite publication-title: Sep. Purif. Technol. – volume: 330 start-page: 281 year: 2017 end-page: 293 ident: b0110 article-title: Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene publication-title: Chem. Eng. J. – volume: 595 start-page: 743 year: 2017 end-page: 751 ident: b0270 article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles publication-title: The Science of the Total Environment – volume: 387 year: 2020 ident: b0075 article-title: Boosting the activity and environmental stability of nanoscale zero-valent iron by montmorillonite supporting and sulfidation treatment publication-title: Chem. Eng. J. – volume: 229 start-page: 412 year: 2013 end-page: 419 ident: b0100 article-title: The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution publication-title: Chem. Eng. J. – volume: 235 start-page: 1180 year: 2019 end-page: 1188 ident: b0195 article-title: Application of surfactant modified montmorillonite with different conformation for photo-treatment of perfluorooctanoic acid by hydrated electrons publication-title: Chemosphere – volume: 442 start-page: 114 year: 2018 end-page: 123 ident: b0275 article-title: Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions publication-title: Appl. Surf. Sci. – volume: 144 start-page: 816 year: 2014 end-page: 830 ident: b0130 article-title: Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles publication-title: Appl. Catal. B – volume: 297 year: 2021 ident: b0230 publication-title: The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: A combined experimental and theoretical investigation – volume: 44 start-page: 1906 year: 2009 end-page: 1909 ident: b0085 article-title: Effect of the SiO2/TiO2 ratio on the solid acidity of SiO publication-title: Mater. Res. Bull. – volume: 102 start-page: 73 year: 2016 end-page: 81 ident: b0025 article-title: Reductive sequestration of chromate by hierarchical FeS@Fe(0) particles publication-title: Water Res. – volume: 195 start-page: 59 year: 2016 end-page: 68 ident: b0080 article-title: Co3O4-pillared montmorillonite catalysts synthesized by hydrogel-assisted route for total oxidation of toluene publication-title: Appl. Catal. B – volume: 262 start-page: 1226 year: 2015 end-page: 1236 ident: b0165 article-title: Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: Characterization, kinetics and mechanism publication-title: Chem. Eng. J. – volume: 10 start-page: 2042 year: 2020 ident: b0300 article-title: Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution publication-title: Sci. Rep. – volume: 239 year: 2019 ident: b0240 article-title: Characteristics of PVP-stabilised NZVI and application to dechlorination of soil-sorbed TCE with ionic surfactant publication-title: Chemosphere – volume: 715 year: 2020 ident: b0070 article-title: Screening for the action mechanisms of Fe and Ni in the reduction of Cr(VI) by Fe/Ni nanoparticles publication-title: The Science of the Total Environment – volume: 173 start-page: 614 year: 2010 end-page: 621 ident: b0020 article-title: Removal of hexavalent chromium Cr(VI) from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles publication-title: J. Hazard. Mater. – volume: 5 start-page: 4478 year: 2017 end-page: 4485 ident: b0060 article-title: Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis publication-title: J. Mater. Chem. A – volume: 254 start-page: 276 year: 2014 end-page: 282 ident: b0205 article-title: A novel biomimetic catalyst templated by montmorillonite clay for degradation of 2,4,6-trichlorophenol publication-title: Chem. Eng. J. – volume: 509 year: 2021 ident: 10.1016/j.jcis.2021.08.075_b0340 article-title: Influenc, e of pretreatment conditions on low-temperature CO oxidation over Pd supported UiO-66 catalysts publication-title: Molecular Catalysis doi: 10.1016/j.mcat.2021.111633 – volume: 348 start-page: 194 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0255 article-title: Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr(VI) in wet air publication-title: Catal. Today doi: 10.1016/j.cattod.2019.08.025 – volume: 230 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0180 article-title: A comparative study on the activation of persulfate by bare and surface-stabilized nanoscale zero-valent iron for the removal of sulfamethazine publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115869 – volume: 595 start-page: 743 year: 2017 ident: 10.1016/j.jcis.2021.08.075_b0270 article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2017.03.282 – volume: 387 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0075 article-title: Boosting the activity and environmental stability of nanoscale zero-valent iron by montmorillonite supporting and sulfidation treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124063 – volume: 211 start-page: 524 year: 2018 ident: 10.1016/j.jcis.2021.08.075_b0285 article-title: The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.198 – volume: 298 start-page: 261 year: 2015 ident: 10.1016/j.jcis.2021.08.075_b0030 article-title: Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.05.047 – volume: 180 start-page: 335 year: 2017 ident: 10.1016/j.jcis.2021.08.075_b0250 article-title: Rapid degradation of atrazine by hydroxyl radical induced from montmorillonite templated subnano-sized zero-valent copper publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.025 – volume: 330 start-page: 281 year: 2017 ident: 10.1016/j.jcis.2021.08.075_b0110 article-title: Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.147 – volume: 185–186 start-page: 243 year: 2012 ident: 10.1016/j.jcis.2021.08.075_b0330 article-title: Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.095 – volume: 381 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0220 article-title: Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120742 – volume: 159 start-page: 2507 issue: 2011 year: 1987 ident: 10.1016/j.jcis.2021.08.075_b0125 article-title: Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support, Environmental Pollution (Barking publication-title: Essex – volume: 381 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0185 article-title: Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122559 – volume: 10 start-page: 2042 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0300 article-title: Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution publication-title: Sci. Rep. doi: 10.1038/s41598-020-58866-y – volume: 302 start-page: 663 year: 2016 ident: 10.1016/j.jcis.2021.08.075_b0140 article-title: Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.05.072 – volume: 173 start-page: 614 year: 2010 ident: 10.1016/j.jcis.2021.08.075_b0020 article-title: Removal of hexavalent chromium Cr(VI) from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.08.129 – volume: 6 start-page: 6881 year: 2018 ident: 10.1016/j.jcis.2021.08.075_b0065 article-title: Synthesis and characterization of a high capacity ionic modified hydrogel adsorbent and its application in the removal of Cr(VI) from aqueous solution publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2018.10.048 – volume: 366 start-page: 200 year: 2019 ident: 10.1016/j.jcis.2021.08.075_b0105 article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): Characterization, performance, and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.058 – volume: 123 start-page: 704 year: 2017 ident: 10.1016/j.jcis.2021.08.075_b0050 article-title: Xin, Zero-valent aluminum for reductive removal of aqueous pollutants over a wide pH range: Performance and mechanism especially at near-neutral pH publication-title: Water Res. doi: 10.1016/j.watres.2017.07.013 – volume: 191 start-page: 202 year: 2012 ident: 10.1016/j.jcis.2021.08.075_b0170 article-title: Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.03.004 – volume: 124–125 start-page: 111 year: 2016 ident: 10.1016/j.jcis.2021.08.075_b0260 article-title: Sridhar Komarneni, Cr(VI) adsorption by montmorillonite nanocomposites publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2016.02.008 – volume: 36 start-page: 442 year: 2011 ident: 10.1016/j.jcis.2021.08.075_b0320 article-title: Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles publication-title: Physics and Chemistry of the Earth, Parts A/B/C doi: 10.1016/j.pce.2010.03.020 – volume: 46 start-page: 8969 year: 2012 ident: 10.1016/j.jcis.2021.08.075_b0200 article-title: Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es300516e – volume: 533 start-page: 428 year: 2019 ident: 10.1016/j.jcis.2021.08.075_b0215 article-title: Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.08.075 – volume: 102 start-page: 73 year: 2016 ident: 10.1016/j.jcis.2021.08.075_b0025 article-title: Reductive sequestration of chromate by hierarchical FeS@Fe(0) particles publication-title: Water Res. doi: 10.1016/j.watres.2016.06.009 – volume: 332 start-page: 79 year: 2017 ident: 10.1016/j.jcis.2021.08.075_b0005 article-title: Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.03.002 – volume: 229 start-page: 412 year: 2013 ident: 10.1016/j.jcis.2021.08.075_b0100 article-title: The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.06.031 – volume: 144 start-page: 816 year: 2014 ident: 10.1016/j.jcis.2021.08.075_b0130 article-title: Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.08.020 – volume: 262 start-page: 1226 year: 2015 ident: 10.1016/j.jcis.2021.08.075_b0165 article-title: Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: Characterization, kinetics and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.10.080 – volume: 420 year: 2021 ident: 10.1016/j.jcis.2021.08.075_b0310 article-title: Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129934 – volume: 594 start-page: 446 year: 2021 ident: 10.1016/j.jcis.2021.08.075_b0090 article-title: Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.03.046 – volume: 407 start-page: 4994 year: 2009 ident: 10.1016/j.jcis.2021.08.075_b0035 article-title: Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2009.05.051 – volume: 4 start-page: 50699 year: 2014 ident: 10.1016/j.jcis.2021.08.075_b0335 article-title: Enhanced Cr(VI) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: characterization, kinetics and mechanism publication-title: The Royal Society of Chemistry’s – volume: 44 start-page: 4258 year: 2010 ident: 10.1016/j.jcis.2021.08.075_b0155 article-title: Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates publication-title: Environ. Sci. Technol. doi: 10.1021/es903801r – volume: 31 start-page: 111 year: 2006 ident: 10.1016/j.jcis.2021.08.075_b0045 article-title: Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430601057611 – volume: 401 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0095 article-title: Efficient reactivity of LaCu0.5Co0.5O3 perovskite intercalated montmorillonite and g-C3N4 nanocomposites in microwave-induced H2O2 catalytic degradation of bisphenol A publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126057 – volume: 240 start-page: 717 issue: 2018 year: 1987 ident: 10.1016/j.jcis.2021.08.075_b0280 article-title: Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron, Environmental Pollution (Barking publication-title: Essex – volume: 244 start-page: 569 year: 2014 ident: 10.1016/j.jcis.2021.08.075_b0010 article-title: Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.01.093 – volume: 715 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0070 article-title: Screening for the action mechanisms of Fe and Ni in the reduction of Cr(VI) by Fe/Ni nanoparticles publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2020.136822 – volume: 90 start-page: 618 year: 2009 ident: 10.1016/j.jcis.2021.08.075_b0225 article-title: The effect of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as catalysts in phenol peroxide oxidation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.04.024 – volume: 5 start-page: 4478 year: 2017 ident: 10.1016/j.jcis.2021.08.075_b0060 article-title: Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10007D – volume: 267 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0210 article-title: Removal of hexavalent chromium by bentonite supported organosolv lignin-stabilized zero-valent iron nanoparticles from wastewater publication-title: J. Cleaner Prod. – volume: 297 year: 2021 ident: 10.1016/j.jcis.2021.08.075_b0230 publication-title: The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: A combined experimental and theoretical investigation – volume: 239 year: 2019 ident: 10.1016/j.jcis.2021.08.075_b0240 article-title: Characteristics of PVP-stabilised NZVI and application to dechlorination of soil-sorbed TCE with ionic surfactant publication-title: Chemosphere – volume: 335 year: 2021 ident: 10.1016/j.jcis.2021.08.075_b0040 article-title: Recent advances in strategies to modify MIL-125 (Ti) and its environmental applications publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.116108 – volume: 442 start-page: 114 year: 2018 ident: 10.1016/j.jcis.2021.08.075_b0275 article-title: Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.085 – volume: 574 start-page: 74 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0120 article-title: Reactivity of carbon spheres templated Ce/LaCo0.5Cu0.5O3 in the microwave induced H2O2 catalytic degradation of salicylic acid: Characterization, kinetic and mechanism studies publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.042 – volume: 254 start-page: 276 year: 2014 ident: 10.1016/j.jcis.2021.08.075_b0205 article-title: A novel biomimetic catalyst templated by montmorillonite clay for degradation of 2,4,6-trichlorophenol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.05.139 – volume: 2011 start-page: 2524 year: 2011 ident: 10.1016/j.jcis.2021.08.075_b0245 article-title: Homocoupling of Terminal Alkynes Catalysed by Ultrafine Copper Nanoparticles on Titania publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201001735 – volume: 169 start-page: 297 year: 2017 ident: 10.1016/j.jcis.2021.08.075_b0115 article-title: Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.11.057 – volume: 726 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0145 article-title: A novel cellulose hydrogel coating with nanoscale Fe0 for Cr(VI) adsorption and reduction publication-title: The Science of the total environment doi: 10.1016/j.scitotenv.2020.138625 – volume: 320 start-page: 341 year: 2016 ident: 10.1016/j.jcis.2021.08.075_b0055 article-title: Excellently reactive Ni/Fe bimetallic catalyst supported by biochar for the remediation of decabromodiphenyl contaminated soil: Reactivity, mechanism, pathways and reducing secondary risks publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.08.049 – volume: 44 start-page: 1906 year: 2009 ident: 10.1016/j.jcis.2021.08.075_b0085 article-title: Effect of the SiO2/TiO2 ratio on the solid acidity of SiO2–TiO2/montmorillonite composites publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2009.05.005 – volume: 368 start-page: 541 year: 2019 ident: 10.1016/j.jcis.2021.08.075_b0295 article-title: Carbon-coated montmorillonite nanocomposite for the removal of chromium(VI) from aqueous solutions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.01.080 – volume: 7 start-page: 1997 year: 2015 ident: 10.1016/j.jcis.2021.08.075_b0015 article-title: Insight into core-shell dependent anoxic Cr(VI) removal with Fe@Fe2O3 nanowires: indispensable role of surface bound Fe(II) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507815t – volume: 457 start-page: 433 year: 2014 ident: 10.1016/j.jcis.2021.08.075_b0235 article-title: Removal of phosphate from aqueous solution using nanoscale zerovalent iron publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2014.06.017 – volume: 241 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0315 article-title: Chromium (VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116732 – volume: 283 start-page: 366 year: 2016 ident: 10.1016/j.jcis.2021.08.075_b0135 article-title: Fe/Cu bimetallic catalysis for reductive degradation of nitrobenzene under oxic conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.065 – volume: 117 start-page: 180 year: 2013 ident: 10.1016/j.jcis.2021.08.075_b0265 article-title: Acidity of edge surface sites of montmorillonite and kaolinite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.04.008 – volume: 276 start-page: 122 year: 2015 ident: 10.1016/j.jcis.2021.08.075_b0150 article-title: Degradation of selected polychlorinated biphenyls by montmorillonite clay-templated Fe0/Ni0 bimetallic system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.04.044 – volume: 267 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0190 article-title: 3D reduced graphene oxide hybrid nano-copper scaffolds with a high antibacterial performance publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127527 – volume: 297 start-page: 261 year: 2015 ident: 10.1016/j.jcis.2021.08.075_b0160 article-title: Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.05.006 – volume: 280 start-page: 30663 year: 2021 ident: 10.1016/j.jcis.2021.08.075_b0290 article-title: Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130663 – volume: 13 start-page: 22448 year: 2021 ident: 10.1016/j.jcis.2021.08.075_b0175 article-title: Unravelling the Role of Strong Metal−Support Interactions in Boosting the Activity toward Hydrogen Evolution Reaction on Ir Nanoparticle/N-Doped Carbon Nanosheet Catalysts publication-title: Applied Materials & Interfaces doi: 10.1021/acsami.1c03350 – volume: 195 start-page: 59 year: 2016 ident: 10.1016/j.jcis.2021.08.075_b0080 article-title: Co3O4-pillared montmorillonite catalysts synthesized by hydrogel-assisted route for total oxidation of toluene publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.008 – volume: 218 start-page: 55 year: 2013 ident: 10.1016/j.jcis.2021.08.075_b0325 article-title: Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.12.026 – volume: 235 start-page: 1180 year: 2019 ident: 10.1016/j.jcis.2021.08.075_b0195 article-title: Application of surfactant modified montmorillonite with different conformation for photo-treatment of perfluorooctanoic acid by hydrated electrons publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.07.032 – volume: 395 year: 2020 ident: 10.1016/j.jcis.2021.08.075_b0305 article-title: Insights to perfluorooctanoic acid adsorption micro-mechanism over Febased metal organic frameworks: Combining computational calculation with response surface methodology publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122686 |
SSID | ssj0011559 |
Score | 2.6645722 |
Snippet | [Display omitted]
Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite... Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe0/Cu0)... Batch experiments were conducted to study the Cr(VI) removal by nanoscale zero valent iron and copper intercalated montmorillonite (MMT-nFe⁰/Cu⁰)... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 941 |
SubjectTerms | aqueous solutions Copper Cr(VI) Galvanic cell iron Montmorillonite nanocomposites Nanoscale zero valent iron pollution |
Title | Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite |
URI | https://dx.doi.org/10.1016/j.jcis.2021.08.075 https://www.proquest.com/docview/2570109028 https://www.proquest.com/docview/2636811362 |
Volume | 606 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T9xAEF4hUhAKlEAiCA8NEgVR5OD1ev0o0Ql0gKACdN1qX1aMOPvkHAUU9PxrZvxAJIquSGdZs2trZzzzjefF2IEO8ywymQiE59RU2-rApKENYp-7PLe80J5-6F9eJeOb-HwiJ0tsNNTCUFplr_s7nd5q6_7OUX-aR7OypBpf_NpS6j5D0bdwQhXscUpS_vP5Lc2DU9itS_PgAVH3hTNdjtedLalld9S18aRcw38bp7_UdGt7Tj-xtR40wnH3Xp_Zkq_W2cpomNW2zlbftRXcYC8n1a82sA-Nn9YoSlAXMGoOb8--A5WTgManoMcPg9yBeQREiZQn-4SrKl3Vv5F3Hp58UwNugJYJqB4OdOXA1rOZb8CUU4_IHajhRIPUCFodoFDPp3VTUjQfwewXdnN6cj0aB_3IhcDGIpoHWsQ2KdAHMlnmuHChkdYKvJTCRYWTZNELhAgJwjR0VFIEI55QYoyOVq7jTHxly1Vd-U0GaV7gBomLJPmgcaZlqL0T2nNuvDfJFuPDWSvb9yOnsRj3akg8u1PEH0X8UTQrM5Vb7MfbmlnXjWMhtRxYqP6QKYXmYuG6_YHfCvlIERRdEVsUjfxrM1mzBTSJSDKalBN9-8_nb7OPERVZhDzgcoctz5sHv4vQZ272WtneYx-Ozy7GV68wGASC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCAqIltcggQRCobEd53HggJZWu_RxatHejGM7IlU3WWW3Qu2BO7-HP8hMHhUgtAek3qLIj8gznvkcfzPD2EsTZqnIUxlIzymptjVBnoQ2iHzmsszywnj6oX94FI9Pok9TNV1jP4dYGKJV9ra_s-mtte7f7PSruTMvS4rxxd2WUPYZun0Lpz2zct9ffMNz2-L95CMK-ZUQe7vHo3HQlxYIbCTFMjAysnGBWD9PU8elC3NlrcRHJZ0onCLPVaArjBGOICBP0Ol6QkMRHigyE6USx73BbkZoLqhswrvvV7wSTvd8Ha-EB_R5faRORyo7tSXlCBdd3lAiN_7bG_7lF1pnt3eX3elRKnzoFuIeW_PVJtsYDcXhNtnt3_IY3mc_dquvLZMAGj-rUXehLmDUvP48eQMUvwIGZ6nPFzAoOuQXgLCUiLmX2KsyVb1AZfFw6ZsacAB0hUABeGAqB7aez30DeTnzeFQAynDRYGtEyQ5wFy1ndVMSfQDR8wN2ci2CeMjWq7ryjxgkWYEDxE4oOvRGqVGh8U4az3nufR5vMT6stbZ9AnSqw3GmB6bbqSb5aJKPpuKcidpib6_6zLv0Hytbq0GE-g8l1uifVvZ7MchboxzpysZUJBZNNQZb6my6ok0s45RK84jt_5z_OdsYHx8e6IPJ0f5jdktQhEfIA66esPVlc-6fIu5a5s9aPQf25bo31i-WNDzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+removal+of+Cr%28VI%29+from+aqueous+solution+by+stabilized+nanoscale+zero+valent+iron+and+copper+bimetal+intercalated+montmorillonite&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Wang%2C+Yin&rft.au=Gong%2C+Yishu&rft.au=Lin%2C+Naipeng&rft.au=Yu%2C+Lan&rft.date=2022-01-15&rft.issn=0021-9797&rft.volume=606&rft.spage=941&rft.epage=952&rft_id=info:doi/10.1016%2Fj.jcis.2021.08.075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2021_08_075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |