Polyphasic insights into the microbiomes of the Takamatsuzuka Tumulus and Kitora Tumulus
Microbial outbreaks and related biodeterioration problems have affected the 1300-year-old multicolor (polychrome) mural paintings of the special historic sites Takamatsuzuka Tumulus (TT) and Kitora Tumulus (KT). Those of TT are designated as a national treasure. The microbiomes of these tumuli, both...
Saved in:
Published in | Journal of general and applied microbiology Vol. 63; no. 2; pp. 63 - 113 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
01.01.2017
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial outbreaks and related biodeterioration problems have affected the 1300-year-old multicolor (polychrome) mural paintings of the special historic sites Takamatsuzuka Tumulus (TT) and Kitora Tumulus (KT). Those of TT are designated as a national treasure. The microbiomes of these tumuli, both located in Asuka village, Nara, Japan, are critically reviewed as the central subject of this report. Using culture-dependent methods (conventional isolation and cultivation), we conducted polyphasic studies of the these microbial communities and identified the major microbial colonizers (Fusarium spp., Trichoderma spp., Penicillium spp., dark Acremonium spp., novel Candida yeast spp., Bacillus spp., Ochrobactrum spp., Stenotrophomonas tumulicola, and a few actinobacterial genera) and noteworthy microbial members (Kendrickiella phycomyces, Cephalotrichum verrucisporum (≡Doratomyces verrucisporus), Sagenomella striatispora, Sagenomella griseoviridis, two novel Cladophialophora spp., Burgoa anomala, one novel species Prototheca tumulicola, five novel Gluconacetobacter spp., three novel Bordetella spp., and one novel genus and species Krasilnikoviella muralis) involved in the biodeterioration of mural paintings, plaster walls, and stone chamber interiors. In addition, we generated microbial community data from TT and KT samples using culture-independent methods (molecular biological methods, including PCR-DGGE, clone libraries, and pyrosequence analysis). These data are comprehensively presented, in contrast to those derived from culture-dependent methods. Furthermore, the microbial communities detected using both methods are analytically compared, and, as a result, the complementary roles of these methods and approaches are highlighted. In related contexts, knowledge of similar biodeterioration problems affecting other prehistoric cave paintings, mainly at Lascaux in France and Altamira in Spain, are referred to and commented upon. Based on substrate preferences (or ecological grouping) and mapping (plotting detection sites of isolates), we speculate on the possible origins and invasion routes whereby the major microbial colonizers invaded the TT stone chamber interior. Finally, concluding remarks, lessons, and future perspectives based on our microbiological surveys of these ancient tumuli, and similar treasures outside of Japan, are briefly presented. A list of the microbial taxa that have been identified and fully or briefly described by us as known and novel taxa for TT and KT isolates since 2008 is presented in Supplementary Materials. |
---|---|
AbstractList | Microbial outbreaks and related biodeterioration problems have affected the 1300-year-old multicolor (polychrome) mural paintings of the special historic sites Takamatsuzuka Tumulus (TT) and Kitora Tumulus (KT). Those of TT are designated as a national treasure. The microbiomes of these tumuli, both located in Asuka village, Nara, Japan, are critically reviewed as the central subject of this report. Using culture-dependent methods (conventional isolation and cultivation), we conducted polyphasic studies of the these microbial communities and identified the major microbial colonizers (Fusarium spp., Trichoderma spp., Penicillium spp., dark Acremonium spp., novel Candida yeast spp., Bacillus spp., Ochrobactrum spp., Stenotrophomonas tumulicola, and a few actinobacterial genera) and noteworthy microbial members (Kendrickiella phycomyces, Cephalotrichum verrucisporum (≡Doratomyces verrucisporus), Sagenomella striatispora, Sagenomella griseoviridis, two novel Cladophialophora spp., Burgoa anomala, one novel species Prototheca tumulicola, five novel Gluconacetobacter spp., three novel Bordetella spp., and one novel genus and species Krasilnikoviella muralis) involved in the biodeterioration of mural paintings, plaster walls, and stone chamber interiors. In addition, we generated microbial community data from TT and KT samples using culture-independent methods (molecular biological methods, including PCR-DGGE, clone libraries, and pyrosequence analysis). These data are comprehensively presented, in contrast to those derived from culture-dependent methods. Furthermore, the microbial communities detected using both methods are analytically compared, and, as a result, the complementary roles of these methods and approaches are highlighted. In related contexts, knowledge of similar biodeterioration problems affecting other prehistoric cave paintings, mainly at Lascaux in France and Altamira in Spain, are referred to and commented upon. Based on substrate preferences (or ecological grouping) and mapping (plotting detection sites of isolates), we speculate on the possible origins and invasion routes whereby the major microbial colonizers invaded the TT stone chamber interior. Finally, concluding remarks, lessons, and future perspectives based on our microbiological surveys of these ancient tumuli, and similar treasures outside of Japan, are briefly presented. A list of the microbial taxa that have been identified and fully or briefly described by us as known and novel taxa for TT and KT isolates since 2008 is presented in Supplementary Materials. |
Author | Sugiyama, Junta Hata-Tomita, Junko Sato, Yoshinori Nagatsuka, Yuka Handa, Yutaka Kigawa, Rika Nishijima, Miyuki An, Kwang-Deuk Kiyuna, Tomohiko Sano, Chie Tazato, Nozomi |
Author_xml | – sequence: 1 fullname: Nishijima, Miyuki organization: TechnoSuruga Laboratory Co. Ltd – sequence: 1 fullname: Kiyuna, Tomohiko organization: TechnoSuruga Laboratory Co. Ltd – sequence: 1 fullname: Hata-Tomita, Junko organization: TechnoSuruga Laboratory Co. Ltd – sequence: 1 fullname: An, Kwang-Deuk organization: TechnoSuruga Laboratory Co. Ltd – sequence: 1 fullname: Sano, Chie organization: Tokyo National Research Institute for Cultural Properties – sequence: 1 fullname: Sato, Yoshinori organization: Tokyo National Research Institute for Cultural Properties – sequence: 1 fullname: Sugiyama, Junta organization: TechnoSuruga Laboratory Co. Ltd., Chiba Branch Office – sequence: 1 fullname: Handa, Yutaka organization: TechnoSuruga Laboratory Co. Ltd – sequence: 1 fullname: Nagatsuka, Yuka organization: TechnoSuruga Laboratory Co. Ltd – sequence: 1 fullname: Kigawa, Rika organization: Tokyo National Research Institute for Cultural Properties – sequence: 1 fullname: Tazato, Nozomi organization: TechnoSuruga Laboratory Co. Ltd |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28344193$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi0EgvKxM6FIzClnO7WTESG-BBIMRWKzLonduiRxsZ2h_HpSCkViYPFZp-e5072HZLdznSbklMKYccYvFjNsxwyoHAMdA8gdMqI8K9IcuNwlIwDGUsoEHJDDEBYAXLA82ycHLOdZRgs-Iq_Prlkt5xhsldgu2Nk8huETXRLnOmlt5V1pXatD4sxXa4pv2GIM_Uf_hsm0b_umDwl2dfJgo_Pb1jHZM9gEffJdj8jLzfX06i59fLq9v7p8TKuMs5gWtDSY5aIsJuVEQsllMeGZkVLnOq9qUzIuTAEGa1bnKDQHlFUt0YhJATkDfkTON3OX3r33OkS1cL3vhpWKFiCozJjkA3X2TfVlq2u19LZFv1I_QQyA2ADDwSF4bVRlI0bruujRNoqCWieu1omrdeIKqBoSH0T4I_7M_ke52SiLEHGmtwL6aKtGbwTBFft6fsUtUM3RK93xT4DKnSI |
CitedBy_id | crossref_primary_10_1016_j_buildenv_2019_03_017 crossref_primary_10_3390_microorganisms9091836 crossref_primary_10_1016_j_myc_2017_08_008 crossref_primary_10_1111_1751_7915_13480 crossref_primary_10_3390_app12062988 crossref_primary_10_1007_s11274_022_03345_x crossref_primary_10_3390_app11198858 crossref_primary_10_1016_j_biochi_2018_12_011 crossref_primary_10_1016_j_ibiod_2022_105406 crossref_primary_10_1016_j_buildenv_2020_107073 crossref_primary_10_1134_S0026261722020072 crossref_primary_10_4236_aim_2022_129036 crossref_primary_10_3389_fmicb_2023_1220901 crossref_primary_10_1093_femsyr_foz066 crossref_primary_10_1016_j_ibiod_2022_105486 crossref_primary_10_3390_jof9080833 crossref_primary_10_3389_fmicb_2022_982933 crossref_primary_10_1016_j_jas_2022_105656 crossref_primary_10_1186_s12866_023_02887_w crossref_primary_10_1016_j_ibiod_2021_105250 |
Cites_doi | 10.1007/3-540-30985-3_14 10.1016/j.simyco.2014.09.001 10.1186/2190-4715-24-36 10.1201/b17570-1 10.1016/j.ibiod.2008.05.002 10.1201/b17570-26 10.3114/sim.2011.68.06 10.1016/S0167-7012(99)00016-0 10.1111/j.1550-7408.2012.00644.x 10.1007/S10267-010-0063-6 10.1179/2047058412Y.0000000040 10.1093/nar/25.17.3389 10.1099/ijs.0.016402-0 10.1128/JCM.00120-06 10.1099/mic.0.036160-0 10.1007/s12088-013-0414-z 10.3114/sim.2008.61.18 10.1046/j.1462-2920.2002.00303.x 10.5598/imafungus.2015.06.02.02 10.1007/s00248-010-9710-x 10.1186/1471-2164-9-449 10.1016/j.simyco.2016.07.002 10.1080/01490450050023791 10.1080/15572536.2007.11832546 10.1111/j.1574-6941.2012.01383.x 10.1016/B978-012509551-8/50030-1 10.1016/0048-9697(95)04590-W 10.1007/s11274-009-0021-7 10.1016/j.mycres.2007.03.004 10.2307/20022828 10.1007/S10267-008-0427-3 10.1126/science.1219957 10.1016/j.resmic.2008.10.001 10.1007/0-387-30747-8_3 10.1007/s00114-009-0561-6 10.1099/ijs.0.02522-0 10.1007/s10482-009-9373-0 10.1016/j.resmic.2008.10.002 10.1099/ijs.0.049312-0 10.1128/microbe.3.72.1 10.1007/S10267-012-0189-9 10.1016/B978-0-444-52149-1.00138-5 10.1007/978-3-642-30197-1_299 10.1007/s12600-015-0484-z 10.1016/0165-9936(90)87123-4 10.1021/jf0621018 10.1071/MA14062 10.1038/514170a 10.1099/00207713-47-2-590 10.1007/s00248-010-9699-1 10.1080/01490450152467769 10.1016/j.scitotenv.2008.10.045 10.3852/10-256 10.1038/ja.2010.87 10.1128/IAI.62.3.915-921.1994 10.1099/00207713-52-6-2315 10.1099/ijsem.0.000930 10.1099/ijsem.0.000473 10.1016/j.ecolind.2011.04.003 10.1016/j.mycres.2008.01.023 10.1099/ijs.0.000116 10.1007/s00114-009-0540-y 10.1099/ijsem.0.000911 10.1038/nrmicro2163 10.1007/s00248-006-9135-8 10.1016/j.funbio.2012.02.006 10.1271/bbb.63.827 10.1128/AEM.65.3.879-885.1999 10.1016/S0964-8305(00)00079-2 10.1128/microbe.3.110.2 10.1099/00207713-51-4-1305 10.1016/B978-0-444-52149-1.00163-4 10.1111/j.1574-6968.2002.tb11195.x 10.1016/0048-9697(95)04587-Q 10.3389/fmicb.2011.00104 10.1080/014904599270712 10.1099/ijsem.0.000843 10.1515/9783110339888-015 10.1128/AEM.66.2.620-626.2000 10.1007/BF02066254 10.1128/AEM.64.7.2652-2659.1998 10.1016/j.funbio.2013.02.004 10.1007/s00248-009-9549-1 10.1079/9780851986180.0000 10.2320/jinstmet.J2015033 10.1079/9780851983653.0000 10.1094/PHYTO-96-0195 10.1111/j.1574-6941.2012.01391.x 10.3767/003158515X685364 10.1139/b58-067 10.1099/00207713-52-6-1937 10.1128/IAI.00480-10 10.1073/pnas.87.12.4576 10.2323/jgam.51.235 10.1099/00207713-49-4-1681 10.3201/eid1704.101480 10.1007/978-1-4614-5206-5 10.1016/j.ijfoodmicro.2007.11.079 10.4014/jmb.1511.11008 10.1016/S0167-7012(99)00018-4 10.5038/1827-806X.38.1.6 10.1038/nature13422 10.1016/S0964-8305(97)00062-0 10.2307/3761588 10.1111/j.1574-6968.2011.02322.x 10.1016/S0964-8305(00)00103-7 10.1099/ijsem.0.001863 10.1016/j.myc.2014.08.005 10.1007/s00253-013-5283-1 10.1099/jmm.0.46976-0 10.1016/S0168-6496(03)00280-0 10.1515/9783110339888-013 10.1099/ijsem.0.000655 10.1515/9783110339888-016 10.1099/ijs.0.014142-0 10.1007/978-1-4757-0271-2_5 10.5038/1827-806X.42.1.9 10.1007/978-3-642-30197-1_396 10.1007/s11157-012-9264-0 10.1007/s11557-006-0025-8 10.1201/b17570-28 10.5038/1827-806X.39.1.2 10.1099/ijs.0.65830-0 10.1038/srep07752 10.1111/j.1365-2672.2008.04121.x 10.1179/sic.1974.013 10.1201/b17570-27 10.1016/j.myc.2016.09.005 10.1016/j.mib.2016.04.020 10.3201/eid1107.050046 10.1111/j.1365-2672.2007.03594.x 10.1099/ijsem.0.000885 10.1099/00207713-39-3-361 10.1017/S0953756205003254 10.1099/ijs.0.034595-0 10.5038/1827-806X.38.1.9 10.1128/9781555815509 10.1099/ijs.0.027631-0 10.1007/0-387-30745-1_27 10.1099/ijs.0.64638-0 10.1007/s00248-010-9731-5 10.1007/s00114-005-0060-3 10.1126/science.1206788 10.1017/CBO9780511617065 10.1099/mic.0.032508-0 10.1128/JCM.00533-07 10.1099/ijs.0.011668-0 10.1078/0031-4056-00188 10.1099/ijs.0.051292-0 10.1016/j.syapm.2008.12.003 10.1007/s00114-005-0052-3 10.1016/S0964-8305(98)00034-1 10.1099/ijs.0.63221-0 10.3114/sim.2011.70.04 10.1099/00207713-51-4-1257 10.1079/9781845938147.0320 10.1371/journal.pone.0163287 10.1021/es2040625 10.1007/s11356-013-1915-3 10.1128/JCM.42.11.5109-5120.2004 10.1016/0048-9697(95)04588-R 10.1128/JCM.43.5.2516-2519.2005 10.1080/15572536.2007.11832595 10.3852/15-255 10.1099/ijsem.0.001618 10.1016/j.fbr.2010.03.003 10.1007/0-387-30745-1_9 10.1016/B978-0-444-52149-1.00090-2 10.1038/srep01440 10.1016/B978-0-444-52149-1.00047-1 10.1007/978-0-387-68233-4 10.1080/014904599270703 10.1016/B978-0-444-52149-1.00007-0 10.1080/01490450500248986 10.1016/0964-8305(94)90066-3 |
ContentType | Journal Article |
Copyright | 2017, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Copyright Japan Science and Technology Agency 2017 |
Copyright_xml | – notice: 2017, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation – notice: Copyright Japan Science and Technology Agency 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7U7 8FD C1K FR3 M7N P64 RC3 |
DOI | 10.2323/jgam.2017.01.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1349-8037 |
EndPage | 113 |
ExternalDocumentID | 28344193 10_2323_jgam_2017_01_007 article_jgam_63_2_63_2017_01_007_article_char_en |
Genre | Journal Article Review |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- -~X .GJ 123 2WC 53G ACPRK ADBBV AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 EBS EJD F5P JSF JSH KQ8 OK1 P2P RJT RZJ TKC TR2 VH1 ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7U7 8FD C1K FR3 M7N P64 RC3 |
ID | FETCH-LOGICAL-c432t-91bfa486b95b570b379534f77e8e8cdfb236f90fad2d8a6e30a7cd7af65908203 |
ISSN | 0022-1260 |
IngestDate | Mon Jun 30 10:10:31 EDT 2025 Thu Jan 02 22:21:59 EST 2025 Thu Apr 24 23:04:33 EDT 2025 Tue Jul 01 02:29:55 EDT 2025 Wed Sep 03 06:28:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | microbial community analysis bacteria fungi biofilm cultural properties yeasts culture-independent methods culture-dependent methods |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-91bfa486b95b570b379534f77e8e8cdfb236f90fad2d8a6e30a7cd7af65908203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jgam/63/2/63_2017.01.007/_article/-char/en |
PMID | 28344193 |
PQID | 1906174273 |
PQPubID | 2029108 |
PageCount | 51 |
ParticipantIDs | proquest_journals_1906174273 pubmed_primary_28344193 crossref_citationtrail_10_2323_jgam_2017_01_007 crossref_primary_10_2323_jgam_2017_01_007 jstage_primary_article_jgam_63_2_63_2017_01_007_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of general and applied microbiology |
PublicationTitleAlternate | J. Gen. Appl. Microbiol. |
PublicationYear | 2017 |
Publisher | Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Japan Science and Technology Agency |
Publisher_xml | – name: Applied Microbiology, Molecular and Cellular Biosciences Research Foundation – name: Japan Science and Technology Agency |
References | Pinna, D. and Salvadori, O. (2008) Process of biodeterioration: General mechanisms. In Plant Biology for Cultural Heritage: Biodeterioration and Conservation, ed. by Caneva, G., Nugari, M. P., and Salvadori, O., The Getty Conservation Institute, Los Angeles, pp. 15–34. Seifert, K., Morgan-Jones, G., Gams, W., and Kendrick, B. (2011) The Genera of Hyphomycetes (CBS Biodiversity Series 9), CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, 997 pp. Laiz, L., Groth, I., Gonzalez, I., and Saiz-Jiménez, C. (1999) Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain). J. Microbiol. Methods, 36, 129–138. Vandamme, P. A., Peeters, C., Cnockaert, M., Inganäs, E., Falsen, E. et al. (2015). Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al., 2014 as Verticia sediminum gen. nov., comb. Nov. Int. J. Syst. Evol. Microbiol., 65, 3674–3682. Coye, N. (ed.) (2011) Lascaux and Preservation Issues in Subterranean Environments: Proceedings of the International Symposium Paris, February 26 and 27, 2009, Éditions de la Maison des science de l’homme, Paris, 357 pp. Woese, C. R., Kandler, O., and Wheelis, M. L. (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, 87, 4576–4579. Kaparullina, E., Doronina, N., Chistyakova, T., and Trotsenko, Y. (2009) Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst. Appl. Microbiol., 32, 157–162. Takamatsuzuka Tumulus Emergency Conservation Research Committee (1972) An interim report by Takamatsuzuka Tumulus Emergency Conservation Research Committee. In National Treasures, the Takamatsuzuka Tumulus Mural Paintings: Conservation and Repair, Agency for Cultural Affairs, Japan, pp. 19–26 (in Japanese). Fox, J. L. (2008) Some say Lascaux cave paintings are in microbial “Crisis” mode. Microbe, 3, 110–112. Frisvad, J. C. and Samson, R. A. (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium—A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud. Mycol., 49, 1–173. Suh, S. O., Nguyen, N. H., and Blackwell, M. (2005) Nine new Candida species near C. membranifaciens isolated from insects. Mycol. Res., 109, 1045–1056. Kigawa, R., Sano, C., Kiyuna, T., Tazato, N., Sugiyama, J. et al. (2011) Microorganisms in Kitora Tumulus during intermittent UV irradiation between restoration works (2010). Sci. Conserv., 50, 191–195 (in Japanese). Pore, R. S. (2011) Prototheca Krüger. In The Yeasts, A Taxonomic Study, 5th ed., ed. by Kurtzman, C. P., Fell, J. W., and Boekhout, T., Elsevier, Amsterdam, pp. 2071–2080. Sanden, G. N. and Weyant, R. S. (2005) Bordetella Moreno-Lópes 1952, 178AL. In Bergey’s Manual of Systematic Bacteriology, 2nd ed., Vol. 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), ed. by Brenner, D., J., Krieg, N. R., Staley, J. T., and Garrity, G. M., Springer, New York, pp. 662–671. Kigawa, R., Sano, C., Mabuchi, H., Kiyuna, T., Tazato, N. et al. (2009b) Biological issues in Kitora Tumulus during restoration works of the mural paintings (2008). Sci. Conserv., 48, 168–174 (in Japanese). Hughes, S. J. (1958) Revisiones hyphomycetum aliquot cum appendice de nominibus rejiciendis. Can. J. Bot., 36, 727–836. Kigawa, R., Sano, C., Kiyuna, T., Tazato, N., Sugiyama, J. et al. (2010c) New measure to control microorganisms in Kitora Tumulus: Effects of intermittent UV irradiation (2009). Sci. Conserv., 49, 253–264 (in Japanese). Kiyuna, T., An, K.-D., Kigawa, R., Sano, C., Miura, S. et al. (2008) Mycobiota of the Takamatsuzuka and Kitora Tumuli in Japan, focusing on the molecular phylogenetic diversity of Fusarium and Trichoderma. Mycoscience, 49, 298–311. Dupont, J., Jacquet, C., Dennetiere, B., Lacoste, S., Bousta, F. et al. (2007) Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia, 99, 526–533. Emoto, Y. and Emoto, Y. (1974) Microbiological investigation of ancient tombs with paintings: Ozuka tomb in Fukuoka and Chibusan tomb in Kumamoto. Sci. Conserv., 12, 95–102 (in Japanese). Shimkets, L. J., Dworkin, M., and Reichenbach, H. (2006) The Myxobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed., Vol. 7 (Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria), ed. by Dworkin, M., Falkow, E., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Springer, New York, pp. 31–115. Zengler, K. (ed.) (2008) Access in Uncultured Microorganisms: From the Environment to Organisms and Genome and Back, ASM Press, Washington, D.C., 308 pp. Agency for Cultural Affairs, Japan (ed.) (1987) National Treasures, the Takamatsuzuka Tumulus Mural Paintings: Conservation and Repair, 205 pp. (in Japanese). Badali, H., Gueidan, C., Najafzadeh, M. J., Bonifaz, A., Gerrits van den Ende, A. H. G. et al. (2008) Biodiversity of the genus Cladophialophora. Stud. Mycol., 61, 175–191. Sano, C., Hayakawa, Y., and Miura, S. (2009) Review of the scientific analysis on the painting materials of Takamatsuzuka Tumulus. Sci. Conserv., 48, 119–131. Karbowska-Berent, J. (2003) Microbiodeterioration of mural paintings: a review. In Art, Biology, and Conservation: Biodeterioration of Works of Art, ed. by Koestler, R. J., Koestler, V. H., Charola, A. E., and Nietro-Fernandez, F. E., The Metropolitan Museum of Art, New York, pp. 267–301. Kämpfer, P., Huber, B., Busse, H. J., Scholz, H. C., Tomaso, H. et al. (2011) Ochrobactrum pecoris sp. nov., isolated from farm animals. Int. J. Syst. Evol. Microbiol., 61, 2278–2283. Guglielminetti, M., Morghen, C. G., Radaelli, A., Bistoni, F., Carruba, G. et al. (1994) Mycological and ultrastructural studies to evaluate biodeterioration of mural paintings: detection of fungi and mites in frescos of the Monastery of St Damian in Assisi. Int. Biodeterior. Biodegrad., 33, 269–283. von Wintzingerode, F., Schattke, A., Siddiqui, R. A., Rösick, U., Göbel, U. B. et al. (2001) Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int. J. Syst. Evol. Microbiol., 51, 1257–1265. Arai, H., Kenjo, T., Nakasato, T., Miura, S., Mori, H. et al. (1991) Studies on the conservation of Shinto and Buddhist buildings in Nikko designated as national treasure and important cultural property. Sci. Conserv., 30, 65–128 (in Japanese). Nagatsuka, Y., Kiyuna, T., Kigawa, R., Sano, C., Miura, S. et al. (2009) Candida tumulicola sp. nov. and Candida takamatsuzukensis sp. nov., novel yeast species assignable to the Candida membranifaciens clade, isolated from the stone chamber of the Takamatsu-zuka tumulus. Int. J. Syst. Evol. Microbiol., 59, 186–194. Gorbushina, A. A. and Petersen, K. (2000) Distribution of microorganisms on ancient wall paintings as related to associated faunal elements. Int. Biodeterior. Biodegrad., 46, 277–284. Suzuki, T., Kiuchi, Y., Tanaka, H., Kimura, T., Kiuchi, M. et al. (2012) Physiological activity of microbial volatile organic compounds (MVOCs) as growth regulators in fungi. In Proceedings of Chemical and Ecological Researches on the Microorganisms for Preserving Cultural Properties in both Japan and Hungary (JSPS International Scientific Exchange: Joint Seminar between Japan and Hungary, July 7 and 8, 2012), ed. by Suzuki, T., Nara Women’s University, Nara, pp. 83–92. Fonseca, A., Boekhout, T., and Fell, J. W. (2011) Cryptococcus Vuillemin (1901). In The Yeasts, A Taxonomic Study, 5th ed., ed. by Kurtzman, C. P., Fell, J. W., and Boekhout, T., Elsevier, Amsterdam, pp. 1661–1737. Kigawa, R., Kiyuna, T., Tazato, N., Sato, Y., Sano, C. et al. (2015) Summary of the microbial surveys of the Kitora Tumulus from 2004 to 2013. Sci. Conserv., 54, 83–109 (in Japanese). Nishijima, M., Tazato, N., Handa, Y., Umekawa, N., Kigawa, R. et al. (2017a) Krasilnikoviella muralis gen. nov., sp. nov., a new member of the family Promicromonosporaceae, isolated from the Takamatsuzuka Tumulus stone chamber interior and reclassification of Promicromonospora flava as Krasilnikoviella flava comb. nov. Int. J. Syst. Evol. Microbiol. (in press); published ahead of print: 26 October, 2016; doi:10.1099/ijsem.0.001618. Sievers, M. and Swings, J. (2005) Genus VIII. Gluconacetobacter. Yamada, Hoshino, and Ishikawa 1998b, 32VP (Effective publication: Yamada, Hoshino, and Ishikawa 1997, 1249). In Bergey’s Manual of Systematic Bacteriology, 2nd ed., Vol. 2, The Proteobacteria, Part C, The Alphaproteobacteria, the Betaproteobacteria, the Deltaproteobacteria and the Epsilonproteobacteria, ed. by Brenner, D. J., Kreig, N. P., Staley, J. T., and Garrity, G. M., Springer, New York, pp. 72–77. Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S.-B., Klaassen, C. H. W. et al. (2014) Identification and nomenclature of the genus Penicillium. Stud. Mycol., 78, 343–371. Kigawa, R., Sano, C., Mabuchi, H., and Miura, S. (2007b) Investigation of biological issues in Kitora Tumulus during its restoration work (3). Sci. Conserv., 46, 227–233 (in Japanese). Zhou, J. P., Gu, Y. Q., Zou, C. S., and Mo, M. H. (2007) Phylogenetic diversity of bacteria in an Earth-cave in Guizhou Province, southwest of China. J. Microbiol., 45, 105–112. Nara National Research Institute for Cultural Properties (ed.) (2006) An Investigation of the Takamatsuzuka Tumulus: A Report of Excavation Survey in 2004 for the Purpose of the Long-term Committee for the Mural Paintings of Takamatsuzuka Tumulus, Nara National Institute for Cultural Properties, Nara, 62 pp.+16 pls. (in Japanese). Cañaveras, J. C., Sanchez-Moral, S., Soler, V., and Saiz-Jiménez, C. (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J., 18, 223–240. Lasheras, J. A., Sánchez-Moral, S., Sáiz-Jiménez, C., Cãnaveras, J. C., and de las Heras, C. (2011) The conservation of Altamira Ca 230 110 231 111 232 112 233 113 234 114 235 115 236 116 237 117 238 118 239 119 10 11 12 13 14 15 16 17 18 19 240 120 241 121 242 1 122 243 2 123 244 3 124 245 4 125 246 5 126 247 6 127 248 7 128 249 8 129 9 20 21 22 23 24 25 26 27 28 29 250 130 251 131 252 132 253 133 254 134 255 135 256 136 257 137 258 138 259 139 30 31 32 33 34 35 36 37 38 39 260 140 261 141 262 142 263 143 264 144 265 145 266 146 267 147 268 148 269 149 40 41 42 43 44 45 46 47 48 49 270 150 271 151 272 152 273 153 274 154 155 156 157 158 159 50 51 52 53 54 55 56 57 58 59 160 161 162 163 164 165 166 167 168 169 60 61 62 63 64 65 66 67 68 69 170 171 172 173 174 175 176 177 178 179 70 71 72 73 74 75 76 77 78 79 180 181 182 183 184 185 186 187 188 189 80 81 82 83 84 85 86 87 88 89 190 191 192 193 194 195 196 197 198 199 90 91 92 93 94 95 96 97 98 99 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 100 221 101 222 102 223 103 224 104 225 105 226 106 227 107 228 108 229 109 |
References_xml | – reference: von Wintzingerode, F., Schattke, A., Siddiqui, R. A., Rösick, U., Göbel, U. B. et al. (2001) Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int. J. Syst. Evol. Microbiol., 51, 1257–1265. – reference: Bastian, F., Alabouvette, C., Jurado, V., and Saiz-Jiménez, C. (2009c) Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Naturwissenschaften, 96, 863–868. – reference: Dhawan, S., Garg, K. L., and Pathak, N. (1993) Microbial analysis of Ajanta wall paintings and their possible control in situ. In Biodeterioration of Cultural Property 2 (Proceedings of the 2nd International Conference October 5–8, 1992, Yokohama, Japan), ed. by Toishi, K., Arai, H., Kenjo, T., and Yamano, K., International Communications Specialists, Tokyo, pp. 245–262. – reference: Gonzalez, J. M. and Saiz-Jiménez, C. (2005) Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments and artworks. Int. Microbiol., 8, 189–194. – reference: Samson, R. A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K. A. et al. (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol., 70, 159–183. – reference: Weiss, A. (2006) The Genus Bordetella. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd ed., Vol. 5 (Proteobacteria: Alpha and Beta Subclasses), ed. by Dworkin, M., Falkow, E., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Springer, New York, pp. 648–674. – reference: Yamada, Y., Kawasaki, H., Nagatsuka, Y., Mikata, K., and Seki, T. (1999) The phylogeny of the cactophilic yeasts based on the 18S ribosomal RNA gene sequences: the proposals of Phaffomyces antillensis and Starmera caribaea, new combinations. Biosci. Biotechnol. Biochem., 63, 827–832. – reference: Emoto, Y. and Emoto, Y. (1974) Microbiological investigation of ancient tombs with paintings: Ozuka tomb in Fukuoka and Chibusan tomb in Kumamoto. Sci. Conserv., 12, 95–102 (in Japanese). – reference: Hughes, S. J. (1958) Revisiones hyphomycetum aliquot cum appendice de nominibus rejiciendis. Can. J. Bot., 36, 727–836. – reference: Sugiyama, J., Kiyuna, T., An, K.-D., Nagatsuka, Y., Handa, Y. et al. (2009) Microbiological survey of the stone chambers of Takamatsuzuka and Kitora tumuli, Nara Prefecture, Japan: a milestone in elucidating the cause of biodeterioration of mural paintings. In International Symposium on the Conservation and Restoration of Cultural Property—Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures, ed. by Sano, C., National Research Institute for Cultural Properties, Tokyo, pp. 51–73. – reference: Kigawa, R., Mabuchi, H., Sano, C., and Miura, S. (2008b) Biological issues in Kitora Tumulus during relocation work of the mural paintings (2007). Sci. Conserv., 47, 129–133 (in Japanese). – reference: Nishijima, M., Tazato, N., Handa, Y., Tomita, J., Kigawa, R. et al. (2013) Gluconacetobacter tumulisoli sp. nov., Gluconacetobacter takamatsuzukensis sp. nov. and Gluconacetobacter aggeris sp. nov., isolated from Takamatsuzuka Tumulus samples before and during the dismantling work in 2007. Int. J. Syst. Evol. Microbiol., 63, 3981–3988. – reference: Kitada, M., Kohzuma, Y., and Tateishi, T. (2015) Microstructure of surface contaminant layer of joint stucco between stone walls of Takamtsuzuka Tumulus. J. Jpn. Inst. Met. Mater., 79, 404–412 (in Japanese). – reference: O’Donnell, K., Sarver, B., Brandt, M., Chang, D. C., Nobel-Wang, J. et al. (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J. Clin. Microbiol., 45, 2235–2248. – reference: Pore, R. S. (2011) Prototheca Krüger. In The Yeasts, A Taxonomic Study, 5th ed., ed. by Kurtzman, C. P., Fell, J. W., and Boekhout, T., Elsevier, Amsterdam, pp. 2071–2080. – reference: Orial, G., Bousta, F., François, A., Pallot-Frossard, I., and Warscheid, T. (2011) Managing biological activities in Lascaux: Identification of microorganisms, monitoring and treatments. In Lascaux and Preservation Issues in Subterranean Environments, Proceedings of the International Symposium Paris, February 26 and 27, 2009, ed. by Coye, N., Éditions de la Maison des science de l’homme, Paris, pp. 219–251. – reference: Heyrman, J. and Swings, J. (2003) Modern diagnostic techniques on isolates. Coalition, 6, 9–13. – reference: Kiyuna, T., An, K.-D., Kigawa, R., Sano, C., Miura, S. et al. (2015) “Black particles”, the major colonizers on the ceiling stone of the stone chamber interior of the Kitora Tumulus, Japan, are the bulbilliferous basidiomycete fungus Burgoa anomala. Mycoscience, 56, 293–300. – reference: Anonymous (2016) Microorganisms from ancient tombs. RIKEN Research, Fall 2016, p. 8. – reference: Gonzalez, J. M., Portillo, M. C., and Saiz-Jiménez, C. (2006) Metabolically active Crenarchaeota in Altamira Cave. Naturwissenschaften, 93, 42–45. – reference: Fry, N. K., Duncan, J., Malnick, H., Warner, M., Smith, A. J. et al. (2005). Bordetella petrii clinical isolate. Emerg. Infect. Dis., 11, 1131–1133. – reference: Saiz-Jiménez, C. (2013) Recent research on Lascaux Cave. Coalition, 24, 11–14. – reference: Hotson, J. W. (1912) Cultural studies of fungal producing bulbils and similar propagative bodies. Proc. Am. Acad. Arts Sci., 48, 227–306. – reference: Gillis, M., Kersters, K., Hoste, B., Janssens, D., Kroppenstedt, R. M. et al. (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int. J. Syst. Bacteriol., 39, 361–364. – reference: O’Brien, M., Nielsen, K. F., O’Kiely, P., Forristal, P. D., Fuller, H. T. et al. (2006) Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J. Agr. Food Chem., 54, 9268–9276. – reference: Sano, C., Mabuchi, H., and Miura, S. (2004) Control of microorganism in Takamatsuzuka Tumulus: Paraformaldehyde fumigation and its concentration in the Tumulus. Sci. Conserv., 43, 95–105 (in Japanese). – reference: Bahn, P. (2008) Killing Lascaux. Archaeology, 61, 18–19, 66–70. – reference: Sievers, M. and Swings, J. (2005) Genus VIII. Gluconacetobacter. Yamada, Hoshino, and Ishikawa 1998b, 32VP (Effective publication: Yamada, Hoshino, and Ishikawa 1997, 1249). In Bergey’s Manual of Systematic Bacteriology, 2nd ed., Vol. 2, The Proteobacteria, Part C, The Alphaproteobacteria, the Betaproteobacteria, the Deltaproteobacteria and the Epsilonproteobacteria, ed. by Brenner, D. J., Kreig, N. P., Staley, J. T., and Garrity, G. M., Springer, New York, pp. 72–77. – reference: Schabereiter-Gurtner, C., Saiz-Jiménez, J., Piñar, G., Lubitz, W., and Rölleke, S. (2002a) Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Environ. Microbiol., 4, 392–400. – reference: Kigawa, R., Sano, C., Kiyuna, T., Tazato, N., Sugiyama, J. et al. (2010c) New measure to control microorganisms in Kitora Tumulus: Effects of intermittent UV irradiation (2009). Sci. Conserv., 49, 253–264 (in Japanese). – reference: Woese, C. R., Kandler, O., and Wheelis, M. L. (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, 87, 4576–4579. – reference: Jiang, Y.-L. and Zhang, T.-Y. (2008) Two new species of Doratomyces from soil. Mycotaxon, 104, 131–134. – reference: Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L. et al. (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Rev. Microbiol., 7, 514–525. – reference: Chaverri, P. and Samuels, G. J. (2003) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud. Mycol., 48, 1–116. – reference: Guo, L., Liu, C., Zhao, J., Li, C., Guo, S. et al. (2016) Promicromonospora alba sp. nov., an actinomycete isolated from the cuticle of Camponotus japonicas Mayr. Int. J. Syst. Evol. Microbiol., 66, 1340–1345. – reference: Sanden, G. N. and Weyant, R. S. (2005) Bordetella Moreno-Lópes 1952, 178AL. In Bergey’s Manual of Systematic Bacteriology, 2nd ed., Vol. 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), ed. by Brenner, D., J., Krieg, N. R., Staley, J. T., and Garrity, G. M., Springer, New York, pp. 662–671. – reference: Lasheras, J. A., Sánchez-Moral, S., Sáiz-Jiménez, C., Cãnaveras, J. C., and de las Heras, C. (2011) The conservation of Altamira Cave: a comparative perspective. In Lascaux and Preservation Issues in Subterranean Environments, Proceedings of the International Symposium Paris, February 26 and 27, 2009, ed. by Coye, N., Éditions de la Maison des science de l’homme, Paris, pp. 169–182. – reference: Ellis, M. B. (1971) Dematiaceous Hyphomycetes, Commonwealth Mycological Institute, Kew, Surrey, U.K., 608 pp. – reference: Kigawa, R., Sano, C., Ishizaki, T., and Miura, S. (2007a) Circumstances of microorganisms in Takamatsuzuka Tumulus in 2006. Sci. Conserv., 46, 209–219 (in Japanese). – reference: Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S.-B., Klaassen, C. H. W. et al. (2014) Identification and nomenclature of the genus Penicillium. Stud. Mycol., 78, 343–371. – reference: Hawser, S. P. and Douglas, L. J. (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun., 62, 915–921. – reference: Porca, E., Jurado, V., Martin-Sanchez, P. M., Hermosin, B., Bastian, F. et al. (2011) Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves. Ecol. Indicators, 11, 1594–1598. – reference: Cañaveras, J. C., Hoyos, M., Sanchez-Moral, S., Sanz-Rubio, E., Bedoya, J. et al. (1999) Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a Karstic Cave (Altamira, Northern Spain). Geomicrobiol. J., 16, 9–25. – reference: Deacon, J. W. (1997) Modern Mycology, 3rd ed., Blackwell Science, Oxford, p. 7. – reference: Kigawa, R., Kiyuna, T., Tazato, N., Sato, Y., Sano, C. et al. (2015) Summary of the microbial surveys of the Kitora Tumulus from 2004 to 2013. Sci. Conserv., 54, 83–109 (in Japanese). – reference: Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res., 25, 3389–3402. – reference: Ellis, M. B. (1976) More Dematiaceous Hyphomycetes, Commonwealth Mycological Institute, Kew, U.K., 507 pp. – reference: Gurtner, C., Heyrman, J., Pinar, G., Lubitz, W., Swings, J. et al. (2000) Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis. Int. Biodeterior. Biodegrad., 46, 229–239. – reference: Cañaveras, J. C., Sanchez-Moral, S., Soler, V., and Saiz-Jiménez, C. (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J., 18, 223–240. – reference: Solden, L., Lloyd, K., and Wrighton, K. (2016) The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr. Opin. Microbiol., 31, 217–226. – reference: Pallot-Frossard, I., Orial, G., Bousta, F., and Mertz, J.-D. (2009) Lascaux cave (France): A difficult problem of conservation. In Lascaux and Preservation Issues in Subterranean Environments, Proceedings of the International Symposium Paris, February 26 and 27, 2009, ed. by Coye, N., Éditions de la Maison des science de l’homme, Paris, pp. 7–14. – reference: Schroers, H.-J., Samuels, G. J., Zhang, N., Short, D. P. G., Juba, J. et al. (2016) Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia, 108, 806–819. – reference: Heyrman, J., Logan, N. A., Rodríguez-Díaz, M., Scheldeman, P., Lebbe, L. et al. (2005) Study of mural painting isolates, leading to the transfer of ‘Bacillus maroccanus’ and ‘Bacillus carotarum’ to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to ‘Bacillus macroides’ and description of Bacillus muralis sp. nov. Int. J. Syst. Evol. Microbiol., 55, 119–131. – reference: Mason, E. W. (1937) Annotated account of fungi received at The Imperial Mycological Institute, List 2, fasc. 3 (general part), 68–99. – reference: Saiz-Jiménez, C. (2015) The microbiology of show caves, mines, tunnels, and tombs: implications for management and conservation. In Microbial Life of Cave Systems, ed. by Annette, S. E., Walter de Gruyter GmbH, Berlin/Boston, pp. 231–262. – reference: Laiz, L., Groth, I., Gonzalez, I., and Saiz-Jiménez, C. (1999) Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain). J. Microbiol. Methods, 36, 129–138. – reference: Nara National Research Institute for Cultural Properties (ed.) (2008) The Special Historic Site—Report on Investigation of Excavation and Research of the Kitora Tumulus, Agency for Cultural Affairs, Nara National Research Institute for Cultural Properties, Archaeological Institute of Kashihara, Nara Prefecture and Asuka Village Board of Education, Nara, 101 pp.+31 pls. (in Japanese). – reference: Martin-Sanchez, P. M., Nováková, A., Bastian, F., Alabouvette, C., and Saiz-Jiménez, C. (2012b) Two new species of the genus Ochroconis, O. lascauxencis and O. anomala isolated from black stains in Lascaux Cave, France. Fung. Biol., 116, 574–589. – reference: Guglielminetti, M., Morghen, C. G., Radaelli, A., Bistoni, F., Carruba, G. et al. (1994) Mycological and ultrastructural studies to evaluate biodeterioration of mural paintings: detection of fungi and mites in frescos of the Monastery of St Damian in Assisi. Int. Biodeterior. Biodegrad., 33, 269–283. – reference: Nagatsuka, Y., Ninomiya, S., Kiyuna, T., Kigawa, R., Sano, C. et al. (2016) Yamadazyma kitorensis f.a., sp. nov. and Zygoascus biomembranicola f.a., sp. nov., novel yeasts from the stone chamber interior of the Kitora Tumulus, and five novel combinations in Yamadazyma and Zygoascus for species of Candida. Int. J. Syst. Evol. Microbiol., 66, 1692–1704. – reference: Portillo, M. C. and Gonzalez, J. M. (2009a) Sulfate-reducing bacteria are common members of bacterial communities in Altamira Cave (Spain). Sci. Total Environ., 407, 1114–1122. – reference: Krug, J. C. (2004) Moist chambers for the development of fungi. In Biodiversity of Fungi, Inventory and Monitoring Methods, ed. by Muller, G. M., Bills, G. F., and Foster, M. S., Elsevier Academic Press, Amsterdam, pp. 589–593. – reference: Novakova, A., Jurado, V., and Saiz-Jiménez, C. (2014) Are fungi a real threat for the conservation of Altamira Cave? In The Conservation of Subterranean Cultural Heritage, ed. by Saiz-Jiménez, C., CRC Press, Leiden, pp. 223–228. – reference: Fuentes-Ramírez, L. E., Bustillos-Cristales, R., Tapia-Hernández, A., Jiménez-Salgado, T., Wang, E. T. et al. (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int. J. Syst. Evol. Microbiol., 51, 1305–1314. – reference: Sterflinger, K. (2000) Fungi as geologic agents. Geomicrobiol. J., 17, 97–124. – reference: Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F. et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycol. Res., 111, 509–547. – reference: Pinna, D. and Salvadori, O. (2008) Process of biodeterioration: General mechanisms. In Plant Biology for Cultural Heritage: Biodeterioration and Conservation, ed. by Caneva, G., Nugari, M. P., and Salvadori, O., The Getty Conservation Institute, Los Angeles, pp. 15–34. – reference: Arai, H. (1990b) Biodeterioration of Cultural Properties and Its Control, Tokyo National Research Institute of Cultural Properties, Tokyo, Tokyo, 93 pp. (in Japanese). – reference: Le Coustumier, A., Njamkepo, E., Cattoir, V., Guillot, S., and Guiso, N. (2011). Bordetella petrii infection with long-lasting persistence in human. Emer. Infect. Dis., 17, 612–618. – reference: Kaparullina, E., Doronina, N., Chistyakova, T., and Trotsenko, Y. (2009) Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst. Appl. Microbiol., 32, 157–162. – reference: Kigawa, R., Sano, C., Ishizaki, T., and Miura, S. (2006b) Concept and measures of the conservation of Takamatsuzuka Tumulus for thirty years and the present situation of biodeterioration. Sci. Conserv., 45, 33–58 (in Japanese). – reference: Sterflinger, K. (2010) Fungi: Their role in deterioration of cultural heritage. Fung. Biol. Rev., 24, 47–55. – reference: Kiyuna, T., An, K.-D., Kigawa, R., Sano, C., and Sugiyama, J. (2017) Noteworthy anamorphic fungi, Cephalotrichum verrucisporum, Sagenomella striatispora, and Sagenomella griseoviridis, isolated from samples collected while dismantling the Takamatsuzuka Tumulus stone chamber, Nara, Japan. Mycoscience (in press); dx.doi.org/10.1016/j.myc.2017.02.003. – reference: Geneste, J.-M. (2011) The major phases in the conservation of Lascaux Cave. In Lascaux and Preservation Issues in Subterranean Environments: Proceedings of the International Symposium Paris, February 26 and 27, 2009, ed. by Coye, N., Éditions de la Maison des science de l’homme, Paris, pp. 51–71. – reference: Luangsa-Ard, J. I., Houbraken, J., van Doorn, T., Hong, S. B., Borman, A. M. et al. (2011) Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol. Lett., 321, 141–149. – reference: Handa, Y., Tazato, N., Sato, Y., Kigawa, R., Sano, C. et al. (2017) Molecular phylogenetic placements of Bacillus and Ochrobactrum isolates from the Takamatsuzuka and Kitora Tumuli. Sci. Conserv., 56 (in press) (in Japanese). – reference: Kigawa, R., Sano, C., Tazato, N., Kiyuna, T., Koide, T. et al. (2007c) The effect of a biocide (Kathon CG) on bacterial and fungi isolated from biofilms on the plaster paintings of Kitora Tumulus and its direct effect on the biofilms. Sci. Conserv., 46, 39–50 (in Japanese). – reference: Kigawa, R., Sano, C., Ishizaki, T., Miura, S., and Sugiyama, J. (2009a) Biological issues in the conservation of mural paintings of Takamatsuzuka and Kitora Tumuli in Japan. In International Symposium on the Cservation and Rstoration of Cutural Poperty—Study of Enviromental Conditions Surrounding Cultural Properties and Their Protective Measures, ed. by Sano, C., National Research Institute of Cultural Properties, Tokyo, pp. 43–50. – reference: Chaverri, P. and Samuels, G. J. (2002) Hypocrea lixii, the teleomorph of Trichoderma harzianum. Mycol. Prog., 1, 283–286. – reference: Jacobs, K. and Wingfield, M. J. (2001) Leptographium Species: Tree Pathogens, Insect Associates, and Agents of Blue-stain, APS Press, St. Paul, Minnesota, 220 pp. – reference: Kigawa, R., Sano, C., Kiyuna, T., Tazato, N., and Sugiyama, J. (2010b) Use of ethanol and isopropanol as carbon sources by microorganisms isolated from Takamatsuzuka and Kitora Tumuli. Sci. Conserv., 49, 231–238 (in Japanese). – reference: Jurado, V., Fernandez-Cortes, A., Cuezva, S., Laiz, L., Canaveras, J. C. et al. (2009) The fungal colonisation of rock-art caves: experimental evidence. Naturwissenschaften, 96, 1027–1034. – reference: Cheeptham, N. (ed.) (2013) Cave Microbiomes: A Novel Resource for Drug Discovery, Springer, New York, 130 pp. – reference: Kamagata, Y. (2007) What are uncultured microbes? J. Environ. Biotechnol., 7, 69–73 (in Japanese). – reference: Greif, M. D. and Currah, R. S. (2007) Patterns in the occurrence of saprophytic fungi carried by arthropods caught in traps baited with rotted wood and dung. Mycologia, 99, 7–19. – reference: O’Donnell, K., Sutton, D. A., Rinaldi, M. G., Magnon, K. C., Cox, P. A. et al. (2004) Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: Evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J. Clin. Microbiol., 42, 5109–5120. – reference: Hoffmann, A., Thimm, T., Dröge, M., Moore, E. R. B., Munch, J. C. et al. (1998) Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl. Environ. Microbiol., 64, 2652–2659. – reference: Cuezva, S., Jurado, V., Fernandez-Cortes, A., Garcia-Anton, E., Rogerio-Candelera, M. A. et al. (2015) Scientific data suggest Altamira cave should remain closed. In Microbial Life of Cave Systems, ed. by Annette, S. E., Walter de Gruyter GmbH, Berlin/Boston, pp. 303–320. – reference: Nett, J. E., Marchillo, K., Spiegel, C. A., and Andes, D. R. (2010) Development and validation of an in vivo Candida albicans biofilm denture model. Infect. Immun., 78, 3650–3659. – reference: Portillo, M. C. and Gonzalez, J. M. (2011) Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain). Microbial Ecol., 61, 182–189. – reference: Nishijima, M., Tazato, N., Handa, Y., Umekawa, N., Kigawa, R. et al. (2017b) Microbacterium tumbae sp. nov., an actinobacterium isolated from the stone chamber of ancient tumulus. Int. J. Syst. Evol. Microbiol. (accepted). – reference: Kusumi, A., Li, X. S., and Katayama, Y. (2011) Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front. Microbiol., 2:104 PMID 21747806. – reference: Tazato, N., Nishijima, M., Handa, Y., Kigawa, R., Sano, C. et al. (2012) Gluconacetobacter tumulicola sp. nov. and Gluconacetobacter asukensis sp. nov., isolated from the stone chamber interior of the Kitora Tumulus, Nara, Japan. Int. J. Syst. Evol. Microbiol., 62, 2032–2038. – reference: Logan, N. A. and De Vos, P. (2009) Genus I. Bacillus Cohn 1872, 174AL. In Bergey’s Manual of Systematic Bacteriology. Volume 3: The Firmicutes, ed. by Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W. et al., Springer, New York, pp. 21–128. – reference: Agency for Cultural Affairs, Japan (ed.) (1987) National Treasures, the Takamatsuzuka Tumulus Mural Paintings: Conservation and Repair, 205 pp. (in Japanese). – reference: Martin-Sanchez, P. M. and Saiz-Jiménez, C. (2014) Contribution of culture-independent methods to cave aerobiology: the case of Lascaux Cave. In The Conservation of Subterranean Cultural Heritage, ed. by Saiz-Jiménez, C., Taylor & Francis Group, London, pp. 215–222. – reference: Riesenman, P. J. and Nicholson, W. L. (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl. Environ. Microbiol., 66, 620–626. – reference: Groth, I., Vettermann, R., Schuetze, B., Schumann, P., and Saiz-Jiménez, C. (1999) Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo). J. Microbiol. Methods, 36, 115–122. – reference: Sandoval-Denis, M., Guarro, J., Cano-Lira, J. F., Sutton, D. A., Wiederhold, N. P. et al. (2016) Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Stud. Mycol., 83, 193–233. – reference: Shimkets, L. J., Dworkin, M., and Reichenbach, H. (2006) The Myxobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed., Vol. 7 (Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria), ed. by Dworkin, M., Falkow, E., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Springer, New York, pp. 31–115. – reference: Summerbell, R. C., Guidan, C., Schroers, H. J., de Hoog, G. S., Starink, M. et al. (2011) Acremonium phylogenetic overwiew and revision of Gliomastix, Sarocladium, and Trichothecium. Stud. Mycol., 68, 139–162. – reference: Huber, B., Scholz, H. C., Kämpfer, P., Falsen, E., and Langer, S. et al. (2010) Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. Int. J. Syst. Evol. Microbiol., 60, 321–326. – reference: Dutta, D. and Gachhui, R. (2007). Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int. J. Syst. Evol. Microbiol., 57, 353–357. – reference: Kiyuna, T., An, K.-D., Kigawa, R., Sano, C., Miura, S. et al. (2011) Molecular assessment of fungi in “black spots” that deface murals in the Takamatsuzuka and Kitora Tumuli in Japan: Acremonium sect. Gliomastix including Acremonium tumulicola sp. nov. and Acremonium felinum comb. nov. Mycoscience, 52, 1–17. – reference: Roebroeks, W. (2014) Art on the move. Nature, 514, 170–171. – reference: Dupont, J., Jacquet, C., Dennetiere, B., Lacoste, S., Bousta, F. et al. (2007) Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia, 99, 526–533. – reference: Kurtzman, C. P., Fell, J. W., Boekhout, T., and Robert, V. (2011) Methods for the isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts, A Taxonomic Study, 5th ed., ed. by Kurtzman, C. P., Fell, J. W., and Boekhout, T., Elsevier, Amsterdam, pp. 87–110. – reference: Yamada, Y., Yukphan, P., Thi Lan Vu, H., Muramatsu, Y., Ochaikul, D. et al. (2013) Komagataeibacter gen. nov. In List of New Names and New Combinations Previously Effectively, But Not Validly, published, Validation list No. 149. Int. J. Syst. Evol. Microbiol., 63, 1–5. – reference: Diakumaku, E., Gorbushina, A. A., Krumbein, W. E., Panina, L., and Soukharjevski, S. (1995) Black fungi in marble and limestones: an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ., 167, 295–304. – reference: Kigawa, R., Sato, Y., Kiyuna, T., Tazato, N., Sugiyama, J. et al. (2012b) Microorganisms in Kitora Tumulus during intermittent UV irradiation (2011). Sci. Conserv., 51, 167–171 (in Japanese). – reference: Kiyuna, T., An, K.-D., Kigawa, R., Sano, C., Miura, S. et al. (2012) Bristle-like fungal colonizers on the stone walls of the Kitora and Takamatsuzuka Tumuli are identified as Kendrickiella phycomyces. Mycoscience, 53, 446–459. – reference: Zengler, K. (ed.) (2008) Access in Uncultured Microorganisms: From the Environment to Organisms and Genome and Back, ASM Press, Washington, D.C., 308 pp. – reference: Li, X. M., Sato, T., Ooiwa, Y., Kusumi, A., Gu, J.-D. et al. (2010) Oxidation of elemental sulfur by Fusarium solani strain THIF01 harboring endobacterium Bradyrhizobium sp. Microbial Ecol., 60, 96–104. – reference: Arai, H. (1990a) The environmental analysis of archaeological sites. Trends Analyt. Chem., 9, 213–216. – reference: Gonzalez, J. M., Portillo, M. C., and Saiz-Jiménez, C. (2008a) Bacterial diversity in the cave of Altamira. Coalition, 15, 2–6; <www.rtphc.csic.es/boletin.htm>. – reference: Coye, N. (ed.) (2011) Lascaux and Preservation Issues in Subterranean Environments: Proceedings of the International Symposium Paris, February 26 and 27, 2009, Éditions de la Maison des science de l’homme, Paris, 357 pp. – reference: Fonseca, A., Boekhout, T., and Fell, J. W. (2011) Cryptococcus Vuillemin (1901). In The Yeasts, A Taxonomic Study, 5th ed., ed. by Kurtzman, C. P., Fell, J. W., and Boekhout, T., Elsevier, Amsterdam, pp. 1661–1737. – reference: Sano, C., Nishijima, M., Kiyuna, T., Kigawa, R., and Sugiyama, J. (2010) Carboxylic acids productivity of major microorganisms isolated from the stone chamber interior of Takamatsuzuka Tumulus and Kitora Tumulus, Nara Prefecture, Japan. Sci. Conserv., 49, 209–219 (in Japanese). – reference: O’Donnell, K., Ward, T. J., Robert, V. A. R. G., Crous, P. W., Geiser, D. M. et al. (2015) DNA sequence-based identification of Fusarium: Current status and future directions. Phytoparasitica, 43, 583–595. – reference: Kigawa, R., Sano, C., Kiyuna, T., Tazato, N., Sugiyama, J. et al. (2011) Microorganisms in Kitora Tumulus during intermittent UV irradiation between restoration works (2010). Sci. Conserv., 50, 191–195 (in Japanese). – reference: Kigawa, R., Sano, C., Mabuchi, H., Kiyuna, T., Tazato, N. et al. (2009b) Biological issues in Kitora Tumulus during restoration works of the mural paintings (2008). Sci. Conserv., 48, 168–174 (in Japanese). – reference: Kigawa, R., Sano, C., Mabuchi, H., and Miura, S. (2007b) Investigation of biological issues in Kitora Tumulus during its restoration work (3). Sci. Conserv., 46, 227–233 (in Japanese). – reference: Palleroni, N. (2005) Genus IX. Stenotrophomonas Palleroni and Bradbury 1993, 608VP*. In Bergey’s Manual of Systematic Bacteriology. Vol. 2. The Proteobacteria, Part B, The Gamma-proteobacteria, ed. by Garrity, G., Brenner, D. J., Krieg, N. R., and Staley, J. R., Springer, New York, pp. 107–115. – reference: Portillo, M. C., Gonzalez, J. M., and Saiz-Jiménez, C. (2008) Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. J. Appl. Microbiol., 104, 681–691. – reference: Diaz-Herraiz, M., Jurado, V., Cuezva, S., Laiz, L., and Pallecchi, P. et al. (2013) The Actinobacterial colonization of Etruscan paintings. Scientific Reports, 3, 1440; doi:10.1038/srep01440. – reference: Laiz, L., Gonzalez, J. M., and Saiz-Jiménez, C. (2003) Microbial communities in caves: Ecology, physiology, and effects on paleolithic paintings. In Art, Biology, and Conservation: Biodeterioration of Works of Art, ed. by Koestler, R. J., Koestler, V. H., Charola, A. E., and Nietro-Fernandez, F. E., The Metropolitan Museum of Art, New York, pp. 210–215. – reference: Handa, Y., Tazato, N., Nagatsuka, Y., Koide, T., Kigawa, R. et al. (2016) Stenotrophomonas tumulicola sp. nov., a major contaminant of the stone chamber interior in the Takamatsuzuka Tumulus. Int. J. Syst. Evol. Microbiol., 66, 1119–1124. – reference: Kim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B. et al. (2016) Calcium carbonate precipitation by Bacillus and Sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. J. Microbiol. Biotechnol., 26, 540–548. – reference: Suzuki, T., Kiuchi, Y., Tanaka, H., Kimura, T., Kiuchi, M. et al. (2012) Physiological activity of microbial volatile organic compounds (MVOCs) as growth regulators in fungi. In Proceedings of Chemical and Ecological Researches on the Microorganisms for Preserving Cultural Properties in both Japan and Hungary (JSPS International Scientific Exchange: Joint Seminar between Japan and Hungary, July 7 and 8, 2012), ed. by Suzuki, T., Nara Women’s University, Nara, pp. 83–92. – reference: Gonzalez, J. M., Portillo, M. C., and Saiz-Jiménez, C. (2008b) Microbes pose a risk to prehistoric cave paintings. Microbe, 3, 72–77. – reference: Sano, C., Mabuchi, H., and Miura, S. (2005) Atmospheric composition and air pollutants in Kitora Tumulus before excavation. Sci. Conserv., 44, 157–164 (in Japanese). – reference: Nagatsuka, Y., Kawasaki, H., Mikata, K., and Seki, T. (2005) Candida khmerensis sp. nov., a novel cation-tolerant yeast isolated from dry salted shrimp and sewage in Cambodia. J. Gen. Appl. Microbiol., 51, 235–243. – reference: Nagatsuka, Y., Kiyuna, T., Kigawa, R., Sano, C., and Sugiyama, J. (2017) Prototheca tumulicola sp. nov., a novel achlorophyllous algal species isolated from the stone chamber interior of the Takamatsuzuka Tumulus. Mycoscience, 58, 53–59. – reference: Portillo, M. C. and Gonzalez, J. M. (2009b) Comparing bacterial community fingerprints from white colonizations in Altamira Cave (Spain). World J. Microbiol. Biotechnol., 25, 1347–1352. – reference: Ganter, P. F. (2006) Yeast and invertebrate associations. In Biodiversity and Ecophysiology of Yeasts, ed. by Rosa, C. A. and Gábor, P., Springer, Heidelberg, pp. 303–370. – reference: Sato, Y., Kigawa, R., Kiyuna, T., Tazato, T., Nishijima, M. et al. (2015) Pyrosequence analysis for the microbial community in the Kitora Tumulus under intermittent UV irradiation. Sci. Conserv., 54, 111–120 (in Japanese). – reference: Gorbushina, A. A. and Petersen, K. (2000) Distribution of microorganisms on ancient wall paintings as related to associated faunal elements. Int. Biodeterior. Biodegrad., 46, 277–284. – reference: Mohri, M. (2007) Takamatsuzuka-Kofun wa Mamoreruka? Hozon-Kagaku no Chosen [‘Can Keep The Takamatsuzuka Tumulus? The Challenge from Science in Conservation’], NHK Books 1082, Japan Broadcasting Corporation, Tokyo, 251 pp. – reference: Engle, A. S. (ed.) (2015) Microbial Life of Cave Systems, De Gruyter, Berlin/Boston, 335 pp. – reference: Tazato, N., Handa, Y., Nishijima, M., Kigawa, R., Sano, C. et al. (2015) Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov. Int. J. Syst. Evol. Microbiol., 65, 4830–4838. – reference: Stackebrandt, E. and Embley, T. M. (2000) Diversity of uncultured microorganisms in the environment. In Nonculturable Microorganisms in the Environment, ed. by Colwell, R. R. and Grimes, D. J., ASM Press, Washington, D.C., pp. 57–75. – reference: Giraldo, A., Gené, J., Sutton, D. A., Madrid, H., de Hoog, G. S. et al. (2015). Phylogeny of Sarocladium (Hypocreales). Persoonia, 34, 10–24. – reference: Pike, A. W. G., Hoffmann, D. L., García-Diez, M., Pettitt, P. B., Alcolea, J. et al. (2012) U-series dating of paleolithic art in 11 caves in Spain. Science, 336, 1409–1413. – reference: Bissett, J., Gams, W., Jaklitsch, W., and Samuels, G. J. (2015) Accepted Trichoderma names in the year 2015. IMA Fungus, 6, 263–295. – reference: Nugari, M. P., Realini, M., and Roccardi, A. (1993) Contamination of mural paintings by indoor airborne fungal spores. Aerobiologia, 9, 131–139. – reference: Pedraza, R. O. (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int. J. Food Microbiol., 125, 25–35. – reference: Schabereiter-Gurtner, C., Pinar, G., Lubitz, W., Rolleke, S., and Saiz-Jiménez, C. (2003) Acidobacteria in Paleolithic painting cave. In Molecular Biology and Cultural Heritage, ed. by Saiz-Jiménez, C., A.A. Balkema Publishers, Lisse, The Netherlands, pp. 15–21. – reference: Sterflinger, K. and Piñar, G. (2013) Microbial deterioration of cultural heritage and works of art—tilting at windmills? Appl. Microbiol. Biotechnol., 97, 9637–9646. – reference: Nishijima, M., Tazato, N., Handa, Y., Umekawa, N., Kigawa, R. et al. (2017a) Krasilnikoviella muralis gen. nov., sp. nov., a new member of the family Promicromonosporaceae, isolated from the Takamatsuzuka Tumulus stone chamber interior and reclassification of Promicromonospora flava as Krasilnikoviella flava comb. nov. Int. J. Syst. Evol. Microbiol. (in press); published ahead of print: 26 October, 2016; doi:10.1099/ijsem.0.001618. – reference: Martin-Sanchez, P. M., Miller, A. Z., and Saiz-Jiménez, C. (2015) Lascaux Cave: An example of fragile ecological balance in subterranean environments. In Microbial Life in Cave Systems, ed. by Engel, A. S., De Gruyter, Berlin/Boston, pp. 279–301. – reference: Schumann, P. and Stackebrandt, E. (2012) Genus I. Promicromonospora Krasil’nikov, Kalakoutskii and Kirillova 1961, 107AL. In Bergey’s Manual of Systematic Bacteriology, Vol. 5, Part B, ed. by Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M. E., Suzuki, K. et al., Springer, New York, pp. 995–1002. – reference: Ellis, M. B. (1997) Microfungi on Land Plants: An Identification Handbook, New Enlarged edition, The Richmond Publishing Co., Slough, 868 pp. – reference: Caneva, G., Nugari, M. P., and Salvadori, O. (eds.) (2008) Plant Biology for Cultural Heritage: Biodeterioration and Conservation, The Getty Conservation Institute, Los Angeles, 408 pp. – reference: Woodward, G., Gray, C., and Baird, D. J. (2013) Biomonitering for the 21st Century: new perspectives in an age of globalisation and emerging environmental threats. Limnetica, 32, 159–174. – reference: Gams, W., van der Aa, H. A., van der Plaats-Niterink, A. J., Samson, S. A., and Stalpers, J. A. (1987) CBS Course of Mycology, 3rd ed., Centraalbureau voor Schimmelcultures, Baarn, 136 pp. – reference: Kersters, K., Lisdiyanti, P., Komagata, K., and Swings, J. (2006) The family Acetobacteraceae: The genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In Prokaryotes, A Handbook on the Biology of Bacteria, 3rd ed., ed. by Dworkin, M. et al., Springer, New York, pp. 163–200. – reference: Mabuchi, H. and Sano, C. (2007) Investigation for evaluation of dynamic indoor environment in terms of airborne mold measurement—A model case at the conservation facility of Kitora Tumulus. Sci. Conserv., 46, 27–37 (in Japanese). – reference: Karbowska-Berent, J. (2003) Microbiodeterioration of mural paintings: a review. In Art, Biology, and Conservation: Biodeterioration of Works of Art, ed. by Koestler, R. J., Koestler, V. H., Charola, A. E., and Nietro-Fernandez, F. E., The Metropolitan Museum of Art, New York, pp. 267–301. – reference: Cañaveras, J. C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L. et al. (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 93, 27–32. – reference: Kigawa, R., Sano, C., Takatori, K., Kiyuna, T., Sugiyama, J. et al. (2010a) Fungal growth tests of materials used in Takamatsuzuka Tumulus and for protective facing of the mural paintings in the recent relocation. Sci. Conserv., 49, 61–71 (in Japanese). – reference: Jurado, V., Laiz, L., Rodriguez-Nava, V., Boiron, P., Hermosin, H. et al. (2010) Pathogenic and opportunistic microorganisms in caves. Int. J. Speleol., 39, 15–24. – reference: Lefevre, M. (1974) La ‘Maladie Vérte’ de Lascaux. Stud. Conserv., 19, 126–156. – reference: Kirk, P. M., Cannon, P. F., Minter, D. W., and Stalpers, J. A. (2008) Dictionary of the Fungi, 10th ed., CAB International, Wallingford, 771 pp. – reference: Lachance, M. A., Boekhout, T., Scorzetti, G., Fell, J. W., and Kurtzman, C. P. (2011) Candida Berkhout. In The Yeasts, A Taxonomic Study, 5th ed., ed. by Kurtzman, C. P., Fell, J. W., and Boekhout, T., Elsevier, Amsterdam, pp. 987–1278. – reference: Bastian, F., Alabouvette, C., and Saiz-Jiménez, C. (2009b) The impact of arthropods on fungal community structure in Lascaux cave. J. Appl. Microbiol., 106, 1456–1462. – reference: Ciferri, O. (1999) Microbial degradation of paintings. Appl. Environ. Microbiol., 65, 879–885. – reference: Dakal, T. C. and Arora, P. K. (2012) Evaluation of potential of molecular and physical techniques in studying biodeterioration. Rev. Environ. Sci. Bio/Technol., 11, 71–104. – reference: Wolf, A., Fritze, A., Hagemann, M., and Berg, G. (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int. J. Syst. Evol. Microbiol., 52, 1937–1944. – reference: Gams, W. (1971) Cephalosporium-artige Schimmelpilze (Hyphomycetes), Gustav Fischer Verlag, Stuttgart, 262 pp. – reference: Arai, H. (1987) Microbiological environments and the counterplan for the Takamatsuzuka Tumulus mural paintings. In National Treasures, the Takamatsuzuka Tumulus Mural Paintings: Conservation and Repair, The Agency for Cultural Affairs, Japan, pp. 186–196 (in Japanese). – reference: Jurado, V., Laiz, L., Sanchez-Moral, S., and Saiz-Jiménez, C. (2014) Pathogenic microorganisms related to human visits in Altamira Cave, Spain. In The Conservation of Subterranean Culture Heritage, ed. by Saiz-Jiménez, C., Taylor & Francis Group, London, pp. 229–238. – reference: Lewis, K., Epstein, S., D’Onofrio, A., and Ling, L. I. (2010) Uncultured microorganisms as a source of secondary metabolites. J. Antibiot., 63, 468–476. – reference: O’Donnell, K. (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia, 92, 919–938. – reference: Schabereiter-Gurtner, C., Saiz-Jiménez, C., Pinar, G., Lubitz, W., and Rolleke, S. (2002b) Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiol. Lett., 211, 7–11. – reference: Suh, S. O., Nguyen, N. H., and Blackwell, M. (2005) Nine new Candida species near C. membranifaciens isolated from insects. Mycol. Res., 109, 1045–1056. – reference: Nieto-Fernández, F. E., Centeno, S. A., Wypyski, M. T., Di Bonaventura, M. P., Baldwin, A. M. et al. (2003) Enzymatic approach to removal of fungal spots from drawings on paper. In Art, Biology, and Conservation: Biodeterioration of Works of Art, ed. by Koestler, R. J., Koestler, V. H., Charola, A. E., and Nietro-Fernandez, F. E., The Metropolitan Museum of Art, New York, pp. 111–127. – reference: Satoh, K., Ooe, K., Nagayama, H., and Makimura, K. (2010) Prototheca cutis sp. nov., a newly discovered pathogen of protothecosis isolated from inflamed human skin. Int. J. Syst. Evol. Microbiol., 66, 1692–1704. – reference: Vandamme, P. A., Peeters, C., Cnockaert, M., Inganäs, E., Falsen, E. et al. (2015). Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al., 2014 as Verticia sediminum gen. nov., comb. Nov. Int. J. Syst. Evol. Microbiol., 65, 3674–3682. – reference: Franke, I. H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E. et al. (1999) Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int. J. Syst. Bacteriol., 49, 1681–1693. – reference: Kigawa, R., Sano, C., Kiyuna, T., Tazato, N., Sugiyama, J. et al. (2012a) Microbial growth tests with consolidations of mural paintings: A case study of bacterial and yeast strains isolated from Kitora Tumulus. Sci. Conserv., 51, 157–166 (in Japanese). – reference: Groth, I. and Saiz-Jiménez, C. (1999) Actinomycetes in hypogean environments. Geomicrobiol. J., 16, 1–8. – reference: Peng, S., Dongying, L., Bingxin, Y., Mingjun, L., and Gehong, W. (2015) Microbacterium shaanxiense sp. nov., isolated from the nodule surface of soybean. Int. J. Syst. Evol. Microbiol., 65, 1437–1443. – reference: Samuels, G. J. (2006) Trichoderma: Systematics, the sexual states, and ecology. Phytopathology, 96, 195–206. – reference: Kigawa, R., Sano, C., and Miura, S. (2004) Past and present situation of microorganisms in Takamatsuzuka Tumulus. Sci. Conserv., 43, 79–85 (in Japanese). – reference: Cuezva, S., Sanchez-Moral, S., Saiz-Jiménez, C., and Cañaveras, J. C. (2009) Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int. J. Speleol., 38, 83–92. – reference: Badali, H., Gueidan, C., Najafzadeh, M. J., Bonifaz, A., Gerrits van den Ende, A. H. G. et al. (2008) Biodiversity of the genus Cladophialophora. Stud. Mycol., 61, 175–191. – reference: Bastian, F. and Alabouvette, C. (2009) Lights and shadows on the conservation of a rock art cave: The case of Lascaux Cave. Int. J. Speleol., 38, 55–60. – reference: Stark, D., Riley, L. A., Harkness, J., and Marriott, D. (2007) Bordetella petrii from a clinical sample in Australia: isolation and molecular identification. J. Med. Microbiol., 56, 435–437. – reference: Kurtzman, C. P. (2011) Meyerozyma Kurtzman & M. Suzuki (2010). In The Yeasts, A Taxonomic Study, 5th ed., ed. by Kurtzman, C. P., Fell, J. W., and Boekhout, T., Elsevier, Amsterdam, pp. 621–624. – reference: Inuzuka, M. and Ishizaki, T. (2007) Environmental measurement for dismantling the stone chamber of Takamatsuzuka Tumulus. Sci. Conserv., 46, 221–226 (in Japanese). – reference: Kigawa, R., Sano, C., Nishijima, M., Tazato, N., Kiyuna, T. et al. (2013a) Investigation of acetic acid bacteria isolated from the Kitora Tumulus in Japan and their involvement in the deterioration of the plaster of the mural paintings. Stud. Conserv., 58, 30–40. – reference: Bastian, F., Alabouvette, C., and Saiz-Jiménez, C. (2009a) Bacteria and free-living amoeba in the Lascaux Cave. Res. Microbiol., 160, 38–40. – reference: Emoto, Y., Kadokura, T., Kenjo, T., and Arai, H. (1983) Surveys related to the preservation of murals in Torazuka ancient burial mound. Sci. Conserv., 22, 121–146 (in Japanese). – reference: Pinzari, F., Montanari, M., Michaelsen, A., and Piñar, G. (2010) Analytical protocols for the assessment of biological damage in historical documents. Coalition, 19, 6–13. – reference: Goidànich, G. (1937) Studi sulla microflora fungina della pasta di legno destinata alla fabbricazione della carta. Bolletino della Stazione di Patologia vegetale Roma, 17, 305–399. – reference: Ikner, L. A., Toomey, R. S., Nolan, G., Neilson, J. W., Pryor, B. M. et al. (2007) Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microbial Ecol., 53, 30–42. – reference: Kämpfer, P., Wohlgemuth, S., and Scholz, H. (2014). The Family Brucellaceae. In The Prokaryotes—Alphaproteobacteria and Betaproteobacteria, 4th ed., ed. by Rosenberg, E. et al., Springer, Berlin/Heidelberg, pp. 155–178. – reference: Li, Q., Zhang, B., He, Z., and Yang, X. (2016) Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS ONE, 11, e0163287. – reference: Allsopp, D., Seal, K., and Gaylarde, C. (2004) Introduction to Biodeterioration, 2nd ed., Cambridge University Press, U.K., 237 pp. – reference: Macedo, M. F., Miller, A. Z., Dionísio, A., and Saiz-Jiménez, C. (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology, 155, 3476–3490. – reference: Seifert, K., Morgan-Jones, G., Gams, W., and Kendrick, B. (2011) The Genera of Hyphomycetes (CBS Biodiversity Series 9), CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, 997 pp. – reference: Bastian, F., Jurado, V., Nováková, A., Alabouvette, C., and Saiz-Jiménez, C. (2010) The microbiology of Lascaux Cave. Microbiology, 156, 644–652. – reference: Aubert, M., Brumm, A., Ramli, M., Sutikna, T., Saptomo, E. W. et al. (2014) Pleistocene cave art from Sulawesi, Indonesia. Nature, 514, 223–227. – reference: Saiz-Jiménez, C. (ed.) (2003) Molecular Biology and Cultural Heritage (Proceedings of the International Congress on Molecular Biology and Cultural Heritage, 4–7 March 2003, Sevilla, Spain), A.A. Balkema Publishers, Lisse, The Netherlands, 287 pp. – reference: Weyant, R. S., Moss, C. W., Weaver, R. E., Hollis, D. G., Jordan, J. G. et al. (1996) Identification of Unusual Pathogenic Gram-negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., Baltimore: Williams & Wilkins, Baltimore, 727 pp. – reference: Mamlouk, D. and Gullo, M. (2013) Acetic acid bacteria: Physiology and carbon sources oxidation. Indian J. Microbiol., 53, 377–384. – reference: Porca, E., Jurado, V., Zgur-Bertok, D., Saiz-Jiménez, C., and Pasic, L. (2012) Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation. FEMS Microbiol. Ecol., 81, 255–266. – reference: Zhang, N., O’Donnell, K., Sutton, D. A., Nalim, F. A., Summerbell, R. C. et al. (2006) Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J. Clin. Microbiol., 44, 2186–2190. – reference: Dromph, K. M. (2003) Collembolans as vectors of entomopathogenic fungi. Pedobiologia, 47, 245–256. – reference: Orial, G. and Mertz, J.-D. (2006) Étude et suivi des phénomènes microbiologiques. Monumental-Dossier Les grottes ornées-2006 Semestriel, 2, 76–87. – reference: Berner, M., Wanner, G., and Lubitz, W. (1997) A comparative study of the fungal flora present in medieval wall paintings in the chapel of the castle Herberstein and in the parish church of St Georgen in Styria, Austria. Int. Biodeterior. Biodegrad., 40, 53–61. – reference: Saiz-Jiménez, C., Cuezva, S., Jurado, V., Fernandez-Cortes, A., Porca, E. et al. (2011) Paleolithic art in peril: Policy and science collide at Altamira Cave. Science, 334, 42–43. – reference: Jurado, V., Sanchez-Moral, S., and Saiz-Jiménez, C. (2008) Entomogenous fungi and the conservation of the cultural heritage: A review. Int. Biodeterior. Biodegrad., 62, 325–330. – reference: Martin-Sanchez, P. M., Nováková, A., Bastian, F., Alabouvette, C., and Saiz-Jiménez, C. (2012a) Use of biocides for the control of fungal outbreaks in subterranean environments: The case of the Lascaux cave in France. Environ. Sci. Technol., 46, 3762–3770. – reference: Urzì, C., Leo, F. D., Bruno, L., and Albertano, P. (2010) Microbial diversity in paleolithic caves: A study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb. Ecol., 60, 116–129. – reference: Vanderwolf, K. J., Malloch, D., McAlpine, D. F., and Forbes, G. J. (2013) A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol., 42, 77–96. – reference: Kigawa, R., Sano, C., Mabuchi, H., and Miura, S. (2005) Investigation of moulds in Kitora Tumulus during its excavation and restoration works. Sci. Conserv., 44, 165–171 (in Japanese). – reference: Arai, H. (1984) Microbiological studies on the conservation of mural paintings in tumuli. In Conservation and Restoration of Mural Paintings (1) (Proceedings of the International Symposium on the Conservation and Restoration of Cultural Properties, November 17–21, 1983, Tokyo, Japan), ed. by Ito, N., Emoto, Y., and Miura, S., Tokyo National Institute of Cultural Properties, Tokyo, Tokyo, pp. 117–124. – reference: Euzéby, J. P. (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol., 47, 590–592; List of Prokaryotic names with Standing in Nomenclature <http://www.bacterio.net>. – reference: Schabereiter-Gurtner, C., Saiz-Jiménez, J., Piñar, G., Lubitz, W., and Rölleke, S. (2004) Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiol. Ecol., 47, 235–247. – reference: Zhou, J. P., Gu, Y. Q., Zou, C. S., and Mo, M. H. (2007) Phylogenetic diversity of bacteria in an Earth-cave in Guizhou Province, southwest of China. J. Microbiol., 45, 105–112. – reference: Adetutu, E. M., Thorpe, K., Bourne, S., Cao, X., Shahsavari, E. et al. (2011) Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia, 103, 959–968. – reference: Lee, N. M., Meisinger, D. B., Aubrecht, R. et al. (2012) Caves and karst environments. In Life at Extremes: Environments, Organisms and Strategies for Survival, ed. by Bell, E. M. et al., CAB International, Wallingford, pp. 320–344. – reference: Nara National Research Institute for Cultural Properties (ed.) (2006) An Investigation of the Takamatsuzuka Tumulus: A Report of Excavation Survey in 2004 for the Purpose of the Long-term Committee for the Mural Paintings of Takamatsuzuka Tumulus, Nara National Institute for Cultural Properties, Nara, 62 pp.+16 pls. (in Japanese). – reference: Masuda, M., Hirose, N., Ishikawa, T., Ikawa, Y., and Nishimura, K. (2016) Prototheca miyajii sp. nov., isolated from a patient with systemic protothecosis. Int. J. Syst. Evol. Microbiol., 66, 1510–1520. – reference: Kigawa, R., Mabuchi, H., Sano, C., and Miura, S. (2006a) Investigation of biological issues in Kitora Tumulus during its restoration work (2). Sci. Conserv., 45, 93–105 (in Japanese). – reference: Ishizaki, T. and Kigawa, R. (2011) Conservation of mural paintings of Takamatsuzuka and Kitora Tumuli in Japan. In Lascaux and Preservation Issues in Subterranean Environments, Proceedings of the International Symposium Paris, February 26 and 27, 2009, ed. by Coye, N., Éditions de la Maison des science de l’homme, Paris, pp. 261–274. – reference: Nagatsuka, Y., Kiyuna, T., Kigawa, R., Sano, C., Miura, S. et al. (2009) Candida tumulicola sp. nov. and Candida takamatsuzukensis sp. nov., novel yeast species assignable to the Candida membranifaciens clade, isolated from the stone chamber of the Takamatsu-zuka tumulus. Int. J. Syst. Evol. Microbiol., 59, 186–194. – reference: Samson, R. A., Houbraken, J., Thrane, U., Frisvad, J. C., and Andersen, B. (2010) Food and Indoor Fungi, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, 390 pp. – reference: Kiyuna, T., An, K.-D., Kigawa, R., Sano, C., Miura, S. et al. (2008) Mycobiota of the Takamatsuzuka and Kitora Tumuli in Japan, focusing on the molecular phylogenetic diversity of Fusarium and Trichoderma. Mycoscience, 49, 298–311. – reference: Ko, K. S., Peck, K. R., Oh, W. S., Lee, N. Y., Lee, J. H. et al. (2005) New species of Bordetella, Bordetella ansorpii sp. nov., isolated from the purulent exudate of an epidermal cyst. J. Clin. Micriobiol., 43, 2516–2519. – reference: Takamatsuzuka Tumulus Emergency Conservation Research Committee (1972) An interim report by Takamatsuzuka Tumulus Emergency Conservation Research Committee. In National Treasures, the Takamatsuzuka Tumulus Mural Paintings: Conservation and Repair, Agency for Cultural Affairs, Japan, pp. 19–26 (in Japanese). – reference: Ma, Y., Zhang, H., Tian, T., Xiang, T., Liu, X. et al. (2015) The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci. Rep., 5, 7752; doi:10.1038/srep07752. – reference: Sano, C., Hayakawa, Y., and Miura, S. (2009) Review of the scientific analysis on the painting materials of Takamatsuzuka Tumulus. Sci. Conserv., 48, 119–131. – reference: Adetutu, E. M. and Ball, A. S. (2014) Microbial diversity and activity in caves. Microbiology Australia, 35, 192–194. – reference: Carlile, M. J. and Watkinson, S. C. (1994) The Fungi, Academic Press, San Diego, 301 pp. – reference: Arai, H., Kenjo, T., Nakasato, T., Miura, S., Mori, H. et al. (1991) Studies on the conservation of Shinto and Buddhist buildings in Nikko designated as national treasure and important cultural property. Sci. Conserv., 30, 65–128 (in Japanese). – reference: Orial, G., Bousta, F., and François, A. (2009) Lascaux cave: monitoring of microbiological activities. In International Symposium on the Conservation and Restoration of Cultural Property—Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures, ed. by Sano, C., National Research Institute for Cultural Properties, Tokyo, Tokyo, pp. 31–40. – reference: Portillo, M. C., Saiz-Jiménez, C., and Gonzalez, J. M. (2009) Molecular characterization of total and metabolically active bacterial communities of “white colonizations” in the Altamira Cave, Spain. Res. Microbiol., 160, 41–47. – reference: Sato, Y., Kigawa, R., Kiyuna, T., Tazato, T., Nishijima, M. et al. (2013) Culture-independent analysis of the bacterial community in Kitora Tumulus under intermittent UV irradiation. Sci. Conserv., 52, 1–10 (in Japanese). – reference: Zimmermann, J., Gonzalez, J. M., and Saiz-Jiménez, C. (2005) Detection and phylogenetic relationships of highly diverse uncultured Acidobacterial communities in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol. J., 22, 379–388. – reference: Kigawa, R., Sugiyama, J., Takatori, K., Mabuchi, H., and Sano, C. et al. (2008a) Overview of biological survey at Takamatsuzuka Tumulus during the excavation and relocation of the stone chamber in 2007. Sci. Conserv., 47, 121–128 (in Japanese). – reference: Sano, C. (ed.) (2009) International Symposium on the Conservation and Restoration of Cultural Property: Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures, National Research Institute for Cultural Properties, Tokyo, Tokyo, 157 pp. – reference: An, K.-D., Kiyuna, T., Kigawa, R., Sano, C., Miura, S. et al. (2009) The identity of Penicillium sp. 1, a major contaminant of the stone chambers in the Takamatsuzuka and Kitora Tumuli in Japan, is Penicillium paneum. Antonie van Leeuwenhoek, 96, 579–592. – reference: Busse, H. J., Zlamala, C., Buczolits, S., Lubitz, W., Kämpfer, P. et al. (2003) Promicromonospora vindobonensis sp. nov. and Promicromonospora aerolata sp. nov., isolated from the air in the medieval ‘Virgilkapelle’ in Vienna. Int. J. Syst. Evol. Microbiol., 53, 1503–1507. – reference: Garg, K. L., Jain, K. K., and Mishra, A. K. (1995) Role of fungi in the deterioration of wall paintings. Sci. Total Environ., 167, 255–271. – reference: Salvadori, O. and Urzi, C. (2008) Techniques and methods of investigation. In Plant Biology for Cultural Heritage, Biodeterioration and Conservation, ed. by Caneva, G., Nugari, M. P., and Salvadori, O., English translation, The Getty Conservation Institute, pp. 347–360. – reference: Yamada, Y. (1986) Acetic acid bacteria. In Methods for the Isolation of Microorganisms, ed. by Yamazato, K., Udagawa, S., Kodama, T., and Morichi, T., R&D Planning, Tokyo (in Japanese). – reference: Martin, K., Schäfer, J., and Kämpfer, P. (2010) Promicromonospora umidemergens sp. nov., isolated from moisture from indoor wall material. Int. J. Syst. Evol. Microbiol., 60, 537–541. – reference: Systematics Agenda 2000 (1994) Systematic Agenda 2000: Charting the Biosphere (Technical Report), A Consortium of the American Society of Plant Taxonomists, the Society of Systematic Biologists, and the Willi Henning Society, in cooperation with the Association of Systematic Collection, New York, 34 pp. – reference: Gross, R., Guzman, C. A., Sebaihia, M., Martins dos Santos, V. A. P., Pieper, D. H. et al. (2008). The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics, 9, 449. – reference: Komagata, K., Iino, T., and Yamada, Y. (2014) The family Acetobacteraceae. In The Prokaryotes—Alphaproteobacteria and Betaproteobacteria, 4th ed., ed. by Rosenberg, E. et al., Springer, Berlin Heidelberg, pp. 1–78; doi:10.1007/978-3-642-30197-1_396. – reference: Gomez-Alarcon, G. and de la Torre, M. A. (1994) The effect of filamentous fungi on stone monuments: the Spanish experience. In Building Mycology, ed. by Singh, J., Chapman & Hall, London, pp. 295–309. – reference: Kigawa, R., Kiyuna, T., Tazato, N., Sato, Y., and Sugiyama, J. (2013b) Tolerance test of microorganisms isolated from Kitora Tumulus against UV irradiation. Sci. Conserv., 52, 91–105 (in Japanese). – reference: Frisvad, J. C. and Samson, R. A. (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium—A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud. Mycol., 49, 1–173. – reference: Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D. et al. (2012) The revised classification of eukaryotes. J. Eukaryot. Microbiol., 59, 429–493. – reference: Cuezva, S., Fernandez-Cortes, A., Porca, E., Pasic, L., Jurado, V. et al. (2012) The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol. Ecol., 81, 281–290. – reference: Fox, J. L. (2008) Some say Lascaux cave paintings are in microbial “Crisis” mode. Microbe, 3, 110–112. – reference: Saiz-Jiménez, C. (1995) Microbial melanins in stone monuments. Sci. Total Environ., 167, 273–286. – reference: Kämpfer, P., Huber, B., Busse, H. J., Scholz, H. C., Tomaso, H. et al. (2011) Ochrobactrum pecoris sp. nov., isolated from farm animals. Int. J. Syst. Evol. Microbiol., 61, 2278–2283. – reference: Pócsi, I. (2012) Volatile organic compounds of fungal origins—a potential future tool in the prevention and healing of microbial infections in artworks. In Proceedings of Chemical and Ecological Researches on the Microorganisms for Preserving Cultural Properties in both Japan and Hungary (JSPS International Scientific Exchange: Joint Seminar between Japan Hungary, July 7 and 8, 2012), ed. by Suzuki, T., Nara Women’s University, Nara, pp. 70–78. – reference: O’Brien, M., Egan, D., O’Kiely, P., Forristal, P. D., Doohan, F. M. et al. (2008) Morphological and molecular characterization of Penicillium roqueforti and P. paneum isolated from baled grass silage. Mycol. Res., 112, 921–932. – reference: Gu, J.-D., Ford, T. E., Berke, N. S., and Mitchell, R. (1998) Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad., 41, 101–109. – reference: Saiz-Jiménez, C. (ed.) (2014) The Conservation of Subterranean Cultural Heritage, CRC Press (Taylor & Francis Group), London, 328 pp.; doi:10.1201/b17570-1. – reference: Domsch, K. H., Gams, W., and Anderson, T.-H. (2007) Compendium of Soil Fungi, 2nd ed., IHW-Verlag, Eching, 672 pp. – reference: Garcia-Anton, E., Cuezva, S., Jurado, V., Porca, E., Miller, A. Z. et al. (2014) Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environ. Sci. Pollut. Res., 21, 473–484. – reference: ICECDMPTT (Investigation Committee for Elucidating the Cause of Deterioration of the Mural Paintings of Takamatsuzuka Tumulus) (2010) Report on Investigation of the Cause of Deterioration of the Mural Paintings of Takamatsuzuka Tumulus, Agency for Cultural Affairs, Japan (in Japanese); the pdf file available at <http://www.bunka.go.jp/takamatsu_kitora/kentokaito/pdf/rekka_houkokusho_ver02.pdf>. – reference: Graff, J. (2006) Saving beauty. TIME Eur., 167, 36–42. – reference: Abdulla, H. (2009) Bioweathering and biotransformation of granitic rock minerals by actinomycetes. Microb. Ecol., 58, 753–761. – reference: Dakal, T. C. and Cameotra, S. S. (2012) Microbially induced deterioration of architectural heritage: routes and mechanisms involved. Environ. Sci. Eur., 24, 1–13. – reference: Mouhamadou, B., Faure, M., Sage, L., Marçais, J., Souard, F. et al. (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fung. Biol., 117, 268–274. – reference: Takeuchi, T., Tanaka, H., Ichii, S., and Kimura, T. (2012) Analysis of microbial volatile organic compounds for conservation technology of cultural heritage. In Proceedings of Chemical and Ecological Researches on the Microorganisms for Preserving Cultural Properties in both Japan and Hungary (JSPS International Scientific Exchange: Joint Seminar between Japan and Hungary, July 7 and 8, 2012), ed. by Suzuki, T., Nara Women’s University, Nara, pp. 79–83. – reference: Whitman, W., Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M. et al. (eds.) (2012) Bergey’s Manual of Systematic Bacteriology 2nd ed., Vol. 5, The Actinobacteria, Part A and B, Springer, New York, 2083 pp. – reference: Nagatsuka, Y., Kawasaki, H., Limtong, S., Mikata, K., and Seki, T. (2002) Citeromyces siamensis sp. nov., a novel halotolerant yeast isolated in Thailand. Int. J. Syst. Evol. Microbiol., 52, 2315–2319. – ident: 64 doi: 10.1007/3-540-30985-3_14 – ident: 260 doi: 10.1016/j.simyco.2014.09.001 – ident: 74 – ident: 192 – ident: 40 doi: 10.1186/2190-4715-24-36 – ident: 51 – ident: 216 doi: 10.1201/b17570-1 – ident: 225 – ident: 102 doi: 10.1016/j.ibiod.2008.05.002 – ident: 163 doi: 10.1201/b17570-26 – ident: 250 doi: 10.3114/sim.2011.68.06 – ident: 81 doi: 10.1016/S0167-7012(99)00016-0 – ident: 9 – ident: 122 – ident: 254 – ident: 4 doi: 10.1111/j.1550-7408.2012.00644.x – ident: 136 doi: 10.1007/S10267-010-0063-6 – ident: 45 – ident: 128 – ident: 129 doi: 10.1179/2047058412Y.0000000040 – ident: 7 doi: 10.1093/nar/25.17.3389 – ident: 232 doi: 10.1099/ijs.0.016402-0 – ident: 272 doi: 10.1128/JCM.00120-06 – ident: 116 – ident: 22 doi: 10.1099/mic.0.036160-0 – ident: 161 doi: 10.1007/s12088-013-0414-z – ident: 16 doi: 10.3114/sim.2008.61.18 – ident: 233 doi: 10.1046/j.1462-2920.2002.00303.x – ident: 219 – ident: 24 doi: 10.5598/imafungus.2015.06.02.02 – ident: 257 doi: 10.1007/s00248-010-9710-x – ident: 79 doi: 10.1186/1471-2164-9-449 – ident: 224 doi: 10.1016/j.simyco.2016.07.002 – ident: 245 doi: 10.1080/01490450050023791 – ident: 47 doi: 10.1080/15572536.2007.11832546 – ident: 203 doi: 10.1111/j.1574-6941.2012.01383.x – ident: 142 doi: 10.1016/B978-012509551-8/50030-1 – ident: 100 – ident: 43 doi: 10.1016/0048-9697(95)04590-W – ident: 206 doi: 10.1007/s11274-009-0021-7 – ident: 133 – ident: 156 – ident: 91 doi: 10.1016/j.mycres.2007.03.004 – ident: 93 doi: 10.2307/20022828 – ident: 117 – ident: 135 doi: 10.1007/S10267-008-0427-3 – ident: 198 doi: 10.1126/science.1219957 – ident: 10 – ident: 19 doi: 10.1016/j.resmic.2008.10.001 – ident: 240 doi: 10.1007/0-387-30747-8_3 – ident: 103 doi: 10.1007/s00114-009-0561-6 – ident: 25 doi: 10.1099/ijs.0.02522-0 – ident: 8 doi: 10.1007/s10482-009-9373-0 – ident: 209 doi: 10.1016/j.resmic.2008.10.002 – ident: 270 doi: 10.1099/ijs.0.049312-0 – ident: 75 doi: 10.1128/microbe.3.72.1 – ident: 137 doi: 10.1007/S10267-012-0189-9 – ident: 56 doi: 10.1016/B978-0-444-52149-1.00138-5 – ident: 108 doi: 10.1007/978-3-642-30197-1_299 – ident: 52 – ident: 190 doi: 10.1007/s12600-015-0484-z – ident: 12 doi: 10.1016/0165-9936(90)87123-4 – ident: 185 doi: 10.1021/jf0621018 – ident: 2 doi: 10.1071/MA14062 – ident: 139 – ident: 211 doi: 10.1038/514170a – ident: 55 doi: 10.1099/00207713-47-2-590 – ident: 155 doi: 10.1007/s00248-010-9699-1 – ident: 167 – ident: 238 – ident: 27 doi: 10.1080/01490450152467769 – ident: 63 – ident: 205 doi: 10.1016/j.scitotenv.2008.10.045 – ident: 3 doi: 10.3852/10-256 – ident: 153 doi: 10.1038/ja.2010.87 – ident: 230 – ident: 87 – ident: 88 doi: 10.1128/IAI.62.3.915-921.1994 – ident: 35 – ident: 171 doi: 10.1099/00207713-52-6-2315 – ident: 70 – ident: 174 doi: 10.1099/ijsem.0.000930 – ident: 258 doi: 10.1099/ijsem.0.000473 – ident: 202 doi: 10.1016/j.ecolind.2011.04.003 – ident: 41 – ident: 186 doi: 10.1016/j.mycres.2008.01.023 – ident: 176 – ident: 197 doi: 10.1099/ijs.0.000116 – ident: 21 doi: 10.1007/s00114-009-0540-y – ident: 168 doi: 10.1099/ijsem.0.000911 – ident: 212 doi: 10.1038/nrmicro2163 – ident: 97 doi: 10.1007/s00248-006-9135-8 – ident: 165 doi: 10.1016/j.funbio.2012.02.006 – ident: 269 doi: 10.1271/bbb.63.827 – ident: 193 – ident: 34 doi: 10.1128/AEM.65.3.879-885.1999 – ident: 85 doi: 10.1016/S0964-8305(00)00079-2 – ident: 30 – ident: 57 doi: 10.1128/microbe.3.110.2 – ident: 61 doi: 10.1099/00207713-51-4-1305 – ident: 204 doi: 10.1016/B978-0-444-52149-1.00163-4 – ident: 253 – ident: 215 – ident: 234 doi: 10.1111/j.1574-6968.2002.tb11195.x – ident: 66 doi: 10.1016/0048-9697(95)04587-Q – ident: 145 doi: 10.3389/fmicb.2011.00104 – ident: 127 – ident: 26 doi: 10.1080/014904599270712 – ident: 86 doi: 10.1099/ijsem.0.000843 – ident: 166 doi: 10.1515/9783110339888-015 – ident: 210 doi: 10.1128/AEM.66.2.620-626.2000 – ident: 184 doi: 10.1007/BF02066254 – ident: 92 doi: 10.1128/AEM.64.7.2652-2659.1998 – ident: 194 – ident: 110 – ident: 170 doi: 10.1016/j.funbio.2013.02.004 – ident: 226 – ident: 1 doi: 10.1007/s00248-009-9549-1 – ident: 49 doi: 10.1079/9780851986180.0000 – ident: 14 – ident: 53 – ident: 134 doi: 10.2320/jinstmet.J2015033 – ident: 42 – ident: 126 – ident: 199 – ident: 149 – ident: 231 – ident: 214 – ident: 50 doi: 10.1079/9780851983653.0000 – ident: 222 doi: 10.1094/PHYTO-96-0195 – ident: 37 doi: 10.1111/j.1574-6941.2012.01391.x – ident: 248 – ident: 69 doi: 10.3767/003158515X685364 – ident: 95 doi: 10.1139/b58-067 – ident: 266 doi: 10.1099/00207713-52-6-1937 – ident: 115 – ident: 178 doi: 10.1128/IAI.00480-10 – ident: 265 doi: 10.1073/pnas.87.12.4576 – ident: 98 – ident: 220 – ident: 121 – ident: 172 doi: 10.2323/jgam.51.235 – ident: 58 doi: 10.1099/00207713-49-4-1681 – ident: 150 doi: 10.3201/eid1704.101480 – ident: 33 doi: 10.1007/978-1-4614-5206-5 – ident: 177 – ident: 196 doi: 10.1016/j.ijfoodmicro.2007.11.079 – ident: 132 doi: 10.4014/jmb.1511.11008 – ident: 147 doi: 10.1016/S0167-7012(99)00018-4 – ident: 228 – ident: 18 doi: 10.5038/1827-806X.38.1.6 – ident: 131 – ident: 263 – ident: 15 doi: 10.1038/nature13422 – ident: 119 – ident: 23 doi: 10.1016/S0964-8305(97)00062-0 – ident: 187 doi: 10.2307/3761588 – ident: 157 doi: 10.1111/j.1574-6968.2011.02322.x – ident: 76 doi: 10.1016/S0964-8305(00)00103-7 – ident: 182 doi: 10.1099/ijsem.0.001863 – ident: 138 doi: 10.1016/j.myc.2014.08.005 – ident: 247 doi: 10.1007/s00253-013-5283-1 – ident: 244 doi: 10.1099/jmm.0.46976-0 – ident: 59 – ident: 71 – ident: 159 – ident: 13 – ident: 236 doi: 10.1016/S0168-6496(03)00280-0 – ident: 268 – ident: 54 – ident: 113 – ident: 217 doi: 10.1515/9783110339888-013 – ident: 256 doi: 10.1099/ijsem.0.000655 – ident: 38 doi: 10.1515/9783110339888-016 – ident: 148 – ident: 162 doi: 10.1099/ijs.0.014142-0 – ident: 243 doi: 10.1007/978-1-4757-0271-2_5 – ident: 259 doi: 10.5038/1827-806X.42.1.9 – ident: 72 – ident: 114 – ident: 141 doi: 10.1007/978-3-642-30197-1_396 – ident: 99 – ident: 39 doi: 10.1007/s11157-012-9264-0 – ident: 31 doi: 10.1007/s11557-006-0025-8 – ident: 105 doi: 10.1201/b17570-28 – ident: 120 – ident: 252 – ident: 104 doi: 10.5038/1827-806X.39.1.2 – ident: 173 doi: 10.1099/ijs.0.65830-0 – ident: 158 doi: 10.1038/srep07752 – ident: 235 – ident: 20 doi: 10.1111/j.1365-2672.2008.04121.x – ident: 152 doi: 10.1179/sic.1974.013 – ident: 183 doi: 10.1201/b17570-27 – ident: 241 – ident: 175 doi: 10.1016/j.myc.2016.09.005 – ident: 195 – ident: 227 – ident: 242 doi: 10.1016/j.mib.2016.04.020 – ident: 60 doi: 10.3201/eid1107.050046 – ident: 32 – ident: 29 – ident: 208 doi: 10.1111/j.1365-2672.2007.03594.x – ident: 84 doi: 10.1099/ijsem.0.000885 – ident: 77 – ident: 68 doi: 10.1099/00207713-39-3-361 – ident: 125 – ident: 249 doi: 10.1017/S0953756205003254 – ident: 255 doi: 10.1099/ijs.0.034595-0 – ident: 36 doi: 10.5038/1827-806X.38.1.9 – ident: 271 doi: 10.1128/9781555815509 – ident: 107 doi: 10.1099/ijs.0.027631-0 – ident: 262 doi: 10.1007/0-387-30745-1_27 – ident: 48 doi: 10.1099/ijs.0.64638-0 – ident: 207 doi: 10.1007/s00248-010-9731-5 – ident: 73 doi: 10.1007/s00114-005-0060-3 – ident: 218 doi: 10.1126/science.1206788 – ident: 267 – ident: 6 doi: 10.1017/CBO9780511617065 – ident: 112 – ident: 160 doi: 10.1099/mic.0.032508-0 – ident: 189 doi: 10.1128/JCM.00533-07 – ident: 94 doi: 10.1099/ijs.0.011668-0 – ident: 46 doi: 10.1078/0031-4056-00188 – ident: 180 doi: 10.1099/ijs.0.051292-0 – ident: 273 – ident: 17 – ident: 109 doi: 10.1016/j.syapm.2008.12.003 – ident: 5 – ident: 28 doi: 10.1007/s00114-005-0052-3 – ident: 82 doi: 10.1016/S0964-8305(98)00034-1 – ident: 90 doi: 10.1099/ijs.0.63221-0 – ident: 96 – ident: 229 – ident: 221 doi: 10.3114/sim.2011.70.04 – ident: 130 – ident: 261 doi: 10.1099/00207713-51-4-1257 – ident: 151 doi: 10.1079/9781845938147.0320 – ident: 154 doi: 10.1371/journal.pone.0163287 – ident: 201 – ident: 164 doi: 10.1021/es2040625 – ident: 169 – ident: 106 – ident: 65 doi: 10.1007/s11356-013-1915-3 – ident: 123 – ident: 188 doi: 10.1128/JCM.42.11.5109-5120.2004 – ident: 213 doi: 10.1016/0048-9697(95)04588-R – ident: 140 doi: 10.1128/JCM.43.5.2516-2519.2005 – ident: 89 – ident: 78 doi: 10.1080/15572536.2007.11832595 – ident: 237 doi: 10.3852/15-255 – ident: 181 doi: 10.1099/ijsem.0.001618 – ident: 179 – ident: 246 doi: 10.1016/j.fbr.2010.03.003 – ident: 223 – ident: 111 doi: 10.1007/0-387-30745-1_9 – ident: 200 – ident: 239 – ident: 62 – ident: 146 doi: 10.1016/B978-0-444-52149-1.00090-2 – ident: 124 – ident: 44 doi: 10.1038/srep01440 – ident: 67 – ident: 101 – ident: 143 doi: 10.1016/B978-0-444-52149-1.00047-1 – ident: 11 – ident: 264 doi: 10.1007/978-0-387-68233-4 – ident: 191 – ident: 80 doi: 10.1080/014904599270703 – ident: 118 – ident: 144 doi: 10.1016/B978-0-444-52149-1.00007-0 – ident: 274 doi: 10.1080/01490450500248986 – ident: 251 – ident: 83 doi: 10.1016/0964-8305(94)90066-3 |
SSID | ssj0036284 |
Score | 2.2161298 |
SecondaryResourceType | review_article |
Snippet | Microbial outbreaks and related biodeterioration problems have affected the 1300-year-old multicolor (polychrome) mural paintings of the special historic sites... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | bacteria Bacteria - classification Bacteria - isolation & purification Biodegradation, Environmental Biodeterioration biofilm Communities Cultivation cultural properties culture-dependent methods culture-independent methods Data processing DNA, Bacterial - isolation & purification DNA, Fungal - isolation & purification Ecology Fungi Fungi - classification Fungi - isolation & purification Fusarium Historic buildings & sites Historic sites Japan Mapping Mathematical analysis Microbial activity microbial community analysis Microbiota Microorganisms Origins Outbreaks Phylogeny Plotting Polls & surveys Polymerase Chain Reaction Prehistoric era RNA, Ribosomal, 16S - isolation & purification Sequence Analysis, DNA Stone Substrate preferences Taxa Walls Yeast yeasts |
Title | Polyphasic insights into the microbiomes of the Takamatsuzuka Tumulus and Kitora Tumulus |
URI | https://www.jstage.jst.go.jp/article/jgam/63/2/63_2017.01.007/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/28344193 https://www.proquest.com/docview/1906174273 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of General and Applied Microbiology, 2017, Vol.63(2), pp.63-113 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKAIkXxOcoDJQHXlCVLc13nlAFnaZ1LUOkUt8sO3HS9COZtkSo-0v4cznnkjSt2AS8WJFjx5Hvcvc7O_4dIR91jXEPfIHKI02oZuRy1Qs9rgottEWoBa5d7uiOJ_bZ1DyfWbNO51frr6Ui58fB7R_PlfyPVKEO5CpPyf6DZJuHQgVcg3yhBAlD-VcyvsxWm6s5g4mW_5TLMFv-XVWhyXWCHEtrpJWVVT5bMkCoN8VtsWQ9v1gXqwI5mkfwYV83VXcg1hgpqpHftUKv9SjtxfkfRZxsYCA89ZHmjeUfJZsCz6D52TqbJ8ustS0yTxYJ9hlDs2XSdPrJ0lj9Koplb5C2Fyn6zt4ixTk4_q21km-53TjoDcpDpm0jrct8K5hm4FigXTZMD5wp8sPUhruyjEkrfkYrjDf2nQNgR0lSsYiZZCDoOyVdK6bc3eXhnnyjp9OLC-oPZ_4D8lCHAETmxhh9b_anwOu7Zs1DL18VN8DlCCf7z98BPI8WgPljcXc4U8Ia_xl5WklXGaByPScdkb4gjzFD6QauhiWr-eYlmW2VTamVTZHKpoBmKS1lU7KorNpRNqXSLAWkoqCy1VWvyPR06H85U6u0HGpgGnoO7pFHzHRt7lnccjRuOJ5lmJHjCFe4QRhx3bAjT4tYqIcus4WhMScIHRbZlicBp_GaHKRZKt4QxQtECBGrcAC1mkL0XRfQpcVs13DA79lBl5zUc0eDirNepk5ZUYhd5WxTOdtUzjbV-hRmu0s-NT2ukK_lnrafURxNy-pLxpa2QfWy2PZoGsgjkWCBuuSoliOt7MINBYgNYYEJcUGXHKJsmwF0mdYGYqa393d8R55sv6IjcpBfF-I9gN-cfyj1EMrJ5fg3m5K1yg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyphasic+insights+into+the+microbiomes+of+the+Takamatsuzuka+Tumulus+and+Kitora+Tumulus&rft.jtitle=Journal+of+general+and+applied+microbiology&rft.au=Sugiyama%2C+Junta&rft.au=Kiyuna%2C+Tomohiko&rft.au=Nishijima%2C+Miyuki&rft.au=Kwang-Deuk+An&rft.date=2017-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0022-1260&rft.eissn=1349-8037&rft.volume=63&rft.issue=2&rft.spage=63&rft_id=info:doi/10.2323%2Fjgam.2017.01.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1260&client=summon |