Photoluminous Response of Biocomposites Produced with Charcoal
Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of industries and outdoor applications, it is necessary to consider the impact of photoluminosity on the performance of biocomposites in order to a...
Saved in:
Published in | Polymers Vol. 15; no. 18; p. 3788 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
16.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-4360 2073-4360 |
DOI | 10.3390/polym15183788 |
Cover
Loading…
Abstract | Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of industries and outdoor applications, it is necessary to consider the impact of photoluminosity on the performance of biocomposites in order to accurately assess their durability characteristics and prevent substantial damage. Exposure to photoluminosity can result in adverse effects such as discoloration, uneven surface, loss of mass, and manipulation of the intrinsic mechanical properties of biocomposites. This study aims to evaluate general charcoal from three pyrolysis temperatures to understand which charcoal is most suitable for photoluminosity and whether higher pyrolysis temperatures have any significant effect on photoluminosity. Porosity, morphology, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy of charcoal were analyzed. Charcoal obtained at a temperature of 800 °C demonstrates remarkable potential as a bioreinforcement in polymeric matrices, attributable to its significantly higher porosity (81.08%) and hydrophobic properties. The biocomposites were characterized for flexural strength, tensile strength, scanning electron microscopy (SEM), FTIR, and x-ray diffraction (XRD). The results showed an improvement in tensile strength after exposure to photoluminosity, with an increase of 69.24%, 68.98%, and 54.38% at temperatures of 400, 600, and 800 °C, respectively, in relation to the treatment control. It is notorious that the tensile strength and modulus of elasticity after photoluminosity initially had a negative impact on mechanical strength, the incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase in mechanical strength after exposure to photoluminosity, especially at 800 °C with breaking strength of 53.40 MPa, and modulus of elasticity of 4364.30 MPA. Scanning electron microscopy revealed an improvement in morphology, with a decrease in roughness at 800 °C, which led to greater adhesion to the polyester matrix. These findings indicate promising prospects for a new type of biocomposite, particularly in comparison with other polymeric compounds, especially in engineering applications that are subject to direct interactions with the weather. |
---|---|
AbstractList | Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of industries and outdoor applications, it is necessary to consider the impact of photoluminosity on the performance of biocomposites in order to accurately assess their durability characteristics and prevent substantial damage. Exposure to photoluminosity can result in adverse effects such as discoloration, uneven surface, loss of mass, and manipulation of the intrinsic mechanical properties of biocomposites. This study aims to evaluate general charcoal from three pyrolysis temperatures to understand which charcoal is most suitable for photoluminosity and whether higher pyrolysis temperatures have any significant effect on photoluminosity. Porosity, morphology, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy of charcoal were analyzed. Charcoal obtained at a temperature of 800 °C demonstrates remarkable potential as a bioreinforcement in polymeric matrices, attributable to its significantly higher porosity (81.08%) and hydrophobic properties. The biocomposites were characterized for flexural strength, tensile strength, scanning electron microscopy (SEM), FTIR, and x-ray diffraction (XRD). The results showed an improvement in tensile strength after exposure to photoluminosity, with an increase of 69.24%, 68.98%, and 54.38% at temperatures of 400, 600, and 800 °C, respectively, in relation to the treatment control. It is notorious that the tensile strength and modulus of elasticity after photoluminosity initially had a negative impact on mechanical strength, the incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase in mechanical strength after exposure to photoluminosity, especially at 800 °C with breaking strength of 53.40 MPa, and modulus of elasticity of 4364.30 MPA. Scanning electron microscopy revealed an improvement in morphology, with a decrease in roughness at 800 °C, which led to greater adhesion to the polyester matrix. These findings indicate promising prospects for a new type of biocomposite, particularly in comparison with other polymeric compounds, especially in engineering applications that are subject to direct interactions with the weather. Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of industries and outdoor applications, it is necessary to consider the impact of photoluminosity on the performance of biocomposites in order to accurately assess their durability characteristics and prevent substantial damage. Exposure to photoluminosity can result in adverse effects such as discoloration, uneven surface, loss of mass, and manipulation of the intrinsic mechanical properties of biocomposites. This study aims to evaluate general charcoal from three pyrolysis temperatures to understand which charcoal is most suitable for photoluminosity and whether higher pyrolysis temperatures have any significant effect on photoluminosity. Porosity, morphology, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy of charcoal were analyzed. Charcoal obtained at a temperature of 800 °C demonstrates remarkable potential as a bioreinforcement in polymeric matrices, attributable to its significantly higher porosity (81.08%) and hydrophobic properties. The biocomposites were characterized for flexural strength, tensile strength, scanning electron microscopy (SEM), FTIR, and x-ray diffraction (XRD). The results showed an improvement in tensile strength after exposure to photoluminosity, with an increase of 69.24%, 68.98%, and 54.38% at temperatures of 400, 600, and 800 °C, respectively, in relation to the treatment control. It is notorious that the tensile strength and modulus of elasticity after photoluminosity initially had a negative impact on mechanical strength, the incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase in mechanical strength after exposure to photoluminosity, especially at 800 °C with breaking strength of 53.40 MPa, and modulus of elasticity of 4364.30 MPA. Scanning electron microscopy revealed an improvement in morphology, with a decrease in roughness at 800 °C, which led to greater adhesion to the polyester matrix. These findings indicate promising prospects for a new type of biocomposite, particularly in comparison with other polymeric compounds, especially in engineering applications that are subject to direct interactions with the weather.Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of industries and outdoor applications, it is necessary to consider the impact of photoluminosity on the performance of biocomposites in order to accurately assess their durability characteristics and prevent substantial damage. Exposure to photoluminosity can result in adverse effects such as discoloration, uneven surface, loss of mass, and manipulation of the intrinsic mechanical properties of biocomposites. This study aims to evaluate general charcoal from three pyrolysis temperatures to understand which charcoal is most suitable for photoluminosity and whether higher pyrolysis temperatures have any significant effect on photoluminosity. Porosity, morphology, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy of charcoal were analyzed. Charcoal obtained at a temperature of 800 °C demonstrates remarkable potential as a bioreinforcement in polymeric matrices, attributable to its significantly higher porosity (81.08%) and hydrophobic properties. The biocomposites were characterized for flexural strength, tensile strength, scanning electron microscopy (SEM), FTIR, and x-ray diffraction (XRD). The results showed an improvement in tensile strength after exposure to photoluminosity, with an increase of 69.24%, 68.98%, and 54.38% at temperatures of 400, 600, and 800 °C, respectively, in relation to the treatment control. It is notorious that the tensile strength and modulus of elasticity after photoluminosity initially had a negative impact on mechanical strength, the incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase in mechanical strength after exposure to photoluminosity, especially at 800 °C with breaking strength of 53.40 MPa, and modulus of elasticity of 4364.30 MPA. Scanning electron microscopy revealed an improvement in morphology, with a decrease in roughness at 800 °C, which led to greater adhesion to the polyester matrix. These findings indicate promising prospects for a new type of biocomposite, particularly in comparison with other polymeric compounds, especially in engineering applications that are subject to direct interactions with the weather. |
Audience | Academic |
Author | Cupertino, Gabriela Fontes Mayrinck de Souza, Elias Costa da Silva, Álison Moreira Profeti, Demetrius Saloni, Daniel Dias Júnior, Ananias Francisco Delatorre, Fabíola Martins Ucella Filho, João Gilberto Meza Pereira, Allana Katiussya Silva Profeti, Luciene Paula Roberto |
AuthorAffiliation | 3 Institute of Xingu Studies, Federal University of South and Southeast Pará (UNIFESSPA), Subdivision Cidade nova, QD 15, Sector 15, São Félix do Xingu 68380-000, PA, Brazil; eliascosta@unifesspa.edu.br 5 Department of Chemistry and Physics, Federal University of Espírito Santo (UFES), Alegre 29500-000, ES, Brazil; luciene.profeti@ufes.br (L.P.R.P.); demetrius.profeti@ufes.br (D.P.) 1 Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil; gabriela.mayrinck01@gmail.com (G.F.M.C.); 16joaoucella@gmail.com (J.G.M.U.F.); ananias.dias@ufes.br (A.F.D.J.) 4 Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA; desaloni@ncsu.edu 2 Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; allana.florestal@gmail.com (A.K.S.P.) |
AuthorAffiliation_xml | – name: 5 Department of Chemistry and Physics, Federal University of Espírito Santo (UFES), Alegre 29500-000, ES, Brazil; luciene.profeti@ufes.br (L.P.R.P.); demetrius.profeti@ufes.br (D.P.) – name: 2 Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; allana.florestal@gmail.com (A.K.S.P.); alison.silva@usp.br (Á.M.d.S.) – name: 1 Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil; gabriela.mayrinck01@gmail.com (G.F.M.C.); 16joaoucella@gmail.com (J.G.M.U.F.); ananias.dias@ufes.br (A.F.D.J.) – name: 4 Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA; desaloni@ncsu.edu – name: 3 Institute of Xingu Studies, Federal University of South and Southeast Pará (UNIFESSPA), Subdivision Cidade nova, QD 15, Sector 15, São Félix do Xingu 68380-000, PA, Brazil; eliascosta@unifesspa.edu.br |
Author_xml | – sequence: 1 givenname: Fabíola Martins surname: Delatorre fullname: Delatorre, Fabíola Martins – sequence: 2 givenname: Gabriela Fontes Mayrinck orcidid: 0000-0002-8562-6154 surname: Cupertino fullname: Cupertino, Gabriela Fontes Mayrinck – sequence: 3 givenname: Allana Katiussya Silva orcidid: 0000-0003-0425-4668 surname: Pereira fullname: Pereira, Allana Katiussya Silva – sequence: 4 givenname: Elias Costa surname: de Souza fullname: de Souza, Elias Costa – sequence: 5 givenname: Álison Moreira surname: da Silva fullname: da Silva, Álison Moreira – sequence: 6 givenname: João Gilberto Meza orcidid: 0000-0001-9797-3332 surname: Ucella Filho fullname: Ucella Filho, João Gilberto Meza – sequence: 7 givenname: Daniel orcidid: 0000-0002-2298-080X surname: Saloni fullname: Saloni, Daniel – sequence: 8 givenname: Luciene Paula Roberto orcidid: 0000-0001-6280-2410 surname: Profeti fullname: Profeti, Luciene Paula Roberto – sequence: 9 givenname: Demetrius orcidid: 0000-0003-4565-3331 surname: Profeti fullname: Profeti, Demetrius – sequence: 10 givenname: Ananias Francisco surname: Dias Júnior fullname: Dias Júnior, Ananias Francisco |
BookMark | eNp1UU1v1TAQtFARLY8euUfiwiXFjj9zAZWn0iJVoqrK2XKcTZ8rxxvihKr_HlevQrQS9sHW7szYs_OWHCRMQMh7Rk84b-mnCePDyCQzXBvzihw1VPNacEUP_rkfkuOc72hZQirF9BtyyLVWUonmiHy-2uGCcR1DwjVX15AnTBkqHKqvAT2OE-awQK6uZuxXD311H5Zdtd252aOL78jrwcUMx0_nhvz8dnazvagvf5x_355e1l7wZqlbJqXrmNRdK0wvQAxSQaeUdLqRrZcdpwNvOwZ-8LyUFXeSQyu0KX3RAN-QL3vdae1G6D2kZXbRTnMY3fxg0QX7vJPCzt7ib8uo5EpQUxQ-PinM-GuFvNgxZA8xugTFuW2MpqwMiDcF-uEF9A7XORV_BaVaKUxbZrshJ3vUrYtgQxqwPOzL7mEMvuQ0hFI_1ZoZyqWkhVDvCX7GnGcY_n6fUfsYp30WZ8HzF3gfFrcEfHQY4n9YfwCmNaRD |
CitedBy_id | crossref_primary_10_23939_chcht18_02_232 |
Cites_doi | 10.1016/j.scitotenv.2017.03.073 10.3390/polym15132923 10.3390/polym14071398 10.1007/s10924-021-02090-w 10.3390/polym13162682 10.3390/polym15122689 10.3390/polym10040365 10.1016/j.compscitech.2013.03.018 10.3390/polym13172878 10.1016/j.compositesb.2018.08.068 10.1007/s10965-020-02132-2 10.3390/polym15132970 10.1016/j.jphotochem.2015.11.007 10.1016/j.porgcoat.2011.03.009 10.1039/C5RA06847A 10.1088/1742-6596/1191/1/012058 10.1016/j.heliyon.2021.e07918 10.1016/j.compstruct.2019.03.079 10.3844/ajeassp.2014.66.76 10.4028/www.scientific.net/MSF.919.167 10.1007/s10965-019-1710-z 10.3390/polym13213612 10.1016/j.ijbiomac.2021.02.193 10.1016/j.matpr.2020.10.808 10.1016/j.biortech.2016.12.074 10.1007/s10965-019-1991-2 10.1007/s00107-019-01489-6 10.1016/j.polymdegradstab.2020.109290 10.3390/polym13162663 10.1007/s10965-018-1494-6 10.20944/preprints202305.1309.v1 10.1016/j.biombioe.2014.03.059 10.1016/j.polymdegradstab.2011.11.010 10.1016/j.coco.2018.04.009 10.1016/j.jclepro.2017.02.132 10.3141/2445-07 10.1016/j.polymertesting.2014.07.014 10.1016/j.jclepro.2016.04.088 10.30969/acsa.v16i3.1272 10.3390/polym13223953 10.1016/j.cclet.2023.108817 10.1039/C5RA14586D 10.1016/j.porgcoat.2020.105962 10.1016/j.scitotenv.2020.139910 10.1016/j.compositesb.2020.108483 10.1016/j.compositesa.2018.01.011 10.1016/j.biortech.2017.07.029 10.3390/polym15142977 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/polym15183788 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC10536408 A771803550 10_3390_polym15183788 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Espírito Santo (FAPES) – fundername: Fapes Universal 2018 and 2021 – fundername: National Council for Scientific and Technological Development (CNPq) – fundername: Institutional Program for Scientific Initiation (PIIC) of the Federal University of Espírito Santo (UFES) |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c432t-9155ab157b948d4e4f56eb665a7259c5b30f39b1ecfc366563a53e947872542e3 |
IEDL.DBID | 8FG |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:36:22 EDT 2025 Fri Jul 11 06:43:51 EDT 2025 Fri Jul 25 10:32:47 EDT 2025 Tue Jul 01 05:45:29 EDT 2025 Tue Jul 01 03:21:32 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-9155ab157b948d4e4f56eb665a7259c5b30f39b1ecfc366563a53e947872542e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2298-080X 0000-0001-9797-3332 0000-0001-6280-2410 0000-0003-0425-4668 0000-0002-8562-6154 0000-0003-4565-3331 |
OpenAccessLink | https://www.proquest.com/docview/2869548907?pq-origsite=%requestingapplication% |
PMID | 37765642 |
PQID | 2869548907 |
PQPubID | 2032345 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10536408 proquest_miscellaneous_2870145632 proquest_journals_2869548907 gale_infotracacademiconefile_A771803550 crossref_primary_10_3390_polym15183788 crossref_citationtrail_10_3390_polym15183788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230916 |
PublicationDateYYYYMMDD | 2023-09-16 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230916 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Polymers |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_36) 2018; 9 Batista (ref_51) 2011; 71 Campos (ref_20) 2012; 97 Delatorre (ref_49) 2020; 16 Naveen (ref_41) 2019; 219 ref_14 ref_13 ref_12 Arellano (ref_38) 2020; 179 Klapiszewski (ref_16) 2021; 178 Yatigala (ref_17) 2018; 107 Ali (ref_55) 2021; 150 ref_19 ref_18 Takacs (ref_54) 2015; 5 ref_15 Lila (ref_37) 2019; 156 Zhang (ref_32) 2020; 738 Prusek (ref_50) 2018; 919 Gao (ref_29) 2017; 592 Anand (ref_48) 2018; 25 Sullalti (ref_53) 2016; 321 Atiwesh (ref_5) 2021; 7 Chen (ref_30) 2017; 228 ref_25 Das (ref_31) 2021; 44 ref_23 Luo (ref_42) 2014; 39 Rasheed (ref_52) 2016; 9 Akderya (ref_44) 2020; 27 Wu (ref_46) 2019; 26 ref_27 Hassan (ref_45) 2020; 27 ref_26 Das (ref_10) 2017; 149 Das (ref_11) 2016; 129 Mendes (ref_43) 2021; 29 Wasti (ref_2) 2021; 205 ref_39 Ghorpade (ref_1) 2022; 10 Jiang (ref_33) 2015; 5 Li (ref_34) 2017; 246 Brewer (ref_28) 2014; 66 Koto (ref_56) 2019; 1191 Zhao (ref_22) 2014; 2445 Esteves (ref_24) 2020; 78 ref_47 Wu (ref_35) 2013; 81 ref_40 ref_3 ref_9 Walters (ref_21) 2014; 7 ref_8 ref_4 ref_7 ref_6 |
References_xml | – volume: 592 start-page: 316 year: 2017 ident: ref_29 article-title: Effect of Environmental Exposure on Charcoal Density and Porosity in a Boreal Forest publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.073 – ident: ref_15 doi: 10.3390/polym15132923 – ident: ref_12 doi: 10.3390/polym14071398 – volume: 29 start-page: 2888 year: 2021 ident: ref_43 article-title: Thermo-Physical and Mechanical Characteristics of Composites Based on High-Density Polyethylene (HDPE) e Spent Coffee Grounds (SCG) publication-title: J. Polym. Env. doi: 10.1007/s10924-021-02090-w – ident: ref_4 doi: 10.3390/polym13162682 – ident: ref_14 doi: 10.3390/polym15122689 – ident: ref_26 – ident: ref_39 doi: 10.3390/polym10040365 – volume: 81 start-page: 17 year: 2013 ident: ref_35 article-title: Influence of Ammonium Polyphosphate Microencapsulation on Flame Retardancy, Thermal Degradation and Crystal Structure of Polypropylene Composite publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.03.018 – ident: ref_6 doi: 10.3390/polym13172878 – volume: 156 start-page: 121 year: 2019 ident: ref_37 article-title: Accelerated Thermal Ageing Behaviour of Bagasse Fibers Reinforced Poly (Lactic Acid) Based Biocomposites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.08.068 – volume: 27 start-page: 162 year: 2020 ident: ref_44 article-title: Investigation of Long-Term Ageing Effect on the Thermal Properties of Chicken Feather Fibre/Poly(Lactic Acid) Biocomposites publication-title: J. Polym. Res. doi: 10.1007/s10965-020-02132-2 – volume: 9 start-page: 321 year: 2016 ident: ref_52 article-title: Fourier Transform Infrared Spectroscopy for Irradiation Coumarin Doped Polystyrene Polymer Films by Alpha Ray publication-title: J. Radiat. Res. Appl. Sci. – volume: 10 start-page: 229 year: 2022 ident: ref_1 article-title: Bioplastics Production and Applications: A Mini Review publication-title: Int. J. Sci. Res. Dev. – ident: ref_19 doi: 10.3390/polym15132970 – volume: 321 start-page: 275 year: 2016 ident: ref_53 article-title: Photodegradation of TiO2 Composites Based on Polyesters publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2015.11.007 – ident: ref_27 – volume: 71 start-page: 265 year: 2011 ident: ref_51 article-title: Effect of the Polyester Chemical Structure on the Stability of Polyester–Melamine Coatings When Exposed to Accelerated Weathering publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2011.03.009 – volume: 5 start-page: 51371 year: 2015 ident: ref_54 article-title: Core Double–Shell Cobalt/Graphene/Polystyrene Magnetic Nanocomposites Synthesized by in Situ Sonochemical Polymerization publication-title: RSC Adv. doi: 10.1039/C5RA06847A – volume: 1191 start-page: 012058 year: 2019 ident: ref_56 article-title: Effect of Rice Husk Ash Filler of Resistance Against of High-Speed Projectile Impact on Polyester-Fiberglass Double Panel Composites publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1191/1/012058 – ident: ref_13 – volume: 7 start-page: e07918 year: 2021 ident: ref_5 article-title: Environmental Impact of Bioplastic Use: A Review publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e07918 – volume: 219 start-page: 194 year: 2019 ident: ref_41 article-title: Thermal Degradation and Viscoelastic Properties of Kevlar/Cocos Nucifera Sheath Reinforced Epoxy Hybrid Composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.03.079 – volume: 7 start-page: 66 year: 2014 ident: ref_21 article-title: enhancing asphalt rheological behavior and aging susceptibility using bio-char and nano-clay publication-title: Am. J. Eng. Appl. Sci. doi: 10.3844/ajeassp.2014.66.76 – ident: ref_7 – volume: 919 start-page: 167 year: 2018 ident: ref_50 article-title: Natural Aerobic Degradation of Polylactic Acid (Composites) with Natural Fiber Additives publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.919.167 – volume: 26 start-page: 44 year: 2019 ident: ref_46 article-title: Fabrication, Characterization, and Application of Biocomposites from Poly(Lactic Acid) with Renewable Rice Husk as Reinforcement publication-title: J. Polym. Res. doi: 10.1007/s10965-019-1710-z – ident: ref_8 doi: 10.3390/polym13213612 – volume: 178 start-page: 344 year: 2021 ident: ref_16 article-title: Synthesis, Characterization and Aging Tests of Functional Rigid Polymeric Biocomposites with Kraft Lignin publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.193 – volume: 44 start-page: 926 year: 2021 ident: ref_31 article-title: On the Use of Wood Charcoal Filler to Improve the Properties of Natural Fiber Reinforced Polymer Composites publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.10.808 – volume: 228 start-page: 241 year: 2017 ident: ref_30 article-title: Effect of Torrefaction on the Properties of Rice Straw High Temperature Pyrolysis Char: Pore Structure, Aromaticity and Gasification Activity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.12.074 – ident: ref_47 – volume: 27 start-page: 27 year: 2020 ident: ref_45 article-title: Thermomechanical and Viscoelastic Properties of Green Composites of PLA Using Chitin Micro-Particles as Fillers publication-title: J. Polym. Res. doi: 10.1007/s10965-019-1991-2 – volume: 78 start-page: 193 year: 2020 ident: ref_24 article-title: Investigating the Pyrolysis Temperature to Define the Use of Charcoal publication-title: Eur. J. Wood Wood Prod. doi: 10.1007/s00107-019-01489-6 – volume: 179 start-page: 109290 year: 2020 ident: ref_38 article-title: Accelerated Weathering of Poly(Lactic Acid) and Its Biocomposites: A Review publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2020.109290 – ident: ref_3 doi: 10.3390/polym13162663 – volume: 25 start-page: 94 year: 2018 ident: ref_48 article-title: Investigations on the Performances of Treated Jute/Kenaf Hybrid Natural Fiber Reinforced Epoxy Composite publication-title: J. Polym. Res. doi: 10.1007/s10965-018-1494-6 – ident: ref_18 doi: 10.20944/preprints202305.1309.v1 – volume: 66 start-page: 176 year: 2014 ident: ref_28 article-title: New Approaches to Measuring Biochar Density and Porosity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.03.059 – volume: 97 start-page: 1948 year: 2012 ident: ref_20 article-title: The Influence of UV-C Irradiation on the Properties of Thermoplastic Starch and Polycaprolactone Biocomposite with Sisal Bleached Fibers publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2011.11.010 – volume: 9 start-page: 33 year: 2018 ident: ref_36 article-title: Assembly of Graphene-Aligned Polymer Composites for Thermal Conductive Applications publication-title: Compos. Commun. doi: 10.1016/j.coco.2018.04.009 – volume: 149 start-page: 582 year: 2017 ident: ref_10 article-title: A Review on New Bio-Based Constituents for Natural Fiber-Polymer Composites publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.02.132 – volume: 2445 start-page: 56 year: 2014 ident: ref_22 article-title: Laboratory Investigation of Biochar-Modified Asphalt Mixture publication-title: Transp. Res. Rec. J. Transp. Res. Board. doi: 10.3141/2445-07 – ident: ref_25 – volume: 39 start-page: 45 year: 2014 ident: ref_42 article-title: Mechanical and Thermo-Mechanical Behaviors of Sizing-Treated Corn Fiber/Polylactide Composites publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2014.07.014 – volume: 129 start-page: 159 year: 2016 ident: ref_11 article-title: Sustainable Eco–Composites Obtained from Waste Derived Biochar: A Consideration in Performance Properties, Production Costs, and Environmental Impact publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.04.088 – volume: 16 start-page: 138 year: 2020 ident: ref_49 article-title: Insights Acerca Do Uso de Finos de Carvão Vegetal Para Geração de Bioenergia publication-title: Agropecuária Científica No Semiárido doi: 10.30969/acsa.v16i3.1272 – ident: ref_9 doi: 10.3390/polym13223953 – ident: ref_40 doi: 10.1016/j.cclet.2023.108817 – volume: 5 start-page: 88445 year: 2015 ident: ref_33 article-title: Microencapsulation of Ammonium Polyphosphate with Melamine-Formaldehyde-Tris(2-Hydroxyethyl)Isocyanurate Resin and Its Flame Retardancy in Polypropylene publication-title: RSC Adv. doi: 10.1039/C5RA14586D – volume: 150 start-page: 105962 year: 2021 ident: ref_55 article-title: Fabrication, Characterization, Morphological and Thermal Investigations of Functionalized Multi-Walled Carbon Nanotubes Reinforced Epoxy Nanocomposites publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2020.105962 – volume: 738 start-page: 139910 year: 2020 ident: ref_32 article-title: Production of High-Density Polyethylene Biocomposites from Rice Husk Biochar: Effects of Varying Pyrolysis Temperature publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139910 – volume: 205 start-page: 108483 year: 2021 ident: ref_2 article-title: Influence of Plasticizers on Thermal and Mechanical Properties of Biocomposite Filaments Made from Lignin and Polylactic Acid for 3D Printing publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108483 – volume: 107 start-page: 315 year: 2018 ident: ref_17 article-title: Compatibilization Improves Physico-Mechanical Properties of Biodegradable Biobased Polymer Composites publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.01.011 – volume: 246 start-page: 57 year: 2017 ident: ref_34 article-title: The Thermochemical Conversion of Non-Lignocellulosic Biomass to Form Biochar: A Review on Characterizations and Mechanism Elucidation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.029 – ident: ref_23 doi: 10.3390/polym15142977 |
SSID | ssj0000456617 |
Score | 2.3243845 |
Snippet | Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of... |
SourceID | pubmedcentral proquest gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3788 |
SubjectTerms | Analysis Biomedical materials Charcoal Composite materials Damage prevention Discoloration Emission standards Emissions Exposure Flexural strength Fourier transforms Global warming Greenhouse gases Infrared analysis Infrared spectroscopy Innovations Mechanical properties Modulus of elasticity Morphology Photoelectrons Porosity Pyrolysis Radiation Scanning electron microscopy Spectrum analysis Temperature Tensile strength X ray photoelectron spectroscopy X-ray spectroscopy |
Title | Photoluminous Response of Biocomposites Produced with Charcoal |
URI | https://www.proquest.com/docview/2869548907 https://www.proquest.com/docview/2870145632 https://pubmed.ncbi.nlm.nih.gov/PMC10536408 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60PehFfGK0lgiiF4PZ7CPJRbHSB4JSikJvIdluaKEm1daD_96ZNK22oMdkN5tldnbnud8AXAgRejpJmKN8Ix3hu8IJgzR2BkzIlDP8SNN956dn1XkVj33ZLx1u0zKtcnEmFgf1INfkI7_xAkXYZGjL3U3eHaoaRdHVsoTGJlQZShri8KDVXvpYSF1BCT2H1uRo3d9M8vHXGwq5AkZ9RRStH8jrSZK_pE5rF3ZKddG-n6_vHmyYbB-2HhZV2g7gtjvMZ3TCjAhr1e7NU16Nnad2Y5RTwjhlZZmp3S2gXc3AJs-rTVF2ncfjQ3htNV8eOk5ZE8HRgnszh-Dc44RJPwlFMBBGpFKZRCkZ-2jIaJlwN-VhgkRONcfXiseSm5AgeNAU9Aw_gkqWZ-YYbCYD14jYUPAVpRILcFjX-J420kt5qiy4XpAn0iVgONWtGEdoOBA1oxVqWnC57D6ZI2X81fGKaB3RDsLxdFxeBMBZERZVdO-jvHRRD3ItqC2WIyq31jT6YQQLzpfNSHWKdMSZQWJHFL1FZlPcsyBYWcbl1AhWe7UlGw0LeG3UOLkSbnDy_99PYZtKz1PuCFM1qMw-Ps0ZKiizpF5wYR2qjeZzt4dP7T77BtVw6h8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMEChiJx4WoiV9JDgW1hWVLH6pQK_XmJt6JutKSLOwi1D_V38hMHlu2Etx6jRPHGo89M57P3wC81jqTviji0CZoQp1EOszSMg9HsTaliukjz_edDw7t8ER_PTWnK3DZ34VhWGW_JzYb9aj2fEa-IVPL3GQUy32c_gi5ahRnV_sSGq1a7OHFbwrZZpu7n2h-30g5-Hy8Mwy7qgKh10rOQyZEz4vYJEWm05FGXRqLhbUmTygU8KZQUamygoZZekWPrcqNwoxJbCiYkqio31twWyuVMYQwHXxZnOmwe0QeQUvlSe3RxrSeXHwno9rQti-ZvusG4Doo8y8rN7gHdzv3VGy1-nQfVrB6AGs7fVW4h_Dh6Lye8442Zm5X8a2F2KKoS7E9rhmgzigwnImjhkoWR4JPegVn9X2dTx7ByY1I6zGsVnWFT0DEJo1Q58jJXrKCcUrdRphIj0aWqrQBvO_F43xHUM51MiaOAhWWpluSZgBvF69PW2aOf734jmXteMVSfz7vLh7QqJj7ym0lZJ8j8ruiANb76XDdUp65K8UL4NWimaTOmZW8QhK242wxKbdVMoB0aRoXQ2Ma7-WWanze0HmTh6usjtKn___7S1gbHh_su_3dw71ncIfL3jNuJbbrsDr_-Qufk3M0L140Ging7KaXwB_aniL_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVF4i0BYj8bgQreNXkgNUpWVpKVQrRKXe3MRrqystycIuQv1r_Dpm8ljYSnDrNU4c6_PYM-MZfwPwTKlcuLJMYpN6HauUqzjPQhGPE6WDTPAjR_edPx2bgxP14VSfrsGv_i4MpVX2e2KzUY9rR2fkA5EZ4iZDX24QurSI0f5wZ_YtpgpSFGnty2m0InLkL36i-zZ_fbiPc_1ciOG7L3sHcVdhIHZKikVM5OhFmei0zFU2Vl4FbXxpjC5SdAucLiUPMi9xyMFJfGxkoaXPidAGHSvhJfZ7Da6nMuNUPSEbvl-e75CphNZBS-spZc4Hs3p68RUVbEPhvqIGLyuDywmaf2m84Qbc7kxVttvK1h1Y89VduLnXV4i7B29G5_WCdrcJ8byyz226rWd1YG8nNSWrU0aYn7NRQyvrx4xOfRlF-F1dTO_DyZWg9QDWq7ryD4ElOuNeFZ4Cv6gRkwy75T4VzmsRZDARvOrhsa4jK6eaGVOLTguhaVfQjODF8vVZy9LxrxdfEtaWVi_254ruEgKOiniw7G6KupqjDcYj2Oynw3bLem7_CGEET5fNiDpFWYrKI9iWIsco6EaKCLKVaVwOjSi9V1uqyXlD7Y3WrjSKZ4_-__cncAOF3348PD56DLcE2l2UwpKYTVhffP_ht9BOWpTbjUAyOLvqFfAbEi8nLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoluminous+Response+of+Biocomposites+Produced+with+Charcoal&rft.jtitle=Polymers&rft.au=Delatorre%2C+Fab%C3%ADola+Ma&rft.au=Cupe&rft.au=Pereira%2C+Allana+Katiussya+Silva&rft.au=de+Souza%2C+Elias+Costa&rft.date=2023-09-16&rft.pub=MDPI+AG&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=15&rft.issue=18&rft_id=info:doi/10.3390%2Fpolym15183788&rft.externalDocID=A771803550 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |