Development of Novel Breast Cancer Recurrence Prediction Model Using Support Vector Machine

The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after br...

Full description

Saved in:
Bibliographic Details
Published inJournal of breast cancer Vol. 15; no. 2; pp. 230 - 238
Main Authors Kim, Woojae, Kim, Ku Sang, Lee, Jeong Eon, Noh, Dong-Young, Kim, Sung-Won, Jung, Yong Sik, Park, Man Young, Park, Rae Woong
Format Journal Article
LanguageEnglish
Published Korea (South) Korean Breast Cancer Society 01.06.2012
한국유방암학회
Subjects
Online AccessGet full text
ISSN1738-6756
2092-9900
2092-9900
DOI10.4048/jbc.2012.15.2.230

Cover

Abstract The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models. Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines. The SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89). As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/).
AbstractList The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models.PURPOSEThe prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models.Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines.METHODSData on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines.The SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89).RESULTSThe SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89).As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/).CONCLUSIONAs the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/).
The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models. Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines. The SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89). As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/).
Purpose: The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models. Methods: Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines. Results: The SVM-based prediction model, named ‘breast cancer recurrence prediction based on SVM (BCRSVM),’ proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89). Conclusion: As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/). KCI Citation Count: 70
Author Kim, Ku Sang
Park, Rae Woong
Noh, Dong-Young
Kim, Sung-Won
Jung, Yong Sik
Kim, Woojae
Lee, Jeong Eon
Park, Man Young
AuthorAffiliation 2 Department of Surgery, Ajou University School of Medicine, Suwon, Korea
3 Department of Surgery, Samsung Medical Center, Seoul, Korea
4 Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
1 Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
AuthorAffiliation_xml – name: 1 Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
– name: 4 Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
– name: 3 Department of Surgery, Samsung Medical Center, Seoul, Korea
– name: 2 Department of Surgery, Ajou University School of Medicine, Suwon, Korea
Author_xml – sequence: 1
  givenname: Woojae
  surname: Kim
  fullname: Kim, Woojae
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
– sequence: 2
  givenname: Ku Sang
  surname: Kim
  fullname: Kim, Ku Sang
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea., Department of Surgery, Ajou University School of Medicine, Suwon, Korea
– sequence: 3
  givenname: Jeong Eon
  surname: Lee
  fullname: Lee, Jeong Eon
  organization: Department of Surgery, Samsung Medical Center, Seoul, Korea
– sequence: 4
  givenname: Dong-Young
  surname: Noh
  fullname: Noh, Dong-Young
  organization: Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
– sequence: 5
  givenname: Sung-Won
  surname: Kim
  fullname: Kim, Sung-Won
  organization: Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
– sequence: 6
  givenname: Yong Sik
  surname: Jung
  fullname: Jung, Yong Sik
  organization: Department of Surgery, Ajou University School of Medicine, Suwon, Korea
– sequence: 7
  givenname: Man Young
  surname: Park
  fullname: Park, Man Young
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
– sequence: 8
  givenname: Rae Woong
  surname: Park
  fullname: Park, Rae Woong
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22807942$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001671182$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1UUtv1DAQtlAR3RZ-ABfkI5cEPxI_LkhlaaFSW1BpuXCwvM6kdZu1g51U4t_j7VIoSJxmRv4envn20E6IARB6SUndkEa9uVm5mhHKatrWrGacPEELRjSrtCZkBy2o5KoSshW7aC_nG0JEw6V8hnYZU0Tqhi3Qt_dwB0Mc1xAmHHt8FsuI3yWwecJLGxwkfA5uTglKjz8n6LybfAz4NHYFeZl9uMJf5nGMacJfwU0x4VPrrn2A5-hpb4cML37VfXR5dHix_FidfPpwvDw4qVzD2VQpxQg4JkTHCeFMg1NUEKpJV_7PVh0DYcWKik5Da1XHeyttyzkHTnhZFPg-er3VDak3t86baP19vYrmNpmD84tj02ihKCvQt1voOK_W0LmydbKDGZNf2_Tjnvj3S_DXRebOcK5b2ag_XmOK32fIk1n77GAYbIA4Z0MJk4SrhuoCffXY67fJw_ELQG4BLsWcE_TG-clujlus_VC0zCZmU2I2m5gNbQ0zJebCpP8wH8T_z_kJgTOq1Q
CitedBy_id crossref_primary_10_3389_fonc_2021_576007
crossref_primary_10_1111_cbdd_13672
crossref_primary_10_1186_s12885_019_5442_6
crossref_primary_10_7759_cureus_11740
crossref_primary_10_4258_hir_2016_22_2_89
crossref_primary_10_1007_s00432_023_05337_2
crossref_primary_10_1007_s11042_022_13550_3
crossref_primary_10_14338_IJPT_18_00027_1
crossref_primary_10_1016_j_joms_2020_06_015
crossref_primary_10_1016_j_matpr_2021_03_625
crossref_primary_10_1016_j_csbj_2016_11_004
crossref_primary_10_1177_20552076241297002
crossref_primary_10_1055_s_0042_1751043
crossref_primary_10_1016_j_csbj_2014_11_005
crossref_primary_10_1038_s41598_021_86115_3
crossref_primary_10_1186_1752_0509_7_S2_S11
crossref_primary_10_1007_s00500_023_08359_7
crossref_primary_10_1200_CCI_19_00133
crossref_primary_10_1049_iet_syb_2018_5060
crossref_primary_10_1016_j_eswa_2020_113253
crossref_primary_10_1016_j_pbiomolbio_2019_11_012
crossref_primary_10_1049_iet_syb_2016_0033
crossref_primary_10_1002_cam4_6198
crossref_primary_10_2196_19069
crossref_primary_10_1007_s11831_023_09886_0
crossref_primary_10_1136_bmjopen_2013_004007
crossref_primary_10_3390_s24113289
crossref_primary_10_1177_09622802211072496
crossref_primary_10_1371_journal_pone_0221202
crossref_primary_10_1016_j_artmed_2018_06_002
crossref_primary_10_2196_43838
crossref_primary_10_1515_mr_2021_0026
crossref_primary_10_1016_j_fcij_2018_11_002
crossref_primary_10_1002_cam4_2049
crossref_primary_10_1038_s41598_020_67604_3
crossref_primary_10_1016_j_cmpb_2023_107401
crossref_primary_10_1186_s12957_018_1489_0
crossref_primary_10_1016_j_inffus_2023_102207
crossref_primary_10_3390_cancers13205087
crossref_primary_10_3390_fi14050153
crossref_primary_10_1155_2022_5761815
crossref_primary_10_1145_2988544
crossref_primary_10_1016_j_ejor_2017_12_001
crossref_primary_10_1016_j_measurement_2021_109442
crossref_primary_10_1186_s12918_018_0615_5
crossref_primary_10_1186_s41512_022_00128_8
crossref_primary_10_3390_jcm10122610
crossref_primary_10_3390_cancers15092443
crossref_primary_10_25046_aj010504
crossref_primary_10_1002_cam4_5041
crossref_primary_10_1200_CCI_23_00049
crossref_primary_10_1371_journal_pone_0156403
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_1371_journal_pone_0235490
crossref_primary_10_1038_s41598_017_08240_2
crossref_primary_10_1016_j_ijmedinf_2016_11_001
crossref_primary_10_1038_s41598_020_75563_y
crossref_primary_10_1186_s12967_021_02955_7
crossref_primary_10_1016_j_imu_2020_100408
crossref_primary_10_1007_s11277_022_09673_3
crossref_primary_10_2139_ssrn_3354469
crossref_primary_10_1007_s00432_023_05388_5
crossref_primary_10_1177_20552076231207203
crossref_primary_10_2147_CMAR_S346871
crossref_primary_10_3390_medicines5040131
crossref_primary_10_1016_j_jbi_2022_104026
crossref_primary_10_17650_1994_4098_2021_17_2_14_22
crossref_primary_10_37349_etat_2022_00113
crossref_primary_10_1016_j_health_2023_100153
crossref_primary_10_21032_jhis_2022_47_1_35
crossref_primary_10_1093_jnci_djw314
crossref_primary_10_1016_j_compbiomed_2021_104266
crossref_primary_10_1016_j_jksuci_2018_01_002
crossref_primary_10_1371_journal_pone_0312036
crossref_primary_10_3390_jpm12091496
crossref_primary_10_1109_ACCESS_2021_3079121
crossref_primary_10_1109_RBME_2018_2864254
crossref_primary_10_1007_s11831_021_09679_3
crossref_primary_10_1016_j_bone_2018_04_020
crossref_primary_10_3390_ijms22094394
crossref_primary_10_1038_s41598_020_58722_z
crossref_primary_10_3390_diagnostics12112826
crossref_primary_10_47248_chp2401020011
crossref_primary_10_1002_cam4_5477
crossref_primary_10_4018_JCIT_2019070106
crossref_primary_10_1186_s12911_023_02224_1
crossref_primary_10_3389_fonc_2020_01353
crossref_primary_10_1515_med_2021_0282
crossref_primary_10_1155_2022_9173913
crossref_primary_10_1186_s12885_019_5703_4
crossref_primary_10_3389_fonc_2021_596364
crossref_primary_10_3389_fdata_2021_568352
crossref_primary_10_1002_cam4_2811
crossref_primary_10_1007_s00521_020_05204_y
crossref_primary_10_1186_s40364_017_0082_y
crossref_primary_10_1038_s41598_020_60235_8
crossref_primary_10_1371_journal_pone_0260517
crossref_primary_10_1186_s43046_024_00222_6
crossref_primary_10_1016_j_adro_2020_07_007
crossref_primary_10_1109_TCBB_2016_2621042
crossref_primary_10_3390_ijms23031861
Cites_doi 10.1093/jjco/hye056
10.1056/NEJMoa021967
10.1093/jnci/djj329
10.1162/neco.1989.1.2.281
10.4048/jbc.2011.14.1.33
10.1093/jjco/hyp195
10.1056/NEJMra0801289
10.1016/S0933-3657(03)00033-2
10.1016/S0933-3657(02)00086-6
10.1016/j.ctrv.2008.04.002
10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D
10.1007/s10549-005-9013-y
10.1002/cncr.20665
10.1093/annonc/mdm271
10.1093/annonc/mdp322
10.1245/s10434-009-0334-7
10.1109/TNN.2008.2005601
10.1023/A:1012487302797
10.1093/annonc/mdg256
10.1016/S0925-2312(03)00431-4
10.1007/BF01840834
10.1200/JCO.2001.19.4.980
10.1186/1471-2407-8-339
10.1200/JCO.2005.06.178
10.1046/j.1365-2168.2002.02113.x
10.1080/01621459.1983.10477959
10.1093/bioinformatics/16.10.906
ContentType Journal Article
Copyright 2012 Korean Breast Cancer Society. All rights reserved. 2012
Copyright_xml – notice: 2012 Korean Breast Cancer Society. All rights reserved. 2012
DBID AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.4048/jbc.2012.15.2.230
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2092-9900
EndPage 238
ExternalDocumentID oai_kci_go_kr_ARTI_496812
PMC3395748
22807942
10_4048_jbc_2012_15_2_230
Genre Journal Article
GroupedDBID ---
5-W
5GY
8JR
8XY
9ZL
AAYXX
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CITATION
DIK
DU5
EF.
GROUPED_DOAJ
HYE
KQ8
M48
O5R
O5S
PGMZT
RPM
NPM
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c432t-8820ec266d300329ec8160190d1732bd2e6a6b16d9e5a8d3fa7a5333e303990e3
IEDL.DBID M48
ISSN 1738-6756
2092-9900
IngestDate Tue Nov 21 21:30:10 EST 2023
Thu Aug 21 14:01:44 EDT 2025
Fri Jul 11 11:13:58 EDT 2025
Thu Jan 02 22:10:13 EST 2025
Thu Apr 24 22:51:06 EDT 2025
Tue Jul 01 01:56:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Recurrence
Breast neoplasms
Neural networks
Artificial intelligence
Risk factors
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-8820ec266d300329ec8160190d1732bd2e6a6b16d9e5a8d3fa7a5333e303990e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
G704-SER000010237.2012.15.2.018
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.4048/jbc.2012.15.2.230
PMID 22807942
PQID 1027038419
PQPubID 23479
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_496812
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3395748
proquest_miscellaneous_1027038419
pubmed_primary_22807942
crossref_citationtrail_10_4048_jbc_2012_15_2_230
crossref_primary_10_4048_jbc_2012_15_2_230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Journal of breast cancer
PublicationTitleAlternate J Breast Cancer
PublicationYear 2012
Publisher Korean Breast Cancer Society
한국유방암학회
Publisher_xml – name: Korean Breast Cancer Society
– name: 한국유방암학회
References Iwamoto (10.4048/jbc.2012.15.2.230_ref5) 2001; 31
Boyages (10.4048/jbc.2012.15.2.230_ref7) 2002; 89
van de Vijver (10.4048/jbc.2012.15.2.230_ref10) 2002; 347
Olivotto (10.4048/jbc.2012.15.2.230_ref18) 2005; 23
Lisboa (10.4048/jbc.2012.15.2.230_ref17) 2003; 28
Aitkin (10.4048/jbc.2012.15.2.230_ref19) 1983; 78
Goldhirsch (10.4048/jbc.2012.15.2.230_ref3) 2007; 18
Goldhirsch (10.4048/jbc.2012.15.2.230_ref4) 2009; 20
Ravdin (10.4048/jbc.2012.15.2.230_ref13) 2001; 19
Butte (10.4048/jbc.2012.15.2.230_ref27) 2000; 5
Ishitobi (10.4048/jbc.2012.15.2.230_ref28) 2010; 40
Jerez (10.4048/jbc.2012.15.2.230_ref14) 2005; 94
Sun (10.4048/jbc.2012.15.2.230_ref29) 2004; 101
Na (10.4048/jbc.2012.15.2.230_ref1) 2011; 14
Meyer (10.4048/jbc.2012.15.2.230_ref21) 2003; 55
Moody (10.4048/jbc.2012.15.2.230_ref25) 1989; 1
Roila (10.4048/jbc.2012.15.2.230_ref8) 2003; 14
Jerez-Aragones (10.4048/jbc.2012.15.2.230_ref15) 2003; 27
Estévez (10.4048/jbc.2012.15.2.230_ref24) 2009; 20
Muñoz (10.4048/jbc.2012.15.2.230_ref2) 2008; 34
Jung (10.4048/jbc.2012.15.2.230_ref6) 2009; 16
Galea (10.4048/jbc.2012.15.2.230_ref12) 1992; 22
Buyse (10.4048/jbc.2012.15.2.230_ref9) 2006; 98
Tutt (10.4048/jbc.2012.15.2.230_ref30) 2008; 8
Cortes (10.4048/jbc.2012.15.2.230_ref20) 1995; 20
Sargent (10.4048/jbc.2012.15.2.230_ref16) 2001; 91
Furey (10.4048/jbc.2012.15.2.230_ref23) 2000; 16
Guyon (10.4048/jbc.2012.15.2.230_ref22) 2002; 46
Sotiriou (10.4048/jbc.2012.15.2.230_ref11) 2009; 360
Kuncheva (10.4048/jbc.2012.15.2.230_ref26) 2004
19219507 - Ann Surg Oncol. 2009 May;16(5):1112-21
11181660 - J Clin Oncol. 2001 Feb 15;19(4):980-91
19228622 - N Engl J Med. 2009 Feb 19;360(8):790-800
12850311 - Artif Intell Med. 2003 May;28(1):1-25
11309761 - Cancer. 2001 Apr 15;91(8 Suppl):1636-42
11120680 - Bioinformatics. 2000 Oct;16(10):906-14
12490681 - N Engl J Med. 2002 Dec 19;347(25):1999-2009
15837986 - J Clin Oncol. 2005 Apr 20;23(12):2716-25
20110242 - Jpn J Clin Oncol. 2010 Jun;40(6):508-12
10902190 - Pac Symp Biocomput. 2000;:418-29
18922644 - Cancer Treat Rev. 2008 Dec;34(8):701-9
17675394 - Ann Oncol. 2007 Jul;18(7):1133-44
21847392 - J Breast Cancer. 2011 Mar;14(1):33-8
12473391 - Artif Intell Med. 2003 Jan;27(1):45-63
1391987 - Breast Cancer Res Treat. 1992;22(3):207-19
15517588 - Cancer. 2004 Dec 1;101(11):2516-22
16254686 - Breast Cancer Res Treat. 2005 Dec;94(3):265-72
19535820 - Ann Oncol. 2009 Aug;20(8):1319-29
12796020 - Ann Oncol. 2003 Jun;14(6):843-8
19025599 - BMC Cancer. 2008;8:339
16954471 - J Natl Cancer Inst. 2006 Sep 6;98(17):1183-92
19150792 - IEEE Trans Neural Netw. 2009 Feb;20(2):189-201
11463803 - Jpn J Clin Oncol. 2001 Jun;31(6):259-62
12027994 - Br J Surg. 2002 Jun;89(6):789-96
References_xml – volume: 31
  start-page: 259
  year: 2001
  ident: 10.4048/jbc.2012.15.2.230_ref5
  publication-title: Jpn J Clin Oncol
  doi: 10.1093/jjco/hye056
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.4048/jbc.2012.15.2.230_ref20
  publication-title: Mach Learn
– volume: 347
  start-page: 1999
  year: 2002
  ident: 10.4048/jbc.2012.15.2.230_ref10
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa021967
– volume: 5
  start-page: 415
  year: 2000
  ident: 10.4048/jbc.2012.15.2.230_ref27
  publication-title: Pac Symp Biocomput
– volume: 98
  start-page: 1183
  year: 2006
  ident: 10.4048/jbc.2012.15.2.230_ref9
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djj329
– volume: 1
  start-page: 281
  year: 1989
  ident: 10.4048/jbc.2012.15.2.230_ref25
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.2.281
– volume: 14
  start-page: 33
  year: 2011
  ident: 10.4048/jbc.2012.15.2.230_ref1
  publication-title: J Breast Cancer
  doi: 10.4048/jbc.2011.14.1.33
– volume: 40
  start-page: 508
  year: 2010
  ident: 10.4048/jbc.2012.15.2.230_ref28
  publication-title: Jpn J Clin Oncol
  doi: 10.1093/jjco/hyp195
– volume: 360
  start-page: 790
  year: 2009
  ident: 10.4048/jbc.2012.15.2.230_ref11
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0801289
– start-page: 1214
  volume-title: Using diversity in cluster ensembles
  year: 2004
  ident: 10.4048/jbc.2012.15.2.230_ref26
– volume: 28
  start-page: 1
  year: 2003
  ident: 10.4048/jbc.2012.15.2.230_ref17
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(03)00033-2
– volume: 27
  start-page: 45
  year: 2003
  ident: 10.4048/jbc.2012.15.2.230_ref15
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(02)00086-6
– volume: 34
  start-page: 701
  year: 2008
  ident: 10.4048/jbc.2012.15.2.230_ref2
  publication-title: Cancer Treat Rev
  doi: 10.1016/j.ctrv.2008.04.002
– volume: 91
  start-page: 1636
  issue: 8 Suppl
  year: 2001
  ident: 10.4048/jbc.2012.15.2.230_ref16
  publication-title: Cancer
  doi: 10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D
– volume: 94
  start-page: 265
  year: 2005
  ident: 10.4048/jbc.2012.15.2.230_ref14
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-005-9013-y
– volume: 101
  start-page: 2516
  year: 2004
  ident: 10.4048/jbc.2012.15.2.230_ref29
  publication-title: Cancer
  doi: 10.1002/cncr.20665
– volume: 18
  start-page: 1133
  year: 2007
  ident: 10.4048/jbc.2012.15.2.230_ref3
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdm271
– volume: 20
  start-page: 1319
  year: 2009
  ident: 10.4048/jbc.2012.15.2.230_ref4
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdp322
– volume: 16
  start-page: 1112
  year: 2009
  ident: 10.4048/jbc.2012.15.2.230_ref6
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-009-0334-7
– volume: 20
  start-page: 189
  year: 2009
  ident: 10.4048/jbc.2012.15.2.230_ref24
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005601
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.4048/jbc.2012.15.2.230_ref22
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 14
  start-page: 843
  year: 2003
  ident: 10.4048/jbc.2012.15.2.230_ref8
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdg256
– volume: 55
  start-page: 169
  year: 2003
  ident: 10.4048/jbc.2012.15.2.230_ref21
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00431-4
– volume: 22
  start-page: 207
  year: 1992
  ident: 10.4048/jbc.2012.15.2.230_ref12
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/BF01840834
– volume: 19
  start-page: 980
  year: 2001
  ident: 10.4048/jbc.2012.15.2.230_ref13
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2001.19.4.980
– volume: 8
  start-page: 339
  year: 2008
  ident: 10.4048/jbc.2012.15.2.230_ref30
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-8-339
– volume: 23
  start-page: 2716
  year: 2005
  ident: 10.4048/jbc.2012.15.2.230_ref18
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.06.178
– volume: 89
  start-page: 789
  year: 2002
  ident: 10.4048/jbc.2012.15.2.230_ref7
  publication-title: Br J Surg
  doi: 10.1046/j.1365-2168.2002.02113.x
– volume: 78
  start-page: 264
  year: 1983
  ident: 10.4048/jbc.2012.15.2.230_ref19
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1983.10477959
– volume: 16
  start-page: 906
  year: 2000
  ident: 10.4048/jbc.2012.15.2.230_ref23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– reference: 16254686 - Breast Cancer Res Treat. 2005 Dec;94(3):265-72
– reference: 15517588 - Cancer. 2004 Dec 1;101(11):2516-22
– reference: 12796020 - Ann Oncol. 2003 Jun;14(6):843-8
– reference: 20110242 - Jpn J Clin Oncol. 2010 Jun;40(6):508-12
– reference: 10902190 - Pac Symp Biocomput. 2000;:418-29
– reference: 16954471 - J Natl Cancer Inst. 2006 Sep 6;98(17):1183-92
– reference: 12490681 - N Engl J Med. 2002 Dec 19;347(25):1999-2009
– reference: 15837986 - J Clin Oncol. 2005 Apr 20;23(12):2716-25
– reference: 19219507 - Ann Surg Oncol. 2009 May;16(5):1112-21
– reference: 12473391 - Artif Intell Med. 2003 Jan;27(1):45-63
– reference: 11463803 - Jpn J Clin Oncol. 2001 Jun;31(6):259-62
– reference: 19535820 - Ann Oncol. 2009 Aug;20(8):1319-29
– reference: 19150792 - IEEE Trans Neural Netw. 2009 Feb;20(2):189-201
– reference: 1391987 - Breast Cancer Res Treat. 1992;22(3):207-19
– reference: 12027994 - Br J Surg. 2002 Jun;89(6):789-96
– reference: 17675394 - Ann Oncol. 2007 Jul;18(7):1133-44
– reference: 12850311 - Artif Intell Med. 2003 May;28(1):1-25
– reference: 11181660 - J Clin Oncol. 2001 Feb 15;19(4):980-91
– reference: 18922644 - Cancer Treat Rev. 2008 Dec;34(8):701-9
– reference: 19228622 - N Engl J Med. 2009 Feb 19;360(8):790-800
– reference: 11120680 - Bioinformatics. 2000 Oct;16(10):906-14
– reference: 21847392 - J Breast Cancer. 2011 Mar;14(1):33-8
– reference: 19025599 - BMC Cancer. 2008;8:339
– reference: 11309761 - Cancer. 2001 Apr 15;91(8 Suppl):1636-42
SSID ssj0064377
Score 2.288243
Snippet The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to...
Purpose: The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 230
SubjectTerms Original
일반외과학
Title Development of Novel Breast Cancer Recurrence Prediction Model Using Support Vector Machine
URI https://www.ncbi.nlm.nih.gov/pubmed/22807942
https://www.proquest.com/docview/1027038419
https://pubmed.ncbi.nlm.nih.gov/PMC3395748
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001671182
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Breast Cancer, 2012, 15(2), 60, pp.230-238
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86X3wRxa_5MSL4JHQsH02bJxFRVJhPDgQfQtOmc262s9tE_3vv2m1sMn0qpfkgd0nvl9zld4Sc61RopUPrRUHoPClT7Vmb-h4XSiQtbnUYoUe3_ajuOvLh2X9eI7P0VlMBjlZu7TCfVKcYNL8-vi9hwQN-bUqknX2zyEXIeJP5TY6RzetkAwyTwr1YW86dCuiiCirH5upqSAyM5DBa8iUrtZ4V6SoA-juOcsEw3W6TrSmipFfVFNghay7bJS8LwUA0T2mWwyu1GIE-pjFquqAFHrWXl_3osEB_DeqIlqlxKIbDd-loMkTJ0M_yaJ--l4GXbo90bm-eru-8aR4FL5aCjz0A0S0XgyVOBKxhrl0cMoV3yBMWCG4T7lSkLFOJdn4UJiKNgghQoHBg3sBYObFPalmeuUNCHVPKOR7bQEfSJqEFAGRTax0TshVbv05aM7mZeEoyjrkuBgY2Gyh1A1I3KHXDfMMNSL1OLuZVhhXDxn-Fz0AZph_3DPJi47Obm35hAP3fG6mRTQ3KzFRlYK2gAyTKXD4ZQbMcfnChZLpODirVzbucab5OgiWlzgtgf8tfst5rycct0Ncpw6M_2zwmmziKKsLshNTGxcSdApYZ20Z5BtAo5-kP-oTyqA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+novel+breast+cancer+recurrence+prediction+model+using+support+vector+machine&rft.jtitle=Journal+of+breast+cancer&rft.au=Kim%2C+Woojae&rft.au=Kim%2C+Ku+Sang&rft.au=Lee%2C+Jeong+Eon&rft.au=Noh%2C+Dong-Young&rft.date=2012-06-01&rft.eissn=2092-9900&rft.volume=15&rft.issue=2&rft.spage=230&rft_id=info:doi/10.4048%2Fjbc.2012.15.2.230&rft_id=info%3Apmid%2F22807942&rft.externalDocID=22807942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-6756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-6756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-6756&client=summon