Development of Novel Breast Cancer Recurrence Prediction Model Using Support Vector Machine
The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after br...
Saved in:
Published in | Journal of breast cancer Vol. 15; no. 2; pp. 230 - 238 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Korean Breast Cancer Society
01.06.2012
한국유방암학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-6756 2092-9900 2092-9900 |
DOI | 10.4048/jbc.2012.15.2.230 |
Cover
Abstract | The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models.
Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines.
The SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89).
As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/). |
---|---|
AbstractList | The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models.PURPOSEThe prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models.Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines.METHODSData on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines.The SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89).RESULTSThe SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89).As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/).CONCLUSIONAs the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/). The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models. Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines. The SVM-based prediction model, named 'breast cancer recurrence prediction based on SVM (BCRSVM),' proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89). As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/). Purpose: The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to construct a novel prognostic model based on support vector machine (SVM) for the prediction of breast cancer recurrence within 5 years after breast cancer surgery in the Korean population, and to compare the predictive performance of the model with the previously established models. Methods: Data on 679 patients, who underwent breast cancer surgery between 1994 and 2002, were collected retrospectively from a Korean tertiary teaching hospital. The following variables were selected as independent variables for the prognostic model, by using the established medical knowledge and univariate analysis: histological grade, tumor size, number of metastatic lymph node, estrogen receptor, lymphovascular invasion, local invasion of tumor, and number of tumors. Three prediction algorithms, with each using SVM, artificial neural network and Cox-proportional hazard regression model, were constructed and compared with one another. The resultant and most effective model based on SVM was compared with previously established prognostic models, which included Adjuvant! Online, Nottingham prognostic index (NPI), and St. Gallen guidelines. Results: The SVM-based prediction model, named ‘breast cancer recurrence prediction based on SVM (BCRSVM),’ proposed herein outperformed other prognostic models (area under the curve=0.85, 0.71, 0.70, respectively for the BCRSVM, Adjuvant! Online, and NPI). The BCRSVM evidenced substantially high sensitivity (0.89), specificity (0.73), positive predictive values (0.75), and negative predictive values (0.89). Conclusion: As the selected prognostic factors can be easily obtained in clinical practice, the proposed model might prove useful in the prediction of breast cancer recurrence. The prediction model is freely available in the website (http://ami.ajou.ac.kr/bcr/). KCI Citation Count: 70 |
Author | Kim, Ku Sang Park, Rae Woong Noh, Dong-Young Kim, Sung-Won Jung, Yong Sik Kim, Woojae Lee, Jeong Eon Park, Man Young |
AuthorAffiliation | 2 Department of Surgery, Ajou University School of Medicine, Suwon, Korea 3 Department of Surgery, Samsung Medical Center, Seoul, Korea 4 Department of Surgery, Seoul National University College of Medicine, Seoul, Korea 1 Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea – name: 4 Department of Surgery, Seoul National University College of Medicine, Seoul, Korea – name: 3 Department of Surgery, Samsung Medical Center, Seoul, Korea – name: 2 Department of Surgery, Ajou University School of Medicine, Suwon, Korea |
Author_xml | – sequence: 1 givenname: Woojae surname: Kim fullname: Kim, Woojae organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea – sequence: 2 givenname: Ku Sang surname: Kim fullname: Kim, Ku Sang organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea., Department of Surgery, Ajou University School of Medicine, Suwon, Korea – sequence: 3 givenname: Jeong Eon surname: Lee fullname: Lee, Jeong Eon organization: Department of Surgery, Samsung Medical Center, Seoul, Korea – sequence: 4 givenname: Dong-Young surname: Noh fullname: Noh, Dong-Young organization: Department of Surgery, Seoul National University College of Medicine, Seoul, Korea – sequence: 5 givenname: Sung-Won surname: Kim fullname: Kim, Sung-Won organization: Department of Surgery, Seoul National University College of Medicine, Seoul, Korea – sequence: 6 givenname: Yong Sik surname: Jung fullname: Jung, Yong Sik organization: Department of Surgery, Ajou University School of Medicine, Suwon, Korea – sequence: 7 givenname: Man Young surname: Park fullname: Park, Man Young organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea – sequence: 8 givenname: Rae Woong surname: Park fullname: Park, Rae Woong organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22807942$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001671182$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1UUtv1DAQtlAR3RZ-ABfkI5cEPxI_LkhlaaFSW1BpuXCwvM6kdZu1g51U4t_j7VIoSJxmRv4envn20E6IARB6SUndkEa9uVm5mhHKatrWrGacPEELRjSrtCZkBy2o5KoSshW7aC_nG0JEw6V8hnYZU0Tqhi3Qt_dwB0Mc1xAmHHt8FsuI3yWwecJLGxwkfA5uTglKjz8n6LybfAz4NHYFeZl9uMJf5nGMacJfwU0x4VPrrn2A5-hpb4cML37VfXR5dHix_FidfPpwvDw4qVzD2VQpxQg4JkTHCeFMg1NUEKpJV_7PVh0DYcWKik5Da1XHeyttyzkHTnhZFPg-er3VDak3t86baP19vYrmNpmD84tj02ihKCvQt1voOK_W0LmydbKDGZNf2_Tjnvj3S_DXRebOcK5b2ag_XmOK32fIk1n77GAYbIA4Z0MJk4SrhuoCffXY67fJw_ELQG4BLsWcE_TG-clujlus_VC0zCZmU2I2m5gNbQ0zJebCpP8wH8T_z_kJgTOq1Q |
CitedBy_id | crossref_primary_10_3389_fonc_2021_576007 crossref_primary_10_1111_cbdd_13672 crossref_primary_10_1186_s12885_019_5442_6 crossref_primary_10_7759_cureus_11740 crossref_primary_10_4258_hir_2016_22_2_89 crossref_primary_10_1007_s00432_023_05337_2 crossref_primary_10_1007_s11042_022_13550_3 crossref_primary_10_14338_IJPT_18_00027_1 crossref_primary_10_1016_j_joms_2020_06_015 crossref_primary_10_1016_j_matpr_2021_03_625 crossref_primary_10_1016_j_csbj_2016_11_004 crossref_primary_10_1177_20552076241297002 crossref_primary_10_1055_s_0042_1751043 crossref_primary_10_1016_j_csbj_2014_11_005 crossref_primary_10_1038_s41598_021_86115_3 crossref_primary_10_1186_1752_0509_7_S2_S11 crossref_primary_10_1007_s00500_023_08359_7 crossref_primary_10_1200_CCI_19_00133 crossref_primary_10_1049_iet_syb_2018_5060 crossref_primary_10_1016_j_eswa_2020_113253 crossref_primary_10_1016_j_pbiomolbio_2019_11_012 crossref_primary_10_1049_iet_syb_2016_0033 crossref_primary_10_1002_cam4_6198 crossref_primary_10_2196_19069 crossref_primary_10_1007_s11831_023_09886_0 crossref_primary_10_1136_bmjopen_2013_004007 crossref_primary_10_3390_s24113289 crossref_primary_10_1177_09622802211072496 crossref_primary_10_1371_journal_pone_0221202 crossref_primary_10_1016_j_artmed_2018_06_002 crossref_primary_10_2196_43838 crossref_primary_10_1515_mr_2021_0026 crossref_primary_10_1016_j_fcij_2018_11_002 crossref_primary_10_1002_cam4_2049 crossref_primary_10_1038_s41598_020_67604_3 crossref_primary_10_1016_j_cmpb_2023_107401 crossref_primary_10_1186_s12957_018_1489_0 crossref_primary_10_1016_j_inffus_2023_102207 crossref_primary_10_3390_cancers13205087 crossref_primary_10_3390_fi14050153 crossref_primary_10_1155_2022_5761815 crossref_primary_10_1145_2988544 crossref_primary_10_1016_j_ejor_2017_12_001 crossref_primary_10_1016_j_measurement_2021_109442 crossref_primary_10_1186_s12918_018_0615_5 crossref_primary_10_1186_s41512_022_00128_8 crossref_primary_10_3390_jcm10122610 crossref_primary_10_3390_cancers15092443 crossref_primary_10_25046_aj010504 crossref_primary_10_1002_cam4_5041 crossref_primary_10_1200_CCI_23_00049 crossref_primary_10_1371_journal_pone_0156403 crossref_primary_10_1016_j_semcancer_2021_04_013 crossref_primary_10_1371_journal_pone_0235490 crossref_primary_10_1038_s41598_017_08240_2 crossref_primary_10_1016_j_ijmedinf_2016_11_001 crossref_primary_10_1038_s41598_020_75563_y crossref_primary_10_1186_s12967_021_02955_7 crossref_primary_10_1016_j_imu_2020_100408 crossref_primary_10_1007_s11277_022_09673_3 crossref_primary_10_2139_ssrn_3354469 crossref_primary_10_1007_s00432_023_05388_5 crossref_primary_10_1177_20552076231207203 crossref_primary_10_2147_CMAR_S346871 crossref_primary_10_3390_medicines5040131 crossref_primary_10_1016_j_jbi_2022_104026 crossref_primary_10_17650_1994_4098_2021_17_2_14_22 crossref_primary_10_37349_etat_2022_00113 crossref_primary_10_1016_j_health_2023_100153 crossref_primary_10_21032_jhis_2022_47_1_35 crossref_primary_10_1093_jnci_djw314 crossref_primary_10_1016_j_compbiomed_2021_104266 crossref_primary_10_1016_j_jksuci_2018_01_002 crossref_primary_10_1371_journal_pone_0312036 crossref_primary_10_3390_jpm12091496 crossref_primary_10_1109_ACCESS_2021_3079121 crossref_primary_10_1109_RBME_2018_2864254 crossref_primary_10_1007_s11831_021_09679_3 crossref_primary_10_1016_j_bone_2018_04_020 crossref_primary_10_3390_ijms22094394 crossref_primary_10_1038_s41598_020_58722_z crossref_primary_10_3390_diagnostics12112826 crossref_primary_10_47248_chp2401020011 crossref_primary_10_1002_cam4_5477 crossref_primary_10_4018_JCIT_2019070106 crossref_primary_10_1186_s12911_023_02224_1 crossref_primary_10_3389_fonc_2020_01353 crossref_primary_10_1515_med_2021_0282 crossref_primary_10_1155_2022_9173913 crossref_primary_10_1186_s12885_019_5703_4 crossref_primary_10_3389_fonc_2021_596364 crossref_primary_10_3389_fdata_2021_568352 crossref_primary_10_1002_cam4_2811 crossref_primary_10_1007_s00521_020_05204_y crossref_primary_10_1186_s40364_017_0082_y crossref_primary_10_1038_s41598_020_60235_8 crossref_primary_10_1371_journal_pone_0260517 crossref_primary_10_1186_s43046_024_00222_6 crossref_primary_10_1016_j_adro_2020_07_007 crossref_primary_10_1109_TCBB_2016_2621042 crossref_primary_10_3390_ijms23031861 |
Cites_doi | 10.1093/jjco/hye056 10.1056/NEJMoa021967 10.1093/jnci/djj329 10.1162/neco.1989.1.2.281 10.4048/jbc.2011.14.1.33 10.1093/jjco/hyp195 10.1056/NEJMra0801289 10.1016/S0933-3657(03)00033-2 10.1016/S0933-3657(02)00086-6 10.1016/j.ctrv.2008.04.002 10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D 10.1007/s10549-005-9013-y 10.1002/cncr.20665 10.1093/annonc/mdm271 10.1093/annonc/mdp322 10.1245/s10434-009-0334-7 10.1109/TNN.2008.2005601 10.1023/A:1012487302797 10.1093/annonc/mdg256 10.1016/S0925-2312(03)00431-4 10.1007/BF01840834 10.1200/JCO.2001.19.4.980 10.1186/1471-2407-8-339 10.1200/JCO.2005.06.178 10.1046/j.1365-2168.2002.02113.x 10.1080/01621459.1983.10477959 10.1093/bioinformatics/16.10.906 |
ContentType | Journal Article |
Copyright | 2012 Korean Breast Cancer Society. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 Korean Breast Cancer Society. All rights reserved. 2012 |
DBID | AAYXX CITATION NPM 7X8 5PM ACYCR |
DOI | 10.4048/jbc.2012.15.2.230 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2092-9900 |
EndPage | 238 |
ExternalDocumentID | oai_kci_go_kr_ARTI_496812 PMC3395748 22807942 10_4048_jbc_2012_15_2_230 |
Genre | Journal Article |
GroupedDBID | --- 5-W 5GY 8JR 8XY 9ZL AAYXX ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION DIK DU5 EF. GROUPED_DOAJ HYE KQ8 M48 O5R O5S PGMZT RPM NPM 7X8 5PM ACYCR |
ID | FETCH-LOGICAL-c432t-8820ec266d300329ec8160190d1732bd2e6a6b16d9e5a8d3fa7a5333e303990e3 |
IEDL.DBID | M48 |
ISSN | 1738-6756 2092-9900 |
IngestDate | Tue Nov 21 21:30:10 EST 2023 Thu Aug 21 14:01:44 EDT 2025 Fri Jul 11 11:13:58 EDT 2025 Thu Jan 02 22:10:13 EST 2025 Thu Apr 24 22:51:06 EDT 2025 Tue Jul 01 01:56:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Recurrence Breast neoplasms Neural networks Artificial intelligence Risk factors |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-8820ec266d300329ec8160190d1732bd2e6a6b16d9e5a8d3fa7a5333e303990e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. G704-SER000010237.2012.15.2.018 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.4048/jbc.2012.15.2.230 |
PMID | 22807942 |
PQID | 1027038419 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_496812 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3395748 proquest_miscellaneous_1027038419 pubmed_primary_22807942 crossref_citationtrail_10_4048_jbc_2012_15_2_230 crossref_primary_10_4048_jbc_2012_15_2_230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Journal of breast cancer |
PublicationTitleAlternate | J Breast Cancer |
PublicationYear | 2012 |
Publisher | Korean Breast Cancer Society 한국유방암학회 |
Publisher_xml | – name: Korean Breast Cancer Society – name: 한국유방암학회 |
References | Iwamoto (10.4048/jbc.2012.15.2.230_ref5) 2001; 31 Boyages (10.4048/jbc.2012.15.2.230_ref7) 2002; 89 van de Vijver (10.4048/jbc.2012.15.2.230_ref10) 2002; 347 Olivotto (10.4048/jbc.2012.15.2.230_ref18) 2005; 23 Lisboa (10.4048/jbc.2012.15.2.230_ref17) 2003; 28 Aitkin (10.4048/jbc.2012.15.2.230_ref19) 1983; 78 Goldhirsch (10.4048/jbc.2012.15.2.230_ref3) 2007; 18 Goldhirsch (10.4048/jbc.2012.15.2.230_ref4) 2009; 20 Ravdin (10.4048/jbc.2012.15.2.230_ref13) 2001; 19 Butte (10.4048/jbc.2012.15.2.230_ref27) 2000; 5 Ishitobi (10.4048/jbc.2012.15.2.230_ref28) 2010; 40 Jerez (10.4048/jbc.2012.15.2.230_ref14) 2005; 94 Sun (10.4048/jbc.2012.15.2.230_ref29) 2004; 101 Na (10.4048/jbc.2012.15.2.230_ref1) 2011; 14 Meyer (10.4048/jbc.2012.15.2.230_ref21) 2003; 55 Moody (10.4048/jbc.2012.15.2.230_ref25) 1989; 1 Roila (10.4048/jbc.2012.15.2.230_ref8) 2003; 14 Jerez-Aragones (10.4048/jbc.2012.15.2.230_ref15) 2003; 27 Estévez (10.4048/jbc.2012.15.2.230_ref24) 2009; 20 Muñoz (10.4048/jbc.2012.15.2.230_ref2) 2008; 34 Jung (10.4048/jbc.2012.15.2.230_ref6) 2009; 16 Galea (10.4048/jbc.2012.15.2.230_ref12) 1992; 22 Buyse (10.4048/jbc.2012.15.2.230_ref9) 2006; 98 Tutt (10.4048/jbc.2012.15.2.230_ref30) 2008; 8 Cortes (10.4048/jbc.2012.15.2.230_ref20) 1995; 20 Sargent (10.4048/jbc.2012.15.2.230_ref16) 2001; 91 Furey (10.4048/jbc.2012.15.2.230_ref23) 2000; 16 Guyon (10.4048/jbc.2012.15.2.230_ref22) 2002; 46 Sotiriou (10.4048/jbc.2012.15.2.230_ref11) 2009; 360 Kuncheva (10.4048/jbc.2012.15.2.230_ref26) 2004 19219507 - Ann Surg Oncol. 2009 May;16(5):1112-21 11181660 - J Clin Oncol. 2001 Feb 15;19(4):980-91 19228622 - N Engl J Med. 2009 Feb 19;360(8):790-800 12850311 - Artif Intell Med. 2003 May;28(1):1-25 11309761 - Cancer. 2001 Apr 15;91(8 Suppl):1636-42 11120680 - Bioinformatics. 2000 Oct;16(10):906-14 12490681 - N Engl J Med. 2002 Dec 19;347(25):1999-2009 15837986 - J Clin Oncol. 2005 Apr 20;23(12):2716-25 20110242 - Jpn J Clin Oncol. 2010 Jun;40(6):508-12 10902190 - Pac Symp Biocomput. 2000;:418-29 18922644 - Cancer Treat Rev. 2008 Dec;34(8):701-9 17675394 - Ann Oncol. 2007 Jul;18(7):1133-44 21847392 - J Breast Cancer. 2011 Mar;14(1):33-8 12473391 - Artif Intell Med. 2003 Jan;27(1):45-63 1391987 - Breast Cancer Res Treat. 1992;22(3):207-19 15517588 - Cancer. 2004 Dec 1;101(11):2516-22 16254686 - Breast Cancer Res Treat. 2005 Dec;94(3):265-72 19535820 - Ann Oncol. 2009 Aug;20(8):1319-29 12796020 - Ann Oncol. 2003 Jun;14(6):843-8 19025599 - BMC Cancer. 2008;8:339 16954471 - J Natl Cancer Inst. 2006 Sep 6;98(17):1183-92 19150792 - IEEE Trans Neural Netw. 2009 Feb;20(2):189-201 11463803 - Jpn J Clin Oncol. 2001 Jun;31(6):259-62 12027994 - Br J Surg. 2002 Jun;89(6):789-96 |
References_xml | – volume: 31 start-page: 259 year: 2001 ident: 10.4048/jbc.2012.15.2.230_ref5 publication-title: Jpn J Clin Oncol doi: 10.1093/jjco/hye056 – volume: 20 start-page: 273 year: 1995 ident: 10.4048/jbc.2012.15.2.230_ref20 publication-title: Mach Learn – volume: 347 start-page: 1999 year: 2002 ident: 10.4048/jbc.2012.15.2.230_ref10 publication-title: N Engl J Med doi: 10.1056/NEJMoa021967 – volume: 5 start-page: 415 year: 2000 ident: 10.4048/jbc.2012.15.2.230_ref27 publication-title: Pac Symp Biocomput – volume: 98 start-page: 1183 year: 2006 ident: 10.4048/jbc.2012.15.2.230_ref9 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djj329 – volume: 1 start-page: 281 year: 1989 ident: 10.4048/jbc.2012.15.2.230_ref25 publication-title: Neural Comput doi: 10.1162/neco.1989.1.2.281 – volume: 14 start-page: 33 year: 2011 ident: 10.4048/jbc.2012.15.2.230_ref1 publication-title: J Breast Cancer doi: 10.4048/jbc.2011.14.1.33 – volume: 40 start-page: 508 year: 2010 ident: 10.4048/jbc.2012.15.2.230_ref28 publication-title: Jpn J Clin Oncol doi: 10.1093/jjco/hyp195 – volume: 360 start-page: 790 year: 2009 ident: 10.4048/jbc.2012.15.2.230_ref11 publication-title: N Engl J Med doi: 10.1056/NEJMra0801289 – start-page: 1214 volume-title: Using diversity in cluster ensembles year: 2004 ident: 10.4048/jbc.2012.15.2.230_ref26 – volume: 28 start-page: 1 year: 2003 ident: 10.4048/jbc.2012.15.2.230_ref17 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(03)00033-2 – volume: 27 start-page: 45 year: 2003 ident: 10.4048/jbc.2012.15.2.230_ref15 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(02)00086-6 – volume: 34 start-page: 701 year: 2008 ident: 10.4048/jbc.2012.15.2.230_ref2 publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2008.04.002 – volume: 91 start-page: 1636 issue: 8 Suppl year: 2001 ident: 10.4048/jbc.2012.15.2.230_ref16 publication-title: Cancer doi: 10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D – volume: 94 start-page: 265 year: 2005 ident: 10.4048/jbc.2012.15.2.230_ref14 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-005-9013-y – volume: 101 start-page: 2516 year: 2004 ident: 10.4048/jbc.2012.15.2.230_ref29 publication-title: Cancer doi: 10.1002/cncr.20665 – volume: 18 start-page: 1133 year: 2007 ident: 10.4048/jbc.2012.15.2.230_ref3 publication-title: Ann Oncol doi: 10.1093/annonc/mdm271 – volume: 20 start-page: 1319 year: 2009 ident: 10.4048/jbc.2012.15.2.230_ref4 publication-title: Ann Oncol doi: 10.1093/annonc/mdp322 – volume: 16 start-page: 1112 year: 2009 ident: 10.4048/jbc.2012.15.2.230_ref6 publication-title: Ann Surg Oncol doi: 10.1245/s10434-009-0334-7 – volume: 20 start-page: 189 year: 2009 ident: 10.4048/jbc.2012.15.2.230_ref24 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2005601 – volume: 46 start-page: 389 year: 2002 ident: 10.4048/jbc.2012.15.2.230_ref22 publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 14 start-page: 843 year: 2003 ident: 10.4048/jbc.2012.15.2.230_ref8 publication-title: Ann Oncol doi: 10.1093/annonc/mdg256 – volume: 55 start-page: 169 year: 2003 ident: 10.4048/jbc.2012.15.2.230_ref21 publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00431-4 – volume: 22 start-page: 207 year: 1992 ident: 10.4048/jbc.2012.15.2.230_ref12 publication-title: Breast Cancer Res Treat doi: 10.1007/BF01840834 – volume: 19 start-page: 980 year: 2001 ident: 10.4048/jbc.2012.15.2.230_ref13 publication-title: J Clin Oncol doi: 10.1200/JCO.2001.19.4.980 – volume: 8 start-page: 339 year: 2008 ident: 10.4048/jbc.2012.15.2.230_ref30 publication-title: BMC Cancer doi: 10.1186/1471-2407-8-339 – volume: 23 start-page: 2716 year: 2005 ident: 10.4048/jbc.2012.15.2.230_ref18 publication-title: J Clin Oncol doi: 10.1200/JCO.2005.06.178 – volume: 89 start-page: 789 year: 2002 ident: 10.4048/jbc.2012.15.2.230_ref7 publication-title: Br J Surg doi: 10.1046/j.1365-2168.2002.02113.x – volume: 78 start-page: 264 year: 1983 ident: 10.4048/jbc.2012.15.2.230_ref19 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1983.10477959 – volume: 16 start-page: 906 year: 2000 ident: 10.4048/jbc.2012.15.2.230_ref23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – reference: 16254686 - Breast Cancer Res Treat. 2005 Dec;94(3):265-72 – reference: 15517588 - Cancer. 2004 Dec 1;101(11):2516-22 – reference: 12796020 - Ann Oncol. 2003 Jun;14(6):843-8 – reference: 20110242 - Jpn J Clin Oncol. 2010 Jun;40(6):508-12 – reference: 10902190 - Pac Symp Biocomput. 2000;:418-29 – reference: 16954471 - J Natl Cancer Inst. 2006 Sep 6;98(17):1183-92 – reference: 12490681 - N Engl J Med. 2002 Dec 19;347(25):1999-2009 – reference: 15837986 - J Clin Oncol. 2005 Apr 20;23(12):2716-25 – reference: 19219507 - Ann Surg Oncol. 2009 May;16(5):1112-21 – reference: 12473391 - Artif Intell Med. 2003 Jan;27(1):45-63 – reference: 11463803 - Jpn J Clin Oncol. 2001 Jun;31(6):259-62 – reference: 19535820 - Ann Oncol. 2009 Aug;20(8):1319-29 – reference: 19150792 - IEEE Trans Neural Netw. 2009 Feb;20(2):189-201 – reference: 1391987 - Breast Cancer Res Treat. 1992;22(3):207-19 – reference: 12027994 - Br J Surg. 2002 Jun;89(6):789-96 – reference: 17675394 - Ann Oncol. 2007 Jul;18(7):1133-44 – reference: 12850311 - Artif Intell Med. 2003 May;28(1):1-25 – reference: 11181660 - J Clin Oncol. 2001 Feb 15;19(4):980-91 – reference: 18922644 - Cancer Treat Rev. 2008 Dec;34(8):701-9 – reference: 19228622 - N Engl J Med. 2009 Feb 19;360(8):790-800 – reference: 11120680 - Bioinformatics. 2000 Oct;16(10):906-14 – reference: 21847392 - J Breast Cancer. 2011 Mar;14(1):33-8 – reference: 19025599 - BMC Cancer. 2008;8:339 – reference: 11309761 - Cancer. 2001 Apr 15;91(8 Suppl):1636-42 |
SSID | ssj0064377 |
Score | 2.288243 |
Snippet | The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study was to... Purpose: The prediction of breast cancer recurrence is a crucial factor for successful treatment and follow-up planning. The principal objective of this study... |
SourceID | nrf pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 230 |
SubjectTerms | Original 일반외과학 |
Title | Development of Novel Breast Cancer Recurrence Prediction Model Using Support Vector Machine |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22807942 https://www.proquest.com/docview/1027038419 https://pubmed.ncbi.nlm.nih.gov/PMC3395748 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001671182 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Breast Cancer, 2012, 15(2), 60, pp.230-238 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86X3wRxa_5MSL4JHQsH02bJxFRVJhPDgQfQtOmc262s9tE_3vv2m1sMn0qpfkgd0nvl9zld4Sc61RopUPrRUHoPClT7Vmb-h4XSiQtbnUYoUe3_ajuOvLh2X9eI7P0VlMBjlZu7TCfVKcYNL8-vi9hwQN-bUqknX2zyEXIeJP5TY6RzetkAwyTwr1YW86dCuiiCirH5upqSAyM5DBa8iUrtZ4V6SoA-juOcsEw3W6TrSmipFfVFNghay7bJS8LwUA0T2mWwyu1GIE-pjFquqAFHrWXl_3osEB_DeqIlqlxKIbDd-loMkTJ0M_yaJ--l4GXbo90bm-eru-8aR4FL5aCjz0A0S0XgyVOBKxhrl0cMoV3yBMWCG4T7lSkLFOJdn4UJiKNgghQoHBg3sBYObFPalmeuUNCHVPKOR7bQEfSJqEFAGRTax0TshVbv05aM7mZeEoyjrkuBgY2Gyh1A1I3KHXDfMMNSL1OLuZVhhXDxn-Fz0AZph_3DPJi47Obm35hAP3fG6mRTQ3KzFRlYK2gAyTKXD4ZQbMcfnChZLpODirVzbucab5OgiWlzgtgf8tfst5rycct0Ncpw6M_2zwmmziKKsLshNTGxcSdApYZ20Z5BtAo5-kP-oTyqA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+novel+breast+cancer+recurrence+prediction+model+using+support+vector+machine&rft.jtitle=Journal+of+breast+cancer&rft.au=Kim%2C+Woojae&rft.au=Kim%2C+Ku+Sang&rft.au=Lee%2C+Jeong+Eon&rft.au=Noh%2C+Dong-Young&rft.date=2012-06-01&rft.eissn=2092-9900&rft.volume=15&rft.issue=2&rft.spage=230&rft_id=info:doi/10.4048%2Fjbc.2012.15.2.230&rft_id=info%3Apmid%2F22807942&rft.externalDocID=22807942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-6756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-6756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-6756&client=summon |