Vegetation segmentation using oblique photogrammetry point clouds based on RSPT network

Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important sou...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of digital earth Vol. 17; no. 1
Main Authors Hu, Hong, Sun, Zhangyu, Kang, Ruihong, Wu, Yanlan, Wang, Baoguo
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2024
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important source of point cloud data. We present a pointwise annotated oblique photogrammetry point-cloud dataset that contains rich RGB information, texture, and structural features. This dataset contains five regions of Bengbu, China, with more than twenty thousand samples in this paper. Obviously, previous indoor point cloud semantic segmentation models are no longer applicable to oblique photogrammetry point clouds. A random sampling point transformer (RSPT) network is proposed to enhance vegetation segmentation accuracy. The RSPT model offers both efficient and lightweight architecture. In RSPT, random point sampling is utilized to downsample point clouds, and a local feature aggregation module based on self-attention is designed to extract additional representation features. The network also incorporated residual and dense connections (ResiDense) to capture both local and comprehensive features. Compared to state-of-the-art models, RSPT achieves notable improvements. The intersection over union (IoU) metric increased from 96.0% to 96.5%, the F1-score increased from 90.8% to 97.0%, and the overall accuracy (OA) increased from 91.9% to 96.9%.
AbstractList Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important source of point cloud data. We present a pointwise annotated oblique photogrammetry point-cloud dataset that contains rich RGB information, texture, and structural features. This dataset contains five regions of Bengbu, China, with more than twenty thousand samples in this paper. Obviously, previous indoor point cloud semantic segmentation models are no longer applicable to oblique photogrammetry point clouds. A random sampling point transformer (RSPT) network is proposed to enhance vegetation segmentation accuracy. The RSPT model offers both efficient and lightweight architecture. In RSPT, random point sampling is utilized to downsample point clouds, and a local feature aggregation module based on self-attention is designed to extract additional representation features. The network also incorporated residual and dense connections (ResiDense) to capture both local and comprehensive features. Compared to state-of-the-art models, RSPT achieves notable improvements. The intersection over union (IoU) metric increased from 96.0% to 96.5%, the F1-score increased from 90.8% to 97.0%, and the overall accuracy (OA) increased from 91.9% to 96.9%.
ABSTRACTVegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important source of point cloud data. We present a pointwise annotated oblique photogrammetry point-cloud dataset that contains rich RGB information, texture, and structural features. This dataset contains five regions of Bengbu, China, with more than twenty thousand samples in this paper. Obviously, previous indoor point cloud semantic segmentation models are no longer applicable to oblique photogrammetry point clouds. A random sampling point transformer (RSPT) network is proposed to enhance vegetation segmentation accuracy. The RSPT model offers both efficient and lightweight architecture. In RSPT, random point sampling is utilized to downsample point clouds, and a local feature aggregation module based on self-attention is designed to extract additional representation features. The network also incorporated residual and dense connections (ResiDense) to capture both local and comprehensive features. Compared to state-of-the-art models, RSPT achieves notable improvements. The intersection over union (IoU) metric increased from 96.0% to 96.5%, the F1-score increased from 90.8% to 97.0%, and the overall accuracy (OA) increased from 91.9% to 96.9%.
Author Sun, Zhangyu
Kang, Ruihong
Hu, Hong
Wu, Yanlan
Wang, Baoguo
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0002-7810-1528
  surname: Hu
  fullname: Hu, Hong
  organization: Anhui University
– sequence: 2
  givenname: Zhangyu
  orcidid: 0009-0001-0119-1270
  surname: Sun
  fullname: Sun, Zhangyu
  organization: Anhui University
– sequence: 3
  givenname: Ruihong
  orcidid: 0009-0002-0105-8610
  surname: Kang
  fullname: Kang, Ruihong
  organization: Anhui University
– sequence: 4
  givenname: Yanlan
  orcidid: 0000-0002-8983-3150
  surname: Wu
  fullname: Wu, Yanlan
  email: wuyanlan@ahu.edu.cn
  organization: Anhui University
– sequence: 5
  givenname: Baoguo
  orcidid: 0009-0009-3895-6503
  surname: Wang
  fullname: Wang, Baoguo
  organization: Bengbu Geotechnical Engineering and Surveying Institute
BookMark eNp9kU9v3CAQxVGUSk3SfoRKlnrpZTdgwOBbq6j5I0VK1abtEWE8OGxt2AJWtN8-OLvJoYeegNGb38zjnaJjHzwg9IHgNcESnxPBqWyZWNe4ZuuaEowlPUInS30lW86PX-9MvEWnKW0wbjBj9AT9_gUDZJ1d8FWCYQJ_eMzJ-aEK3ej-zlBtH0IOQ9TTBDnuqm1wPldmDHOfqk4n6KvS8v3Ht_vKQ34M8c879MbqMcH7w3mGfl5-vb-4Xt3eXd1cfLldGUbrvJK07i2WHIgQTJelOiyktk1nrbBGkNpwLnvKpDQY97q10HWt1YIKY6UFQc_QzZ7bB71R2-gmHXcqaKeeCyEOSsfszAiKNrB4ZoVrmOmwtISatmWF3zEKuLA-7VnbGIrplNXkkoFx1B7CnBQlDZcNaWhTpB__kW7CHH1xWlRcFjc15UXF9yoTQ0oR7OuCBKslOvUSnVqiU4foSt_nfZ_zNsRJlw8de5X1bgzRRu2NW8b8F_EEFcah9w
Cites_doi 10.1016/j.jag.2022.102953
10.5040/9781350101272.00000005
10.5194/isprs-annals-iv-1-w1-91-2017
10.1109/ICCV.2019.00939
10.1109/CVPR.2017.261
10.1109/TGRS.2018.2802935
10.1016/j.jag.2021.102580
10.1016/j.isprsjprs.2021.09.024
10.1109/JSTARS.2017.2781132
10.1109/ICCV48922.2021.01595
10.1080/2150704X.2017.1384588
10.1080/17538947.2023.2192527
10.1109/IROS.2015.7353481
10.1016/j.rse.2014.03.018
10.1109/cvpr.2017.16
10.1007/978-3-319-64689-3_8
10.1109/CVPR.2011.5995552
10.1109/CVPR42600.2020.01112
10.1016/j.geomorph.2012.08.021
10.1007/s11432-021-3387-7
10.1016/j.isprsjprs.2019.01.024
10.1016/j.jag.2018.02.016
10.1007/978-3-030-20887-5_7
10.1007/s41095-021-0229-5
10.1109/CVPR42600.2020.01009
10.1016/j.isprsjprs.2016.01.006
10.1016/j.neucom.2022.09.056
10.1109/cvpr46437.2021.01427
10.1109/TGRS.2012.2194503
10.1109/tpami.2020.3005434
10.1109/CVPR46437.2021.01150
10.1145/3394171.3413661
10.1080/19479832.2016.1188860
10.1145/1463434.1463444
10.1109/LGRS.2017.2764938
10.1109/CVPR52688.2022.01837
10.1109/ICCV.2015.114
10.3390/rs9010092
10.1016/j.rse.2022.113143
10.1016/j.rse.2021.112857
10.1080/17538947.2021.1943018
10.1016/j.cag.2015.03.004
10.1016/j.cag.2015.07.004
10.1109/TITS.2020.2990120
10.1109/CVPRW.2016.88
10.1007/978-3-642-15561-1_27
10.1109/access.2020.3023423
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
SOI
7S9
L.6
DOA
DOI 10.1080/17538947.2024.2310083
DatabaseName Taylor & Francis Open Access
CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1753-8955
ExternalDocumentID oai_doaj_org_article_36e04434fc7c4cb08f13c9948d3b43e0
10_1080_17538947_2024_2310083
2310083
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41971311
– fundername: National Natural Science Foundation of China
GroupedDBID .7F
0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABDBF
ABFIM
ABPEM
ABTAI
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADMSI
AEISY
AENEX
AEYOC
AFKVX
AFRAH
AHDSZ
AHDZW
AIJEM
AJWEG
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
ESX
GROUPED_DOAJ
GTTXZ
HZ~
J~4
KYCEM
LJTGL
M4Z
ML.
O9-
OK1
RIG
SNACF
TDBHL
TFL
TFT
TFW
TTHFI
TWF
TWN
UU3
VAE
AAYXX
AIYEW
CITATION
DGEBU
7ST
7UA
8FD
C1K
F1W
FR3
H13
H8D
H96
KR7
L.G
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c432t-832df085e1774a060b078af6bff7fc712c558d3488c00da9febb9fa737cf8fe73
IEDL.DBID 0YH
ISSN 1753-8947
1753-8955
IngestDate Wed Aug 27 01:10:57 EDT 2025
Fri Jul 11 01:46:03 EDT 2025
Fri Jul 25 12:16:53 EDT 2025
Tue Jul 01 01:05:58 EDT 2025
Wed Jan 22 07:59:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-832df085e1774a060b078af6bff7fc712c558d3488c00da9febb9fa737cf8fe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-0105-8610
0000-0002-7810-1528
0000-0002-8983-3150
0009-0009-3895-6503
0009-0001-0119-1270
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/17538947.2024.2310083
PQID 3158177235
PQPubID 176143
ParticipantIDs proquest_journals_3158177235
proquest_miscellaneous_3165861636
crossref_primary_10_1080_17538947_2024_2310083
doaj_primary_oai_doaj_org_article_36e04434fc7c4cb08f13c9948d3b43e0
informaworld_taylorfrancis_310_1080_17538947_2024_2310083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of digital earth
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_47_1
Chen Y. (e_1_3_4_6_1) 2017
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_47_1
  doi: 10.1016/j.jag.2022.102953
– ident: e_1_3_4_40_1
  doi: 10.5040/9781350101272.00000005
– ident: e_1_3_4_19_1
  doi: 10.5194/isprs-annals-iv-1-w1-91-2017
– ident: e_1_3_4_4_1
  doi: 10.1109/ICCV.2019.00939
– ident: e_1_3_4_8_1
  doi: 10.1109/CVPR.2017.261
– ident: e_1_3_4_29_1
  doi: 10.1109/TGRS.2018.2802935
– ident: e_1_3_4_7_1
  doi: 10.1016/j.jag.2021.102580
– ident: e_1_3_4_9_1
  doi: 10.1016/j.isprsjprs.2021.09.024
– ident: e_1_3_4_41_1
  doi: 10.1109/JSTARS.2017.2781132
– ident: e_1_3_4_50_1
  doi: 10.1109/ICCV48922.2021.01595
– ident: e_1_3_4_45_1
  doi: 10.1080/2150704X.2017.1384588
– ident: e_1_3_4_48_1
  doi: 10.1080/17538947.2023.2192527
– ident: e_1_3_4_31_1
  doi: 10.1109/IROS.2015.7353481
– ident: e_1_3_4_2_1
  doi: 10.1016/j.rse.2014.03.018
– ident: e_1_3_4_34_1
  doi: 10.1109/cvpr.2017.16
– ident: e_1_3_4_22_1
  doi: 10.1007/978-3-319-64689-3_8
– ident: e_1_3_4_43_1
  doi: 10.1109/CVPR.2011.5995552
– ident: e_1_3_4_3_1
– ident: e_1_3_4_20_1
  doi: 10.1109/CVPR42600.2020.01112
– ident: e_1_3_4_42_1
  doi: 10.1016/j.geomorph.2012.08.021
– ident: e_1_3_4_37_1
  doi: 10.1007/s11432-021-3387-7
– ident: e_1_3_4_28_1
  doi: 10.1016/j.isprsjprs.2019.01.024
– ident: e_1_3_4_46_1
  doi: 10.1016/j.jag.2018.02.016
– ident: e_1_3_4_14_1
  doi: 10.1007/978-3-030-20887-5_7
– ident: e_1_3_4_16_1
  doi: 10.1007/s41095-021-0229-5
– ident: e_1_3_4_49_1
  doi: 10.1109/CVPR42600.2020.01009
– ident: e_1_3_4_25_1
  doi: 10.1016/j.isprsjprs.2016.01.006
– ident: e_1_3_4_33_1
– start-page: 30
  year: 2017
  ident: e_1_3_4_6_1
  article-title: Dual Path Networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_4_17_1
  doi: 10.1016/j.neucom.2022.09.056
– ident: e_1_3_4_10_1
  doi: 10.1109/cvpr46437.2021.01427
– ident: e_1_3_4_26_1
  doi: 10.1109/TGRS.2012.2194503
– ident: e_1_3_4_18_1
  doi: 10.1109/tpami.2020.3005434
– ident: e_1_3_4_5_1
– ident: e_1_3_4_13_1
  doi: 10.1109/CVPR46437.2021.01150
– ident: e_1_3_4_23_1
  doi: 10.1145/3394171.3413661
– ident: e_1_3_4_15_1
  doi: 10.1080/19479832.2016.1188860
– ident: e_1_3_4_51_1
  doi: 10.1145/1463434.1463444
– ident: e_1_3_4_52_1
  doi: 10.1109/LGRS.2017.2764938
– ident: e_1_3_4_36_1
  doi: 10.1109/CVPR52688.2022.01837
– ident: e_1_3_4_38_1
  doi: 10.1109/ICCV.2015.114
– ident: e_1_3_4_44_1
  doi: 10.3390/rs9010092
– ident: e_1_3_4_35_1
  doi: 10.1016/j.rse.2022.113143
– ident: e_1_3_4_21_1
  doi: 10.1016/j.rse.2021.112857
– ident: e_1_3_4_32_1
  doi: 10.1080/17538947.2021.1943018
– ident: e_1_3_4_39_1
  doi: 10.1016/j.cag.2015.03.004
– ident: e_1_3_4_24_1
  doi: 10.1016/j.cag.2015.07.004
– ident: e_1_3_4_30_1
  doi: 10.1109/TITS.2020.2990120
– ident: e_1_3_4_11_1
  doi: 10.1109/CVPRW.2016.88
– ident: e_1_3_4_12_1
  doi: 10.1007/978-3-642-15561-1_27
– ident: e_1_3_4_27_1
  doi: 10.1109/access.2020.3023423
SSID ssj0060443
Score 2.3408933
Snippet Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is...
ABSTRACTVegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Aggregation
China
data collection
Datasets
Environmental protection
Image processing
Image segmentation
Lidar
Oblique photogrammetry
Photogrammetry
point cloud
Random sampling
RSPT
self-attention
Semantic segmentation
Statistical sampling
texture
Urban planning
Vegetation
vegetation segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy5VS4u6FCpX6jWQxHZiHwGBUKVWVQuUm2U746USJCs2e-DfM5M4QOHApVd_SM6bjOc5mXlm7GvUtROSvru5KmQSOWtmhFFZjI02zkeQOdUOf_9RnZ7Lb5fq8slVX5QTNsoDj8DtiwpyKYWMoQ4y-FzHQgRjpG6ElwKG0zrGvOkwNe7BFU0ZSiGVyLSR9VS7o_N9aqMmPBuWco_oTa7FP1FpEO9_Jl36Yqse4s_JW_YmEUd-MC74HVuDdpNtHT_WqWFnctTle_bnAuYpkZAvYX6TKoxaTnnuc975a9Jt5Yurrh_ys26gv73ji-5v2_Nw3a2aJaf41nCc8uv3zzPejuniH9j5yfHZ0WmW7lDIghRln6HDNhFpFRTI8xwC45ETuFj5GGuEtCiDUgglunHI88aZCN6b6GpRh6gj1GKLrbddCx8Zj8YpXwQFgBzKlbXzlYEmBCORBIEQM7Y3YWgXo1SGLZIC6QS6JdBtAn3GDgnph8GkdD00oP1tsr99zf4zZp7ayfbDh4443kpixSsL2JmMapPr0hSlEaxSqBn78tCNTkd_UlwL3YrGIHGrkMpW2__jGT6xDVrWqB-5w9b72xXsItfp_efhtb4HX974Kg
  priority: 102
  providerName: Directory of Open Access Journals
Title Vegetation segmentation using oblique photogrammetry point clouds based on RSPT network
URI https://www.tandfonline.com/doi/abs/10.1080/17538947.2024.2310083
https://www.proquest.com/docview/3158177235
https://www.proquest.com/docview/3165861636
https://doaj.org/article/36e04434fc7c4cb08f13c9948d3b43e0
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKe-GCoKVioVRG6jXFiZ2Hj7RqtUJqVfUFnCzb8SyV2mS1yR7498wkTnkJceASKXEmsWYyns_OzGfGDqAqrVS07mYLnyjErImWOk8A6kpbB0EJqh0-Oy_mN-rj53zKJuxiWiXNoWEkihjGanJu67opI-49kUtWWpU4u8vUIQEUxBFP2BZGYkGbGIgv82kwLoQac-xRJCGZqYjnb4_5JTwNLP6_cZj-MWYPgej0OXsWEST_MJr8BdsIzTbbPflRsIaN0WO7HfbpNixiRiHvwuIhlho1nBLeF7x190Tgypdf235I1HoI_eobX7Z3Tc_9fbuuO06BruYocnl1cc2bMW_8Jbs5Pbk-nidxM4XEK5n1CXpuDYivQoqAz6JiHIIDC4UDKMGXaebzvKol-rMXorYagnMabClLDxWEUu6yzaZtwivGQdvcpT4PAcGUzUrrCh1q77VCNBSknLHDSYdmOXJmmDRSkU5KN6R0E5U-Y0ek6cebifJ6uNCuFiZ6kJFFIGMq7KxX3okKUum1Vthpp2QQM6Z_tpPphxUPGLcnMfIfHdibjGqiD5NIXqGyMpnP2LvHZvQ--qVim9Cu6R5EcAVi2uL1f7z-DXtKpyN_5B7b7Ffr8BaxTu_2h68Zj1Kc7w_rBd8BiVv3EA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOBCeVVdaMFIXLMk8SPxsVStFmhXCLbQm2U79oJok9Vu9tD-emYSp5QixKHX2JPY4_H4szPzmZA3oSwM43juZqRLOGDWRDElkhCqUhkbPE8xd_h4Kicn_MOpOL2WC4NhlbiHDj1RROercXLjYfQQEvcW2SVLxQvY3uV8jAgFgMRdck8oWaCts3Q6eGOZ8j7IHkQSlBmyeP71mj_Wp47G_waJ6V9Ou1uJDjeJG_rQB6D8HK9bO3aXN-gdb9fJR-RhBKp0r7esx-SOr5-QrYPfeXFQGB3D6in59tXPY-AiXfn5ecxoqinG1c9pY8-QJ5YuvjdtFw927tvlBV00P-qWurNmXa0orqcVBZHPXz7NaN2Hpz8jJ4cHs_1JEu9sSBxneZuAg6gCwDifAa40oH4LGMQEaUMogiuy3AlRVgzchkvTyqjgrVXBFKxwoQy-YFtko25qv01oUEbYzAnvAbOZvDBWKl85pziALs_YiIyHkdKLnppDZ5HxdFCeRuXpqLwReYfjeVUZmbW7B81yruNE1Ux6NBkOjXXc2bQMGXNKcWi05cynI6KuW4Nuu4OV0N-Cotl_GrAzmI6OrgJFRAnKypkYkddXxTDJ8c-NqX2zxjoAFCVAZ_n8Fp9_Re5PZsdH-uj99OML8gCLesrKHbLRLtd-F-BVa1928-cXn18Y1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRCXlgJVty3USFyzJLHz8JFHV-W1qqAFbpbt2NuqbbLazR7Kr2cmcQoUIQ69xnZij-3xZ-ebzwAvfFloLujcTec2EohZI8llFnlflVIb70RMscOfpvnhiXj_PRvYhMtAq6Q9tO-FIjpfTZN7XvmBEfeSxCVLKQrc3aViTAAFccRduJdToCVFccTTwRnjo55jj0UiKjME8fzrNX8sT52K_w0N0798drcQTTbADE3o-Sfn41VrxvbHDXXHW7XxIawHmMpe9eNqE-64-hFsHfyKisPE4BaWj-HbVzcLtEW2dLPLEM9UM2LVz1hjLkglls1Pm7Zjg126dnHF5s1Z3TJ70ayqJaPVtGJY5POXo2NW9-T0J3AyOTh-cxiFGxsiK3jaRugeKo8gziWIKjVa3yAC0T433hfeFklqs6ysODoNG8eVlt4ZI70ueGF96V3Bt2Ctbmq3DcxLnZnEZs4hYtNpoU0uXWWtFAi5HOcjGA8dpea9MIdKgt7pYDxFxlPBeCN4Td15nZl0tbsHzWKmwjRVPHc0YgRW1gpr4tIn3EopsNJGcBePQP4-GFTbHav4_g4Uxf9Tgb1h5KjgKKhIVqKxUp6N4Pl1Mk5x-m-ja9esKA_CxByBc75zi8_vw_2jtxP18d30wy48oJRer3IP1trFyj1FbNWaZ93s-QkUOhd5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetation+segmentation+using+oblique+photogrammetry+point+clouds+based+on+RSPT+network&rft.jtitle=International+journal+of+digital+earth&rft.au=Hu%2C+Hong&rft.au=Sun%2C+Zhangyu&rft.au=Kang%2C+Ruihong&rft.au=Wu%2C+Yanlan&rft.date=2024-12-31&rft.issn=1753-8947&rft.eissn=1753-8955&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1080%2F17538947.2024.2310083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17538947_2024_2310083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon