Vegetation segmentation using oblique photogrammetry point clouds based on RSPT network
Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important sou...
Saved in:
Published in | International journal of digital earth Vol. 17; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important source of point cloud data. We present a pointwise annotated oblique photogrammetry point-cloud dataset that contains rich RGB information, texture, and structural features. This dataset contains five regions of Bengbu, China, with more than twenty thousand samples in this paper. Obviously, previous indoor point cloud semantic segmentation models are no longer applicable to oblique photogrammetry point clouds. A random sampling point transformer (RSPT) network is proposed to enhance vegetation segmentation accuracy. The RSPT model offers both efficient and lightweight architecture. In RSPT, random point sampling is utilized to downsample point clouds, and a local feature aggregation module based on self-attention is designed to extract additional representation features. The network also incorporated residual and dense connections (ResiDense) to capture both local and comprehensive features. Compared to state-of-the-art models, RSPT achieves notable improvements. The intersection over union (IoU) metric increased from 96.0% to 96.5%, the F1-score increased from 90.8% to 97.0%, and the overall accuracy (OA) increased from 91.9% to 96.9%. |
---|---|
AbstractList | Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important source of point cloud data. We present a pointwise annotated oblique photogrammetry point-cloud dataset that contains rich RGB information, texture, and structural features. This dataset contains five regions of Bengbu, China, with more than twenty thousand samples in this paper. Obviously, previous indoor point cloud semantic segmentation models are no longer applicable to oblique photogrammetry point clouds. A random sampling point transformer (RSPT) network is proposed to enhance vegetation segmentation accuracy. The RSPT model offers both efficient and lightweight architecture. In RSPT, random point sampling is utilized to downsample point clouds, and a local feature aggregation module based on self-attention is designed to extract additional representation features. The network also incorporated residual and dense connections (ResiDense) to capture both local and comprehensive features. Compared to state-of-the-art models, RSPT achieves notable improvements. The intersection over union (IoU) metric increased from 96.0% to 96.5%, the F1-score increased from 90.8% to 97.0%, and the overall accuracy (OA) increased from 91.9% to 96.9%. ABSTRACTVegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is obtained using light detection and ranging (LiDAR) or RGB-D images. Oblique photogrammetry has received little attention as another important source of point cloud data. We present a pointwise annotated oblique photogrammetry point-cloud dataset that contains rich RGB information, texture, and structural features. This dataset contains five regions of Bengbu, China, with more than twenty thousand samples in this paper. Obviously, previous indoor point cloud semantic segmentation models are no longer applicable to oblique photogrammetry point clouds. A random sampling point transformer (RSPT) network is proposed to enhance vegetation segmentation accuracy. The RSPT model offers both efficient and lightweight architecture. In RSPT, random point sampling is utilized to downsample point clouds, and a local feature aggregation module based on self-attention is designed to extract additional representation features. The network also incorporated residual and dense connections (ResiDense) to capture both local and comprehensive features. Compared to state-of-the-art models, RSPT achieves notable improvements. The intersection over union (IoU) metric increased from 96.0% to 96.5%, the F1-score increased from 90.8% to 97.0%, and the overall accuracy (OA) increased from 91.9% to 96.9%. |
Author | Sun, Zhangyu Kang, Ruihong Hu, Hong Wu, Yanlan Wang, Baoguo |
Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0002-7810-1528 surname: Hu fullname: Hu, Hong organization: Anhui University – sequence: 2 givenname: Zhangyu orcidid: 0009-0001-0119-1270 surname: Sun fullname: Sun, Zhangyu organization: Anhui University – sequence: 3 givenname: Ruihong orcidid: 0009-0002-0105-8610 surname: Kang fullname: Kang, Ruihong organization: Anhui University – sequence: 4 givenname: Yanlan orcidid: 0000-0002-8983-3150 surname: Wu fullname: Wu, Yanlan email: wuyanlan@ahu.edu.cn organization: Anhui University – sequence: 5 givenname: Baoguo orcidid: 0009-0009-3895-6503 surname: Wang fullname: Wang, Baoguo organization: Bengbu Geotechnical Engineering and Surveying Institute |
BookMark | eNp9kU9v3CAQxVGUSk3SfoRKlnrpZTdgwOBbq6j5I0VK1abtEWE8OGxt2AJWtN8-OLvJoYeegNGb38zjnaJjHzwg9IHgNcESnxPBqWyZWNe4ZuuaEowlPUInS30lW86PX-9MvEWnKW0wbjBj9AT9_gUDZJ1d8FWCYQJ_eMzJ-aEK3ej-zlBtH0IOQ9TTBDnuqm1wPldmDHOfqk4n6KvS8v3Ht_vKQ34M8c879MbqMcH7w3mGfl5-vb-4Xt3eXd1cfLldGUbrvJK07i2WHIgQTJelOiyktk1nrbBGkNpwLnvKpDQY97q10HWt1YIKY6UFQc_QzZ7bB71R2-gmHXcqaKeeCyEOSsfszAiKNrB4ZoVrmOmwtISatmWF3zEKuLA-7VnbGIrplNXkkoFx1B7CnBQlDZcNaWhTpB__kW7CHH1xWlRcFjc15UXF9yoTQ0oR7OuCBKslOvUSnVqiU4foSt_nfZ_zNsRJlw8de5X1bgzRRu2NW8b8F_EEFcah9w |
Cites_doi | 10.1016/j.jag.2022.102953 10.5040/9781350101272.00000005 10.5194/isprs-annals-iv-1-w1-91-2017 10.1109/ICCV.2019.00939 10.1109/CVPR.2017.261 10.1109/TGRS.2018.2802935 10.1016/j.jag.2021.102580 10.1016/j.isprsjprs.2021.09.024 10.1109/JSTARS.2017.2781132 10.1109/ICCV48922.2021.01595 10.1080/2150704X.2017.1384588 10.1080/17538947.2023.2192527 10.1109/IROS.2015.7353481 10.1016/j.rse.2014.03.018 10.1109/cvpr.2017.16 10.1007/978-3-319-64689-3_8 10.1109/CVPR.2011.5995552 10.1109/CVPR42600.2020.01112 10.1016/j.geomorph.2012.08.021 10.1007/s11432-021-3387-7 10.1016/j.isprsjprs.2019.01.024 10.1016/j.jag.2018.02.016 10.1007/978-3-030-20887-5_7 10.1007/s41095-021-0229-5 10.1109/CVPR42600.2020.01009 10.1016/j.isprsjprs.2016.01.006 10.1016/j.neucom.2022.09.056 10.1109/cvpr46437.2021.01427 10.1109/TGRS.2012.2194503 10.1109/tpami.2020.3005434 10.1109/CVPR46437.2021.01150 10.1145/3394171.3413661 10.1080/19479832.2016.1188860 10.1145/1463434.1463444 10.1109/LGRS.2017.2764938 10.1109/CVPR52688.2022.01837 10.1109/ICCV.2015.114 10.3390/rs9010092 10.1016/j.rse.2022.113143 10.1016/j.rse.2021.112857 10.1080/17538947.2021.1943018 10.1016/j.cag.2015.03.004 10.1016/j.cag.2015.07.004 10.1109/TITS.2020.2990120 10.1109/CVPRW.2016.88 10.1007/978-3-642-15561-1_27 10.1109/access.2020.3023423 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M SOI 7S9 L.6 DOA |
DOI | 10.1080/17538947.2024.2310083 |
DatabaseName | Taylor & Francis Open Access CrossRef Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1753-8955 |
ExternalDocumentID | oai_doaj_org_article_36e04434fc7c4cb08f13c9948d3b43e0 10_1080_17538947_2024_2310083 2310083 |
Genre | Research Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41971311 – fundername: National Natural Science Foundation of China |
GroupedDBID | .7F 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABDBF ABFIM ABPEM ABTAI ACGFS ACIWK ACTIO ACUHS ADCVX ADMSI AEISY AENEX AEYOC AFKVX AFRAH AHDSZ AHDZW AIJEM AJWEG ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS ESX GROUPED_DOAJ GTTXZ HZ~ J~4 KYCEM LJTGL M4Z ML. O9- OK1 RIG SNACF TDBHL TFL TFT TFW TTHFI TWF TWN UU3 VAE AAYXX AIYEW CITATION DGEBU 7ST 7UA 8FD C1K F1W FR3 H13 H8D H96 KR7 L.G L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-832df085e1774a060b078af6bff7fc712c558d3488c00da9febb9fa737cf8fe73 |
IEDL.DBID | 0YH |
ISSN | 1753-8947 1753-8955 |
IngestDate | Wed Aug 27 01:10:57 EDT 2025 Fri Jul 11 01:46:03 EDT 2025 Fri Jul 25 12:16:53 EDT 2025 Tue Jul 01 01:05:58 EDT 2025 Wed Jan 22 07:59:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-832df085e1774a060b078af6bff7fc712c558d3488c00da9febb9fa737cf8fe73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0002-0105-8610 0000-0002-7810-1528 0000-0002-8983-3150 0009-0009-3895-6503 0009-0001-0119-1270 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/17538947.2024.2310083 |
PQID | 3158177235 |
PQPubID | 176143 |
ParticipantIDs | proquest_journals_3158177235 proquest_miscellaneous_3165861636 crossref_primary_10_1080_17538947_2024_2310083 doaj_primary_oai_doaj_org_article_36e04434fc7c4cb08f13c9948d3b43e0 informaworld_taylorfrancis_310_1080_17538947_2024_2310083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of digital earth |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_4_3_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_27_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_19_1 e_1_3_4_4_1 e_1_3_4_2_1 e_1_3_4_8_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_26_1 e_1_3_4_47_1 Chen Y. (e_1_3_4_6_1) 2017 e_1_3_4_31_1 e_1_3_4_52_1 e_1_3_4_50_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_18_1 |
References_xml | – ident: e_1_3_4_47_1 doi: 10.1016/j.jag.2022.102953 – ident: e_1_3_4_40_1 doi: 10.5040/9781350101272.00000005 – ident: e_1_3_4_19_1 doi: 10.5194/isprs-annals-iv-1-w1-91-2017 – ident: e_1_3_4_4_1 doi: 10.1109/ICCV.2019.00939 – ident: e_1_3_4_8_1 doi: 10.1109/CVPR.2017.261 – ident: e_1_3_4_29_1 doi: 10.1109/TGRS.2018.2802935 – ident: e_1_3_4_7_1 doi: 10.1016/j.jag.2021.102580 – ident: e_1_3_4_9_1 doi: 10.1016/j.isprsjprs.2021.09.024 – ident: e_1_3_4_41_1 doi: 10.1109/JSTARS.2017.2781132 – ident: e_1_3_4_50_1 doi: 10.1109/ICCV48922.2021.01595 – ident: e_1_3_4_45_1 doi: 10.1080/2150704X.2017.1384588 – ident: e_1_3_4_48_1 doi: 10.1080/17538947.2023.2192527 – ident: e_1_3_4_31_1 doi: 10.1109/IROS.2015.7353481 – ident: e_1_3_4_2_1 doi: 10.1016/j.rse.2014.03.018 – ident: e_1_3_4_34_1 doi: 10.1109/cvpr.2017.16 – ident: e_1_3_4_22_1 doi: 10.1007/978-3-319-64689-3_8 – ident: e_1_3_4_43_1 doi: 10.1109/CVPR.2011.5995552 – ident: e_1_3_4_3_1 – ident: e_1_3_4_20_1 doi: 10.1109/CVPR42600.2020.01112 – ident: e_1_3_4_42_1 doi: 10.1016/j.geomorph.2012.08.021 – ident: e_1_3_4_37_1 doi: 10.1007/s11432-021-3387-7 – ident: e_1_3_4_28_1 doi: 10.1016/j.isprsjprs.2019.01.024 – ident: e_1_3_4_46_1 doi: 10.1016/j.jag.2018.02.016 – ident: e_1_3_4_14_1 doi: 10.1007/978-3-030-20887-5_7 – ident: e_1_3_4_16_1 doi: 10.1007/s41095-021-0229-5 – ident: e_1_3_4_49_1 doi: 10.1109/CVPR42600.2020.01009 – ident: e_1_3_4_25_1 doi: 10.1016/j.isprsjprs.2016.01.006 – ident: e_1_3_4_33_1 – start-page: 30 year: 2017 ident: e_1_3_4_6_1 article-title: Dual Path Networks publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_4_17_1 doi: 10.1016/j.neucom.2022.09.056 – ident: e_1_3_4_10_1 doi: 10.1109/cvpr46437.2021.01427 – ident: e_1_3_4_26_1 doi: 10.1109/TGRS.2012.2194503 – ident: e_1_3_4_18_1 doi: 10.1109/tpami.2020.3005434 – ident: e_1_3_4_5_1 – ident: e_1_3_4_13_1 doi: 10.1109/CVPR46437.2021.01150 – ident: e_1_3_4_23_1 doi: 10.1145/3394171.3413661 – ident: e_1_3_4_15_1 doi: 10.1080/19479832.2016.1188860 – ident: e_1_3_4_51_1 doi: 10.1145/1463434.1463444 – ident: e_1_3_4_52_1 doi: 10.1109/LGRS.2017.2764938 – ident: e_1_3_4_36_1 doi: 10.1109/CVPR52688.2022.01837 – ident: e_1_3_4_38_1 doi: 10.1109/ICCV.2015.114 – ident: e_1_3_4_44_1 doi: 10.3390/rs9010092 – ident: e_1_3_4_35_1 doi: 10.1016/j.rse.2022.113143 – ident: e_1_3_4_21_1 doi: 10.1016/j.rse.2021.112857 – ident: e_1_3_4_32_1 doi: 10.1080/17538947.2021.1943018 – ident: e_1_3_4_39_1 doi: 10.1016/j.cag.2015.03.004 – ident: e_1_3_4_24_1 doi: 10.1016/j.cag.2015.07.004 – ident: e_1_3_4_30_1 doi: 10.1109/TITS.2020.2990120 – ident: e_1_3_4_11_1 doi: 10.1109/CVPRW.2016.88 – ident: e_1_3_4_12_1 doi: 10.1007/978-3-642-15561-1_27 – ident: e_1_3_4_27_1 doi: 10.1109/access.2020.3023423 |
SSID | ssj0060443 |
Score | 2.3408933 |
Snippet | Vegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset is... ABSTRACTVegetation segmentation via point cloud data can provide important information for urban planning and environmental protection. The point cloud dataset... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Accuracy Aggregation China data collection Datasets Environmental protection Image processing Image segmentation Lidar Oblique photogrammetry Photogrammetry point cloud Random sampling RSPT self-attention Semantic segmentation Statistical sampling texture Urban planning Vegetation vegetation segmentation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy5VS4u6FCpX6jWQxHZiHwGBUKVWVQuUm2U746USJCs2e-DfM5M4QOHApVd_SM6bjOc5mXlm7GvUtROSvru5KmQSOWtmhFFZjI02zkeQOdUOf_9RnZ7Lb5fq8slVX5QTNsoDj8DtiwpyKYWMoQ4y-FzHQgRjpG6ElwKG0zrGvOkwNe7BFU0ZSiGVyLSR9VS7o_N9aqMmPBuWco_oTa7FP1FpEO9_Jl36Yqse4s_JW_YmEUd-MC74HVuDdpNtHT_WqWFnctTle_bnAuYpkZAvYX6TKoxaTnnuc975a9Jt5Yurrh_ys26gv73ji-5v2_Nw3a2aJaf41nCc8uv3zzPejuniH9j5yfHZ0WmW7lDIghRln6HDNhFpFRTI8xwC45ETuFj5GGuEtCiDUgglunHI88aZCN6b6GpRh6gj1GKLrbddCx8Zj8YpXwQFgBzKlbXzlYEmBCORBIEQM7Y3YWgXo1SGLZIC6QS6JdBtAn3GDgnph8GkdD00oP1tsr99zf4zZp7ayfbDh4443kpixSsL2JmMapPr0hSlEaxSqBn78tCNTkd_UlwL3YrGIHGrkMpW2__jGT6xDVrWqB-5w9b72xXsItfp_efhtb4HX974Kg priority: 102 providerName: Directory of Open Access Journals |
Title | Vegetation segmentation using oblique photogrammetry point clouds based on RSPT network |
URI | https://www.tandfonline.com/doi/abs/10.1080/17538947.2024.2310083 https://www.proquest.com/docview/3158177235 https://www.proquest.com/docview/3165861636 https://doaj.org/article/36e04434fc7c4cb08f13c9948d3b43e0 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKe-GCoKVioVRG6jXFiZ2Hj7RqtUJqVfUFnCzb8SyV2mS1yR7498wkTnkJceASKXEmsWYyns_OzGfGDqAqrVS07mYLnyjErImWOk8A6kpbB0EJqh0-Oy_mN-rj53zKJuxiWiXNoWEkihjGanJu67opI-49kUtWWpU4u8vUIQEUxBFP2BZGYkGbGIgv82kwLoQac-xRJCGZqYjnb4_5JTwNLP6_cZj-MWYPgej0OXsWEST_MJr8BdsIzTbbPflRsIaN0WO7HfbpNixiRiHvwuIhlho1nBLeF7x190Tgypdf235I1HoI_eobX7Z3Tc_9fbuuO06BruYocnl1cc2bMW_8Jbs5Pbk-nidxM4XEK5n1CXpuDYivQoqAz6JiHIIDC4UDKMGXaebzvKol-rMXorYagnMabClLDxWEUu6yzaZtwivGQdvcpT4PAcGUzUrrCh1q77VCNBSknLHDSYdmOXJmmDRSkU5KN6R0E5U-Y0ek6cebifJ6uNCuFiZ6kJFFIGMq7KxX3okKUum1Vthpp2QQM6Z_tpPphxUPGLcnMfIfHdibjGqiD5NIXqGyMpnP2LvHZvQ--qVim9Cu6R5EcAVi2uL1f7z-DXtKpyN_5B7b7Ffr8BaxTu_2h68Zj1Kc7w_rBd8BiVv3EA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOBCeVVdaMFIXLMk8SPxsVStFmhXCLbQm2U79oJok9Vu9tD-emYSp5QixKHX2JPY4_H4szPzmZA3oSwM43juZqRLOGDWRDElkhCqUhkbPE8xd_h4Kicn_MOpOL2WC4NhlbiHDj1RROercXLjYfQQEvcW2SVLxQvY3uV8jAgFgMRdck8oWaCts3Q6eGOZ8j7IHkQSlBmyeP71mj_Wp47G_waJ6V9Ou1uJDjeJG_rQB6D8HK9bO3aXN-gdb9fJR-RhBKp0r7esx-SOr5-QrYPfeXFQGB3D6in59tXPY-AiXfn5ecxoqinG1c9pY8-QJ5YuvjdtFw927tvlBV00P-qWurNmXa0orqcVBZHPXz7NaN2Hpz8jJ4cHs_1JEu9sSBxneZuAg6gCwDifAa40oH4LGMQEaUMogiuy3AlRVgzchkvTyqjgrVXBFKxwoQy-YFtko25qv01oUEbYzAnvAbOZvDBWKl85pziALs_YiIyHkdKLnppDZ5HxdFCeRuXpqLwReYfjeVUZmbW7B81yruNE1Ux6NBkOjXXc2bQMGXNKcWi05cynI6KuW4Nuu4OV0N-Cotl_GrAzmI6OrgJFRAnKypkYkddXxTDJ8c-NqX2zxjoAFCVAZ_n8Fp9_Re5PZsdH-uj99OML8gCLesrKHbLRLtd-F-BVa1928-cXn18Y1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRCXlgJVty3USFyzJLHz8JFHV-W1qqAFbpbt2NuqbbLazR7Kr2cmcQoUIQ69xnZij-3xZ-ebzwAvfFloLujcTec2EohZI8llFnlflVIb70RMscOfpvnhiXj_PRvYhMtAq6Q9tO-FIjpfTZN7XvmBEfeSxCVLKQrc3aViTAAFccRduJdToCVFccTTwRnjo55jj0UiKjME8fzrNX8sT52K_w0N0798drcQTTbADE3o-Sfn41VrxvbHDXXHW7XxIawHmMpe9eNqE-64-hFsHfyKisPE4BaWj-HbVzcLtEW2dLPLEM9UM2LVz1hjLkglls1Pm7Zjg126dnHF5s1Z3TJ70ayqJaPVtGJY5POXo2NW9-T0J3AyOTh-cxiFGxsiK3jaRugeKo8gziWIKjVa3yAC0T433hfeFklqs6ysODoNG8eVlt4ZI70ueGF96V3Bt2Ctbmq3DcxLnZnEZs4hYtNpoU0uXWWtFAi5HOcjGA8dpea9MIdKgt7pYDxFxlPBeCN4Td15nZl0tbsHzWKmwjRVPHc0YgRW1gpr4tIn3EopsNJGcBePQP4-GFTbHav4_g4Uxf9Tgb1h5KjgKKhIVqKxUp6N4Pl1Mk5x-m-ja9esKA_CxByBc75zi8_vw_2jtxP18d30wy48oJRer3IP1trFyj1FbNWaZ93s-QkUOhd5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetation+segmentation+using+oblique+photogrammetry+point+clouds+based+on+RSPT+network&rft.jtitle=International+journal+of+digital+earth&rft.au=Hu%2C+Hong&rft.au=Sun%2C+Zhangyu&rft.au=Kang%2C+Ruihong&rft.au=Wu%2C+Yanlan&rft.date=2024-12-31&rft.issn=1753-8947&rft.eissn=1753-8955&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1080%2F17538947.2024.2310083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17538947_2024_2310083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon |