Discovering common change-point patterns in functional connectivity across subjects

•A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of estimated FC.•Temporal alignment of functions for discovering common change-point patterns across subjects.•Experiment block designs for validati...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 58; p. 101532
Main Authors Dai, Mengyu, Zhang, Zhengwu, Srivastava, Anuj
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of estimated FC.•Temporal alignment of functions for discovering common change-point patterns across subjects.•Experiment block designs for validation.•Comprehensive Human Connectome Project (HCP) data analysis results. [Display omitted] This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks.
AbstractList This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks.This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks.
This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks.
•A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of estimated FC.•Temporal alignment of functions for discovering common change-point patterns across subjects.•Experiment block designs for validation.•Comprehensive Human Connectome Project (HCP) data analysis results. [Display omitted] This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks.
ArticleNumber 101532
Author Srivastava, Anuj
Zhang, Zhengwu
Dai, Mengyu
Author_xml – sequence: 1
  givenname: Mengyu
  orcidid: 0000-0003-2845-746X
  surname: Dai
  fullname: Dai, Mengyu
  email: mengyu.dai@stat.fsu.edu
  organization: Department of Statistics, Florida State University, Tallahassee, FL, United States
– sequence: 2
  givenname: Zhengwu
  surname: Zhang
  fullname: Zhang, Zhengwu
  organization: Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
– sequence: 3
  givenname: Anuj
  surname: Srivastava
  fullname: Srivastava, Anuj
  organization: Department of Statistics, Florida State University, Tallahassee, FL, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31351229$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVE0VSZ_TxCpstRNN55wAdvjRRdVmqSRInWRZI0YwFMsG6aAR8rb904myWIWWQFX3wHOOadk5oO3hFwCXQCF-qpfjNY4tWAU2t2k4uyInACvoVwKxmcfe6jm5DSlnlLaCEGPyZwDr4Cx9oQ8_nJJh62Nzq8LHcYx-EL_VX5ty01wPhcblbONPhXOF93kdXbBqwFR7y0eti6_FErHkFKRplWPs3ROvnRqSPbibT0jz7c3T9e_y4c_d_fXPx9KLTjL5RJoU5kaeMdEpwXV0IBWVnVGCI5mdNVCvey0Mi2szNI0gq8ArGDMtKauFD8j3_f3bmL4N9mU5Yhm7DAob8OUJGN11dRV3QCi3w7QPkwRjSDFeYtfwQeR-vpGTSvMVm6iG1V8ke9xIdDugVfD0XZSu6x2keSo3CCByl01spev1chdNXJfDWr5gfb9-s9VP_Yqi0FunY0yaWe9RjBi1tIE96n-PwjeqAs
CitedBy_id crossref_primary_10_1016_j_neucom_2024_127321
crossref_primary_10_1016_j_neuroimage_2022_119026
crossref_primary_10_1080_10618600_2022_2127738
crossref_primary_10_1088_1741_2552_abc903
crossref_primary_10_1109_TMI_2020_3029063
crossref_primary_10_1002_hbm_25897
crossref_primary_10_1016_j_bspc_2021_103274
crossref_primary_10_1016_j_media_2021_102252
Cites_doi 10.1214/14-AOS1269
10.1089/brain.2012.0073
10.1016/j.neuroimage.2012.03.070
10.1006/nimg.2000.0612
10.1007/s11263-005-3222-z
10.1016/j.neuroimage.2013.05.033
10.1371/journal.pcbi.1004534
10.1016/S0047-259X(03)00096-4
10.1093/biostatistics/kxm045
10.1016/j.neuroimage.2016.09.019
10.1016/j.neuroimage.2014.06.052
10.1016/j.neuroimage.2015.07.039
10.1016/j.neuroimage.2013.04.127
10.1006/nimg.2001.0978
10.1093/scan/nsm006
10.1016/j.neuroimage.2015.11.055
10.1093/cercor/bhu239
10.1016/j.neuroimage.2013.05.041
10.1089/brain.2011.0008
10.1016/j.neuroimage.2014.07.033
10.1038/srep18893
10.1016/j.neuroimage.2013.05.079
10.1097/MD.0000000000004188
10.1152/jn.2000.84.6.3072
10.1016/j.imavis.2011.09.006
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright Elsevier BV Dec 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Dec 2019
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2019.101532
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 31351229
10_1016_j_media_2019_101532
S1361841519300659
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c432t-81075d613f24fc40c171caeafd443532c59168fcad91bd8d743b11e422d9d65a3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 06:40:42 EDT 2025
Sat Jul 26 03:26:59 EDT 2025
Thu Apr 03 07:08:18 EDT 2025
Tue Jul 01 02:49:27 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Fri Feb 23 02:28:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Change-points
Minimal spanning trees
Dynamic functional connectivity
Symmetric positive definite matrix
Temporal alignment
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-81075d613f24fc40c171caeafd443532c59168fcad91bd8d743b11e422d9d65a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2845-746X
OpenAccessLink https://doi.org/10.1016/j.media.2019.101532
PMID 31351229
PQID 2339810532
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2265765671
proquest_journals_2339810532
pubmed_primary_31351229
crossref_citationtrail_10_1016_j_media_2019_101532
crossref_primary_10_1016_j_media_2019_101532
elsevier_sciencedirect_doi_10_1016_j_media_2019_101532
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Su, Klassen, Le, Srivastava (bib0030) 2015; in review
Whitfield-Gabrieli, Nieto-Castanon (bib0027) 2012; 2
Xiao, Liu, Zhang, Xiao, Pan (bib0028) 2017
Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib0012) 2016; 26
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0025) 2013; 80
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbett, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib0015) 2013; 80
Hinne, Janssen, Heskes, van Gerven (bib0014) 2015; 11
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0024) 2002; 15
Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib0013) 2016; 127
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen (bib0001) 2013; 80
Brier, Mitra, McCarthy, Ances, Snyder (bib0003) 2015; 121
Jeong, Pae, Park (bib0016) 2016; 143
Monti, Hellyer, Sharp, Leech, Anagnostopoulos, Montana (bib0019) 2014; 103
Cribben, Wager, Lindquist (bib0007) 2013; 7
Friston (bib0010) 2011; 1
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0011) 2013; 80
Su, Dryden, Klassen, Le, Srivastava (bib0023) 2012; 30
Friedman, Hastie, Tibshirani (bib0009) 2008; 9
Ledoit, Wolf (bib0017) 2004; 88
Srivastava, Klassen (bib0022) 2016
Lindquist, Xu, Nebel, Caffo (bib0018) 2014; 101
Poldrack (bib0021) 2007; 2
Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bib0006) 2012; 61
Delgado, Nystrom, Fissell, Noll, Fiez (bib0008) 2000; 84
Van Poucke, Zhang, Roest, Vukicevic, Beran, Lauwereins, Zheng, Henskens, Lanc, Marcus (bib0026) 2016; 95
Chen, Zhang (bib0005) 2015; 43
Xu, Lindquist (bib0029) 2015; 9
Pennec, Fillard, Ayache (bib0020) 2006; 66
Castelli, Happ, Frith, Frith (bib0004) 2000; 12
Barnett, Onnela (bib0002) 2016; 6
Jeong (10.1016/j.media.2019.101532_bib0016) 2016; 143
Srivastava (10.1016/j.media.2019.101532_bib0022) 2016
Xu (10.1016/j.media.2019.101532_bib0029) 2015; 9
Monti (10.1016/j.media.2019.101532_bib0019) 2014; 103
Cribben (10.1016/j.media.2019.101532_bib0007) 2013; 7
Cribben (10.1016/j.media.2019.101532_bib0006) 2012; 61
Brier (10.1016/j.media.2019.101532_bib0003) 2015; 121
Whitfield-Gabrieli (10.1016/j.media.2019.101532_bib0027) 2012; 2
Chen (10.1016/j.media.2019.101532_bib0005) 2015; 43
Delgado (10.1016/j.media.2019.101532_bib0008) 2000; 84
Van Essen (10.1016/j.media.2019.101532_bib0025) 2013; 80
Friedman (10.1016/j.media.2019.101532_bib0009) 2008; 9
Xiao (10.1016/j.media.2019.101532_bib0028) 2017
Su (10.1016/j.media.2019.101532_bib0023) 2012; 30
Tzourio-Mazoyer (10.1016/j.media.2019.101532_bib0024) 2002; 15
Barnett (10.1016/j.media.2019.101532_bib0002) 2016; 6
Van Poucke (10.1016/j.media.2019.101532_bib0026) 2016; 95
Hutchison (10.1016/j.media.2019.101532_bib0015) 2013; 80
Pennec (10.1016/j.media.2019.101532_bib0020) 2006; 66
Barch (10.1016/j.media.2019.101532_bib0001) 2013; 80
Hindriks (10.1016/j.media.2019.101532_bib0013) 2016; 127
Poldrack (10.1016/j.media.2019.101532_bib0021) 2007; 2
Friston (10.1016/j.media.2019.101532_bib0010) 2011; 1
Ledoit (10.1016/j.media.2019.101532_bib0017) 2004; 88
Gordon (10.1016/j.media.2019.101532_bib0012) 2016; 26
Lindquist (10.1016/j.media.2019.101532_bib0018) 2014; 101
Hinne (10.1016/j.media.2019.101532_bib0014) 2015; 11
Castelli (10.1016/j.media.2019.101532_bib0004) 2000; 12
Glasser (10.1016/j.media.2019.101532_bib0011) 2013; 80
Zhang (10.1016/j.media.2019.101532_bib0030) 2015; in review
References_xml – volume: 95
  start-page: e4188
  year: 2016
  ident: bib0026
  article-title: Normalization methods in time series of platelet function assays: a squire compliant study
  publication-title: Medicine (Baltimore)
– volume: 84
  start-page: 3072
  year: 2000
  end-page: 3077
  ident: bib0008
  article-title: Tracking the hemodynamic responses to reward and punishment in the striatum
  publication-title: J. Neurophysiol.
– volume: 9
  year: 2015
  ident: bib0029
  article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
  publication-title: Front. Neurosci.
– volume: 1
  start-page: 13
  year: 2011
  end-page: 36
  ident: bib0010
  article-title: Functional and effective connectivity: a review
  publication-title: Brain Connect.
– volume: 66
  start-page: 41
  year: 2006
  end-page: 66
  ident: bib0020
  article-title: A riemannian framework for tensor computing
  publication-title: Int. J. Comput. Vision
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: NeuroImage
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib0015
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: NeuroImage
– volume: 11
  start-page: e1004534
  year: 2015
  ident: bib0014
  article-title: Bayesian estimation of conditional independence graphs improves functional connectivity estimates
  publication-title: PLoS Comput. Biol.
– volume: 2
  start-page: 67
  year: 2007
  end-page: 70
  ident: bib0021
  article-title: Region of interest analysis for fMRI
  publication-title: Soc. Cogn. Affect. Neurosci.
– volume: 127
  start-page: 242
  year: 2016
  end-page: 256
  ident: bib0013
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri?
  publication-title: NeuroImage
– volume: 12
  start-page: 314
  year: 2000
  end-page: 325
  ident: bib0004
  article-title: Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns
  publication-title: NeuroImage
– volume: 7
  year: 2013
  ident: bib0007
  article-title: Detecting functional connectivity change points for single-subject fmri data
  publication-title: Front. Comput. Neurosci.
– volume: 121
  start-page: 29
  year: 2015
  end-page: 38
  ident: bib0003
  article-title: Partial covariance based functional connectivity computation using ledoit-wolf covariance regularization
  publication-title: NeuroImage
– volume: 88
  start-page: 365
  year: 2004
  end-page: 411
  ident: bib0017
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivar. Anal.
– volume: 103
  start-page: 427
  year: 2014
  end-page: 443
  ident: bib0019
  article-title: Estimating time-varying brain connectivity networks from functional MRI time series
  publication-title: NeuroImage
– volume: 43
  start-page: 139
  year: 2015
  end-page: 176
  ident: bib0005
  article-title: Graph-based change-point detection
  publication-title: Ann. Stat.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0025
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
– volume: 101
  start-page: 531
  year: 2014
  end-page: 546
  ident: bib0018
  article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
  publication-title: NeuroImage
– volume: 15
  start-page: 273
  year: 2002
  end-page: 279
  ident: bib0024
  article-title: Automated anatomical labeling of activations in SPMusing a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– volume: 61
  start-page: 907
  year: 2012
  end-page: 920
  ident: bib0006
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: NeuroImage
– volume: 2
  start-page: 125
  year: 2012
  end-page: 141
  ident: bib0027
  article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connect.
– start-page: 314
  year: 2017
  end-page: 324
  ident: bib0028
  article-title: Detecting change points in fMRI data via Bayesian inference and genetic algorithm model
  publication-title: Bioinformatics Research and Applications
– volume: in review
  year: 2015
  ident: bib0030
  article-title: Video-based action recognition using rate-invariant analysis of covariance trajectories
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 30
  start-page: 428
  year: 2012
  end-page: 442
  ident: bib0023
  article-title: Fitting optimal curves to time-indexed, noisy observations on nonlinear manifolds
  publication-title: J. Image Vision Comp.
– volume: 26
  start-page: 288
  year: 2016
  end-page: 303
  ident: bib0012
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cerebral Cortex
– year: 2016
  ident: bib0022
  article-title: Functional and shape data analysis
– volume: 6
  start-page: 18893
  year: 2016
  ident: bib0002
  article-title: Change point detection in correlation networks
  publication-title: Sci. Rep.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0011
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 143
  start-page: 353
  year: 2016
  end-page: 363
  ident: bib0016
  article-title: Connectivity-based change point detection for large-size functional networks
  publication-title: NeuroImage
– volume: 9
  start-page: 432
  year: 2008
  end-page: 441
  ident: bib0009
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
– volume: 43
  start-page: 139
  issue: 1
  year: 2015
  ident: 10.1016/j.media.2019.101532_bib0005
  article-title: Graph-based change-point detection
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1269
– volume: 2
  start-page: 125
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2019.101532_bib0027
  article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0073
– volume: 61
  start-page: 907
  issue: 4
  year: 2012
  ident: 10.1016/j.media.2019.101532_bib0006
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.070
– volume: 12
  start-page: 314
  issue: 3
  year: 2000
  ident: 10.1016/j.media.2019.101532_bib0004
  article-title: Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0612
– volume: 66
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.media.2019.101532_bib0020
  article-title: A riemannian framework for tensor computing
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-005-3222-z
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.media.2019.101532_bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 11
  start-page: e1004534
  issue: 11
  year: 2015
  ident: 10.1016/j.media.2019.101532_bib0014
  article-title: Bayesian estimation of conditional independence graphs improves functional connectivity estimates
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004534
– start-page: 314
  year: 2017
  ident: 10.1016/j.media.2019.101532_bib0028
  article-title: Detecting change points in fMRI data via Bayesian inference and genetic algorithm model
– volume: 88
  start-page: 365
  issue: 2
  year: 2004
  ident: 10.1016/j.media.2019.101532_bib0017
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivar. Anal.
  doi: 10.1016/S0047-259X(03)00096-4
– volume: 9
  start-page: 432
  issue: 3
  year: 2008
  ident: 10.1016/j.media.2019.101532_bib0009
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 9
  issue: 285
  year: 2015
  ident: 10.1016/j.media.2019.101532_bib0029
  article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
  publication-title: Front. Neurosci.
– volume: 143
  start-page: 353
  year: 2016
  ident: 10.1016/j.media.2019.101532_bib0016
  article-title: Connectivity-based change point detection for large-size functional networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.09.019
– volume: 101
  start-page: 531
  year: 2014
  ident: 10.1016/j.media.2019.101532_bib0018
  article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.052
– volume: 121
  start-page: 29
  year: 2015
  ident: 10.1016/j.media.2019.101532_bib0003
  article-title: Partial covariance based functional connectivity computation using ledoit-wolf covariance regularization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.039
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.media.2019.101532_bib0011
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.media.2019.101532_bib0024
  article-title: Automated anatomical labeling of activations in SPMusing a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 2
  start-page: 67
  issue: 1
  year: 2007
  ident: 10.1016/j.media.2019.101532_bib0021
  article-title: Region of interest analysis for fMRI
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nsm006
– year: 2016
  ident: 10.1016/j.media.2019.101532_bib0022
– volume: 7
  issue: 143
  year: 2013
  ident: 10.1016/j.media.2019.101532_bib0007
  article-title: Detecting functional connectivity change points for single-subject fmri data
  publication-title: Front. Comput. Neurosci.
– volume: 127
  start-page: 242
  year: 2016
  ident: 10.1016/j.media.2019.101532_bib0013
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.055
– volume: in review
  year: 2015
  ident: 10.1016/j.media.2019.101532_bib0030
  article-title: Video-based action recognition using rate-invariant analysis of covariance trajectories
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 26
  start-page: 288
  issue: 1
  year: 2016
  ident: 10.1016/j.media.2019.101532_bib0012
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhu239
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.media.2019.101532_bib0025
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 1
  start-page: 13
  issue: 1
  year: 2011
  ident: 10.1016/j.media.2019.101532_bib0010
  article-title: Functional and effective connectivity: a review
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0008
– volume: 103
  start-page: 427
  year: 2014
  ident: 10.1016/j.media.2019.101532_bib0019
  article-title: Estimating time-varying brain connectivity networks from functional MRI time series
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.033
– volume: 6
  start-page: 18893
  year: 2016
  ident: 10.1016/j.media.2019.101532_bib0002
  article-title: Change point detection in correlation networks
  publication-title: Sci. Rep.
  doi: 10.1038/srep18893
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.media.2019.101532_bib0015
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 95
  start-page: e4188
  issue: 28
  year: 2016
  ident: 10.1016/j.media.2019.101532_bib0026
  article-title: Normalization methods in time series of platelet function assays: a squire compliant study
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000004188
– volume: 84
  start-page: 3072
  issue: 6
  year: 2000
  ident: 10.1016/j.media.2019.101532_bib0008
  article-title: Tracking the hemodynamic responses to reward and punishment in the striatum
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.6.3072
– volume: 30
  start-page: 428
  issue: 6–7
  year: 2012
  ident: 10.1016/j.media.2019.101532_bib0023
  article-title: Fitting optimal curves to time-indexed, noisy observations on nonlinear manifolds
  publication-title: J. Image Vision Comp.
  doi: 10.1016/j.imavis.2011.09.006
SSID ssj0007440
Score 2.3568907
Snippet •A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of...
This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101532
SubjectTerms Brain
Brain mapping
Change detection
Change-points
Dynamic functional connectivity
Functional magnetic resonance imaging
Graphical methods
Graphical representations
Mathematical analysis
Mathematical functions
Matrix methods
Minimal spanning trees
Neural networks
Statistical analysis
Statistical tests
Symmetric positive definite matrix
Temporal alignment
Title Discovering common change-point patterns in functional connectivity across subjects
URI https://dx.doi.org/10.1016/j.media.2019.101532
https://www.ncbi.nlm.nih.gov/pubmed/31351229
https://www.proquest.com/docview/2339810532
https://www.proquest.com/docview/2265765671
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeW0plJI6YXb-yyXEplOXRXkpRb1b8iBSEsqtm98pvZ8ZOFji0B05R4rHkjMczn-15ALxGRCGDqgN3ZVNy7YzmpQwFR6gQddGULqZiMGfnxfJSf74yV3twMsbCkFvloPuzTk_aevgyHbg5Xbft9EIoKlYiCIKQIaUgPq3nJOVvf_1x86AEeDn2SnCiHjMPJR-vFJ1B_l0VfTFK3mSdbkKfyQqdPoQHA3xkizzCR7AXuwO4_1dSwQO4ezZclz-Gi_dt78lHExsY_iGKHMuRvny9arsNW6fsml3P2o6RhcsHg0iK2tfnuhKsTkNl_dbRkU3_BC5PP3w7WfKhigL3WskNL3GDZwJa7UbqxuuZF3Ph61g3QSNUUtIbRIhl4-tQCRfKgJDCCRG1lKEKhanVU9jvVl18DsxQNrSIsidnTld6Xjd-NnNC45ZESePiBOTIPeuHFONU6eKnHX3JftjEcksst5nlE3iz67TOGTZuJy_GabH_CIpFG3B7x6NxEu2wTnsrlaqQQan51a4ZVxhdm9RdXG2RRha4KTPFXEzgWZ783UAVFTiUsjr831G9gHv0lh1kjmB_c72NLxHmbNxxkuNjuLP49GV5js-P775-X_wG_xP8Fw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICivhQJGghtm169scuCAKNWWdntpK_Vm4kekIJRdkV0hLvwp_iDjRxY4tAekXv2IrG_smXH8zQzAK_QouBO1o6ZsSiqNkrTkrqDoKnhZNKXxsRjM_LiYnclP5-p8C34NsTCBVpl1f9LpUVvnlnFGc7xs2_EJE6FYCQsuSDCkVWZWHvof3_He1r872EMhv-Z8_-PphxnNpQWolYKvaIm3HuXQlDVcNlZOLJsyW_u6cRL9B8GtQrepbGztKmZc6dDOGsa85NxVrlC1wO9eg-sS1UUom_D25x9eSci4l4K9GA3LG1IdRVJZDAcJhLIqtCjBLzKHF7m70ezt34U72V8l7xMk92DLdztw-68shjtwY57f5-_DyV7b20AKxQ6CkOIeJym0mC4Xbbciy5jOs-tJ25FgUtOfSByK6t6mQhakjksl_dqEf0T9Azi7Emwfwna36PxjICqkX_O42fnEyEpO68ZOJoZJvAMJrowfAR_Q0zbnNA-lNb7qgbz2RUfIdYBcJ8hH8GYzaZlSelw-vBjEov_ZmRqNzuUTdwch6qwYes2FqBCg2P1y041HOrzT1J1frHEML_AWqIopG8GjJPzNQkWoqMh59eR_V_UCbs5O50f66OD48CncCj2JnbML26tva_8MfayVeR73NIHPV32IfgO6eTXb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+common+change-point+patterns+in+functional+connectivity+across+subjects&rft.jtitle=Medical+image+analysis&rft.au=Dai%2C+Mengyu&rft.au=Zhang%2C+Zhengwu&rft.au=Srivastava%2C+Anuj&rft.date=2019-12-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=58&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2019.101532&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon