Discovering common change-point patterns in functional connectivity across subjects
•A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of estimated FC.•Temporal alignment of functions for discovering common change-point patterns across subjects.•Experiment block designs for validati...
Saved in:
Published in | Medical image analysis Vol. 58; p. 101532 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of estimated FC.•Temporal alignment of functions for discovering common change-point patterns across subjects.•Experiment block designs for validation.•Comprehensive Human Connectome Project (HCP) data analysis results.
[Display omitted]
This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks. |
---|---|
AbstractList | This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks.This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks. This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks. •A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of estimated FC.•Temporal alignment of functions for discovering common change-point patterns across subjects.•Experiment block designs for validation.•Comprehensive Human Connectome Project (HCP) data analysis results. [Display omitted] This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical external stimulus. FC relates to the similarity of fMRI responses across different brain regions when the brain is simply resting or performing a task. While the dynamic nature of FC is well accepted, this paper develops a formal statistical test for finding change-points in times series associated with FC. It represents short-term connectivity by a symmetric positive-definite matrix, and uses a Riemannian metric on this space to develop a graphical method for detecting change-points in a time series of such matrices. It also provides a graphical representation of estimated FC for stationary subintervals in between the detected change-points. Furthermore, it uses a temporal alignment of the test statistic, viewed as a real-valued function over time, to remove inter-subject variability and to discover common change-point patterns across subjects. This method is illustrated using data from Human Connectome Project (HCP) database for multiple subjects and tasks. |
ArticleNumber | 101532 |
Author | Srivastava, Anuj Zhang, Zhengwu Dai, Mengyu |
Author_xml | – sequence: 1 givenname: Mengyu orcidid: 0000-0003-2845-746X surname: Dai fullname: Dai, Mengyu email: mengyu.dai@stat.fsu.edu organization: Department of Statistics, Florida State University, Tallahassee, FL, United States – sequence: 2 givenname: Zhengwu surname: Zhang fullname: Zhang, Zhengwu organization: Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States – sequence: 3 givenname: Anuj surname: Srivastava fullname: Srivastava, Anuj organization: Department of Statistics, Florida State University, Tallahassee, FL, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31351229$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAUhVE0VSZ_TxCpstRNN55wAdvjRRdVmqSRInWRZI0YwFMsG6aAR8rb904myWIWWQFX3wHOOadk5oO3hFwCXQCF-qpfjNY4tWAU2t2k4uyInACvoVwKxmcfe6jm5DSlnlLaCEGPyZwDr4Cx9oQ8_nJJh62Nzq8LHcYx-EL_VX5ty01wPhcblbONPhXOF93kdXbBqwFR7y0eti6_FErHkFKRplWPs3ROvnRqSPbibT0jz7c3T9e_y4c_d_fXPx9KLTjL5RJoU5kaeMdEpwXV0IBWVnVGCI5mdNVCvey0Mi2szNI0gq8ArGDMtKauFD8j3_f3bmL4N9mU5Yhm7DAob8OUJGN11dRV3QCi3w7QPkwRjSDFeYtfwQeR-vpGTSvMVm6iG1V8ke9xIdDugVfD0XZSu6x2keSo3CCByl01spev1chdNXJfDWr5gfb9-s9VP_Yqi0FunY0yaWe9RjBi1tIE96n-PwjeqAs |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_127321 crossref_primary_10_1016_j_neuroimage_2022_119026 crossref_primary_10_1080_10618600_2022_2127738 crossref_primary_10_1088_1741_2552_abc903 crossref_primary_10_1109_TMI_2020_3029063 crossref_primary_10_1002_hbm_25897 crossref_primary_10_1016_j_bspc_2021_103274 crossref_primary_10_1016_j_media_2021_102252 |
Cites_doi | 10.1214/14-AOS1269 10.1089/brain.2012.0073 10.1016/j.neuroimage.2012.03.070 10.1006/nimg.2000.0612 10.1007/s11263-005-3222-z 10.1016/j.neuroimage.2013.05.033 10.1371/journal.pcbi.1004534 10.1016/S0047-259X(03)00096-4 10.1093/biostatistics/kxm045 10.1016/j.neuroimage.2016.09.019 10.1016/j.neuroimage.2014.06.052 10.1016/j.neuroimage.2015.07.039 10.1016/j.neuroimage.2013.04.127 10.1006/nimg.2001.0978 10.1093/scan/nsm006 10.1016/j.neuroimage.2015.11.055 10.1093/cercor/bhu239 10.1016/j.neuroimage.2013.05.041 10.1089/brain.2011.0008 10.1016/j.neuroimage.2014.07.033 10.1038/srep18893 10.1016/j.neuroimage.2013.05.079 10.1097/MD.0000000000004188 10.1152/jn.2000.84.6.3072 10.1016/j.imavis.2011.09.006 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. Copyright Elsevier BV Dec 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. – notice: Copyright Elsevier BV Dec 2019 |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2019.101532 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 31351229 10_1016_j_media_2019_101532 S1361841519300659 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c432t-81075d613f24fc40c171caeafd443532c59168fcad91bd8d743b11e422d9d65a3 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Jul 11 06:40:42 EDT 2025 Sat Jul 26 03:26:59 EDT 2025 Thu Apr 03 07:08:18 EDT 2025 Tue Jul 01 02:49:27 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Fri Feb 23 02:28:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Change-points Minimal spanning trees Dynamic functional connectivity Symmetric positive definite matrix Temporal alignment |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-81075d613f24fc40c171caeafd443532c59168fcad91bd8d743b11e422d9d65a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2845-746X |
OpenAccessLink | https://doi.org/10.1016/j.media.2019.101532 |
PMID | 31351229 |
PQID | 2339810532 |
PQPubID | 2045428 |
ParticipantIDs | proquest_miscellaneous_2265765671 proquest_journals_2339810532 pubmed_primary_31351229 crossref_citationtrail_10_1016_j_media_2019_101532 crossref_primary_10_1016_j_media_2019_101532 elsevier_sciencedirect_doi_10_1016_j_media_2019_101532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhang, Su, Klassen, Le, Srivastava (bib0030) 2015; in review Whitfield-Gabrieli, Nieto-Castanon (bib0027) 2012; 2 Xiao, Liu, Zhang, Xiao, Pan (bib0028) 2017 Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib0012) 2016; 26 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0025) 2013; 80 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbett, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib0015) 2013; 80 Hinne, Janssen, Heskes, van Gerven (bib0014) 2015; 11 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0024) 2002; 15 Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib0013) 2016; 127 Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen (bib0001) 2013; 80 Brier, Mitra, McCarthy, Ances, Snyder (bib0003) 2015; 121 Jeong, Pae, Park (bib0016) 2016; 143 Monti, Hellyer, Sharp, Leech, Anagnostopoulos, Montana (bib0019) 2014; 103 Cribben, Wager, Lindquist (bib0007) 2013; 7 Friston (bib0010) 2011; 1 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0011) 2013; 80 Su, Dryden, Klassen, Le, Srivastava (bib0023) 2012; 30 Friedman, Hastie, Tibshirani (bib0009) 2008; 9 Ledoit, Wolf (bib0017) 2004; 88 Srivastava, Klassen (bib0022) 2016 Lindquist, Xu, Nebel, Caffo (bib0018) 2014; 101 Poldrack (bib0021) 2007; 2 Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bib0006) 2012; 61 Delgado, Nystrom, Fissell, Noll, Fiez (bib0008) 2000; 84 Van Poucke, Zhang, Roest, Vukicevic, Beran, Lauwereins, Zheng, Henskens, Lanc, Marcus (bib0026) 2016; 95 Chen, Zhang (bib0005) 2015; 43 Xu, Lindquist (bib0029) 2015; 9 Pennec, Fillard, Ayache (bib0020) 2006; 66 Castelli, Happ, Frith, Frith (bib0004) 2000; 12 Barnett, Onnela (bib0002) 2016; 6 Jeong (10.1016/j.media.2019.101532_bib0016) 2016; 143 Srivastava (10.1016/j.media.2019.101532_bib0022) 2016 Xu (10.1016/j.media.2019.101532_bib0029) 2015; 9 Monti (10.1016/j.media.2019.101532_bib0019) 2014; 103 Cribben (10.1016/j.media.2019.101532_bib0007) 2013; 7 Cribben (10.1016/j.media.2019.101532_bib0006) 2012; 61 Brier (10.1016/j.media.2019.101532_bib0003) 2015; 121 Whitfield-Gabrieli (10.1016/j.media.2019.101532_bib0027) 2012; 2 Chen (10.1016/j.media.2019.101532_bib0005) 2015; 43 Delgado (10.1016/j.media.2019.101532_bib0008) 2000; 84 Van Essen (10.1016/j.media.2019.101532_bib0025) 2013; 80 Friedman (10.1016/j.media.2019.101532_bib0009) 2008; 9 Xiao (10.1016/j.media.2019.101532_bib0028) 2017 Su (10.1016/j.media.2019.101532_bib0023) 2012; 30 Tzourio-Mazoyer (10.1016/j.media.2019.101532_bib0024) 2002; 15 Barnett (10.1016/j.media.2019.101532_bib0002) 2016; 6 Van Poucke (10.1016/j.media.2019.101532_bib0026) 2016; 95 Hutchison (10.1016/j.media.2019.101532_bib0015) 2013; 80 Pennec (10.1016/j.media.2019.101532_bib0020) 2006; 66 Barch (10.1016/j.media.2019.101532_bib0001) 2013; 80 Hindriks (10.1016/j.media.2019.101532_bib0013) 2016; 127 Poldrack (10.1016/j.media.2019.101532_bib0021) 2007; 2 Friston (10.1016/j.media.2019.101532_bib0010) 2011; 1 Ledoit (10.1016/j.media.2019.101532_bib0017) 2004; 88 Gordon (10.1016/j.media.2019.101532_bib0012) 2016; 26 Lindquist (10.1016/j.media.2019.101532_bib0018) 2014; 101 Hinne (10.1016/j.media.2019.101532_bib0014) 2015; 11 Castelli (10.1016/j.media.2019.101532_bib0004) 2000; 12 Glasser (10.1016/j.media.2019.101532_bib0011) 2013; 80 Zhang (10.1016/j.media.2019.101532_bib0030) 2015; in review |
References_xml | – volume: 95 start-page: e4188 year: 2016 ident: bib0026 article-title: Normalization methods in time series of platelet function assays: a squire compliant study publication-title: Medicine (Baltimore) – volume: 84 start-page: 3072 year: 2000 end-page: 3077 ident: bib0008 article-title: Tracking the hemodynamic responses to reward and punishment in the striatum publication-title: J. Neurophysiol. – volume: 9 year: 2015 ident: bib0029 article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data publication-title: Front. Neurosci. – volume: 1 start-page: 13 year: 2011 end-page: 36 ident: bib0010 article-title: Functional and effective connectivity: a review publication-title: Brain Connect. – volume: 66 start-page: 41 year: 2006 end-page: 66 ident: bib0020 article-title: A riemannian framework for tensor computing publication-title: Int. J. Comput. Vision – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: bib0001 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: NeuroImage – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib0015 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: NeuroImage – volume: 11 start-page: e1004534 year: 2015 ident: bib0014 article-title: Bayesian estimation of conditional independence graphs improves functional connectivity estimates publication-title: PLoS Comput. Biol. – volume: 2 start-page: 67 year: 2007 end-page: 70 ident: bib0021 article-title: Region of interest analysis for fMRI publication-title: Soc. Cogn. Affect. Neurosci. – volume: 127 start-page: 242 year: 2016 end-page: 256 ident: bib0013 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri? publication-title: NeuroImage – volume: 12 start-page: 314 year: 2000 end-page: 325 ident: bib0004 article-title: Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns publication-title: NeuroImage – volume: 7 year: 2013 ident: bib0007 article-title: Detecting functional connectivity change points for single-subject fmri data publication-title: Front. Comput. Neurosci. – volume: 121 start-page: 29 year: 2015 end-page: 38 ident: bib0003 article-title: Partial covariance based functional connectivity computation using ledoit-wolf covariance regularization publication-title: NeuroImage – volume: 88 start-page: 365 year: 2004 end-page: 411 ident: bib0017 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivar. Anal. – volume: 103 start-page: 427 year: 2014 end-page: 443 ident: bib0019 article-title: Estimating time-varying brain connectivity networks from functional MRI time series publication-title: NeuroImage – volume: 43 start-page: 139 year: 2015 end-page: 176 ident: bib0005 article-title: Graph-based change-point detection publication-title: Ann. Stat. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0025 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage – volume: 101 start-page: 531 year: 2014 end-page: 546 ident: bib0018 article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 end-page: 279 ident: bib0024 article-title: Automated anatomical labeling of activations in SPMusing a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – volume: 61 start-page: 907 year: 2012 end-page: 920 ident: bib0006 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: NeuroImage – volume: 2 start-page: 125 year: 2012 end-page: 141 ident: bib0027 article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connect. – start-page: 314 year: 2017 end-page: 324 ident: bib0028 article-title: Detecting change points in fMRI data via Bayesian inference and genetic algorithm model publication-title: Bioinformatics Research and Applications – volume: in review year: 2015 ident: bib0030 article-title: Video-based action recognition using rate-invariant analysis of covariance trajectories publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 30 start-page: 428 year: 2012 end-page: 442 ident: bib0023 article-title: Fitting optimal curves to time-indexed, noisy observations on nonlinear manifolds publication-title: J. Image Vision Comp. – volume: 26 start-page: 288 year: 2016 end-page: 303 ident: bib0012 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cerebral Cortex – year: 2016 ident: bib0022 article-title: Functional and shape data analysis – volume: 6 start-page: 18893 year: 2016 ident: bib0002 article-title: Change point detection in correlation networks publication-title: Sci. Rep. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0011 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 143 start-page: 353 year: 2016 end-page: 363 ident: bib0016 article-title: Connectivity-based change point detection for large-size functional networks publication-title: NeuroImage – volume: 9 start-page: 432 year: 2008 end-page: 441 ident: bib0009 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics – volume: 43 start-page: 139 issue: 1 year: 2015 ident: 10.1016/j.media.2019.101532_bib0005 article-title: Graph-based change-point detection publication-title: Ann. Stat. doi: 10.1214/14-AOS1269 – volume: 2 start-page: 125 issue: 3 year: 2012 ident: 10.1016/j.media.2019.101532_bib0027 article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connect. doi: 10.1089/brain.2012.0073 – volume: 61 start-page: 907 issue: 4 year: 2012 ident: 10.1016/j.media.2019.101532_bib0006 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.070 – volume: 12 start-page: 314 issue: 3 year: 2000 ident: 10.1016/j.media.2019.101532_bib0004 article-title: Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns publication-title: NeuroImage doi: 10.1006/nimg.2000.0612 – volume: 66 start-page: 41 issue: 1 year: 2006 ident: 10.1016/j.media.2019.101532_bib0020 article-title: A riemannian framework for tensor computing publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-005-3222-z – volume: 80 start-page: 169 year: 2013 ident: 10.1016/j.media.2019.101532_bib0001 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.033 – volume: 11 start-page: e1004534 issue: 11 year: 2015 ident: 10.1016/j.media.2019.101532_bib0014 article-title: Bayesian estimation of conditional independence graphs improves functional connectivity estimates publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004534 – start-page: 314 year: 2017 ident: 10.1016/j.media.2019.101532_bib0028 article-title: Detecting change points in fMRI data via Bayesian inference and genetic algorithm model – volume: 88 start-page: 365 issue: 2 year: 2004 ident: 10.1016/j.media.2019.101532_bib0017 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivar. Anal. doi: 10.1016/S0047-259X(03)00096-4 – volume: 9 start-page: 432 issue: 3 year: 2008 ident: 10.1016/j.media.2019.101532_bib0009 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 9 issue: 285 year: 2015 ident: 10.1016/j.media.2019.101532_bib0029 article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data publication-title: Front. Neurosci. – volume: 143 start-page: 353 year: 2016 ident: 10.1016/j.media.2019.101532_bib0016 article-title: Connectivity-based change point detection for large-size functional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.09.019 – volume: 101 start-page: 531 year: 2014 ident: 10.1016/j.media.2019.101532_bib0018 article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.052 – volume: 121 start-page: 29 year: 2015 ident: 10.1016/j.media.2019.101532_bib0003 article-title: Partial covariance based functional connectivity computation using ledoit-wolf covariance regularization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.039 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.media.2019.101532_bib0011 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.media.2019.101532_bib0024 article-title: Automated anatomical labeling of activations in SPMusing a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 2 start-page: 67 issue: 1 year: 2007 ident: 10.1016/j.media.2019.101532_bib0021 article-title: Region of interest analysis for fMRI publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsm006 – year: 2016 ident: 10.1016/j.media.2019.101532_bib0022 – volume: 7 issue: 143 year: 2013 ident: 10.1016/j.media.2019.101532_bib0007 article-title: Detecting functional connectivity change points for single-subject fmri data publication-title: Front. Comput. Neurosci. – volume: 127 start-page: 242 year: 2016 ident: 10.1016/j.media.2019.101532_bib0013 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.11.055 – volume: in review year: 2015 ident: 10.1016/j.media.2019.101532_bib0030 article-title: Video-based action recognition using rate-invariant analysis of covariance trajectories publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 26 start-page: 288 issue: 1 year: 2016 ident: 10.1016/j.media.2019.101532_bib0012 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cerebral Cortex doi: 10.1093/cercor/bhu239 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.media.2019.101532_bib0025 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 1 start-page: 13 issue: 1 year: 2011 ident: 10.1016/j.media.2019.101532_bib0010 article-title: Functional and effective connectivity: a review publication-title: Brain Connect. doi: 10.1089/brain.2011.0008 – volume: 103 start-page: 427 year: 2014 ident: 10.1016/j.media.2019.101532_bib0019 article-title: Estimating time-varying brain connectivity networks from functional MRI time series publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.033 – volume: 6 start-page: 18893 year: 2016 ident: 10.1016/j.media.2019.101532_bib0002 article-title: Change point detection in correlation networks publication-title: Sci. Rep. doi: 10.1038/srep18893 – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.media.2019.101532_bib0015 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 95 start-page: e4188 issue: 28 year: 2016 ident: 10.1016/j.media.2019.101532_bib0026 article-title: Normalization methods in time series of platelet function assays: a squire compliant study publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000004188 – volume: 84 start-page: 3072 issue: 6 year: 2000 ident: 10.1016/j.media.2019.101532_bib0008 article-title: Tracking the hemodynamic responses to reward and punishment in the striatum publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.6.3072 – volume: 30 start-page: 428 issue: 6–7 year: 2012 ident: 10.1016/j.media.2019.101532_bib0023 article-title: Fitting optimal curves to time-indexed, noisy observations on nonlinear manifolds publication-title: J. Image Vision Comp. doi: 10.1016/j.imavis.2011.09.006 |
SSID | ssj0007440 |
Score | 2.3568907 |
Snippet | •A graph-based change-point detection model combing a Riemannian metric on the space of symmetric positive-definite matrices.•Graphical representations of... This paper studies change-points in human brain functional connectivity (FC) and seeks patterns that are common across multiple subjects under identical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101532 |
SubjectTerms | Brain Brain mapping Change detection Change-points Dynamic functional connectivity Functional magnetic resonance imaging Graphical methods Graphical representations Mathematical analysis Mathematical functions Matrix methods Minimal spanning trees Neural networks Statistical analysis Statistical tests Symmetric positive definite matrix Temporal alignment |
Title | Discovering common change-point patterns in functional connectivity across subjects |
URI | https://dx.doi.org/10.1016/j.media.2019.101532 https://www.ncbi.nlm.nih.gov/pubmed/31351229 https://www.proquest.com/docview/2339810532 https://www.proquest.com/docview/2265765671 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeW0plJI6YXb-yyXEplOXRXkpRb1b8iBSEsqtm98pvZ8ZOFji0B05R4rHkjMczn-15ALxGRCGDqgN3ZVNy7YzmpQwFR6gQddGULqZiMGfnxfJSf74yV3twMsbCkFvloPuzTk_aevgyHbg5Xbft9EIoKlYiCIKQIaUgPq3nJOVvf_1x86AEeDn2SnCiHjMPJR-vFJ1B_l0VfTFK3mSdbkKfyQqdPoQHA3xkizzCR7AXuwO4_1dSwQO4ezZclz-Gi_dt78lHExsY_iGKHMuRvny9arsNW6fsml3P2o6RhcsHg0iK2tfnuhKsTkNl_dbRkU3_BC5PP3w7WfKhigL3WskNL3GDZwJa7UbqxuuZF3Ph61g3QSNUUtIbRIhl4-tQCRfKgJDCCRG1lKEKhanVU9jvVl18DsxQNrSIsidnTld6Xjd-NnNC45ZESePiBOTIPeuHFONU6eKnHX3JftjEcksst5nlE3iz67TOGTZuJy_GabH_CIpFG3B7x6NxEu2wTnsrlaqQQan51a4ZVxhdm9RdXG2RRha4KTPFXEzgWZ783UAVFTiUsjr831G9gHv0lh1kjmB_c72NLxHmbNxxkuNjuLP49GV5js-P775-X_wG_xP8Fw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICivhQJGghtm169scuCAKNWWdntpK_Vm4kekIJRdkV0hLvwp_iDjRxY4tAekXv2IrG_smXH8zQzAK_QouBO1o6ZsSiqNkrTkrqDoKnhZNKXxsRjM_LiYnclP5-p8C34NsTCBVpl1f9LpUVvnlnFGc7xs2_EJE6FYCQsuSDCkVWZWHvof3_He1r872EMhv-Z8_-PphxnNpQWolYKvaIm3HuXQlDVcNlZOLJsyW_u6cRL9B8GtQrepbGztKmZc6dDOGsa85NxVrlC1wO9eg-sS1UUom_D25x9eSci4l4K9GA3LG1IdRVJZDAcJhLIqtCjBLzKHF7m70ezt34U72V8l7xMk92DLdztw-68shjtwY57f5-_DyV7b20AKxQ6CkOIeJym0mC4Xbbciy5jOs-tJ25FgUtOfSByK6t6mQhakjksl_dqEf0T9Azi7Emwfwna36PxjICqkX_O42fnEyEpO68ZOJoZJvAMJrowfAR_Q0zbnNA-lNb7qgbz2RUfIdYBcJ8hH8GYzaZlSelw-vBjEov_ZmRqNzuUTdwch6qwYes2FqBCg2P1y041HOrzT1J1frHEML_AWqIopG8GjJPzNQkWoqMh59eR_V_UCbs5O50f66OD48CncCj2JnbML26tva_8MfayVeR73NIHPV32IfgO6eTXb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+common+change-point+patterns+in+functional+connectivity+across+subjects&rft.jtitle=Medical+image+analysis&rft.au=Dai%2C+Mengyu&rft.au=Zhang%2C+Zhengwu&rft.au=Srivastava%2C+Anuj&rft.date=2019-12-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=58&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2019.101532&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |