T-Regulatory Cells and Programmed Death 1 + T Cells Contribute to Effector T-Cell Dysfunction in Patients with Chronic Obstructive Pulmonary Disease

Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 190; no. 1; pp. 40 - 50
Main Authors Kalathil, Suresh Gopi, Lugade, Amit Anand, Pradhan, Vandana, Miller, Austin, Parameswaran, Ganapathi Iyer, Sethi, Sanjay, Thanavala, Yasmin
Format Journal Article
LanguageEnglish
Published New York, NY American Thoracic Society 01.07.2014
Subjects
Online AccessGet full text
ISSN1073-449X
1535-4970
1535-4970
DOI10.1164/rccm.201312-2293OC

Cover

Loading…
Abstract Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses. We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity. Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured. Significantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD. Functionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD.
AbstractList Rationale: Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1] + ) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses. Objectives: We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity. Methods: Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects’ PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured. Measurements and Main Results: Significantly increased levels of Tregs, MDSC, and PD-1 + exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD. Conclusions: Functionally suppressive Tregs, MDSCs, and exhausted PD-1 + T cells contribute to effector T-cell dysfunction in COPD.
Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses. We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity. Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured. Significantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD. Functionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD.
Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses.RATIONALEPrevious studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses.We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity.OBJECTIVESWe performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity.Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured.METHODSTreg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured.Significantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD.MEASUREMENTS AND MAIN RESULTSSignificantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD.Functionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD.CONCLUSIONSFunctionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD.
Author Thanavala, Yasmin
Miller, Austin
Parameswaran, Ganapathi Iyer
Lugade, Amit Anand
Pradhan, Vandana
Sethi, Sanjay
Kalathil, Suresh Gopi
Author_xml – sequence: 1
  givenname: Suresh Gopi
  surname: Kalathil
  fullname: Kalathil, Suresh Gopi
  organization: Department of Immunology and
– sequence: 2
  givenname: Amit Anand
  surname: Lugade
  fullname: Lugade, Amit Anand
  organization: Department of Immunology and
– sequence: 3
  givenname: Vandana
  surname: Pradhan
  fullname: Pradhan, Vandana
  organization: Department of Immunology and, Department of Immunology, National Institute of Immunohaematology, Mumbai, India
– sequence: 4
  givenname: Austin
  surname: Miller
  fullname: Miller, Austin
  organization: Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York
– sequence: 5
  givenname: Ganapathi Iyer
  surname: Parameswaran
  fullname: Parameswaran, Ganapathi Iyer
  organization: Division of Infectious Diseases and, VA Western New York Healthcare System, Buffalo, New York
– sequence: 6
  givenname: Sanjay
  surname: Sethi
  fullname: Sethi, Sanjay
  organization: Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York; and, VA Western New York Healthcare System, Buffalo, New York
– sequence: 7
  givenname: Yasmin
  surname: Thanavala
  fullname: Thanavala, Yasmin
  organization: Department of Immunology and
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28602019$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24825462$$D View this record in MEDLINE/PubMed
BookMark eNp9kstqHDEQRUVwiB_JD2QRtAkEQttSSf3aBEyP8wDDDGEM2Qm1WppR6JYcSe3g_8gHR8OMncfCKwl07r1VqjpFR847jdBrSs4prfhFUGo6B0IZhQKgZcvuGTqhJSsL3tbkKN9JzQrO22_H6DTG74RQaCh5gY6BN1DyCk7Qr3XxVW_mUSYf7nGnxzFi6Qa8Cn4T5DTpAS-0TFtM8Xu8PgCddynYfk4aJ4-vjNEqy_G62D3jxX00s1PJeoetwyuZrHYp4p8223Tb4J1VeNnHFOYM3Wm8msfJO5nzFzZqGfVL9NzIMepXh_MM3Xy8Wnefi-vlpy_d5XWhOINU1I0xfQtDIytSmbYv674iTQ1KthLKgcuhGUxJaD-0bd9XsgEAYlqWm9cl04adoQ9739u5z52qXGaQo7gNdsrVCC-t-PfF2a3Y-DvBASoCdTZ4dzAI_sesYxKTjSp_gnTaz1HQkkNVMiAso2_-znoMeRhFBt4eABmVHE2QTtn4h2tyIqFt5mDPqeBjDNo8IpSI3V6I3V6I_V6I_V5kUfOfSNkkdyPKfdnxKelvFonAPw
CitedBy_id crossref_primary_10_3389_fimmu_2020_00723
crossref_primary_10_1016_j_pharmthera_2014_11_006
crossref_primary_10_1155_2019_1907807
crossref_primary_10_1073_pnas_1906303116
crossref_primary_10_3390_microorganisms8091351
crossref_primary_10_3390_jcm8050736
crossref_primary_10_1038_cmi_2017_155
crossref_primary_10_1172_jci_insight_86182
crossref_primary_10_1371_journal_pone_0147232
crossref_primary_10_3389_fimmu_2024_1356869
crossref_primary_10_3389_fimmu_2018_01545
crossref_primary_10_1111_imm_12725
crossref_primary_10_2139_ssrn_4064406
crossref_primary_10_1183_13993003_01826_2015
crossref_primary_10_1177_17534259251322612
crossref_primary_10_1016_j_clim_2017_11_003
crossref_primary_10_1016_j_jaci_2017_08_009
crossref_primary_10_1152_ajplung_00121_2020
crossref_primary_10_2147_COPD_S394327
crossref_primary_10_3389_fmed_2025_1433844
crossref_primary_10_3390_ijms22010141
crossref_primary_10_1007_s00281_016_0561_5
crossref_primary_10_1186_s12931_015_0174_x
crossref_primary_10_1016_j_biopha_2021_112346
crossref_primary_10_1371_journal_pone_0163192
crossref_primary_10_3389_fimmu_2024_1406234
crossref_primary_10_1111_bph_13198
crossref_primary_10_1186_s12931_018_0811_2
crossref_primary_10_2147_COPD_S495073
crossref_primary_10_4049_jimmunol_1701417
crossref_primary_10_1155_pm_5048054
crossref_primary_10_1164_rccm_201406_0997ED
crossref_primary_10_1080_15412555_2022_2158324
crossref_primary_10_1155_2019_3140183
crossref_primary_10_3390_ph14100979
crossref_primary_10_3390_ijms22179292
crossref_primary_10_1016_j_arbr_2015_11_006
crossref_primary_10_1080_1040841X_2017_1329274
crossref_primary_10_1183_16000617_0199_2020
crossref_primary_10_1371_journal_pone_0296669
crossref_primary_10_7717_peerj_16988
crossref_primary_10_1080_15412555_2023_2299104
crossref_primary_10_1038_s41385_020_0270_1
crossref_primary_10_1007_s10753_018_0830_7
crossref_primary_10_1080_2162402X_2016_1226718
crossref_primary_10_1183_16000617_0045_2017
crossref_primary_10_1152_ajplung_00151_2024
crossref_primary_10_21292_2075_1230_2021_99_2_6_15
crossref_primary_10_1016_j_lfs_2024_122422
crossref_primary_10_2147_COPD_S426215
crossref_primary_10_1093_femspd_ftx042
crossref_primary_10_1016_j_jep_2024_119097
crossref_primary_10_1038_s41598_022_26650_9
crossref_primary_10_1080_2162402X_2020_1824863
crossref_primary_10_3389_fimmu_2018_02530
crossref_primary_10_1016_j_arbres_2015_07_003
crossref_primary_10_1183_13993003_01572_2015
crossref_primary_10_3389_fimmu_2022_1038715
crossref_primary_10_1183_13993003_02434_2016
crossref_primary_10_1016_j_clim_2017_12_007
crossref_primary_10_1177_1753465816646050
crossref_primary_10_1038_s41385_018_0077_5
crossref_primary_10_2147_JIR_S249384
crossref_primary_10_3390_molecules29215135
crossref_primary_10_1164_rccm_201503_0534UP
crossref_primary_10_1038_srep45067
crossref_primary_10_1007_s00284_023_03432_8
crossref_primary_10_3390_jcm12030801
crossref_primary_10_1183_13993003_01448_2018
crossref_primary_10_1038_srep31911
crossref_primary_10_2147_COPD_S490252
crossref_primary_10_1016_j_jhazmat_2022_129459
crossref_primary_10_1164_rccm_201704_0795OC
crossref_primary_10_1007_s12253_019_00661_w
crossref_primary_10_1164_rccm_201504_0782OC
crossref_primary_10_1111_jcmm_14852
crossref_primary_10_4049_jimmunol_1700700
crossref_primary_10_1007_s10753_016_0365_8
crossref_primary_10_1183_23120541_00688_2022
crossref_primary_10_1172_jci_insight_130116
crossref_primary_10_3389_fimmu_2019_01612
crossref_primary_10_1093_carcin_bgaa059
crossref_primary_10_1183_16000617_0252_2021
crossref_primary_10_1186_s12931_016_0456_y
crossref_primary_10_1002_smtd_202000483
crossref_primary_10_3390_biomedicines11082166
crossref_primary_10_3945_ajcn_115_125187
crossref_primary_10_1164_rccm_202303_0442OC
crossref_primary_10_1513_AnnalsATS_201503_126AW
crossref_primary_10_1111_imm_13820
Cites_doi 10.1136/thoraxjnl-2012-202127
10.1186/cc12711
10.1038/mi.2010.41
10.1186/1465-9921-12-142
10.1152/ajplung.00152.2012
10.1038/nm1583
10.1084/jem.20050085
10.3389/fcimb.2013.00052
10.1056/NEJMcibr1004371
10.1136/thx.2004.024463
10.1186/1465-9921-12-74
10.1183/09031936.00100708
10.1164/rccm.200711-1727PP
10.1378/chest.07-0083
10.1164/ajrccm.165.7.2109009
10.1183/09031936.00010407
10.1002/ibd.20053
10.1111/j.1365-2249.2007.03566.x
10.1056/NEJMra0800353
10.1172/JCI39134
10.1007/978-1-4614-6111-1_9
10.1111/j.1574-695X.1999.tb01384.x
10.1183/09031936.05.00011205
10.1038/mi.2012.62
10.4049/jimmunol.0802740
10.1158/0008-5472.CAN-12-3381
10.1128/JVI.03122-12
10.1080/10428190500301231
10.1016/j.autrev.2005.01.007
10.1164/rccm.200708-1234OC
10.1126/science.1160062
10.1056/NEJM200007273430407
10.4049/jimmunol.171.10.5012
10.1186/1465-9921-10-108
ContentType Journal Article
Copyright 2015 INIST-CNRS
Published 2014 by the American Thoracic Society 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Published 2014 by the American Thoracic Society 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1164/rccm.201312-2293OC
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 50
ExternalDocumentID PMC4226027
24825462
28602019
10_1164_rccm_201312_2293OC
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016056
– fundername: NIAID NIH HHS
  grantid: AI069379
– fundername: NIAID NIH HHS
  grantid: R56 AI069379
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
W8F
WH7
WOQ
WOW
X7M
ZXP
~02
.GJ
1CY
1KJ
3O-
AAEJM
AAQQT
ACBNA
ACRZS
AFFNX
AFUWQ
AI.
AJJEV
IQODW
N4W
OHT
VH1
YCJ
YJK
ZE2
ZGI
3V.
CGR
CUY
CVF
ECM
EIF
NPM
RPM
VXZ
7X8
PPXIY
5PM
PJZUB
ID FETCH-LOGICAL-c432t-78ffb92d8a606f9b57b60872ca9a25d4ad8df501bd99bb6a82220f93482e53ef3
ISSN 1073-449X
1535-4970
IngestDate Thu Aug 21 13:55:24 EDT 2025
Fri Jul 11 01:03:54 EDT 2025
Wed Feb 19 01:55:22 EST 2025
Wed Apr 02 07:15:16 EDT 2025
Thu Apr 24 23:03:30 EDT 2025
Tue Jul 01 02:00:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
T effector cells
Lung disease
Intensive care
Respiratory disease
Mortality
Treg cell
Tregs
Cytokine
Patient
Epidemiology
Myeloid cell
myeloid-derived suppressor cells
Lung function
Dysfunction
T-Lymphocyte
Bronchus disease
Death
Chronic obstructive pulmonary disease
cytokines
Foxp3
Resuscitation
lung function
Foxp3+ Tregs
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-78ffb92d8a606f9b57b60872ca9a25d4ad8df501bd99bb6a82220f93482e53ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4226027
PMID 24825462
PQID 1542653203
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226027
proquest_miscellaneous_1542653203
pubmed_primary_24825462
pascalfrancis_primary_28602019
crossref_primary_10_1164_rccm_201312_2293OC
crossref_citationtrail_10_1164_rccm_201312_2293OC
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2014
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References bib14
bib15
bib12
bib34
bib13
bib35
bib10
bib32
bib11
bib33
bib30
bib31
bib29
bib27
bib28
bib25
bib26
bib23
bib21
bib22
bib20
bib9
bib7
bib8
bib5
bib18
bib6
bib19
bib3
bib16
bib4
bib17
bib1
bib2
16648353 - Thorax. 2006 May;61(5):448-54
24066282 - Front Cell Infect Microbiol. 2013;3:52
18190460 - Clin Exp Immunol. 2008 Feb;151(2):326-33
18337593 - Am J Respir Crit Care Med. 2008 Jun 1;177(11):1180-6
22785228 - Mucosal Immunol. 2013 Jan;6(1):189-99
14607897 - J Immunol. 2003 Nov 15;171(10):5012-7
15939793 - J Exp Med. 2005 Jun 6;201(11):1793-803
17206665 - Inflamm Bowel Dis. 2007 Feb;13(2):191-9
19196820 - Eur Respir J. 2009 Jul;34(1):89-94
23255616 - Thorax. 2013 Apr;68(4):330-7
22032685 - Respir Res. 2011;12:142
16264056 - Eur Respir J. 2005 Nov;26(5):918-32
16321861 - Leuk Lymphoma. 2006 Feb;47(2):297-306
10911010 - N Engl J Med. 2000 Jul 27;343(4):269-80
23468109 - Adv Exp Med Biol. 2013;783:165-80
18057064 - Eur Respir J. 2008 Mar;31(3):555-62
23663657 - Crit Care. 2013;17(3):R85
20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9
17450149 - Nat Med. 2007 May;13(5):567-9
23388706 - J Virol. 2013 Apr;87(8):4772-7
19038881 - N Engl J Med. 2008 Nov 27;359(22):2355-65
18079493 - Am J Respir Crit Care Med. 2008 Mar 1;177(5):491-7
19909533 - Respir Res. 2009;10:108
11934723 - Am J Respir Crit Care Med. 2002 Apr 1;165(7):967-71
10536303 - FEMS Immunol Med Microbiol. 1999 Nov;26(2):159-66
16081026 - Autoimmun Rev. 2005 Jul;4(6):351-63
19342621 - J Immunol. 2009 Apr 15;182(8):4499-506
17505034 - Chest. 2007 Jul;132(1):156-63
20664577 - Mucosal Immunol. 2010 Nov;3(6):578-93
19729841 - J Clin Invest. 2009 Sep;119(9):2441-50
18845758 - Science. 2008 Oct 10;322(5899):271-5
23292810 - Am J Physiol Lung Cell Mol Physiol. 2013 Mar 1;304(5):L312-23
21651772 - Respir Res. 2011;12:74
23423978 - Cancer Res. 2013 Apr 15;73(8):2435-44
References_xml – ident: bib28
  doi: 10.1136/thoraxjnl-2012-202127
– ident: bib32
  doi: 10.1186/cc12711
– ident: bib33
  doi: 10.1038/mi.2010.41
– ident: bib27
  doi: 10.1186/1465-9921-12-142
– ident: bib29
  doi: 10.1152/ajplung.00152.2012
– ident: bib25
  doi: 10.1038/nm1583
– ident: bib9
  doi: 10.1084/jem.20050085
– ident: bib35
  doi: 10.3389/fcimb.2013.00052
– ident: bib16
  doi: 10.1056/NEJMcibr1004371
– ident: bib3
  doi: 10.1136/thx.2004.024463
– ident: bib26
  doi: 10.1186/1465-9921-12-74
– ident: bib11
  doi: 10.1183/09031936.00100708
– ident: bib18
  doi: 10.1164/rccm.200711-1727PP
– ident: bib12
  doi: 10.1378/chest.07-0083
– ident: bib4
  doi: 10.1164/ajrccm.165.7.2109009
– ident: bib14
  doi: 10.1183/09031936.00010407
– ident: bib7
  doi: 10.1002/ibd.20053
– ident: bib8
  doi: 10.1111/j.1365-2249.2007.03566.x
– ident: bib1
  doi: 10.1056/NEJMra0800353
– ident: bib17
  doi: 10.1172/JCI39134
– ident: bib30
  doi: 10.1007/978-1-4614-6111-1_9
– ident: bib23
  doi: 10.1111/j.1574-695X.1999.tb01384.x
– ident: bib10
  doi: 10.1183/09031936.05.00011205
– ident: bib34
  doi: 10.1038/mi.2012.62
– ident: bib19
  doi: 10.4049/jimmunol.0802740
– ident: bib22
  doi: 10.1158/0008-5472.CAN-12-3381
– ident: bib31
  doi: 10.1128/JVI.03122-12
– ident: bib21
  doi: 10.1080/10428190500301231
– ident: bib5
  doi: 10.1016/j.autrev.2005.01.007
– ident: bib20
  doi: 10.1164/rccm.200708-1234OC
– ident: bib15
  doi: 10.1126/science.1160062
– ident: bib2
  doi: 10.1056/NEJM200007273430407
– ident: bib6
  doi: 10.4049/jimmunol.171.10.5012
– ident: bib13
  doi: 10.1186/1465-9921-10-108
– reference: 21651772 - Respir Res. 2011;12:74
– reference: 16648353 - Thorax. 2006 May;61(5):448-54
– reference: 16321861 - Leuk Lymphoma. 2006 Feb;47(2):297-306
– reference: 17505034 - Chest. 2007 Jul;132(1):156-63
– reference: 23663657 - Crit Care. 2013;17(3):R85
– reference: 23255616 - Thorax. 2013 Apr;68(4):330-7
– reference: 18057064 - Eur Respir J. 2008 Mar;31(3):555-62
– reference: 19342621 - J Immunol. 2009 Apr 15;182(8):4499-506
– reference: 19196820 - Eur Respir J. 2009 Jul;34(1):89-94
– reference: 20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9
– reference: 23292810 - Am J Physiol Lung Cell Mol Physiol. 2013 Mar 1;304(5):L312-23
– reference: 20664577 - Mucosal Immunol. 2010 Nov;3(6):578-93
– reference: 11934723 - Am J Respir Crit Care Med. 2002 Apr 1;165(7):967-71
– reference: 24066282 - Front Cell Infect Microbiol. 2013;3:52
– reference: 10536303 - FEMS Immunol Med Microbiol. 1999 Nov;26(2):159-66
– reference: 14607897 - J Immunol. 2003 Nov 15;171(10):5012-7
– reference: 19729841 - J Clin Invest. 2009 Sep;119(9):2441-50
– reference: 22785228 - Mucosal Immunol. 2013 Jan;6(1):189-99
– reference: 23423978 - Cancer Res. 2013 Apr 15;73(8):2435-44
– reference: 15939793 - J Exp Med. 2005 Jun 6;201(11):1793-803
– reference: 18079493 - Am J Respir Crit Care Med. 2008 Mar 1;177(5):491-7
– reference: 16264056 - Eur Respir J. 2005 Nov;26(5):918-32
– reference: 17206665 - Inflamm Bowel Dis. 2007 Feb;13(2):191-9
– reference: 10911010 - N Engl J Med. 2000 Jul 27;343(4):269-80
– reference: 18337593 - Am J Respir Crit Care Med. 2008 Jun 1;177(11):1180-6
– reference: 16081026 - Autoimmun Rev. 2005 Jul;4(6):351-63
– reference: 22032685 - Respir Res. 2011;12:142
– reference: 17450149 - Nat Med. 2007 May;13(5):567-9
– reference: 19038881 - N Engl J Med. 2008 Nov 27;359(22):2355-65
– reference: 19909533 - Respir Res. 2009;10:108
– reference: 23388706 - J Virol. 2013 Apr;87(8):4772-7
– reference: 18845758 - Science. 2008 Oct 10;322(5899):271-5
– reference: 18190460 - Clin Exp Immunol. 2008 Feb;151(2):326-33
– reference: 23468109 - Adv Exp Med Biol. 2013;783:165-80
SSID ssj0012810
Score 2.466764
Snippet Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD)...
Rationale: Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 40
SubjectTerms Aged
Aged, 80 and over
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Apoptosis - immunology
Biological and medical sciences
Case-Control Studies
Chronic obstructive pulmonary disease, asthma
Cytokines - analysis
Disease Progression
Female
Forced Expiratory Volume - physiology
Humans
Immune Tolerance - immunology
Intensive care medicine
Male
Medical sciences
Middle Aged
Myeloid Cells - immunology
Original
Pneumology
Pulmonary Disease, Chronic Obstructive - immunology
Pulmonary Disease, Chronic Obstructive - microbiology
Pulmonary Disease, Chronic Obstructive - physiopathology
Severity of Illness Index
Smoking - adverse effects
T-Lymphocytes, Regulatory - immunology
Title T-Regulatory Cells and Programmed Death 1 + T Cells Contribute to Effector T-Cell Dysfunction in Patients with Chronic Obstructive Pulmonary Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/24825462
https://www.proquest.com/docview/1542653203
https://pubmed.ncbi.nlm.nih.gov/PMC4226027
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELW6XQkhIcSdcqmMxFsUaBzn4sfdVZcVLAWhLOpb5MTJtlJJql6Q4Df4Jv6LmdhJk90KLbxElRM3ac-JPfbMnCHktaNEiu4v2xPMt7mXpbZQgbDdDCaT3B2lQlVRvhP_7IK_n3rTXu93K2ppu0nepD_35pX8D6rQBrhiluw_INt8KTTAZ8AXjoAwHG-Gsb3SpeTRUY5b8GuT91_FXME8Zym08CwYrY6tyFxRBadjlauqaIaO5yhXVmTjaUv9WONUV4dAGtlVkwOXaiVdq0yM7Oz3zFpuF_B7Mfau7eupdW1rf1BLoGLVcu5XSXV1sYUqCO2qr_-DXGB85EJHEEHfmfWuXM6bOKLtpREOPvo236DESqGa0X4l1Uzv737F_ZKimYF2CZC41WO0x83Wh8ObMNndaO1hiTzt2Mn2tNVDvC5J2uGyHrC1VtT1ecTnAP4qTVGswHEdZjOwi4zMZke0e_IpPr04P4-j8TQ6IIcMViusTw6Px5PPXxp3Fgu1LEb9bHX2ls_fXr9Hx0K6s5RrgCDXVVb2LYOuRvO2zKPoHrlr1jX0SJP0PullxQNy66NB8yH51eYqrZhIARS64yqtuEodi0bm_I6pdFPSmqlUM5W2mErnBa2ZSpGp1DCVtphKG6ZSw9RH5OJ0HJ2c2aYgiJ1yl23sIMzzRDAVSlh25yLxgsQfhQFLpZDMU1yqUOXeyEmUEEniSzR-R7lA_abMc7PcfUz6RVlkTwmVvgLbWqYs45wLnoQj6buJyKHNk4EIB8SpQYhTo5aPRVsWcbVq9nmMwMUauFgDNyBW02eptWL-evWwg23ThWFZOFh5DcirGuwYxnz8a2WRldt1DMse5mNFF3dAnmjwd715VeKCDUjQoUVzAerJd88U81mlK49J9SMWPLvBfZ-T27sX8gXpA5TZS7DON8mQHATTAI7hiTM078EfkIzxqA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-regulatory+cells+and+programmed+death+1%2B+T+cells+contribute+to+effector+T-cell+dysfunction+in+patients+with+chronic+obstructive+pulmonary+disease&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Kalathil%2C+Suresh+Gopi&rft.au=Lugade%2C+Amit+Anand&rft.au=Pradhan%2C+Vandana&rft.au=Miller%2C+Austin&rft.date=2014-07-01&rft.issn=1535-4970&rft.eissn=1535-4970&rft.volume=190&rft.issue=1&rft.spage=40&rft_id=info:doi/10.1164%2Frccm.201312-2293OC&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon