T-Regulatory Cells and Programmed Death 1 + T Cells Contribute to Effector T-Cell Dysfunction in Patients with Chronic Obstructive Pulmonary Disease
Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 190; no. 1; pp. 40 - 50 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
American Thoracic Society
01.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1073-449X 1535-4970 1535-4970 |
DOI | 10.1164/rccm.201312-2293OC |
Cover
Loading…
Abstract | Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses.
We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity.
Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured.
Significantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD.
Functionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD. |
---|---|
AbstractList | Rationale:
Previous studies from our laboratory have shown that
peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive
pulmonary disease (COPD) prone to exacerbations with nontypeable
Haemophilus
influenzae
have impaired responses to lipoprotein P6. We hypothesized
that an underlying immunosuppressive network could be responsible for the defective
antibacterial immunity observed in these patients. We evaluated T regulatory cells
(Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells
(programmed death 1 [PD-1]
+
) in patients with COPD, because these
cells are known to play a pivotal role in suppressing immune responses.
Objectives:
We performed an in-depth characterization of Tregs, T
effector cells, and MDSC in COPD and correlated their levels and function with
disease severity.
Methods:
Treg, effector T cell, and MDSC frequency from patients with
COPD and healthy subjects’ PBMCs were analyzed by flow cytometry. Treg
immunosuppressive capacity was measured by
in vitro
suppression
assay. The frequency of interferon-γ producing T cells and T-cell proliferation
were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and
immunosuppressive cytokine levels were measured.
Measurements and Main Results:
Significantly increased levels of Tregs,
MDSC, and PD-1
+
exhausted effector T cells were present in patients
with COPD compared with healthy subjects. Tregs from patients with COPD suppressed
P6-specific T-cell proliferation to a greater extent than Tregs from healthy
subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth
factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation
of T-cell IFN-γ production in patients with COPD.
Conclusions:
Functionally suppressive Tregs, MDSCs, and exhausted
PD-1
+
T cells contribute to effector T-cell dysfunction in
COPD. Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses. We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity. Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured. Significantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD. Functionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD. Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses.RATIONALEPrevious studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses.We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity.OBJECTIVESWe performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity.Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured.METHODSTreg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured.Significantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD.MEASUREMENTS AND MAIN RESULTSSignificantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-β were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD.Functionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD.CONCLUSIONSFunctionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD. |
Author | Thanavala, Yasmin Miller, Austin Parameswaran, Ganapathi Iyer Lugade, Amit Anand Pradhan, Vandana Sethi, Sanjay Kalathil, Suresh Gopi |
Author_xml | – sequence: 1 givenname: Suresh Gopi surname: Kalathil fullname: Kalathil, Suresh Gopi organization: Department of Immunology and – sequence: 2 givenname: Amit Anand surname: Lugade fullname: Lugade, Amit Anand organization: Department of Immunology and – sequence: 3 givenname: Vandana surname: Pradhan fullname: Pradhan, Vandana organization: Department of Immunology and, Department of Immunology, National Institute of Immunohaematology, Mumbai, India – sequence: 4 givenname: Austin surname: Miller fullname: Miller, Austin organization: Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York – sequence: 5 givenname: Ganapathi Iyer surname: Parameswaran fullname: Parameswaran, Ganapathi Iyer organization: Division of Infectious Diseases and, VA Western New York Healthcare System, Buffalo, New York – sequence: 6 givenname: Sanjay surname: Sethi fullname: Sethi, Sanjay organization: Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York; and, VA Western New York Healthcare System, Buffalo, New York – sequence: 7 givenname: Yasmin surname: Thanavala fullname: Thanavala, Yasmin organization: Department of Immunology and |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28602019$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24825462$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstqHDEQRUVwiB_JD2QRtAkEQttSSf3aBEyP8wDDDGEM2Qm1WppR6JYcSe3g_8gHR8OMncfCKwl07r1VqjpFR847jdBrSs4prfhFUGo6B0IZhQKgZcvuGTqhJSsL3tbkKN9JzQrO22_H6DTG74RQaCh5gY6BN1DyCk7Qr3XxVW_mUSYf7nGnxzFi6Qa8Cn4T5DTpAS-0TFtM8Xu8PgCddynYfk4aJ4-vjNEqy_G62D3jxX00s1PJeoetwyuZrHYp4p8223Tb4J1VeNnHFOYM3Wm8msfJO5nzFzZqGfVL9NzIMepXh_MM3Xy8Wnefi-vlpy_d5XWhOINU1I0xfQtDIytSmbYv674iTQ1KthLKgcuhGUxJaD-0bd9XsgEAYlqWm9cl04adoQ9739u5z52qXGaQo7gNdsrVCC-t-PfF2a3Y-DvBASoCdTZ4dzAI_sesYxKTjSp_gnTaz1HQkkNVMiAso2_-znoMeRhFBt4eABmVHE2QTtn4h2tyIqFt5mDPqeBjDNo8IpSI3V6I3V6I_V6I_V5kUfOfSNkkdyPKfdnxKelvFonAPw |
CitedBy_id | crossref_primary_10_3389_fimmu_2020_00723 crossref_primary_10_1016_j_pharmthera_2014_11_006 crossref_primary_10_1155_2019_1907807 crossref_primary_10_1073_pnas_1906303116 crossref_primary_10_3390_microorganisms8091351 crossref_primary_10_3390_jcm8050736 crossref_primary_10_1038_cmi_2017_155 crossref_primary_10_1172_jci_insight_86182 crossref_primary_10_1371_journal_pone_0147232 crossref_primary_10_3389_fimmu_2024_1356869 crossref_primary_10_3389_fimmu_2018_01545 crossref_primary_10_1111_imm_12725 crossref_primary_10_2139_ssrn_4064406 crossref_primary_10_1183_13993003_01826_2015 crossref_primary_10_1177_17534259251322612 crossref_primary_10_1016_j_clim_2017_11_003 crossref_primary_10_1016_j_jaci_2017_08_009 crossref_primary_10_1152_ajplung_00121_2020 crossref_primary_10_2147_COPD_S394327 crossref_primary_10_3389_fmed_2025_1433844 crossref_primary_10_3390_ijms22010141 crossref_primary_10_1007_s00281_016_0561_5 crossref_primary_10_1186_s12931_015_0174_x crossref_primary_10_1016_j_biopha_2021_112346 crossref_primary_10_1371_journal_pone_0163192 crossref_primary_10_3389_fimmu_2024_1406234 crossref_primary_10_1111_bph_13198 crossref_primary_10_1186_s12931_018_0811_2 crossref_primary_10_2147_COPD_S495073 crossref_primary_10_4049_jimmunol_1701417 crossref_primary_10_1155_pm_5048054 crossref_primary_10_1164_rccm_201406_0997ED crossref_primary_10_1080_15412555_2022_2158324 crossref_primary_10_1155_2019_3140183 crossref_primary_10_3390_ph14100979 crossref_primary_10_3390_ijms22179292 crossref_primary_10_1016_j_arbr_2015_11_006 crossref_primary_10_1080_1040841X_2017_1329274 crossref_primary_10_1183_16000617_0199_2020 crossref_primary_10_1371_journal_pone_0296669 crossref_primary_10_7717_peerj_16988 crossref_primary_10_1080_15412555_2023_2299104 crossref_primary_10_1038_s41385_020_0270_1 crossref_primary_10_1007_s10753_018_0830_7 crossref_primary_10_1080_2162402X_2016_1226718 crossref_primary_10_1183_16000617_0045_2017 crossref_primary_10_1152_ajplung_00151_2024 crossref_primary_10_21292_2075_1230_2021_99_2_6_15 crossref_primary_10_1016_j_lfs_2024_122422 crossref_primary_10_2147_COPD_S426215 crossref_primary_10_1093_femspd_ftx042 crossref_primary_10_1016_j_jep_2024_119097 crossref_primary_10_1038_s41598_022_26650_9 crossref_primary_10_1080_2162402X_2020_1824863 crossref_primary_10_3389_fimmu_2018_02530 crossref_primary_10_1016_j_arbres_2015_07_003 crossref_primary_10_1183_13993003_01572_2015 crossref_primary_10_3389_fimmu_2022_1038715 crossref_primary_10_1183_13993003_02434_2016 crossref_primary_10_1016_j_clim_2017_12_007 crossref_primary_10_1177_1753465816646050 crossref_primary_10_1038_s41385_018_0077_5 crossref_primary_10_2147_JIR_S249384 crossref_primary_10_3390_molecules29215135 crossref_primary_10_1164_rccm_201503_0534UP crossref_primary_10_1038_srep45067 crossref_primary_10_1007_s00284_023_03432_8 crossref_primary_10_3390_jcm12030801 crossref_primary_10_1183_13993003_01448_2018 crossref_primary_10_1038_srep31911 crossref_primary_10_2147_COPD_S490252 crossref_primary_10_1016_j_jhazmat_2022_129459 crossref_primary_10_1164_rccm_201704_0795OC crossref_primary_10_1007_s12253_019_00661_w crossref_primary_10_1164_rccm_201504_0782OC crossref_primary_10_1111_jcmm_14852 crossref_primary_10_4049_jimmunol_1700700 crossref_primary_10_1007_s10753_016_0365_8 crossref_primary_10_1183_23120541_00688_2022 crossref_primary_10_1172_jci_insight_130116 crossref_primary_10_3389_fimmu_2019_01612 crossref_primary_10_1093_carcin_bgaa059 crossref_primary_10_1183_16000617_0252_2021 crossref_primary_10_1186_s12931_016_0456_y crossref_primary_10_1002_smtd_202000483 crossref_primary_10_3390_biomedicines11082166 crossref_primary_10_3945_ajcn_115_125187 crossref_primary_10_1164_rccm_202303_0442OC crossref_primary_10_1513_AnnalsATS_201503_126AW crossref_primary_10_1111_imm_13820 |
Cites_doi | 10.1136/thoraxjnl-2012-202127 10.1186/cc12711 10.1038/mi.2010.41 10.1186/1465-9921-12-142 10.1152/ajplung.00152.2012 10.1038/nm1583 10.1084/jem.20050085 10.3389/fcimb.2013.00052 10.1056/NEJMcibr1004371 10.1136/thx.2004.024463 10.1186/1465-9921-12-74 10.1183/09031936.00100708 10.1164/rccm.200711-1727PP 10.1378/chest.07-0083 10.1164/ajrccm.165.7.2109009 10.1183/09031936.00010407 10.1002/ibd.20053 10.1111/j.1365-2249.2007.03566.x 10.1056/NEJMra0800353 10.1172/JCI39134 10.1007/978-1-4614-6111-1_9 10.1111/j.1574-695X.1999.tb01384.x 10.1183/09031936.05.00011205 10.1038/mi.2012.62 10.4049/jimmunol.0802740 10.1158/0008-5472.CAN-12-3381 10.1128/JVI.03122-12 10.1080/10428190500301231 10.1016/j.autrev.2005.01.007 10.1164/rccm.200708-1234OC 10.1126/science.1160062 10.1056/NEJM200007273430407 10.4049/jimmunol.171.10.5012 10.1186/1465-9921-10-108 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Published 2014 by the American Thoracic Society 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Published 2014 by the American Thoracic Society 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1164/rccm.201312-2293OC |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-4970 |
EndPage | 50 |
ExternalDocumentID | PMC4226027 24825462 28602019 10_1164_rccm_201312_2293OC |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016056 – fundername: NIAID NIH HHS grantid: AI069379 – fundername: NIAID NIH HHS grantid: R56 AI069379 |
GroupedDBID | --- -~X .55 0R~ 23M 2WC 34G 39C 53G 5GY 5RE 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8FW 8R4 8R5 AAWTL AAYXX ABJNI ABOCM ABPMR ABUWG ACGFO ACGFS ADBBV AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 BAWUL BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CCPQU CITATION CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 H13 HMCUK HZ~ IH2 J5H KQ8 L7B M1P M5~ NAPCQ O9- OBH OFXIZ OGEVE OK1 OVD OVIDX P2P PCD PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RWL SJN TAE TEORI THO TR2 UKHRP W8F WH7 WOQ WOW X7M ZXP ~02 .GJ 1CY 1KJ 3O- AAEJM AAQQT ACBNA ACRZS AFFNX AFUWQ AI. AJJEV IQODW N4W OHT VH1 YCJ YJK ZE2 ZGI 3V. CGR CUY CVF ECM EIF NPM RPM VXZ 7X8 PPXIY 5PM PJZUB |
ID | FETCH-LOGICAL-c432t-78ffb92d8a606f9b57b60872ca9a25d4ad8df501bd99bb6a82220f93482e53ef3 |
ISSN | 1073-449X 1535-4970 |
IngestDate | Thu Aug 21 13:55:24 EDT 2025 Fri Jul 11 01:03:54 EDT 2025 Wed Feb 19 01:55:22 EST 2025 Wed Apr 02 07:15:16 EDT 2025 Thu Apr 24 23:03:30 EDT 2025 Tue Jul 01 02:00:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human T effector cells Lung disease Intensive care Respiratory disease Mortality Treg cell Tregs Cytokine Patient Epidemiology Myeloid cell myeloid-derived suppressor cells Lung function Dysfunction T-Lymphocyte Bronchus disease Death Chronic obstructive pulmonary disease cytokines Foxp3 Resuscitation lung function Foxp3+ Tregs |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-78ffb92d8a606f9b57b60872ca9a25d4ad8df501bd99bb6a82220f93482e53ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4226027 |
PMID | 24825462 |
PQID | 1542653203 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226027 proquest_miscellaneous_1542653203 pubmed_primary_24825462 pascalfrancis_primary_28602019 crossref_primary_10_1164_rccm_201312_2293OC crossref_citationtrail_10_1164_rccm_201312_2293OC |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | American journal of respiratory and critical care medicine |
PublicationTitleAlternate | Am J Respir Crit Care Med |
PublicationYear | 2014 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | bib14 bib15 bib12 bib34 bib13 bib35 bib10 bib32 bib11 bib33 bib30 bib31 bib29 bib27 bib28 bib25 bib26 bib23 bib21 bib22 bib20 bib9 bib7 bib8 bib5 bib18 bib6 bib19 bib3 bib16 bib4 bib17 bib1 bib2 16648353 - Thorax. 2006 May;61(5):448-54 24066282 - Front Cell Infect Microbiol. 2013;3:52 18190460 - Clin Exp Immunol. 2008 Feb;151(2):326-33 18337593 - Am J Respir Crit Care Med. 2008 Jun 1;177(11):1180-6 22785228 - Mucosal Immunol. 2013 Jan;6(1):189-99 14607897 - J Immunol. 2003 Nov 15;171(10):5012-7 15939793 - J Exp Med. 2005 Jun 6;201(11):1793-803 17206665 - Inflamm Bowel Dis. 2007 Feb;13(2):191-9 19196820 - Eur Respir J. 2009 Jul;34(1):89-94 23255616 - Thorax. 2013 Apr;68(4):330-7 22032685 - Respir Res. 2011;12:142 16264056 - Eur Respir J. 2005 Nov;26(5):918-32 16321861 - Leuk Lymphoma. 2006 Feb;47(2):297-306 10911010 - N Engl J Med. 2000 Jul 27;343(4):269-80 23468109 - Adv Exp Med Biol. 2013;783:165-80 18057064 - Eur Respir J. 2008 Mar;31(3):555-62 23663657 - Crit Care. 2013;17(3):R85 20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9 17450149 - Nat Med. 2007 May;13(5):567-9 23388706 - J Virol. 2013 Apr;87(8):4772-7 19038881 - N Engl J Med. 2008 Nov 27;359(22):2355-65 18079493 - Am J Respir Crit Care Med. 2008 Mar 1;177(5):491-7 19909533 - Respir Res. 2009;10:108 11934723 - Am J Respir Crit Care Med. 2002 Apr 1;165(7):967-71 10536303 - FEMS Immunol Med Microbiol. 1999 Nov;26(2):159-66 16081026 - Autoimmun Rev. 2005 Jul;4(6):351-63 19342621 - J Immunol. 2009 Apr 15;182(8):4499-506 17505034 - Chest. 2007 Jul;132(1):156-63 20664577 - Mucosal Immunol. 2010 Nov;3(6):578-93 19729841 - J Clin Invest. 2009 Sep;119(9):2441-50 18845758 - Science. 2008 Oct 10;322(5899):271-5 23292810 - Am J Physiol Lung Cell Mol Physiol. 2013 Mar 1;304(5):L312-23 21651772 - Respir Res. 2011;12:74 23423978 - Cancer Res. 2013 Apr 15;73(8):2435-44 |
References_xml | – ident: bib28 doi: 10.1136/thoraxjnl-2012-202127 – ident: bib32 doi: 10.1186/cc12711 – ident: bib33 doi: 10.1038/mi.2010.41 – ident: bib27 doi: 10.1186/1465-9921-12-142 – ident: bib29 doi: 10.1152/ajplung.00152.2012 – ident: bib25 doi: 10.1038/nm1583 – ident: bib9 doi: 10.1084/jem.20050085 – ident: bib35 doi: 10.3389/fcimb.2013.00052 – ident: bib16 doi: 10.1056/NEJMcibr1004371 – ident: bib3 doi: 10.1136/thx.2004.024463 – ident: bib26 doi: 10.1186/1465-9921-12-74 – ident: bib11 doi: 10.1183/09031936.00100708 – ident: bib18 doi: 10.1164/rccm.200711-1727PP – ident: bib12 doi: 10.1378/chest.07-0083 – ident: bib4 doi: 10.1164/ajrccm.165.7.2109009 – ident: bib14 doi: 10.1183/09031936.00010407 – ident: bib7 doi: 10.1002/ibd.20053 – ident: bib8 doi: 10.1111/j.1365-2249.2007.03566.x – ident: bib1 doi: 10.1056/NEJMra0800353 – ident: bib17 doi: 10.1172/JCI39134 – ident: bib30 doi: 10.1007/978-1-4614-6111-1_9 – ident: bib23 doi: 10.1111/j.1574-695X.1999.tb01384.x – ident: bib10 doi: 10.1183/09031936.05.00011205 – ident: bib34 doi: 10.1038/mi.2012.62 – ident: bib19 doi: 10.4049/jimmunol.0802740 – ident: bib22 doi: 10.1158/0008-5472.CAN-12-3381 – ident: bib31 doi: 10.1128/JVI.03122-12 – ident: bib21 doi: 10.1080/10428190500301231 – ident: bib5 doi: 10.1016/j.autrev.2005.01.007 – ident: bib20 doi: 10.1164/rccm.200708-1234OC – ident: bib15 doi: 10.1126/science.1160062 – ident: bib2 doi: 10.1056/NEJM200007273430407 – ident: bib6 doi: 10.4049/jimmunol.171.10.5012 – ident: bib13 doi: 10.1186/1465-9921-10-108 – reference: 21651772 - Respir Res. 2011;12:74 – reference: 16648353 - Thorax. 2006 May;61(5):448-54 – reference: 16321861 - Leuk Lymphoma. 2006 Feb;47(2):297-306 – reference: 17505034 - Chest. 2007 Jul;132(1):156-63 – reference: 23663657 - Crit Care. 2013;17(3):R85 – reference: 23255616 - Thorax. 2013 Apr;68(4):330-7 – reference: 18057064 - Eur Respir J. 2008 Mar;31(3):555-62 – reference: 19342621 - J Immunol. 2009 Apr 15;182(8):4499-506 – reference: 19196820 - Eur Respir J. 2009 Jul;34(1):89-94 – reference: 20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9 – reference: 23292810 - Am J Physiol Lung Cell Mol Physiol. 2013 Mar 1;304(5):L312-23 – reference: 20664577 - Mucosal Immunol. 2010 Nov;3(6):578-93 – reference: 11934723 - Am J Respir Crit Care Med. 2002 Apr 1;165(7):967-71 – reference: 24066282 - Front Cell Infect Microbiol. 2013;3:52 – reference: 10536303 - FEMS Immunol Med Microbiol. 1999 Nov;26(2):159-66 – reference: 14607897 - J Immunol. 2003 Nov 15;171(10):5012-7 – reference: 19729841 - J Clin Invest. 2009 Sep;119(9):2441-50 – reference: 22785228 - Mucosal Immunol. 2013 Jan;6(1):189-99 – reference: 23423978 - Cancer Res. 2013 Apr 15;73(8):2435-44 – reference: 15939793 - J Exp Med. 2005 Jun 6;201(11):1793-803 – reference: 18079493 - Am J Respir Crit Care Med. 2008 Mar 1;177(5):491-7 – reference: 16264056 - Eur Respir J. 2005 Nov;26(5):918-32 – reference: 17206665 - Inflamm Bowel Dis. 2007 Feb;13(2):191-9 – reference: 10911010 - N Engl J Med. 2000 Jul 27;343(4):269-80 – reference: 18337593 - Am J Respir Crit Care Med. 2008 Jun 1;177(11):1180-6 – reference: 16081026 - Autoimmun Rev. 2005 Jul;4(6):351-63 – reference: 22032685 - Respir Res. 2011;12:142 – reference: 17450149 - Nat Med. 2007 May;13(5):567-9 – reference: 19038881 - N Engl J Med. 2008 Nov 27;359(22):2355-65 – reference: 19909533 - Respir Res. 2009;10:108 – reference: 23388706 - J Virol. 2013 Apr;87(8):4772-7 – reference: 18845758 - Science. 2008 Oct 10;322(5899):271-5 – reference: 18190460 - Clin Exp Immunol. 2008 Feb;151(2):326-33 – reference: 23468109 - Adv Exp Med Biol. 2013;783:165-80 |
SSID | ssj0012810 |
Score | 2.466764 |
Snippet | Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD)... Rationale: Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 40 |
SubjectTerms | Aged Aged, 80 and over Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Apoptosis - immunology Biological and medical sciences Case-Control Studies Chronic obstructive pulmonary disease, asthma Cytokines - analysis Disease Progression Female Forced Expiratory Volume - physiology Humans Immune Tolerance - immunology Intensive care medicine Male Medical sciences Middle Aged Myeloid Cells - immunology Original Pneumology Pulmonary Disease, Chronic Obstructive - immunology Pulmonary Disease, Chronic Obstructive - microbiology Pulmonary Disease, Chronic Obstructive - physiopathology Severity of Illness Index Smoking - adverse effects T-Lymphocytes, Regulatory - immunology |
Title | T-Regulatory Cells and Programmed Death 1 + T Cells Contribute to Effector T-Cell Dysfunction in Patients with Chronic Obstructive Pulmonary Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24825462 https://www.proquest.com/docview/1542653203 https://pubmed.ncbi.nlm.nih.gov/PMC4226027 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELW6XQkhIcSdcqmMxFsUaBzn4sfdVZcVLAWhLOpb5MTJtlJJql6Q4Df4Jv6LmdhJk90KLbxElRM3ac-JPfbMnCHktaNEiu4v2xPMt7mXpbZQgbDdDCaT3B2lQlVRvhP_7IK_n3rTXu93K2ppu0nepD_35pX8D6rQBrhiluw_INt8KTTAZ8AXjoAwHG-Gsb3SpeTRUY5b8GuT91_FXME8Zym08CwYrY6tyFxRBadjlauqaIaO5yhXVmTjaUv9WONUV4dAGtlVkwOXaiVdq0yM7Oz3zFpuF_B7Mfau7eupdW1rf1BLoGLVcu5XSXV1sYUqCO2qr_-DXGB85EJHEEHfmfWuXM6bOKLtpREOPvo236DESqGa0X4l1Uzv737F_ZKimYF2CZC41WO0x83Wh8ObMNndaO1hiTzt2Mn2tNVDvC5J2uGyHrC1VtT1ecTnAP4qTVGswHEdZjOwi4zMZke0e_IpPr04P4-j8TQ6IIcMViusTw6Px5PPXxp3Fgu1LEb9bHX2ls_fXr9Hx0K6s5RrgCDXVVb2LYOuRvO2zKPoHrlr1jX0SJP0PullxQNy66NB8yH51eYqrZhIARS64yqtuEodi0bm_I6pdFPSmqlUM5W2mErnBa2ZSpGp1DCVtphKG6ZSw9RH5OJ0HJ2c2aYgiJ1yl23sIMzzRDAVSlh25yLxgsQfhQFLpZDMU1yqUOXeyEmUEEniSzR-R7lA_abMc7PcfUz6RVlkTwmVvgLbWqYs45wLnoQj6buJyKHNk4EIB8SpQYhTo5aPRVsWcbVq9nmMwMUauFgDNyBW02eptWL-evWwg23ThWFZOFh5DcirGuwYxnz8a2WRldt1DMse5mNFF3dAnmjwd715VeKCDUjQoUVzAerJd88U81mlK49J9SMWPLvBfZ-T27sX8gXpA5TZS7DON8mQHATTAI7hiTM078EfkIzxqA |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-regulatory+cells+and+programmed+death+1%2B+T+cells+contribute+to+effector+T-cell+dysfunction+in+patients+with+chronic+obstructive+pulmonary+disease&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Kalathil%2C+Suresh+Gopi&rft.au=Lugade%2C+Amit+Anand&rft.au=Pradhan%2C+Vandana&rft.au=Miller%2C+Austin&rft.date=2014-07-01&rft.issn=1535-4970&rft.eissn=1535-4970&rft.volume=190&rft.issue=1&rft.spage=40&rft_id=info:doi/10.1164%2Frccm.201312-2293OC&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |