Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors

[Display omitted] •A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity were prepared.•The PEM-based HT-SCs exhibited a high capacitance of 138.0 F g−1 at 150 ℃.•The HT-SCs showed a high capacitance retention of 80%...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 603; pp. 408 - 417
Main Authors Zeng, Minghao, Guo, Haikun, Wang, Gang, Shang, Lichao, Zhao, Chengji, Li, Haolong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity were prepared.•The PEM-based HT-SCs exhibited a high capacitance of 138.0 F g−1 at 150 ℃.•The HT-SCs showed a high capacitance retention of 80% after 2500 cycles at 150 ℃. The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm−1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g−1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge–discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
AbstractList The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
[Display omitted] •A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity were prepared.•The PEM-based HT-SCs exhibited a high capacitance of 138.0 F g−1 at 150 ℃.•The HT-SCs showed a high capacitance retention of 80% after 2500 cycles at 150 ℃. The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm−1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g−1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge–discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm⁻¹ and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g⁻¹ and a high capacitance retention of 80.0% after 2500 galvanostatic charge–discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
Author Zhao, Chengji
Zeng, Minghao
Wang, Gang
Guo, Haikun
Li, Haolong
Shang, Lichao
Author_xml – sequence: 1
  givenname: Minghao
  surname: Zeng
  fullname: Zeng, Minghao
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
– sequence: 2
  givenname: Haikun
  surname: Guo
  fullname: Guo, Haikun
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
– sequence: 3
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
– sequence: 4
  givenname: Lichao
  surname: Shang
  fullname: Shang, Lichao
  organization: Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China
– sequence: 5
  givenname: Chengji
  surname: Zhao
  fullname: Zhao, Chengji
  email: zhaochengji@jlu.edu.cn
  organization: Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China
– sequence: 6
  givenname: Haolong
  surname: Li
  fullname: Li, Haolong
  email: hl_li@jlu.edu.cn
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
BookMark eNqNkTGP1DAQhS10SOwd_AGqlDQJduLYsUSDTnAgnaCB2vLaE85LEocZB7Ql_xxHS0VxovLY871nzbxrdrWkBRh7KXgjuFCvT83JR2pa3oqGq0YI_oQdBDd9rQXvrtiBl05ttNHP2DXRiXMh-t4c2O9PbkmUcfN5QwjVQ_z2UK-AY8LZLR4qmMBnTNM5QzXDfES3AFVHRwVOS7WWzgxYLZB_Jfxe7pRrR1TI6VwVl4tjhrmYuv2PirZSerc6H3NCes6ejm4iePH3vGFf37_7cvuhvv989_H27X3tZdfmWitwKvDQhVHzQY_BhDZoGKXnQRqleid6Y45CONdLZ3SvtC_EWN7bcBSyu2GvLr4rph8bULZzJA_TVAZKG9lWdUq2w6D_A-3lIAWXakfbC-oxESGMdsU4Ozxbwe0ejT3ZPRq7R2O5siWaIhr-EZVVuBzTktHF6XHpm4sUyqp-RkBLPkIJKkQsQdmQ4mPyP5AXsGo
CitedBy_id crossref_primary_10_1021_acs_macromol_4c02234
crossref_primary_10_1002_celc_202300846
crossref_primary_10_1021_acsaem_2c01508
crossref_primary_10_1016_j_cclet_2022_05_011
crossref_primary_10_1016_j_compscitech_2022_109842
crossref_primary_10_1039_D4TA07378A
crossref_primary_10_1021_acsaem_2c02006
crossref_primary_10_1016_j_coelec_2024_101548
crossref_primary_10_2139_ssrn_3995869
Cites_doi 10.1016/j.memsci.2018.11.035
10.1016/j.polymdegradstab.2010.02.001
10.1016/j.memsci.2019.04.030
10.1039/C1CS15060J
10.1016/j.polymer.2017.04.046
10.1016/j.jpowsour.2019.227219
10.1021/acsnano.5b03732
10.1039/c2cs35048c
10.1016/j.jechem.2017.09.034
10.1002/aenm.202002869
10.1016/j.apsusc.2019.07.164
10.1016/j.memsci.2020.118806
10.1016/j.apsusc.2018.09.170
10.1039/C9CC02424G
10.1021/ja109810w
10.1016/j.memsci.2020.118004
10.1016/j.memsci.2019.117435
10.1039/C9CC07784G
10.1039/C9TA08845H
10.1016/j.progpolymsci.2015.11.004
10.1002/adma.201501406
10.1039/C6PY02213H
10.1039/C8ME00117K
10.1021/acsami.8b05139
10.1002/anie.201702785
10.1039/c2jm34358d
10.1016/j.memsci.2018.03.080
10.1016/j.jpowsour.2018.01.033
10.1021/jp054167w
10.1016/j.memsci.2010.11.020
10.1021/acsnano.0c04402
10.1039/D0SE01123A
10.1016/j.jcis.2020.09.088
10.1016/j.jcis.2019.06.020
10.1021/acsaem.0c00636
10.1039/C5CS00906E
10.1021/mz300389f
10.1021/acs.chemrev.6b00448
10.1039/c3cp50296a
10.1126/science.1221383
10.1016/j.memsci.2019.117521
10.1016/j.jcis.2021.03.089
10.1016/j.jcis.2021.01.102
10.1016/j.apsusc.2019.03.298
10.6023/A19090329
10.1021/acs.macromol.6b02570
10.1016/j.nanoen.2018.07.009
10.1016/j.polymer.2019.121993
10.1039/C4TA01931H
10.1016/j.jpowsour.2020.228586
10.1021/acsami.9b00452
10.1021/acsami.9b15435
10.1016/j.electacta.2019.134873
10.1016/j.ensm.2019.10.030
10.1039/C6EE03079C
10.1002/anie.201102057
10.1038/nchem.1329
10.1002/advs.201801337
10.1016/j.jcis.2020.10.075
10.1021/acs.macromol.6b01381
10.1016/j.memsci.2019.05.076
10.1002/aenm.201901892
10.1039/C4TA01944J
10.1016/j.jpowsour.2020.228859
10.1016/j.cclet.2021.01.051
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.06.110
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 417
ExternalDocumentID 10_1016_j_jcis_2021_06_110
S0021979721009772
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c432t-76ea6d0d3df7087fd9d2d7ef4c0d49665a1599b11aa54a97567cd2df5a12db143
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Tue Aug 05 11:21:07 EDT 2025
Fri Jul 11 04:17:17 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
Tue Jul 01 01:19:07 EDT 2025
Fri Feb 23 02:40:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanostructured electrolytes
High-performance polymer electrolyte membranes
High-temperature supercapacitors
Bicontinuous structures
Proton conduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-76ea6d0d3df7087fd9d2d7ef4c0d49665a1599b11aa54a97567cd2df5a12db143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2548410464
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2636428874
proquest_miscellaneous_2548410464
crossref_primary_10_1016_j_jcis_2021_06_110
crossref_citationtrail_10_1016_j_jcis_2021_06_110
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_06_110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Liu, Liu, Wang (b0130) 2019; 583
Ding, Fang, Wang, Wang (b0185) 2020; 186
Qaisrani, Ma, Hussain, Liu, Li, Ruiting, Jia, Zhang, He (b0225) 2019; 12
He, Wang, Chai, Li, Zhai, Wu, Li (b0155) 2021; 32
Schulzel, Hillmyer (b0250) 2017; 50
Shi, Zheng, Wu, Bao (b0010) 2018; 27
Chaichi, Venugopalan, Devireddy, Arges, Gartia (b0275) 2020; 3
Kesavan, Mariappan, Pazhamalai, Krishnamoorthy, Kim (b0070) 2021; 584
Yang, Zhu, Jiang, Zhou (b0160) 2020; 473
Zhu, Zhang, Chen, Su, Zhang, Liu, Wang, An, Li (b0210) 2017; 8
Tian, Wang, Li, Liu, Wang, Chen, Wang, Ni, Wang (b0110) 2019; 465
Park, Saba, Hillmyer, Kang, Seo (b0255) 2017; 126
Ge, Liu (b0335) 2019; 55
Liu, Taiwo, Yin, Ouyang, Chowdhury, Wang, Wang, Wu, Brandon, Wang, Cooper (b0075) 2019; 6
Hu, Li, Neelakandan, Wang, Chen (b0125) 2020; 593
Zhang, Wang, Zhao, Wang, Zhang, Bu, Cui, Li, Na (b0270) 2014; 2
Zhang, Cui, Cao, Zhao, Chen, Wu, Li (b0295) 2017; 56
Xiang, Lu, Jiang (b0050) 2012; 41
Dai, Wang, Tao, He (b0115) 2019; 553
Wang, Mo, He, Shao, Pan, Wujick, Guo, Xie, Xie, Guo (b0120) 2018; 556
Hu, Zhang, Wu, Deng, Yang, Liu, Hong, Zhu, Liu (b0135) 2020; 595
Dazzi, Prater (b0300) 2017; 117
Mao, Wang, Wang, Liu, Li, Chen, Wang, Liu, Xu, Wang (b0330) 2019; 11
Kumaravel, Bartlett, Pillai (b0040) 2021; 11
Park (b0195) 2019; 494
Yang, Jiang, Wang, Xu, Pan, Li, He (b0105) 2020; 480
Li, Liu, Dong, Gui, Hu, Li, Liu (b0005) 2021
Beers, Balsara (b0150) 2012; 1
Shigematsu, Yamada, Kitagawa (b0320) 2011; 133
Kim, Kim, Lee, Braun, Park (b0085) 2015; 9
Liu, Che, Chen, Li, Dong, Hao, Yang (b0140) 2020; 4
Zheng, Wu, Zhou, Wang, Ma, Liu, He, Bao (b0045) 2018; 51
Zhu, Zimudzi, Wang, Yu, Pan, Han, Kushner, Zhuang, Hickner (b0235) 2017; 50
Wu, Zhang, Ran, Zhou, Li, Xu (b0180) 2013; 15
Ji, Ma, Dai, Liu, Shen, Zhu, Nie, Pasang, Yuan (b0035) 2021; 590
Zhao, Xu, Bai, Zhang, Lu, Xiang (b0090) 2020; 78
Yi, Li, Lv, Li, Ling, Zhang, Zheng, Li (b0205) 2019; 7
Wang, Zhang, Zhang (b0015) 2012; 41
Deng, Yang, Yin, Yang (b0065) 2021; 594
Vilciauskas, Tuckerman, Bester, Paddison, Kreuer (b0095) 2012; 4
Evans, Sanoja, Popere, Segalman (b0310) 2016; 49
Zhang, Zhang, Bai, Tan, Wang, He, Xiang, Lu (b0145) 2019; 572
Chen, Qi, Sun, Yan, He, Kang, Yuan, Li (b0200) 2019; 586
Chua, Pumera (b0290) 2012; 22
Li, Lu, Jiang, Chen, Zhang, Zheng, Zhu, Wang (b0055) 2021; 586
Narayanan, Yen, Liu, Greenbaum (b0280) 2006; 110
Kim, Heo, Hwang, Baik, Sung, Lee (b0230) 2018; 10
Lee, Chae, Jeong, Ahn, Roh (b0340) 2019; 55
Hou, Miao, Wang, Yue, Liu, Park, Qi, Xia (b0020) 2020; 10
Tao, Dai, Chen, Wang, He (b0100) 2020; 604
Liu, Wen, Wu, Wang, Yang, Wang (b0325) 2014; 2
Patel, Doyle, James, Hyland (b0305) 2010; 95
Chikh, Delhorbe, Fichet (b0260) 2011; 368
Hong, Wang, Zhao (b0285) 2019; 483
Wang, Li, Shang, He, Cui, Chai, Zhao, Wu, Li (b0190) 2021; 3
Park (b0315) 2019; 4
Nakhanivej, Rana, Kim, Xia, Park (b0030) 2020; 14
Bakangura, Wu, Ge, Yang, Xu (b0170) 2016; 57
Lee, Cho, Kim, Moon, Seong, Shin, Sohn, Kim, Lee (b0240) 2017; 10
Rana, Park, Gund, Park (b0025) 2020; 25
Bai, Peng, Xiang, Zhang, Wang, Lu, Zhuang (b0060) 2019; 443
Zhang, He, Zhao, Tang (b0080) 2018; 379
He, Li, Zhao, Wang, Wu, Guiver, Jiang (b0175) 2015; 27
Hu, Deng, Dong, Hong, Zhang, Liu (b0220) 2021; 619
Ru, Gu, Duan, Na, Zhao (b0265) 2019; 324
Cao, He, Jiang, Li, Li, Ren, Yang, Wu (b0165) 2017; 46
Seo, Hillmyer (b0245) 2012; 336
Li, Wang, Lee, Park, Lee, Guiver (b0215) 2011; 50
Kesavan (10.1016/j.jcis.2021.06.110_b0070) 2021; 584
Wu (10.1016/j.jcis.2021.06.110_b0180) 2013; 15
Zhang (10.1016/j.jcis.2021.06.110_b0270) 2014; 2
Schulzel (10.1016/j.jcis.2021.06.110_b0250) 2017; 50
Zhang (10.1016/j.jcis.2021.06.110_b0145) 2019; 572
Vilciauskas (10.1016/j.jcis.2021.06.110_b0095) 2012; 4
Chua (10.1016/j.jcis.2021.06.110_b0290) 2012; 22
Zhu (10.1016/j.jcis.2021.06.110_b0210) 2017; 8
Kumaravel (10.1016/j.jcis.2021.06.110_b0040) 2021; 11
Wang (10.1016/j.jcis.2021.06.110_b0015) 2012; 41
Hong (10.1016/j.jcis.2021.06.110_b0285) 2019; 483
Kim (10.1016/j.jcis.2021.06.110_b0085) 2015; 9
Cao (10.1016/j.jcis.2021.06.110_b0165) 2017; 46
Dai (10.1016/j.jcis.2021.06.110_b0115) 2019; 553
Liu (10.1016/j.jcis.2021.06.110_b0140) 2020; 4
Narayanan (10.1016/j.jcis.2021.06.110_b0280) 2006; 110
Ge (10.1016/j.jcis.2021.06.110_b0335) 2019; 55
Liu (10.1016/j.jcis.2021.06.110_b0075) 2019; 6
Li (10.1016/j.jcis.2021.06.110_b0005) 2021
Hou (10.1016/j.jcis.2021.06.110_b0020) 2020; 10
Patel (10.1016/j.jcis.2021.06.110_b0305) 2010; 95
Park (10.1016/j.jcis.2021.06.110_b0255) 2017; 126
Wang (10.1016/j.jcis.2021.06.110_b0130) 2019; 583
Ru (10.1016/j.jcis.2021.06.110_b0265) 2019; 324
Hu (10.1016/j.jcis.2021.06.110_b0220) 2021; 619
Chaichi (10.1016/j.jcis.2021.06.110_b0275) 2020; 3
Li (10.1016/j.jcis.2021.06.110_b0055) 2021; 586
He (10.1016/j.jcis.2021.06.110_b0155) 2021; 32
Deng (10.1016/j.jcis.2021.06.110_b0065) 2021; 594
Qaisrani (10.1016/j.jcis.2021.06.110_b0225) 2019; 12
Zhang (10.1016/j.jcis.2021.06.110_b0080) 2018; 379
Ji (10.1016/j.jcis.2021.06.110_b0035) 2021; 590
Li (10.1016/j.jcis.2021.06.110_b0215) 2011; 50
Tao (10.1016/j.jcis.2021.06.110_b0100) 2020; 604
Nakhanivej (10.1016/j.jcis.2021.06.110_b0030) 2020; 14
Bai (10.1016/j.jcis.2021.06.110_b0060) 2019; 443
Park (10.1016/j.jcis.2021.06.110_b0195) 2019; 494
Liu (10.1016/j.jcis.2021.06.110_b0325) 2014; 2
Yang (10.1016/j.jcis.2021.06.110_b0160) 2020; 473
Lee (10.1016/j.jcis.2021.06.110_b0240) 2017; 10
Shi (10.1016/j.jcis.2021.06.110_b0010) 2018; 27
He (10.1016/j.jcis.2021.06.110_b0175) 2015; 27
Rana (10.1016/j.jcis.2021.06.110_b0025) 2020; 25
Zhao (10.1016/j.jcis.2021.06.110_b0090) 2020; 78
Tian (10.1016/j.jcis.2021.06.110_b0110) 2019; 465
Bakangura (10.1016/j.jcis.2021.06.110_b0170) 2016; 57
Yang (10.1016/j.jcis.2021.06.110_b0105) 2020; 480
Chen (10.1016/j.jcis.2021.06.110_b0200) 2019; 586
Wang (10.1016/j.jcis.2021.06.110_b0120) 2018; 556
Chikh (10.1016/j.jcis.2021.06.110_b0260) 2011; 368
Zhang (10.1016/j.jcis.2021.06.110_b0295) 2017; 56
Beers (10.1016/j.jcis.2021.06.110_b0150) 2012; 1
Yi (10.1016/j.jcis.2021.06.110_b0205) 2019; 7
Xiang (10.1016/j.jcis.2021.06.110_b0050) 2012; 41
Dazzi (10.1016/j.jcis.2021.06.110_b0300) 2017; 117
Ding (10.1016/j.jcis.2021.06.110_b0185) 2020; 186
Hu (10.1016/j.jcis.2021.06.110_b0135) 2020; 595
Shigematsu (10.1016/j.jcis.2021.06.110_b0320) 2011; 133
Mao (10.1016/j.jcis.2021.06.110_b0330) 2019; 11
Zhu (10.1016/j.jcis.2021.06.110_b0235) 2017; 50
Lee (10.1016/j.jcis.2021.06.110_b0340) 2019; 55
Park (10.1016/j.jcis.2021.06.110_b0315) 2019; 4
Hu (10.1016/j.jcis.2021.06.110_b0125) 2020; 593
Kim (10.1016/j.jcis.2021.06.110_b0230) 2018; 10
Zheng (10.1016/j.jcis.2021.06.110_b0045) 2018; 51
Wang (10.1016/j.jcis.2021.06.110_b0190) 2021; 3
Evans (10.1016/j.jcis.2021.06.110_b0310) 2016; 49
Seo (10.1016/j.jcis.2021.06.110_b0245) 2012; 336
References_xml – volume: 2
  start-page: 11569
  year: 2014
  end-page: 11573
  ident: b0325
  article-title: Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 603
  year: 2021
  end-page: 613
  ident: b0190
  article-title: Nanostructured Polymer Composite Electrolytes with Self-Assembled Polyoxometalate Networks for Proton Conduction
  publication-title: CCS Chem.
– volume: 586
  start-page: 110
  year: 2021
  end-page: 119
  ident: b0055
  article-title: A universal strategy to improve interfacial kinetics of solid supercapacitors used in high temperature
  publication-title: J. Colloid Interf. Sci.
– volume: 4
  start-page: 461
  year: 2012
  end-page: 466
  ident: b0095
  article-title: The mechanism of proton conduction in phosphoric acid
  publication-title: Nat. Chem.
– volume: 583
  start-page: 110
  year: 2019
  end-page: 117
  ident: b0130
  article-title: Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells
  publication-title: J. Membr. Sci.
– volume: 593
  start-page: 117435
  year: 2020
  ident: b0125
  article-title: Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity
  publication-title: J. Membr. Sci.
– volume: 27
  start-page: 5280
  year: 2015
  end-page: 5295
  ident: b0175
  article-title: Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives
  publication-title: Adv. Mater.
– volume: 483
  start-page: 785
  year: 2019
  end-page: 792
  ident: b0285
  article-title: Phosphoric acid doped high temperature proton exchange membranes based on comb-shaped polymers with quaternized graft architectures
  publication-title: Appl. Surf. Sci.
– volume: 50
  start-page: 2329
  year: 2017
  end-page: 2337
  ident: b0235
  article-title: Mechanically Robust Anion Exchange Membranes via Long Hydrophilic Cross-Linkers
  publication-title: Macromolecules
– volume: 110
  start-page: 3942
  year: 2006
  end-page: 3948
  ident: b0280
  article-title: Anhydrous Proton-Conducting Polymeric Electrolytes for Fuel Cells
  publication-title: J. Phys. Chem. B
– volume: 25
  start-page: 70
  year: 2020
  end-page: 75
  ident: b0025
  article-title: Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors
  publication-title: Energy Storage Mater.
– volume: 10
  year: 2020
  ident: b0020
  article-title: Integrated Conductive Hybrid Architecture of Metal-Organic Framework Nanowire Array on Polypyrrole Membrane for All-Solid-State Flexible Supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 379
  start-page: 60
  year: 2018
  end-page: 67
  ident: b0080
  article-title: A porous ceramic membrane tailored high-temperature supercapacitor
  publication-title: J. Power Sources
– volume: 8
  start-page: 2074
  year: 2017
  end-page: 2086
  ident: b0210
  article-title: Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes
  publication-title: Polym. Chem.
– volume: 368
  start-page: 1
  year: 2011
  end-page: 17
  ident: b0260
  article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes
  publication-title: J. Membr. Sci.
– volume: 480
  start-page: 228859
  year: 2020
  ident: b0105
  article-title: Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells
  publication-title: J. Power Sources
– volume: 584
  start-page: 714
  year: 2021
  end-page: 722
  ident: b0070
  article-title: Topochemically synthesized MoS2 nanosheets: A high performance electrode for wide-temperature tolerant aqueous supercapacitors
  publication-title: J. Colloid Interf. Sci.
– volume: 22
  start-page: 23227
  year: 2012
  end-page: 23231
  ident: b0290
  article-title: Renewal of sp(2) bonds in graphene oxides via dehydrobromination
  publication-title: J. Mater. Chem.
– volume: 556
  start-page: 118
  year: 2018
  end-page: 125
  ident: b0120
  article-title: Crosslinked norbornene copolymer anion exchange membrane for fuel cells
  publication-title: J. Membr. Sci.
– volume: 49
  start-page: 395
  year: 2016
  end-page: 404
  ident: b0310
  article-title: Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length
  publication-title: Ionic Content, and Confinement, Macromolecules
– volume: 619
  start-page: 118806
  year: 2021
  ident: b0220
  article-title: Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes
  publication-title: J. Membr. Sci.
– volume: 336
  start-page: 1422
  year: 2012
  end-page: 1425
  ident: b0245
  article-title: Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation
  publication-title: Science
– volume: 41
  start-page: 7291
  year: 2012
  end-page: 7321
  ident: b0050
  article-title: Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 17742
  year: 2019
  end-page: 17750
  ident: b0330
  article-title: High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte
  publication-title: Acs Appl. Mater. Inter.
– volume: 7
  start-page: 22550
  year: 2019
  end-page: 22558
  ident: b0205
  article-title: Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 3510
  year: 2019
  end-page: 3521
  ident: b0225
  article-title: Hydrophilic flexible ether containing, cross-linked anion exchange membrane quaternized with DABCO, ACS Appl
  publication-title: Mater. Inter.
– volume: 604
  year: 2020
  ident: b0100
  article-title: Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers
  publication-title: J. Membr. Sci.
– volume: 595
  start-page: 117521
  year: 2020
  ident: b0135
  article-title: Dual hydrophobic modifications toward anion exchange membranes with both high ion conductivity and excellent dimensional stability
  publication-title: J. Membr. Sci.
– volume: 27
  start-page: 25
  year: 2018
  end-page: 42
  ident: b0010
  article-title: Recent advances of graphene-based materials for high-performance and new-concept supercapacitors
  publication-title: J. Energy Chem.
– volume: 324
  start-page: 134873
  year: 2019
  ident: b0265
  article-title: Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs
  publication-title: Electrochim. Acta
– volume: 32
  start-page: 2013
  year: 2021
  end-page: 2016
  ident: b0155
  article-title: Self-assembled lamellar nanochannels in polyoxometalate-polymer nanocomposites for proton conduction
  publication-title: Chinese Chem. Lett.
– volume: 6
  start-page: 1801337
  year: 2019
  ident: b0075
  article-title: Aligned lonogel Electrolytes for High-Temperature Supercapacitors
  publication-title: Adv. Sci.
– volume: 443
  start-page: 227219
  year: 2019
  ident: b0060
  article-title: Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells
  publication-title: J. Power Sources
– volume: 117
  start-page: 5146
  year: 2017
  end-page: 5173
  ident: b0300
  article-title: AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging
  publication-title: Chem. Rev.
– volume: 95
  start-page: 792
  year: 2010
  end-page: 797
  ident: b0305
  article-title: Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings
  publication-title: Polym. Degrad. Stabil.
– volume: 2
  start-page: 13996
  year: 2014
  end-page: 14003
  ident: b0270
  article-title: Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 7696
  year: 2020
  end-page: 7703
  ident: b0030
  article-title: Transport and Durability of Energy Storage Materials Operating at High Temperatures
  publication-title: ACS nano
– volume: 473
  start-page: 228586
  year: 2020
  ident: b0160
  article-title: Notably enhanced proton conductivity by thermally-induced phase-separation transition of Nafion/ Poly(vinylidene fluoride) blend membranes
  publication-title: J. Power Sources
– volume: 4
  start-page: 239
  year: 2019
  end-page: 251
  ident: b0315
  article-title: Confinement-entitled morphology and ion transport in ion-containing polymers
  publication-title: Mol. Syst. Des. Eng.
– volume: 590
  start-page: 614
  year: 2021
  end-page: 621
  ident: b0035
  article-title: Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications
  publication-title: J. Colloid Interf. Sci.
– volume: 51
  start-page: 613
  year: 2018
  end-page: 620
  ident: b0045
  article-title: All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance
  publication-title: Nano Energy
– volume: 78
  start-page: 69
  year: 2020
  end-page: 75
  ident: b0090
  article-title: Self-crosslinked Polyethyleneimine-polysulfone Membrane for High Temperature Proton Exchange Membrane
  publication-title: Acta Chim. Sinica
– volume: 57
  start-page: 103
  year: 2016
  end-page: 152
  ident: b0170
  article-title: Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives
  publication-title: Prog. Polym. Sci.
– volume: 10
  start-page: 21788
  year: 2018
  end-page: 21793
  ident: b0230
  article-title: Cross-Linked Sulfonated Poly(arylene ether sulfone) Containing a Flexible and Hydrophobic Bishydroxy Perfluoropolyether Cross-Linker for High-Performance Proton Exchange Membrane
  publication-title: ACS Appl. Mater. Inter.
– volume: 133
  start-page: 2034
  year: 2011
  end-page: 2036
  ident: b0320
  article-title: Wide Control of Proton Conductivity in Porous Coordination Polymers
  publication-title: J. Am. Chem. Soc.
– volume: 594
  start-page: 770
  year: 2021
  end-page: 780
  ident: b0065
  article-title: Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method
  publication-title: J. Colloid Interf. Sci.
– volume: 11
  year: 2021
  ident: b0040
  article-title: Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 4870
  year: 2013
  end-page: 4887
  ident: b0180
  article-title: Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs)
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 275
  year: 2017
  end-page: 285
  ident: b0240
  article-title: Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking
  publication-title: Energ. Environ. Sci.
– volume: 553
  start-page: 503
  year: 2019
  end-page: 511
  ident: b0115
  article-title: Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone
  publication-title: J. Colloid Interf. Sci.
– volume: 572
  start-page: 496
  year: 2019
  end-page: 503
  ident: b0145
  article-title: A new high temperature polymer electrolyte membrane based on trifunctional group grafted polysulfone for fuel cell application
  publication-title: J. Membr. Sci.
– volume: 126
  start-page: 338
  year: 2017
  end-page: 351
  ident: b0255
  article-title: Effect of homopolymer in polymerization-induced microphase separation process
  publication-title: Polymer
– volume: 3
  start-page: 5693
  year: 2020
  end-page: 5704
  ident: b0275
  article-title: A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range
  publication-title: Acs Appl. Energ. Mater.
– volume: 50
  start-page: 9158
  year: 2011
  end-page: 9161
  ident: b0215
  article-title: Enhancement of Proton Transport by Nanochannels in Comb-Shaped Copoly(arylene ether sulfone)s
  publication-title: Angew. Chem. Int. Ed.
– volume: 186
  year: 2020
  ident: b0185
  article-title: Crystallization-driven microstructure changes during microphase separation for environment-friendly thermoplastic triblock copolymer elastomers
  publication-title: Polymer
– volume: 9
  start-page: 8569
  year: 2015
  end-page: 8577
  ident: b0085
  article-title: Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures
  publication-title: ACS nano
– volume: 41
  start-page: 797
  year: 2012
  end-page: 828
  ident: b0015
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 997
  year: 2017
  end-page: 1007
  ident: b0250
  article-title: Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization-Induced Microphase Separation
  publication-title: Macromolecules
– volume: 465
  start-page: 332
  year: 2019
  end-page: 339
  ident: b0110
  article-title: Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 6066
  year: 2020
  end-page: 6074
  ident: b0140
  article-title: Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs
  publication-title: Sustain. Energ. Fuels
– volume: 56
  start-page: 9013
  year: 2017
  end-page: 9017
  ident: b0295
  article-title: Inorganic-Macroion-Induced Formation of Bicontinuous Block Co-polymer Nanocomposites with Enhanced Conductivity and Modulus
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 1155
  year: 2012
  end-page: 1160
  ident: b0150
  article-title: Design of Cluster-free Polymer Electrolyte Membranes and Implications on Proton Conductivity
  publication-title: Acs Macro Lett.
– volume: 494
  start-page: 309
  year: 2019
  end-page: 314
  ident: b0195
  article-title: Complex core-shell morphologies of block copolymers revealed beneath the surface
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 6725
  year: 2017
  end-page: 6745
  ident: b0165
  article-title: Channel-facilitated molecule and ion transport across polymer composite membranes
  publication-title: Chem. Soc. Rev.
– volume: 586
  start-page: 202
  year: 2019
  end-page: 210
  ident: b0200
  article-title: Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications
  publication-title: J. Membr. Sci.
– volume: 55
  start-page: 15081
  year: 2019
  end-page: 15084
  ident: b0340
  article-title: An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications
  publication-title: Chem. Commun.
– volume: 55
  start-page: 7167
  year: 2019
  end-page: 7170
  ident: b0335
  article-title: Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte
  publication-title: Chem. Commun.
– year: 2021
  ident: b0005
  article-title: Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electrochemical Energy Storage Devices
– volume: 572
  start-page: 496
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0145
  article-title: A new high temperature polymer electrolyte membrane based on trifunctional group grafted polysulfone for fuel cell application
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.11.035
– volume: 95
  start-page: 792
  year: 2010
  ident: 10.1016/j.jcis.2021.06.110_b0305
  article-title: Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2010.02.001
– volume: 583
  start-page: 110
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0130
  article-title: Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.04.030
– volume: 41
  start-page: 797
  year: 2012
  ident: 10.1016/j.jcis.2021.06.110_b0015
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15060J
– volume: 126
  start-page: 338
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0255
  article-title: Effect of homopolymer in polymerization-induced microphase separation process
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.04.046
– volume: 443
  start-page: 227219
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0060
  article-title: Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227219
– volume: 9
  start-page: 8569
  year: 2015
  ident: 10.1016/j.jcis.2021.06.110_b0085
  article-title: Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures
  publication-title: ACS nano
  doi: 10.1021/acsnano.5b03732
– volume: 41
  start-page: 7291
  year: 2012
  ident: 10.1016/j.jcis.2021.06.110_b0050
  article-title: Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35048c
– volume: 27
  start-page: 25
  year: 2018
  ident: 10.1016/j.jcis.2021.06.110_b0010
  article-title: Recent advances of graphene-based materials for high-performance and new-concept supercapacitors
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.09.034
– volume: 11
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0040
  article-title: Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002869
– volume: 494
  start-page: 309
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0195
  article-title: Complex core-shell morphologies of block copolymers revealed beneath the surface
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.164
– volume: 619
  start-page: 118806
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0220
  article-title: Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118806
– volume: 465
  start-page: 332
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0110
  article-title: Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.09.170
– volume: 55
  start-page: 7167
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0335
  article-title: Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02424G
– volume: 133
  start-page: 2034
  year: 2011
  ident: 10.1016/j.jcis.2021.06.110_b0320
  article-title: Wide Control of Proton Conductivity in Porous Coordination Polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109810w
– volume: 604
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0100
  article-title: Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118004
– volume: 593
  start-page: 117435
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0125
  article-title: Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117435
– volume: 55
  start-page: 15081
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0340
  article-title: An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC07784G
– volume: 7
  start-page: 22550
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0205
  article-title: Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08845H
– volume: 57
  start-page: 103
  year: 2016
  ident: 10.1016/j.jcis.2021.06.110_b0170
  article-title: Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.11.004
– volume: 27
  start-page: 5280
  year: 2015
  ident: 10.1016/j.jcis.2021.06.110_b0175
  article-title: Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501406
– volume: 8
  start-page: 2074
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0210
  article-title: Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY02213H
– volume: 4
  start-page: 239
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0315
  article-title: Confinement-entitled morphology and ion transport in ion-containing polymers
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C8ME00117K
– volume: 10
  start-page: 21788
  year: 2018
  ident: 10.1016/j.jcis.2021.06.110_b0230
  article-title: Cross-Linked Sulfonated Poly(arylene ether sulfone) Containing a Flexible and Hydrophobic Bishydroxy Perfluoropolyether Cross-Linker for High-Performance Proton Exchange Membrane
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b05139
– volume: 56
  start-page: 9013
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0295
  article-title: Inorganic-Macroion-Induced Formation of Bicontinuous Block Co-polymer Nanocomposites with Enhanced Conductivity and Modulus
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201702785
– volume: 49
  start-page: 395
  year: 2016
  ident: 10.1016/j.jcis.2021.06.110_b0310
  article-title: Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length
  publication-title: Ionic Content, and Confinement, Macromolecules
– volume: 22
  start-page: 23227
  year: 2012
  ident: 10.1016/j.jcis.2021.06.110_b0290
  article-title: Renewal of sp(2) bonds in graphene oxides via dehydrobromination
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34358d
– volume: 556
  start-page: 118
  year: 2018
  ident: 10.1016/j.jcis.2021.06.110_b0120
  article-title: Crosslinked norbornene copolymer anion exchange membrane for fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.03.080
– volume: 379
  start-page: 60
  year: 2018
  ident: 10.1016/j.jcis.2021.06.110_b0080
  article-title: A porous ceramic membrane tailored high-temperature supercapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.033
– volume: 110
  start-page: 3942
  year: 2006
  ident: 10.1016/j.jcis.2021.06.110_b0280
  article-title: Anhydrous Proton-Conducting Polymeric Electrolytes for Fuel Cells
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp054167w
– volume: 368
  start-page: 1
  year: 2011
  ident: 10.1016/j.jcis.2021.06.110_b0260
  article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.020
– volume: 14
  start-page: 7696
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0030
  article-title: Transport and Durability of Energy Storage Materials Operating at High Temperatures
  publication-title: ACS nano
  doi: 10.1021/acsnano.0c04402
– volume: 4
  start-page: 6066
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0140
  article-title: Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs
  publication-title: Sustain. Energ. Fuels
  doi: 10.1039/D0SE01123A
– volume: 584
  start-page: 714
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0070
  article-title: Topochemically synthesized MoS2 nanosheets: A high performance electrode for wide-temperature tolerant aqueous supercapacitors
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2020.09.088
– volume: 553
  start-page: 503
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0115
  article-title: Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.06.020
– volume: 3
  start-page: 5693
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0275
  article-title: A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range
  publication-title: Acs Appl. Energ. Mater.
  doi: 10.1021/acsaem.0c00636
– volume: 46
  start-page: 6725
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0165
  article-title: Channel-facilitated molecule and ion transport across polymer composite membranes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00906E
– volume: 1
  start-page: 1155
  year: 2012
  ident: 10.1016/j.jcis.2021.06.110_b0150
  article-title: Design of Cluster-free Polymer Electrolyte Membranes and Implications on Proton Conductivity
  publication-title: Acs Macro Lett.
  doi: 10.1021/mz300389f
– volume: 117
  start-page: 5146
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0300
  article-title: AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00448
– volume: 15
  start-page: 4870
  year: 2013
  ident: 10.1016/j.jcis.2021.06.110_b0180
  article-title: Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs)
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50296a
– volume: 336
  start-page: 1422
  year: 2012
  ident: 10.1016/j.jcis.2021.06.110_b0245
  article-title: Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation
  publication-title: Science
  doi: 10.1126/science.1221383
– volume: 595
  start-page: 117521
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0135
  article-title: Dual hydrophobic modifications toward anion exchange membranes with both high ion conductivity and excellent dimensional stability
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117521
– volume: 594
  start-page: 770
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0065
  article-title: Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.03.089
– volume: 590
  start-page: 614
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0035
  article-title: Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.01.102
– volume: 483
  start-page: 785
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0285
  article-title: Phosphoric acid doped high temperature proton exchange membranes based on comb-shaped polymers with quaternized graft architectures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.298
– volume: 78
  start-page: 69
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0090
  article-title: Self-crosslinked Polyethyleneimine-polysulfone Membrane for High Temperature Proton Exchange Membrane
  publication-title: Acta Chim. Sinica
  doi: 10.6023/A19090329
– volume: 50
  start-page: 997
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0250
  article-title: Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization-Induced Microphase Separation
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02570
– volume: 3
  start-page: 603
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0190
  article-title: Nanostructured Polymer Composite Electrolytes with Self-Assembled Polyoxometalate Networks for Proton Conduction
  publication-title: CCS Chem.
– volume: 51
  start-page: 613
  year: 2018
  ident: 10.1016/j.jcis.2021.06.110_b0045
  article-title: All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.009
– volume: 186
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0185
  article-title: Crystallization-driven microstructure changes during microphase separation for environment-friendly thermoplastic triblock copolymer elastomers
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.121993
– volume: 2
  start-page: 13996
  year: 2014
  ident: 10.1016/j.jcis.2021.06.110_b0270
  article-title: Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01931H
– volume: 473
  start-page: 228586
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0160
  article-title: Notably enhanced proton conductivity by thermally-induced phase-separation transition of Nafion/ Poly(vinylidene fluoride) blend membranes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228586
– volume: 11
  start-page: 17742
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0330
  article-title: High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte
  publication-title: Acs Appl. Mater. Inter.
  doi: 10.1021/acsami.9b00452
– volume: 12
  start-page: 3510
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0225
  article-title: Hydrophilic flexible ether containing, cross-linked anion exchange membrane quaternized with DABCO, ACS Appl
  publication-title: Mater. Inter.
  doi: 10.1021/acsami.9b15435
– volume: 324
  start-page: 134873
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0265
  article-title: Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134873
– volume: 25
  start-page: 70
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0025
  article-title: Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.10.030
– volume: 10
  start-page: 275
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0240
  article-title: Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C6EE03079C
– volume: 50
  start-page: 9158
  year: 2011
  ident: 10.1016/j.jcis.2021.06.110_b0215
  article-title: Enhancement of Proton Transport by Nanochannels in Comb-Shaped Copoly(arylene ether sulfone)s
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102057
– volume: 4
  start-page: 461
  year: 2012
  ident: 10.1016/j.jcis.2021.06.110_b0095
  article-title: The mechanism of proton conduction in phosphoric acid
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1329
– volume: 6
  start-page: 1801337
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0075
  article-title: Aligned lonogel Electrolytes for High-Temperature Supercapacitors
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801337
– volume: 586
  start-page: 110
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0055
  article-title: A universal strategy to improve interfacial kinetics of solid supercapacitors used in high temperature
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2020.10.075
– volume: 50
  start-page: 2329
  year: 2017
  ident: 10.1016/j.jcis.2021.06.110_b0235
  article-title: Mechanically Robust Anion Exchange Membranes via Long Hydrophilic Cross-Linkers
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b01381
– year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0005
– volume: 586
  start-page: 202
  year: 2019
  ident: 10.1016/j.jcis.2021.06.110_b0200
  article-title: Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.05.076
– volume: 10
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0020
  article-title: Integrated Conductive Hybrid Architecture of Metal-Organic Framework Nanowire Array on Polypyrrole Membrane for All-Solid-State Flexible Supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901892
– volume: 2
  start-page: 11569
  year: 2014
  ident: 10.1016/j.jcis.2021.06.110_b0325
  article-title: Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01944J
– volume: 480
  start-page: 228859
  year: 2020
  ident: 10.1016/j.jcis.2021.06.110_b0105
  article-title: Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228859
– volume: 32
  start-page: 2013
  year: 2021
  ident: 10.1016/j.jcis.2021.06.110_b0155
  article-title: Self-assembled lamellar nanochannels in polyoxometalate-polymer nanocomposites for proton conduction
  publication-title: Chinese Chem. Lett.
  doi: 10.1016/j.cclet.2021.01.051
SSID ssj0011559
Score 2.4160938
Snippet [Display omitted] •A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity...
The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 408
SubjectTerms Bicontinuous structures
capacitance
crosslinking
electrochemical capacitors
electrolytes
energy
High-performance polymer electrolyte membranes
High-temperature supercapacitors
Nanostructured electrolytes
phosphoric acid
polymers
Proton conduction
Title Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors
URI https://dx.doi.org/10.1016/j.jcis.2021.06.110
https://www.proquest.com/docview/2548410464
https://www.proquest.com/docview/2636428874
Volume 603
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHtSD6FScHyOCN6lrurRpj2M4puJODnYrbZLCxtaOfRx2EfzPfW9J5weyg5fStC9pyUvfR_Pe7xFyp0PpCT9i-KMKDl6YOVGmuJOwhLsZlyINMXf4tR_0Bvx56A8rpFPmwmBYpZX9RqZvpLW90rSz2ZyNRpjjC1-bQPQZTEYQKIc5F7jKH963YR4Mt91MmAdzkNomzpgYr7EcIWS3xxDDk2EW7d_K6ZeY3uie7jE5skYjbZv3OiEVndfIfqes1VYjh99gBU_JB4jMwgDDruZaUYQkdmZfGQLU1r6ZrJeaTvUUHGYQeBQVmqJFTmdwZ6rnNDch4tBeLB0wsoFysqYwihkRUa0sJDNdrOBUguKVIyzfc0YG3ce3Ts-xpRYcyVve0hGBTgLlqpbKhBuKTEXKU0IDs1zFwSPyEzB7opSxJPF5Egk_EBIoMrjuqRRsrnNSzYtcXxCqU7ijAz_j4NolYP9FiEmouExDnaYeqxNWznEsLQ45lsOYxGXA2ThGvsTIl9gNwEdx6-R-22dmUDh2Uvsl6-IfaykGNbGz323J5xj4hzsnMP3FCojAr-O4G8530AQt9OVCwS__-fwrcoAtEyxzTaqwTvQNmDzLtLFZ0w2y13566fU_ATXvBJs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDIUB8RTlaSQ2FBqnTpyMqKIq0DJRqZuV2I5U1CZVaQcWJP45d7VTHkIdWKIkPieRz75HfPcdIVcmVoEIE4Y_quAQxLmX5Jp7KUu5n3Mlshhzh3tPUafPHwbhYI20qlwYDKt0st_K9IW0dncabjQbk-EQc3xhtQlEn8FkBAFyeIPD8sUyBjfvyzgPhvtuNs6DeUjuMmdskNeLGiJmd8AQxJNhGu3f2umXnF4on_YO2XZWI721H7ZL1kyxR2qtqljbHtn6hiu4Tz5AZpYWGXY-NZoiJrE3-UoRoK74zehtZujYjMFjBolHUaNpWhZ0Ai1jM6WFjRGH69eZB1Y2UI7eKDzFPhFhrRwmM32dw6kCzauGWL_ngPTbd8-tjudqLXiKN4OZJyKTRtrXTZ0LPxa5TnSghQFu-ZqDSxSmYPckGWNpGvI0EWEkFFDkcD_QGRhdh2S9KAtzRKjJoMVEYc7Bt0vBAEwQlFBzlcUmywJWJ6waY6kcEDnWwxjJKuLsRSJfJPJF-hE4KX6dXC_7TCwMx0rqsGKd_DGZJOiJlf0uKz5L4B9uncDwl3MgAseO43Y4X0ETNdGZiwU__uf7L0it89zryu790-MJ2cQWGzlzStZhzpgzsH9m2flifn8CExMGKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+high-performance+electrolyte+membranes+based+on+polymer+network+post-assembly+for+high-temperature+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zeng%2C+Minghao&rft.au=Guo%2C+Haikun&rft.au=Wang%2C+Gang&rft.au=Shang%2C+Lichao&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=603&rft.spage=408&rft.epage=417&rft_id=info:doi/10.1016%2Fj.jcis.2021.06.110&rft.externalDocID=S0021979721009772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon