Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors
[Display omitted] •A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity were prepared.•The PEM-based HT-SCs exhibited a high capacitance of 138.0 F g−1 at 150 ℃.•The HT-SCs showed a high capacitance retention of 80%...
Saved in:
Published in | Journal of colloid and interface science Vol. 603; pp. 408 - 417 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity were prepared.•The PEM-based HT-SCs exhibited a high capacitance of 138.0 F g−1 at 150 ℃.•The HT-SCs showed a high capacitance retention of 80% after 2500 cycles at 150 ℃.
The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm−1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g−1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge–discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications. |
---|---|
AbstractList | The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications. [Display omitted] •A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity were prepared.•The PEM-based HT-SCs exhibited a high capacitance of 138.0 F g−1 at 150 ℃.•The HT-SCs showed a high capacitance retention of 80% after 2500 cycles at 150 ℃. The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm−1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g−1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge–discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications. The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm⁻¹ and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g⁻¹ and a high capacitance retention of 80.0% after 2500 galvanostatic charge–discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications. |
Author | Zhao, Chengji Zeng, Minghao Wang, Gang Guo, Haikun Li, Haolong Shang, Lichao |
Author_xml | – sequence: 1 givenname: Minghao surname: Zeng fullname: Zeng, Minghao organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China – sequence: 2 givenname: Haikun surname: Guo fullname: Guo, Haikun organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China – sequence: 3 givenname: Gang surname: Wang fullname: Wang, Gang organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China – sequence: 4 givenname: Lichao surname: Shang fullname: Shang, Lichao organization: Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China – sequence: 5 givenname: Chengji surname: Zhao fullname: Zhao, Chengji email: zhaochengji@jlu.edu.cn organization: Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China – sequence: 6 givenname: Haolong surname: Li fullname: Li, Haolong email: hl_li@jlu.edu.cn organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China |
BookMark | eNqNkTGP1DAQhS10SOwd_AGqlDQJduLYsUSDTnAgnaCB2vLaE85LEocZB7Ql_xxHS0VxovLY871nzbxrdrWkBRh7KXgjuFCvT83JR2pa3oqGq0YI_oQdBDd9rQXvrtiBl05ttNHP2DXRiXMh-t4c2O9PbkmUcfN5QwjVQ_z2UK-AY8LZLR4qmMBnTNM5QzXDfES3AFVHRwVOS7WWzgxYLZB_Jfxe7pRrR1TI6VwVl4tjhrmYuv2PirZSerc6H3NCes6ejm4iePH3vGFf37_7cvuhvv989_H27X3tZdfmWitwKvDQhVHzQY_BhDZoGKXnQRqleid6Y45CONdLZ3SvtC_EWN7bcBSyu2GvLr4rph8bULZzJA_TVAZKG9lWdUq2w6D_A-3lIAWXakfbC-oxESGMdsU4Ozxbwe0ejT3ZPRq7R2O5siWaIhr-EZVVuBzTktHF6XHpm4sUyqp-RkBLPkIJKkQsQdmQ4mPyP5AXsGo |
CitedBy_id | crossref_primary_10_1021_acs_macromol_4c02234 crossref_primary_10_1002_celc_202300846 crossref_primary_10_1021_acsaem_2c01508 crossref_primary_10_1016_j_cclet_2022_05_011 crossref_primary_10_1016_j_compscitech_2022_109842 crossref_primary_10_1039_D4TA07378A crossref_primary_10_1021_acsaem_2c02006 crossref_primary_10_1016_j_coelec_2024_101548 crossref_primary_10_2139_ssrn_3995869 |
Cites_doi | 10.1016/j.memsci.2018.11.035 10.1016/j.polymdegradstab.2010.02.001 10.1016/j.memsci.2019.04.030 10.1039/C1CS15060J 10.1016/j.polymer.2017.04.046 10.1016/j.jpowsour.2019.227219 10.1021/acsnano.5b03732 10.1039/c2cs35048c 10.1016/j.jechem.2017.09.034 10.1002/aenm.202002869 10.1016/j.apsusc.2019.07.164 10.1016/j.memsci.2020.118806 10.1016/j.apsusc.2018.09.170 10.1039/C9CC02424G 10.1021/ja109810w 10.1016/j.memsci.2020.118004 10.1016/j.memsci.2019.117435 10.1039/C9CC07784G 10.1039/C9TA08845H 10.1016/j.progpolymsci.2015.11.004 10.1002/adma.201501406 10.1039/C6PY02213H 10.1039/C8ME00117K 10.1021/acsami.8b05139 10.1002/anie.201702785 10.1039/c2jm34358d 10.1016/j.memsci.2018.03.080 10.1016/j.jpowsour.2018.01.033 10.1021/jp054167w 10.1016/j.memsci.2010.11.020 10.1021/acsnano.0c04402 10.1039/D0SE01123A 10.1016/j.jcis.2020.09.088 10.1016/j.jcis.2019.06.020 10.1021/acsaem.0c00636 10.1039/C5CS00906E 10.1021/mz300389f 10.1021/acs.chemrev.6b00448 10.1039/c3cp50296a 10.1126/science.1221383 10.1016/j.memsci.2019.117521 10.1016/j.jcis.2021.03.089 10.1016/j.jcis.2021.01.102 10.1016/j.apsusc.2019.03.298 10.6023/A19090329 10.1021/acs.macromol.6b02570 10.1016/j.nanoen.2018.07.009 10.1016/j.polymer.2019.121993 10.1039/C4TA01931H 10.1016/j.jpowsour.2020.228586 10.1021/acsami.9b00452 10.1021/acsami.9b15435 10.1016/j.electacta.2019.134873 10.1016/j.ensm.2019.10.030 10.1039/C6EE03079C 10.1002/anie.201102057 10.1038/nchem.1329 10.1002/advs.201801337 10.1016/j.jcis.2020.10.075 10.1021/acs.macromol.6b01381 10.1016/j.memsci.2019.05.076 10.1002/aenm.201901892 10.1039/C4TA01944J 10.1016/j.jpowsour.2020.228859 10.1016/j.cclet.2021.01.051 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.06.110 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 417 |
ExternalDocumentID | 10_1016_j_jcis_2021_06_110 S0021979721009772 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c432t-76ea6d0d3df7087fd9d2d7ef4c0d49665a1599b11aa54a97567cd2df5a12db143 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Tue Aug 05 11:21:07 EDT 2025 Fri Jul 11 04:17:17 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Tue Jul 01 01:19:07 EDT 2025 Fri Feb 23 02:40:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanostructured electrolytes High-performance polymer electrolyte membranes High-temperature supercapacitors Bicontinuous structures Proton conduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-76ea6d0d3df7087fd9d2d7ef4c0d49665a1599b11aa54a97567cd2df5a12db143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2548410464 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636428874 proquest_miscellaneous_2548410464 crossref_primary_10_1016_j_jcis_2021_06_110 crossref_citationtrail_10_1016_j_jcis_2021_06_110 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_06_110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Liu, Liu, Wang (b0130) 2019; 583 Ding, Fang, Wang, Wang (b0185) 2020; 186 Qaisrani, Ma, Hussain, Liu, Li, Ruiting, Jia, Zhang, He (b0225) 2019; 12 He, Wang, Chai, Li, Zhai, Wu, Li (b0155) 2021; 32 Schulzel, Hillmyer (b0250) 2017; 50 Shi, Zheng, Wu, Bao (b0010) 2018; 27 Chaichi, Venugopalan, Devireddy, Arges, Gartia (b0275) 2020; 3 Kesavan, Mariappan, Pazhamalai, Krishnamoorthy, Kim (b0070) 2021; 584 Yang, Zhu, Jiang, Zhou (b0160) 2020; 473 Zhu, Zhang, Chen, Su, Zhang, Liu, Wang, An, Li (b0210) 2017; 8 Tian, Wang, Li, Liu, Wang, Chen, Wang, Ni, Wang (b0110) 2019; 465 Park, Saba, Hillmyer, Kang, Seo (b0255) 2017; 126 Ge, Liu (b0335) 2019; 55 Liu, Taiwo, Yin, Ouyang, Chowdhury, Wang, Wang, Wu, Brandon, Wang, Cooper (b0075) 2019; 6 Hu, Li, Neelakandan, Wang, Chen (b0125) 2020; 593 Zhang, Wang, Zhao, Wang, Zhang, Bu, Cui, Li, Na (b0270) 2014; 2 Zhang, Cui, Cao, Zhao, Chen, Wu, Li (b0295) 2017; 56 Xiang, Lu, Jiang (b0050) 2012; 41 Dai, Wang, Tao, He (b0115) 2019; 553 Wang, Mo, He, Shao, Pan, Wujick, Guo, Xie, Xie, Guo (b0120) 2018; 556 Hu, Zhang, Wu, Deng, Yang, Liu, Hong, Zhu, Liu (b0135) 2020; 595 Dazzi, Prater (b0300) 2017; 117 Mao, Wang, Wang, Liu, Li, Chen, Wang, Liu, Xu, Wang (b0330) 2019; 11 Kumaravel, Bartlett, Pillai (b0040) 2021; 11 Park (b0195) 2019; 494 Yang, Jiang, Wang, Xu, Pan, Li, He (b0105) 2020; 480 Li, Liu, Dong, Gui, Hu, Li, Liu (b0005) 2021 Beers, Balsara (b0150) 2012; 1 Shigematsu, Yamada, Kitagawa (b0320) 2011; 133 Kim, Kim, Lee, Braun, Park (b0085) 2015; 9 Liu, Che, Chen, Li, Dong, Hao, Yang (b0140) 2020; 4 Zheng, Wu, Zhou, Wang, Ma, Liu, He, Bao (b0045) 2018; 51 Zhu, Zimudzi, Wang, Yu, Pan, Han, Kushner, Zhuang, Hickner (b0235) 2017; 50 Wu, Zhang, Ran, Zhou, Li, Xu (b0180) 2013; 15 Ji, Ma, Dai, Liu, Shen, Zhu, Nie, Pasang, Yuan (b0035) 2021; 590 Zhao, Xu, Bai, Zhang, Lu, Xiang (b0090) 2020; 78 Yi, Li, Lv, Li, Ling, Zhang, Zheng, Li (b0205) 2019; 7 Wang, Zhang, Zhang (b0015) 2012; 41 Deng, Yang, Yin, Yang (b0065) 2021; 594 Vilciauskas, Tuckerman, Bester, Paddison, Kreuer (b0095) 2012; 4 Evans, Sanoja, Popere, Segalman (b0310) 2016; 49 Zhang, Zhang, Bai, Tan, Wang, He, Xiang, Lu (b0145) 2019; 572 Chen, Qi, Sun, Yan, He, Kang, Yuan, Li (b0200) 2019; 586 Chua, Pumera (b0290) 2012; 22 Li, Lu, Jiang, Chen, Zhang, Zheng, Zhu, Wang (b0055) 2021; 586 Narayanan, Yen, Liu, Greenbaum (b0280) 2006; 110 Kim, Heo, Hwang, Baik, Sung, Lee (b0230) 2018; 10 Lee, Chae, Jeong, Ahn, Roh (b0340) 2019; 55 Hou, Miao, Wang, Yue, Liu, Park, Qi, Xia (b0020) 2020; 10 Tao, Dai, Chen, Wang, He (b0100) 2020; 604 Liu, Wen, Wu, Wang, Yang, Wang (b0325) 2014; 2 Patel, Doyle, James, Hyland (b0305) 2010; 95 Chikh, Delhorbe, Fichet (b0260) 2011; 368 Hong, Wang, Zhao (b0285) 2019; 483 Wang, Li, Shang, He, Cui, Chai, Zhao, Wu, Li (b0190) 2021; 3 Park (b0315) 2019; 4 Nakhanivej, Rana, Kim, Xia, Park (b0030) 2020; 14 Bakangura, Wu, Ge, Yang, Xu (b0170) 2016; 57 Lee, Cho, Kim, Moon, Seong, Shin, Sohn, Kim, Lee (b0240) 2017; 10 Rana, Park, Gund, Park (b0025) 2020; 25 Bai, Peng, Xiang, Zhang, Wang, Lu, Zhuang (b0060) 2019; 443 Zhang, He, Zhao, Tang (b0080) 2018; 379 He, Li, Zhao, Wang, Wu, Guiver, Jiang (b0175) 2015; 27 Hu, Deng, Dong, Hong, Zhang, Liu (b0220) 2021; 619 Ru, Gu, Duan, Na, Zhao (b0265) 2019; 324 Cao, He, Jiang, Li, Li, Ren, Yang, Wu (b0165) 2017; 46 Seo, Hillmyer (b0245) 2012; 336 Li, Wang, Lee, Park, Lee, Guiver (b0215) 2011; 50 Kesavan (10.1016/j.jcis.2021.06.110_b0070) 2021; 584 Wu (10.1016/j.jcis.2021.06.110_b0180) 2013; 15 Zhang (10.1016/j.jcis.2021.06.110_b0270) 2014; 2 Schulzel (10.1016/j.jcis.2021.06.110_b0250) 2017; 50 Zhang (10.1016/j.jcis.2021.06.110_b0145) 2019; 572 Vilciauskas (10.1016/j.jcis.2021.06.110_b0095) 2012; 4 Chua (10.1016/j.jcis.2021.06.110_b0290) 2012; 22 Zhu (10.1016/j.jcis.2021.06.110_b0210) 2017; 8 Kumaravel (10.1016/j.jcis.2021.06.110_b0040) 2021; 11 Wang (10.1016/j.jcis.2021.06.110_b0015) 2012; 41 Hong (10.1016/j.jcis.2021.06.110_b0285) 2019; 483 Kim (10.1016/j.jcis.2021.06.110_b0085) 2015; 9 Cao (10.1016/j.jcis.2021.06.110_b0165) 2017; 46 Dai (10.1016/j.jcis.2021.06.110_b0115) 2019; 553 Liu (10.1016/j.jcis.2021.06.110_b0140) 2020; 4 Narayanan (10.1016/j.jcis.2021.06.110_b0280) 2006; 110 Ge (10.1016/j.jcis.2021.06.110_b0335) 2019; 55 Liu (10.1016/j.jcis.2021.06.110_b0075) 2019; 6 Li (10.1016/j.jcis.2021.06.110_b0005) 2021 Hou (10.1016/j.jcis.2021.06.110_b0020) 2020; 10 Patel (10.1016/j.jcis.2021.06.110_b0305) 2010; 95 Park (10.1016/j.jcis.2021.06.110_b0255) 2017; 126 Wang (10.1016/j.jcis.2021.06.110_b0130) 2019; 583 Ru (10.1016/j.jcis.2021.06.110_b0265) 2019; 324 Hu (10.1016/j.jcis.2021.06.110_b0220) 2021; 619 Chaichi (10.1016/j.jcis.2021.06.110_b0275) 2020; 3 Li (10.1016/j.jcis.2021.06.110_b0055) 2021; 586 He (10.1016/j.jcis.2021.06.110_b0155) 2021; 32 Deng (10.1016/j.jcis.2021.06.110_b0065) 2021; 594 Qaisrani (10.1016/j.jcis.2021.06.110_b0225) 2019; 12 Zhang (10.1016/j.jcis.2021.06.110_b0080) 2018; 379 Ji (10.1016/j.jcis.2021.06.110_b0035) 2021; 590 Li (10.1016/j.jcis.2021.06.110_b0215) 2011; 50 Tao (10.1016/j.jcis.2021.06.110_b0100) 2020; 604 Nakhanivej (10.1016/j.jcis.2021.06.110_b0030) 2020; 14 Bai (10.1016/j.jcis.2021.06.110_b0060) 2019; 443 Park (10.1016/j.jcis.2021.06.110_b0195) 2019; 494 Liu (10.1016/j.jcis.2021.06.110_b0325) 2014; 2 Yang (10.1016/j.jcis.2021.06.110_b0160) 2020; 473 Lee (10.1016/j.jcis.2021.06.110_b0240) 2017; 10 Shi (10.1016/j.jcis.2021.06.110_b0010) 2018; 27 He (10.1016/j.jcis.2021.06.110_b0175) 2015; 27 Rana (10.1016/j.jcis.2021.06.110_b0025) 2020; 25 Zhao (10.1016/j.jcis.2021.06.110_b0090) 2020; 78 Tian (10.1016/j.jcis.2021.06.110_b0110) 2019; 465 Bakangura (10.1016/j.jcis.2021.06.110_b0170) 2016; 57 Yang (10.1016/j.jcis.2021.06.110_b0105) 2020; 480 Chen (10.1016/j.jcis.2021.06.110_b0200) 2019; 586 Wang (10.1016/j.jcis.2021.06.110_b0120) 2018; 556 Chikh (10.1016/j.jcis.2021.06.110_b0260) 2011; 368 Zhang (10.1016/j.jcis.2021.06.110_b0295) 2017; 56 Beers (10.1016/j.jcis.2021.06.110_b0150) 2012; 1 Yi (10.1016/j.jcis.2021.06.110_b0205) 2019; 7 Xiang (10.1016/j.jcis.2021.06.110_b0050) 2012; 41 Dazzi (10.1016/j.jcis.2021.06.110_b0300) 2017; 117 Ding (10.1016/j.jcis.2021.06.110_b0185) 2020; 186 Hu (10.1016/j.jcis.2021.06.110_b0135) 2020; 595 Shigematsu (10.1016/j.jcis.2021.06.110_b0320) 2011; 133 Mao (10.1016/j.jcis.2021.06.110_b0330) 2019; 11 Zhu (10.1016/j.jcis.2021.06.110_b0235) 2017; 50 Lee (10.1016/j.jcis.2021.06.110_b0340) 2019; 55 Park (10.1016/j.jcis.2021.06.110_b0315) 2019; 4 Hu (10.1016/j.jcis.2021.06.110_b0125) 2020; 593 Kim (10.1016/j.jcis.2021.06.110_b0230) 2018; 10 Zheng (10.1016/j.jcis.2021.06.110_b0045) 2018; 51 Wang (10.1016/j.jcis.2021.06.110_b0190) 2021; 3 Evans (10.1016/j.jcis.2021.06.110_b0310) 2016; 49 Seo (10.1016/j.jcis.2021.06.110_b0245) 2012; 336 |
References_xml | – volume: 2 start-page: 11569 year: 2014 end-page: 11573 ident: b0325 article-title: Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors publication-title: J. Mater. Chem. A – volume: 3 start-page: 603 year: 2021 end-page: 613 ident: b0190 article-title: Nanostructured Polymer Composite Electrolytes with Self-Assembled Polyoxometalate Networks for Proton Conduction publication-title: CCS Chem. – volume: 586 start-page: 110 year: 2021 end-page: 119 ident: b0055 article-title: A universal strategy to improve interfacial kinetics of solid supercapacitors used in high temperature publication-title: J. Colloid Interf. Sci. – volume: 4 start-page: 461 year: 2012 end-page: 466 ident: b0095 article-title: The mechanism of proton conduction in phosphoric acid publication-title: Nat. Chem. – volume: 583 start-page: 110 year: 2019 end-page: 117 ident: b0130 article-title: Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells publication-title: J. Membr. Sci. – volume: 593 start-page: 117435 year: 2020 ident: b0125 article-title: Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity publication-title: J. Membr. Sci. – volume: 27 start-page: 5280 year: 2015 end-page: 5295 ident: b0175 article-title: Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives publication-title: Adv. Mater. – volume: 483 start-page: 785 year: 2019 end-page: 792 ident: b0285 article-title: Phosphoric acid doped high temperature proton exchange membranes based on comb-shaped polymers with quaternized graft architectures publication-title: Appl. Surf. Sci. – volume: 50 start-page: 2329 year: 2017 end-page: 2337 ident: b0235 article-title: Mechanically Robust Anion Exchange Membranes via Long Hydrophilic Cross-Linkers publication-title: Macromolecules – volume: 110 start-page: 3942 year: 2006 end-page: 3948 ident: b0280 article-title: Anhydrous Proton-Conducting Polymeric Electrolytes for Fuel Cells publication-title: J. Phys. Chem. B – volume: 25 start-page: 70 year: 2020 end-page: 75 ident: b0025 article-title: Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors publication-title: Energy Storage Mater. – volume: 10 year: 2020 ident: b0020 article-title: Integrated Conductive Hybrid Architecture of Metal-Organic Framework Nanowire Array on Polypyrrole Membrane for All-Solid-State Flexible Supercapacitors publication-title: Adv. Energy Mater. – volume: 379 start-page: 60 year: 2018 end-page: 67 ident: b0080 article-title: A porous ceramic membrane tailored high-temperature supercapacitor publication-title: J. Power Sources – volume: 8 start-page: 2074 year: 2017 end-page: 2086 ident: b0210 article-title: Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes publication-title: Polym. Chem. – volume: 368 start-page: 1 year: 2011 end-page: 17 ident: b0260 article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes publication-title: J. Membr. Sci. – volume: 480 start-page: 228859 year: 2020 ident: b0105 article-title: Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells publication-title: J. Power Sources – volume: 584 start-page: 714 year: 2021 end-page: 722 ident: b0070 article-title: Topochemically synthesized MoS2 nanosheets: A high performance electrode for wide-temperature tolerant aqueous supercapacitors publication-title: J. Colloid Interf. Sci. – volume: 22 start-page: 23227 year: 2012 end-page: 23231 ident: b0290 article-title: Renewal of sp(2) bonds in graphene oxides via dehydrobromination publication-title: J. Mater. Chem. – volume: 556 start-page: 118 year: 2018 end-page: 125 ident: b0120 article-title: Crosslinked norbornene copolymer anion exchange membrane for fuel cells publication-title: J. Membr. Sci. – volume: 49 start-page: 395 year: 2016 end-page: 404 ident: b0310 article-title: Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length publication-title: Ionic Content, and Confinement, Macromolecules – volume: 619 start-page: 118806 year: 2021 ident: b0220 article-title: Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes publication-title: J. Membr. Sci. – volume: 336 start-page: 1422 year: 2012 end-page: 1425 ident: b0245 article-title: Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation publication-title: Science – volume: 41 start-page: 7291 year: 2012 end-page: 7321 ident: b0050 article-title: Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors publication-title: Chem. Soc. Rev. – volume: 11 start-page: 17742 year: 2019 end-page: 17750 ident: b0330 article-title: High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte publication-title: Acs Appl. Mater. Inter. – volume: 7 start-page: 22550 year: 2019 end-page: 22558 ident: b0205 article-title: Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method publication-title: J. Mater. Chem. A – volume: 12 start-page: 3510 year: 2019 end-page: 3521 ident: b0225 article-title: Hydrophilic flexible ether containing, cross-linked anion exchange membrane quaternized with DABCO, ACS Appl publication-title: Mater. Inter. – volume: 604 year: 2020 ident: b0100 article-title: Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers publication-title: J. Membr. Sci. – volume: 595 start-page: 117521 year: 2020 ident: b0135 article-title: Dual hydrophobic modifications toward anion exchange membranes with both high ion conductivity and excellent dimensional stability publication-title: J. Membr. Sci. – volume: 27 start-page: 25 year: 2018 end-page: 42 ident: b0010 article-title: Recent advances of graphene-based materials for high-performance and new-concept supercapacitors publication-title: J. Energy Chem. – volume: 324 start-page: 134873 year: 2019 ident: b0265 article-title: Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs publication-title: Electrochim. Acta – volume: 32 start-page: 2013 year: 2021 end-page: 2016 ident: b0155 article-title: Self-assembled lamellar nanochannels in polyoxometalate-polymer nanocomposites for proton conduction publication-title: Chinese Chem. Lett. – volume: 6 start-page: 1801337 year: 2019 ident: b0075 article-title: Aligned lonogel Electrolytes for High-Temperature Supercapacitors publication-title: Adv. Sci. – volume: 443 start-page: 227219 year: 2019 ident: b0060 article-title: Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells publication-title: J. Power Sources – volume: 117 start-page: 5146 year: 2017 end-page: 5173 ident: b0300 article-title: AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging publication-title: Chem. Rev. – volume: 95 start-page: 792 year: 2010 end-page: 797 ident: b0305 article-title: Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings publication-title: Polym. Degrad. Stabil. – volume: 2 start-page: 13996 year: 2014 end-page: 14003 ident: b0270 article-title: Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells publication-title: J. Mater. Chem. A – volume: 14 start-page: 7696 year: 2020 end-page: 7703 ident: b0030 article-title: Transport and Durability of Energy Storage Materials Operating at High Temperatures publication-title: ACS nano – volume: 473 start-page: 228586 year: 2020 ident: b0160 article-title: Notably enhanced proton conductivity by thermally-induced phase-separation transition of Nafion/ Poly(vinylidene fluoride) blend membranes publication-title: J. Power Sources – volume: 4 start-page: 239 year: 2019 end-page: 251 ident: b0315 article-title: Confinement-entitled morphology and ion transport in ion-containing polymers publication-title: Mol. Syst. Des. Eng. – volume: 590 start-page: 614 year: 2021 end-page: 621 ident: b0035 article-title: Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications publication-title: J. Colloid Interf. Sci. – volume: 51 start-page: 613 year: 2018 end-page: 620 ident: b0045 article-title: All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance publication-title: Nano Energy – volume: 78 start-page: 69 year: 2020 end-page: 75 ident: b0090 article-title: Self-crosslinked Polyethyleneimine-polysulfone Membrane for High Temperature Proton Exchange Membrane publication-title: Acta Chim. Sinica – volume: 57 start-page: 103 year: 2016 end-page: 152 ident: b0170 article-title: Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives publication-title: Prog. Polym. Sci. – volume: 10 start-page: 21788 year: 2018 end-page: 21793 ident: b0230 article-title: Cross-Linked Sulfonated Poly(arylene ether sulfone) Containing a Flexible and Hydrophobic Bishydroxy Perfluoropolyether Cross-Linker for High-Performance Proton Exchange Membrane publication-title: ACS Appl. Mater. Inter. – volume: 133 start-page: 2034 year: 2011 end-page: 2036 ident: b0320 article-title: Wide Control of Proton Conductivity in Porous Coordination Polymers publication-title: J. Am. Chem. Soc. – volume: 594 start-page: 770 year: 2021 end-page: 780 ident: b0065 article-title: Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method publication-title: J. Colloid Interf. Sci. – volume: 11 year: 2021 ident: b0040 article-title: Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors publication-title: Adv. Energy Mater. – volume: 15 start-page: 4870 year: 2013 end-page: 4887 ident: b0180 article-title: Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs) publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 275 year: 2017 end-page: 285 ident: b0240 article-title: Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking publication-title: Energ. Environ. Sci. – volume: 553 start-page: 503 year: 2019 end-page: 511 ident: b0115 article-title: Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone publication-title: J. Colloid Interf. Sci. – volume: 572 start-page: 496 year: 2019 end-page: 503 ident: b0145 article-title: A new high temperature polymer electrolyte membrane based on trifunctional group grafted polysulfone for fuel cell application publication-title: J. Membr. Sci. – volume: 126 start-page: 338 year: 2017 end-page: 351 ident: b0255 article-title: Effect of homopolymer in polymerization-induced microphase separation process publication-title: Polymer – volume: 3 start-page: 5693 year: 2020 end-page: 5704 ident: b0275 article-title: A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range publication-title: Acs Appl. Energ. Mater. – volume: 50 start-page: 9158 year: 2011 end-page: 9161 ident: b0215 article-title: Enhancement of Proton Transport by Nanochannels in Comb-Shaped Copoly(arylene ether sulfone)s publication-title: Angew. Chem. Int. Ed. – volume: 186 year: 2020 ident: b0185 article-title: Crystallization-driven microstructure changes during microphase separation for environment-friendly thermoplastic triblock copolymer elastomers publication-title: Polymer – volume: 9 start-page: 8569 year: 2015 end-page: 8577 ident: b0085 article-title: Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures publication-title: ACS nano – volume: 41 start-page: 797 year: 2012 end-page: 828 ident: b0015 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. – volume: 50 start-page: 997 year: 2017 end-page: 1007 ident: b0250 article-title: Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization-Induced Microphase Separation publication-title: Macromolecules – volume: 465 start-page: 332 year: 2019 end-page: 339 ident: b0110 article-title: Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications publication-title: Appl. Surf. Sci. – volume: 4 start-page: 6066 year: 2020 end-page: 6074 ident: b0140 article-title: Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs publication-title: Sustain. Energ. Fuels – volume: 56 start-page: 9013 year: 2017 end-page: 9017 ident: b0295 article-title: Inorganic-Macroion-Induced Formation of Bicontinuous Block Co-polymer Nanocomposites with Enhanced Conductivity and Modulus publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1155 year: 2012 end-page: 1160 ident: b0150 article-title: Design of Cluster-free Polymer Electrolyte Membranes and Implications on Proton Conductivity publication-title: Acs Macro Lett. – volume: 494 start-page: 309 year: 2019 end-page: 314 ident: b0195 article-title: Complex core-shell morphologies of block copolymers revealed beneath the surface publication-title: Appl. Surf. Sci. – volume: 46 start-page: 6725 year: 2017 end-page: 6745 ident: b0165 article-title: Channel-facilitated molecule and ion transport across polymer composite membranes publication-title: Chem. Soc. Rev. – volume: 586 start-page: 202 year: 2019 end-page: 210 ident: b0200 article-title: Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications publication-title: J. Membr. Sci. – volume: 55 start-page: 15081 year: 2019 end-page: 15084 ident: b0340 article-title: An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications publication-title: Chem. Commun. – volume: 55 start-page: 7167 year: 2019 end-page: 7170 ident: b0335 article-title: Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte publication-title: Chem. Commun. – year: 2021 ident: b0005 article-title: Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electrochemical Energy Storage Devices – volume: 572 start-page: 496 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0145 article-title: A new high temperature polymer electrolyte membrane based on trifunctional group grafted polysulfone for fuel cell application publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.11.035 – volume: 95 start-page: 792 year: 2010 ident: 10.1016/j.jcis.2021.06.110_b0305 article-title: Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2010.02.001 – volume: 583 start-page: 110 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0130 article-title: Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.04.030 – volume: 41 start-page: 797 year: 2012 ident: 10.1016/j.jcis.2021.06.110_b0015 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – volume: 126 start-page: 338 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0255 article-title: Effect of homopolymer in polymerization-induced microphase separation process publication-title: Polymer doi: 10.1016/j.polymer.2017.04.046 – volume: 443 start-page: 227219 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0060 article-title: Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227219 – volume: 9 start-page: 8569 year: 2015 ident: 10.1016/j.jcis.2021.06.110_b0085 article-title: Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures publication-title: ACS nano doi: 10.1021/acsnano.5b03732 – volume: 41 start-page: 7291 year: 2012 ident: 10.1016/j.jcis.2021.06.110_b0050 article-title: Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35048c – volume: 27 start-page: 25 year: 2018 ident: 10.1016/j.jcis.2021.06.110_b0010 article-title: Recent advances of graphene-based materials for high-performance and new-concept supercapacitors publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.09.034 – volume: 11 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0040 article-title: Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002869 – volume: 494 start-page: 309 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0195 article-title: Complex core-shell morphologies of block copolymers revealed beneath the surface publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.164 – volume: 619 start-page: 118806 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0220 article-title: Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118806 – volume: 465 start-page: 332 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0110 article-title: Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.09.170 – volume: 55 start-page: 7167 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0335 article-title: Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte publication-title: Chem. Commun. doi: 10.1039/C9CC02424G – volume: 133 start-page: 2034 year: 2011 ident: 10.1016/j.jcis.2021.06.110_b0320 article-title: Wide Control of Proton Conductivity in Porous Coordination Polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109810w – volume: 604 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0100 article-title: Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118004 – volume: 593 start-page: 117435 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0125 article-title: Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117435 – volume: 55 start-page: 15081 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0340 article-title: An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications publication-title: Chem. Commun. doi: 10.1039/C9CC07784G – volume: 7 start-page: 22550 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0205 article-title: Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08845H – volume: 57 start-page: 103 year: 2016 ident: 10.1016/j.jcis.2021.06.110_b0170 article-title: Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.11.004 – volume: 27 start-page: 5280 year: 2015 ident: 10.1016/j.jcis.2021.06.110_b0175 article-title: Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives publication-title: Adv. Mater. doi: 10.1002/adma.201501406 – volume: 8 start-page: 2074 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0210 article-title: Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes publication-title: Polym. Chem. doi: 10.1039/C6PY02213H – volume: 4 start-page: 239 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0315 article-title: Confinement-entitled morphology and ion transport in ion-containing polymers publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C8ME00117K – volume: 10 start-page: 21788 year: 2018 ident: 10.1016/j.jcis.2021.06.110_b0230 article-title: Cross-Linked Sulfonated Poly(arylene ether sulfone) Containing a Flexible and Hydrophobic Bishydroxy Perfluoropolyether Cross-Linker for High-Performance Proton Exchange Membrane publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b05139 – volume: 56 start-page: 9013 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0295 article-title: Inorganic-Macroion-Induced Formation of Bicontinuous Block Co-polymer Nanocomposites with Enhanced Conductivity and Modulus publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201702785 – volume: 49 start-page: 395 year: 2016 ident: 10.1016/j.jcis.2021.06.110_b0310 article-title: Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length publication-title: Ionic Content, and Confinement, Macromolecules – volume: 22 start-page: 23227 year: 2012 ident: 10.1016/j.jcis.2021.06.110_b0290 article-title: Renewal of sp(2) bonds in graphene oxides via dehydrobromination publication-title: J. Mater. Chem. doi: 10.1039/c2jm34358d – volume: 556 start-page: 118 year: 2018 ident: 10.1016/j.jcis.2021.06.110_b0120 article-title: Crosslinked norbornene copolymer anion exchange membrane for fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.03.080 – volume: 379 start-page: 60 year: 2018 ident: 10.1016/j.jcis.2021.06.110_b0080 article-title: A porous ceramic membrane tailored high-temperature supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.01.033 – volume: 110 start-page: 3942 year: 2006 ident: 10.1016/j.jcis.2021.06.110_b0280 article-title: Anhydrous Proton-Conducting Polymeric Electrolytes for Fuel Cells publication-title: J. Phys. Chem. B doi: 10.1021/jp054167w – volume: 368 start-page: 1 year: 2011 ident: 10.1016/j.jcis.2021.06.110_b0260 article-title: (Semi-)Interpenetrating polymer networks as fuel cell membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.020 – volume: 14 start-page: 7696 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0030 article-title: Transport and Durability of Energy Storage Materials Operating at High Temperatures publication-title: ACS nano doi: 10.1021/acsnano.0c04402 – volume: 4 start-page: 6066 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0140 article-title: Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs publication-title: Sustain. Energ. Fuels doi: 10.1039/D0SE01123A – volume: 584 start-page: 714 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0070 article-title: Topochemically synthesized MoS2 nanosheets: A high performance electrode for wide-temperature tolerant aqueous supercapacitors publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2020.09.088 – volume: 553 start-page: 503 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0115 article-title: Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.06.020 – volume: 3 start-page: 5693 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0275 article-title: A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range publication-title: Acs Appl. Energ. Mater. doi: 10.1021/acsaem.0c00636 – volume: 46 start-page: 6725 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0165 article-title: Channel-facilitated molecule and ion transport across polymer composite membranes publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00906E – volume: 1 start-page: 1155 year: 2012 ident: 10.1016/j.jcis.2021.06.110_b0150 article-title: Design of Cluster-free Polymer Electrolyte Membranes and Implications on Proton Conductivity publication-title: Acs Macro Lett. doi: 10.1021/mz300389f – volume: 117 start-page: 5146 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0300 article-title: AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00448 – volume: 15 start-page: 4870 year: 2013 ident: 10.1016/j.jcis.2021.06.110_b0180 article-title: Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs) publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50296a – volume: 336 start-page: 1422 year: 2012 ident: 10.1016/j.jcis.2021.06.110_b0245 article-title: Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation publication-title: Science doi: 10.1126/science.1221383 – volume: 595 start-page: 117521 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0135 article-title: Dual hydrophobic modifications toward anion exchange membranes with both high ion conductivity and excellent dimensional stability publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117521 – volume: 594 start-page: 770 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0065 article-title: Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.03.089 – volume: 590 start-page: 614 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0035 article-title: Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.01.102 – volume: 483 start-page: 785 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0285 article-title: Phosphoric acid doped high temperature proton exchange membranes based on comb-shaped polymers with quaternized graft architectures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.298 – volume: 78 start-page: 69 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0090 article-title: Self-crosslinked Polyethyleneimine-polysulfone Membrane for High Temperature Proton Exchange Membrane publication-title: Acta Chim. Sinica doi: 10.6023/A19090329 – volume: 50 start-page: 997 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0250 article-title: Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization-Induced Microphase Separation publication-title: Macromolecules doi: 10.1021/acs.macromol.6b02570 – volume: 3 start-page: 603 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0190 article-title: Nanostructured Polymer Composite Electrolytes with Self-Assembled Polyoxometalate Networks for Proton Conduction publication-title: CCS Chem. – volume: 51 start-page: 613 year: 2018 ident: 10.1016/j.jcis.2021.06.110_b0045 article-title: All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.009 – volume: 186 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0185 article-title: Crystallization-driven microstructure changes during microphase separation for environment-friendly thermoplastic triblock copolymer elastomers publication-title: Polymer doi: 10.1016/j.polymer.2019.121993 – volume: 2 start-page: 13996 year: 2014 ident: 10.1016/j.jcis.2021.06.110_b0270 article-title: Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01931H – volume: 473 start-page: 228586 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0160 article-title: Notably enhanced proton conductivity by thermally-induced phase-separation transition of Nafion/ Poly(vinylidene fluoride) blend membranes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228586 – volume: 11 start-page: 17742 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0330 article-title: High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte publication-title: Acs Appl. Mater. Inter. doi: 10.1021/acsami.9b00452 – volume: 12 start-page: 3510 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0225 article-title: Hydrophilic flexible ether containing, cross-linked anion exchange membrane quaternized with DABCO, ACS Appl publication-title: Mater. Inter. doi: 10.1021/acsami.9b15435 – volume: 324 start-page: 134873 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0265 article-title: Nafion based semi-interpenetrating polymer network membranes from a cross-linkable SPAEK and a fluorinated epoxy resin for DMFCs publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134873 – volume: 25 start-page: 70 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0025 article-title: Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.10.030 – volume: 10 start-page: 275 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0240 article-title: Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking publication-title: Energ. Environ. Sci. doi: 10.1039/C6EE03079C – volume: 50 start-page: 9158 year: 2011 ident: 10.1016/j.jcis.2021.06.110_b0215 article-title: Enhancement of Proton Transport by Nanochannels in Comb-Shaped Copoly(arylene ether sulfone)s publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102057 – volume: 4 start-page: 461 year: 2012 ident: 10.1016/j.jcis.2021.06.110_b0095 article-title: The mechanism of proton conduction in phosphoric acid publication-title: Nat. Chem. doi: 10.1038/nchem.1329 – volume: 6 start-page: 1801337 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0075 article-title: Aligned lonogel Electrolytes for High-Temperature Supercapacitors publication-title: Adv. Sci. doi: 10.1002/advs.201801337 – volume: 586 start-page: 110 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0055 article-title: A universal strategy to improve interfacial kinetics of solid supercapacitors used in high temperature publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2020.10.075 – volume: 50 start-page: 2329 year: 2017 ident: 10.1016/j.jcis.2021.06.110_b0235 article-title: Mechanically Robust Anion Exchange Membranes via Long Hydrophilic Cross-Linkers publication-title: Macromolecules doi: 10.1021/acs.macromol.6b01381 – year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0005 – volume: 586 start-page: 202 year: 2019 ident: 10.1016/j.jcis.2021.06.110_b0200 article-title: Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.05.076 – volume: 10 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0020 article-title: Integrated Conductive Hybrid Architecture of Metal-Organic Framework Nanowire Array on Polypyrrole Membrane for All-Solid-State Flexible Supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901892 – volume: 2 start-page: 11569 year: 2014 ident: 10.1016/j.jcis.2021.06.110_b0325 article-title: Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01944J – volume: 480 start-page: 228859 year: 2020 ident: 10.1016/j.jcis.2021.06.110_b0105 article-title: Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228859 – volume: 32 start-page: 2013 year: 2021 ident: 10.1016/j.jcis.2021.06.110_b0155 article-title: Self-assembled lamellar nanochannels in polyoxometalate-polymer nanocomposites for proton conduction publication-title: Chinese Chem. Lett. doi: 10.1016/j.cclet.2021.01.051 |
SSID | ssj0011559 |
Score | 2.4160938 |
Snippet | [Display omitted]
•A post-assembly strategy was developed to prepare nanostructured PEMs.•Bicontinuous PEMs with high stability and high proton conductivity... The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 408 |
SubjectTerms | Bicontinuous structures capacitance crosslinking electrochemical capacitors electrolytes energy High-performance polymer electrolyte membranes High-temperature supercapacitors Nanostructured electrolytes phosphoric acid polymers Proton conduction |
Title | Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors |
URI | https://dx.doi.org/10.1016/j.jcis.2021.06.110 https://www.proquest.com/docview/2548410464 https://www.proquest.com/docview/2636428874 |
Volume | 603 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHtSD6FScHyOCN6lrurRpj2M4puJODnYrbZLCxtaOfRx2EfzPfW9J5weyg5fStC9pyUvfR_Pe7xFyp0PpCT9i-KMKDl6YOVGmuJOwhLsZlyINMXf4tR_0Bvx56A8rpFPmwmBYpZX9RqZvpLW90rSz2ZyNRpjjC1-bQPQZTEYQKIc5F7jKH963YR4Mt91MmAdzkNomzpgYr7EcIWS3xxDDk2EW7d_K6ZeY3uie7jE5skYjbZv3OiEVndfIfqes1VYjh99gBU_JB4jMwgDDruZaUYQkdmZfGQLU1r6ZrJeaTvUUHGYQeBQVmqJFTmdwZ6rnNDch4tBeLB0wsoFysqYwihkRUa0sJDNdrOBUguKVIyzfc0YG3ce3Ts-xpRYcyVve0hGBTgLlqpbKhBuKTEXKU0IDs1zFwSPyEzB7opSxJPF5Egk_EBIoMrjuqRRsrnNSzYtcXxCqU7ijAz_j4NolYP9FiEmouExDnaYeqxNWznEsLQ45lsOYxGXA2ThGvsTIl9gNwEdx6-R-22dmUDh2Uvsl6-IfaykGNbGz323J5xj4hzsnMP3FCojAr-O4G8530AQt9OVCwS__-fwrcoAtEyxzTaqwTvQNmDzLtLFZ0w2y13566fU_ATXvBJs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDIUB8RTlaSQ2FBqnTpyMqKIq0DJRqZuV2I5U1CZVaQcWJP45d7VTHkIdWKIkPieRz75HfPcdIVcmVoEIE4Y_quAQxLmX5Jp7KUu5n3Mlshhzh3tPUafPHwbhYI20qlwYDKt0st_K9IW0dncabjQbk-EQc3xhtQlEn8FkBAFyeIPD8sUyBjfvyzgPhvtuNs6DeUjuMmdskNeLGiJmd8AQxJNhGu3f2umXnF4on_YO2XZWI721H7ZL1kyxR2qtqljbHtn6hiu4Tz5AZpYWGXY-NZoiJrE3-UoRoK74zehtZujYjMFjBolHUaNpWhZ0Ai1jM6WFjRGH69eZB1Y2UI7eKDzFPhFhrRwmM32dw6kCzauGWL_ngPTbd8-tjudqLXiKN4OZJyKTRtrXTZ0LPxa5TnSghQFu-ZqDSxSmYPckGWNpGvI0EWEkFFDkcD_QGRhdh2S9KAtzRKjJoMVEYc7Bt0vBAEwQlFBzlcUmywJWJ6waY6kcEDnWwxjJKuLsRSJfJPJF-hE4KX6dXC_7TCwMx0rqsGKd_DGZJOiJlf0uKz5L4B9uncDwl3MgAseO43Y4X0ETNdGZiwU__uf7L0it89zryu790-MJ2cQWGzlzStZhzpgzsH9m2flifn8CExMGKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+high-performance+electrolyte+membranes+based+on+polymer+network+post-assembly+for+high-temperature+supercapacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zeng%2C+Minghao&rft.au=Guo%2C+Haikun&rft.au=Wang%2C+Gang&rft.au=Shang%2C+Lichao&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=603&rft.spage=408&rft.epage=417&rft_id=info:doi/10.1016%2Fj.jcis.2021.06.110&rft.externalDocID=S0021979721009772 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |