GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells
Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demo...
Saved in:
Published in | Autophagy Vol. 7; no. 8; pp. 873 - 882 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer. |
---|---|
AbstractList | Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer. Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer. |
Author | Wu, Tzu-Chin Jan, Ming-Shiou Chiu, Ling-Yen Lue, Ko-Huang Hsin, I-Lun Ko, Jiunn-Liang Wu, Ming-Fang Ou, Chu-Chyn |
Author_xml | – sequence: 1 givenname: I-Lun surname: Hsin fullname: Hsin, I-Lun – sequence: 2 givenname: Chu-Chyn surname: Ou fullname: Ou, Chu-Chyn – sequence: 3 givenname: Tzu-Chin surname: Wu fullname: Wu, Tzu-Chin – sequence: 4 givenname: Ming-Shiou surname: Jan fullname: Jan, Ming-Shiou – sequence: 5 givenname: Ming-Fang surname: Wu fullname: Wu, Ming-Fang – sequence: 6 givenname: Ling-Yen surname: Chiu fullname: Chiu, Ling-Yen – sequence: 7 givenname: Ko-Huang surname: Lue fullname: Lue, Ko-Huang – sequence: 8 givenname: Jiunn-Liang surname: Ko fullname: Ko, Jiunn-Liang email: jlko@csmu.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21490426$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v3CAQxVGVqvlorz1W3HqJHTAY42MUtZtIiXJJzmgWcEplYAu2qv3vg7OpD5WiXACN3o95M-8UHYUYLEJfKak5FfQC5inWXS1r2opefkAntG15JQVrj9Z30x2j05x_E8KE7JtP6LihvCe8EScobe5uzjEE7LyfQ_TRzCNMMe3xLsXJuoCHFD3eQIjGJg_YO51i3sU0-3Psgpm1zXhxsfsFT_tSwcVhlT2MI9a2HOMcnrCGoG16KeTP6OMAY7ZfXu8z9Pjzx8PVdXV7v7m5urytNGfNVAndEC62hPOBNF3Xc8poLxixEkwnWtAtEXTLBmiFbUD2TGpDe8OACdvZlrIz9P3wb5nkz2zzpLzLiwMINs5ZyY7L8qHoi_Lbq3LeemvULjkPaa_-rakI6oNgmT0nO6wSStSSg1o2oDol1UsOBeD_AdpNMLkYpgRufBu7OGDFo7F562LWzpbVrf2uswuXjw_3C7MzQyG6d4g1GwVpcnq0a6_-QLowxJLs35hGoybYjzENqeTlsmJv-HwGXvvIEg |
CitedBy_id | crossref_primary_10_3390_ijms22136854 crossref_primary_10_3390_toxins11050259 crossref_primary_10_1016_j_drudis_2018_09_014 crossref_primary_10_1016_j_jaut_2020_102576 crossref_primary_10_1177_1534735419833795 crossref_primary_10_1007_s00253_022_11839_9 crossref_primary_10_1038_cddis_2017_459 crossref_primary_10_1186_s11658_017_0053_1 crossref_primary_10_3389_fphar_2022_961725 crossref_primary_10_1021_acs_jcim_6b00087 crossref_primary_10_18632_oncotarget_14994 crossref_primary_10_3892_ol_2016_5178 crossref_primary_10_1016_j_jff_2015_09_042 crossref_primary_10_3390_molecules26216708 crossref_primary_10_1016_j_ijbiomac_2022_12_061 crossref_primary_10_3892_ol_2016_5059 crossref_primary_10_1002_jcp_31103 crossref_primary_10_1080_01635581_2014_948215 crossref_primary_10_1016_j_lfs_2023_122255 crossref_primary_10_1371_journal_pone_0244791 crossref_primary_10_1016_j_toxicon_2024_107742 crossref_primary_10_1002_tox_22489 crossref_primary_10_1016_j_canlet_2023_216458 crossref_primary_10_1016_j_phymed_2020_153384 crossref_primary_10_1016_j_ijbiomac_2022_08_024 crossref_primary_10_1016_j_ijbiomac_2023_124648 crossref_primary_10_1111_1750_3841_15134 crossref_primary_10_3389_fphar_2018_01217 crossref_primary_10_1021_mp500840z crossref_primary_10_1002_jcb_26616 crossref_primary_10_1016_j_fochms_2022_100091 crossref_primary_10_1016_j_kjms_2017_06_013 crossref_primary_10_18632_oncotarget_19711 crossref_primary_10_1002_jcp_27338 crossref_primary_10_1016_j_mcn_2022_103735 crossref_primary_10_1371_journal_pone_0119439 crossref_primary_10_1007_s00253_016_8030_6 crossref_primary_10_1016_j_biocel_2014_12_023 crossref_primary_10_1016_j_jams_2013_07_009 crossref_primary_10_1016_j_jmii_2014_08_001 crossref_primary_10_1016_j_bbrc_2012_08_002 crossref_primary_10_1371_journal_pone_0056679 crossref_primary_10_1016_j_toxrep_2022_05_013 crossref_primary_10_1111_j_1476_5381_2012_02073_x crossref_primary_10_1007_s00253_014_5539_4 crossref_primary_10_1002_tox_24399 crossref_primary_10_1155_2013_946451 crossref_primary_10_1016_j_toxlet_2013_04_021 crossref_primary_10_3389_fgene_2021_820154 crossref_primary_10_3390_ijms19113429 crossref_primary_10_1371_journal_pone_0168436 crossref_primary_10_3389_fimmu_2017_00666 crossref_primary_10_1002_jcp_29924 crossref_primary_10_3892_ol_2019_10355 crossref_primary_10_3390_molecules26041113 crossref_primary_10_1002_tox_22582 crossref_primary_10_1016_j_phymed_2022_154215 crossref_primary_10_1038_s41598_019_38810_5 crossref_primary_10_1016_j_jbiotec_2017_02_006 crossref_primary_10_1038_s41416_020_0885_8 crossref_primary_10_3390_ijms20215348 crossref_primary_10_1002_ijc_30649 crossref_primary_10_1016_j_phymed_2018_06_023 crossref_primary_10_1371_journal_pone_0101579 crossref_primary_10_1016_j_ijbiomac_2024_129291 crossref_primary_10_3390_cancers12010108 crossref_primary_10_1007_s11033_022_07711_8 crossref_primary_10_1021_jf4030272 crossref_primary_10_1016_j_biopha_2018_04_086 crossref_primary_10_1080_0028825X_2024_2375996 crossref_primary_10_1007_s00280_014_2559_9 crossref_primary_10_1371_journal_pone_0125774 crossref_primary_10_1016_j_taap_2012_07_005 crossref_primary_10_1080_01635581_2017_1247889 crossref_primary_10_1177_1010428317707437 crossref_primary_10_1016_j_ijbiomac_2022_05_136 crossref_primary_10_1517_14728222_2013_741594 crossref_primary_10_2139_ssrn_3989678 crossref_primary_10_1016_j_cbi_2022_110177 crossref_primary_10_1016_j_phymed_2016_09_003 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Landes Bioscience 2011 |
Copyright_xml | – notice: Copyright © 2011 Landes Bioscience 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.4161/auto.7.8.15698 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1554-8635 |
EndPage | 882 |
ExternalDocumentID | 21490426 10_4161_auto_7_8_15698 10915698 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0BK 0R~ 23N 30N 53G 5GY AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABFMO ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA C1A CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE KYCEM M4Z O9- OK1 P2P RNANH ROSJB RPM RTWRZ SNACF SV3 TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN - 0R AAAVI ABJVF ABQHQ AEGYZ AFOLD AHDLD AIRXU FUNRP FVPDL V1K ZA5 4.4 AAGDL AAGME AAHIA AAYXX ACDHJ ACZPZ ADHGD ADOPC ADYSH AFRVT AIYEW AMPGV AURDB BFWEY CITATION CWRZV IPNFZ LJTGL PCLFJ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c432t-6c2046b044f0277941319630e8ad765ac5061b3fa56e2a8938cd19d3a36e7e513 |
ISSN | 1554-8627 1554-8635 |
IngestDate | Thu Jul 10 16:38:08 EDT 2025 Wed Feb 19 02:33:51 EST 2025 Tue Jul 01 01:44:05 EDT 2025 Thu Apr 24 22:53:49 EDT 2025 Tue May 21 11:32:50 EDT 2019 Fri Jan 15 03:37:19 EST 2021 Wed Dec 25 09:03:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-6c2046b044f0277941319630e8ad765ac5061b3fa56e2a8938cd19d3a36e7e513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21490426 |
PQID | 874896369 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_874896369 landesbioscience_primary_autophagy_article_15698 crossref_primary_10_4161_auto_7_8_15698 informaworld_taylorfrancis_310_4161_auto_7_8_15698 pubmed_primary_21490426 crossref_citationtrail_10_4161_auto_7_8_15698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Autophagy |
PublicationTitleAlternate | Autophagy |
PublicationYear | 2011 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
SSID | ssj0036892 |
Score | 2.3011827 |
Snippet | Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has... |
SourceID | proquest pubmed crossref landesbioscience informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 873 |
SubjectTerms | Adenine - analogs & derivatives Adenine - pharmacology Animals Apoptosis - drug effects Autophagy - drug effects Binding Biology Bioscience Calcium Calcium - metabolism Cancer Carcinoma, Non-Small-Cell Lung - pathology Cell Cell Proliferation - drug effects Cell Survival - drug effects Cycle Fungal Proteins - pharmacology Ganoderma - chemistry Gene Silencing - drug effects Immunologic Factors - pharmacology Landes Lung Neoplasms - pathology Mice Microtubule-Associated Proteins - metabolism Organogenesis Proteins Signal Transduction - drug effects Tumor Stem Cell Assay Tumor Suppressor Protein p53 - metabolism Xenograft Model Antitumor Assays |
Title | GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells |
URI | https://www.tandfonline.com/doi/abs/10.4161/auto.7.8.15698 http://www.landesbioscience.com/journals/autophagy/article/15698/ https://www.ncbi.nlm.nih.gov/pubmed/21490426 https://www.proquest.com/docview/874896369 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx2B92H1rdkMPgw1SZa5ly_ZjKWuzbmtfUtanCdmSmaFxShw_tL9-51i24oQF1kEw4SBLcb7P56LLOYR8CLJcJ_AmsBQggABFeSwJMwMxT-ppsHdJZJpdvmdichGcXoaXg8Gv3q6lepmOs9u_niv5H1RBBrjiKdk7IOs6BQF8B3zhCgjD9Z8wPvnx1e6-HBV4zGM-m2usxoXL5k3-haK0x0dOVIklz2ZqNMP9dxjJ2vLGEJDXuCVL1ZhfQNlDgOW8ZNUMl6xxVn90VeOxXCTHohFUfX_2sLtxtU2gZke_b8rRee2wBOvIjhX08tPJprfYDAZbiU4L8KXZ9wIbfpv3ZyPs9Go7G9Eq0DBgECVZI2r6MpuWpNO6UY9ccU-DxraySWeMbWWiTT2PURkaMXjGcTSOxxCE2lrWG7mzfYj_MEi8R-77EEZghQvunXWWmou4KZrtfrNN6omdf17ves1pWUtpu0se4w5UXMxrk4-a7bFK47NMn5BHbbBBDy1znpKBKZ-RB7b86M1zsgD-7FNV0k320JY9FNlDHXtojz37tOUOddwBCXXcoUgVityhljuNoHpBLo6_TI8mrK3BwbKA-0smMt8LROoFQY6r_Qn4PKizPRMrHYlQZSE4hCnPVSiMr8D5jTN9kGiuuDDwmh_wl2QHhjZ7hHI_jMFa5NqPRJBkOhXwSSIeGZ0GQsdDwro_WWZtgnqsk3IlIVBFUCQ-kIxkLBtQhuSja39tU7Nsben3MZPLZjIst5VrJN9206dNZN0wk6ooQdOcY-NrnQ-Jt7WpA0G2aqLrnXYkkaDQEQJVmnldyRjzQQkukiF5Zcnj-uro_Pru470hD1ev61uys1zU5h2408v0ffNO_AHb79P5 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQ5UF6F5ekDEhyakI0TJxYnhGi30C6XVuoByXJsB1ZsktUmOSy_nplks6IVe6mUU-TEsj2vzx5_A_A2MrmVqAlehkuAAEUHnoyNQ8yTBRb9nUxcl-U7FZOL6OtlfLkDH4e7MJRWSRg674kiOltNyk2b0aThFI9_0G1T-Ymf-gg-ZHoLbsdSJFS-gAfTwQxzkXYVkclfehi2Jz1j43--v-KRrvCV3oN9Si-kk5o1s6TbHoh2DuloH34MQ-nzUH77bZP55s81lscbjvUB3F8HquxTL1kPYceVj-BOX7py9RiWx2cnh0yXbEYXTKqislQHrFquWMf8MCsZXVxhx7qkYmuFZgVl_hGGbotDNistilTNqNvFL_1zhW9YWZVeXej5nNFpApujGWKGhHLZvaifwMXRl_PPE29dv8EzEQ8bT5gQ0XcWRFFOJ8US_SXpe-BSbRMRaxNjMJHxXMfChRoDp9TYsbRcc-FQRMb8AHaxa_cMGA9jhOpBbsNERNLYTOAjE544m0XCpiPwhjVUZk1uTjU25gpBDs2jogGpRKWqm8cRvNu0X_S0Hltbhv-KhGq6jZS8r3qi-LaP3l8XnE03k3pWou35To0XNh9BsLXpZhHU2owMf2eDDCo0BrQEunRVW6uUuIQEF3IET3vZ3PwrRChMePn5TcbzBu5Ozs9O1enJ9NsL2Bv21YPxS9htlq17hYFZk73uFPAvkHs5Pw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEQgOlEdpl_LwAQkOTZqNEyc5osJ2y2PhQKVKHCzHdsqKTbLaJIfl1zOTx4pW7KVSTpETy5nnF4-_AXgT6MwkaAlOiiJAgKI8Jwm1RcyTegbjXRLZtsp3JqbnwaeL8KKvqqz6skrC0FlHFNH6ajLupcnIwCkdP1ZNXbqRG7uIPZL4NtwRxBpOxze82eCFuYjbhsgULh3M2qOOsPE_z18JSFfoSh_ALlUX0kZNTyxpt-ehbTya7MLPYSVdGcpvt6lTV_-5RvJ4s6U-god9msred3r1GG7Z4gnc7RpXrp_C6vTr2RFTBZvT8ZIyLw11AStXa9byPswLRsdW2KkqqNVarlhOdX-EoJv8iM0LgwpVMZp2-UtdrvEOK8rCqXK1WDDaS2ALdEJMk0qu2hvVHpxPPv44mTp99wZHB9yvHaF9FEvqBUFG-8QJRkuyds_GykQiVDrEVCLlmQqF9RWmTbE248RwxYVFBRnzZ7CDU9sDYNwPEah7mfEjESTapAKvJOKRNWkgTDwCZxCh1D21OXXYWEiEOPQdJS1IRjKW7XccwdvN-GVH6rF1pP-vRsi6_Y2SdT1PJN_20LvrerOZZlrNC_Q832gwCnoE3tahGyHI3okMb2eDCkp0BSQCVdiyqWRMTEKCi2QE-51qbt7lIxAmtPz8Jut5Dfe-f5jIL2ezz4dwf_ip7o1fwE69auxLzMrq9FVrfn8BqD434w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GMI%2C+an+immunomodulatory+protein+from+Ganoderma+microsporum%2C+induces+autophagy+in+non-small+cell+lung+cancer+cells&rft.jtitle=Autophagy&rft.au=Chu-Chyn+Ou&rft.au=Ming-Fang+Wu&rft.au=Tzu-Chin+Wu&rft.au=Jiunn-Liang+Ko&rft.date=2011-08-01&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=7&rft.issue=8&rft.spage=873&rft.epage=882&rft_id=info:doi/10.4161%2Fauto.7.8.15698&rft.externalDocID=21490426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |