GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells

Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demo...

Full description

Saved in:
Bibliographic Details
Published inAutophagy Vol. 7; no. 8; pp. 873 - 882
Main Authors Hsin, I-Lun, Ou, Chu-Chyn, Wu, Tzu-Chin, Jan, Ming-Shiou, Wu, Ming-Fang, Chiu, Ling-Yen, Lue, Ko-Huang, Ko, Jiunn-Liang
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.
AbstractList Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.
Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has antitumor activity. In this study, recombinant fungal immunomodulatory protein, GMI, was cloned from Ganoderma microsporum and purified. We demonstrated that GMI induces lung cancer cell death by activating autophagy, but does not induce apoptotic cell death. On western blot, GMI increased LC3 conversion and decreased p53 expression in a time- and concentration-dependent manner. Cytoplasmic calcium chelator BAPTA-AM was used to prove that GMI promotes autophagy via a calcium-mediated signaling pathway. 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the cytotoxicity of GMI on cell viability assay. Using VZV-G pseudotyped lentivirus-shRNA system for autophagy-related genes silencing, the capabilities of GMI to reduce cell viability and colony formation were abolished in autophagy-defective cells. Furthermore, GMI did not stimulate apoptosis after blocking of autophagy by 3-MA or shRNA knockdown system. In xenograft studies, oral administration of GMI inhibited the tumor growth and induced autophagy significantly in nude mice that had received a subcutaneous injection of A549 cells. This is the first study to reveal the novel function of GMI in activating autophagy. GMI may be a potential chemopreventive agent against non-small cell lung cancer.
Author Wu, Tzu-Chin
Jan, Ming-Shiou
Chiu, Ling-Yen
Lue, Ko-Huang
Hsin, I-Lun
Ko, Jiunn-Liang
Wu, Ming-Fang
Ou, Chu-Chyn
Author_xml – sequence: 1
  givenname: I-Lun
  surname: Hsin
  fullname: Hsin, I-Lun
– sequence: 2
  givenname: Chu-Chyn
  surname: Ou
  fullname: Ou, Chu-Chyn
– sequence: 3
  givenname: Tzu-Chin
  surname: Wu
  fullname: Wu, Tzu-Chin
– sequence: 4
  givenname: Ming-Shiou
  surname: Jan
  fullname: Jan, Ming-Shiou
– sequence: 5
  givenname: Ming-Fang
  surname: Wu
  fullname: Wu, Ming-Fang
– sequence: 6
  givenname: Ling-Yen
  surname: Chiu
  fullname: Chiu, Ling-Yen
– sequence: 7
  givenname: Ko-Huang
  surname: Lue
  fullname: Lue, Ko-Huang
– sequence: 8
  givenname: Jiunn-Liang
  surname: Ko
  fullname: Ko, Jiunn-Liang
  email: jlko@csmu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21490426$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v3CAQxVGVqvlorz1W3HqJHTAY42MUtZtIiXJJzmgWcEplYAu2qv3vg7OpD5WiXACN3o95M-8UHYUYLEJfKak5FfQC5inWXS1r2opefkAntG15JQVrj9Z30x2j05x_E8KE7JtP6LihvCe8EScobe5uzjEE7LyfQ_TRzCNMMe3xLsXJuoCHFD3eQIjGJg_YO51i3sU0-3Psgpm1zXhxsfsFT_tSwcVhlT2MI9a2HOMcnrCGoG16KeTP6OMAY7ZfXu8z9Pjzx8PVdXV7v7m5urytNGfNVAndEC62hPOBNF3Xc8poLxixEkwnWtAtEXTLBmiFbUD2TGpDe8OACdvZlrIz9P3wb5nkz2zzpLzLiwMINs5ZyY7L8qHoi_Lbq3LeemvULjkPaa_-rakI6oNgmT0nO6wSStSSg1o2oDol1UsOBeD_AdpNMLkYpgRufBu7OGDFo7F562LWzpbVrf2uswuXjw_3C7MzQyG6d4g1GwVpcnq0a6_-QLowxJLs35hGoybYjzENqeTlsmJv-HwGXvvIEg
CitedBy_id crossref_primary_10_3390_ijms22136854
crossref_primary_10_3390_toxins11050259
crossref_primary_10_1016_j_drudis_2018_09_014
crossref_primary_10_1016_j_jaut_2020_102576
crossref_primary_10_1177_1534735419833795
crossref_primary_10_1007_s00253_022_11839_9
crossref_primary_10_1038_cddis_2017_459
crossref_primary_10_1186_s11658_017_0053_1
crossref_primary_10_3389_fphar_2022_961725
crossref_primary_10_1021_acs_jcim_6b00087
crossref_primary_10_18632_oncotarget_14994
crossref_primary_10_3892_ol_2016_5178
crossref_primary_10_1016_j_jff_2015_09_042
crossref_primary_10_3390_molecules26216708
crossref_primary_10_1016_j_ijbiomac_2022_12_061
crossref_primary_10_3892_ol_2016_5059
crossref_primary_10_1002_jcp_31103
crossref_primary_10_1080_01635581_2014_948215
crossref_primary_10_1016_j_lfs_2023_122255
crossref_primary_10_1371_journal_pone_0244791
crossref_primary_10_1016_j_toxicon_2024_107742
crossref_primary_10_1002_tox_22489
crossref_primary_10_1016_j_canlet_2023_216458
crossref_primary_10_1016_j_phymed_2020_153384
crossref_primary_10_1016_j_ijbiomac_2022_08_024
crossref_primary_10_1016_j_ijbiomac_2023_124648
crossref_primary_10_1111_1750_3841_15134
crossref_primary_10_3389_fphar_2018_01217
crossref_primary_10_1021_mp500840z
crossref_primary_10_1002_jcb_26616
crossref_primary_10_1016_j_fochms_2022_100091
crossref_primary_10_1016_j_kjms_2017_06_013
crossref_primary_10_18632_oncotarget_19711
crossref_primary_10_1002_jcp_27338
crossref_primary_10_1016_j_mcn_2022_103735
crossref_primary_10_1371_journal_pone_0119439
crossref_primary_10_1007_s00253_016_8030_6
crossref_primary_10_1016_j_biocel_2014_12_023
crossref_primary_10_1016_j_jams_2013_07_009
crossref_primary_10_1016_j_jmii_2014_08_001
crossref_primary_10_1016_j_bbrc_2012_08_002
crossref_primary_10_1371_journal_pone_0056679
crossref_primary_10_1016_j_toxrep_2022_05_013
crossref_primary_10_1111_j_1476_5381_2012_02073_x
crossref_primary_10_1007_s00253_014_5539_4
crossref_primary_10_1002_tox_24399
crossref_primary_10_1155_2013_946451
crossref_primary_10_1016_j_toxlet_2013_04_021
crossref_primary_10_3389_fgene_2021_820154
crossref_primary_10_3390_ijms19113429
crossref_primary_10_1371_journal_pone_0168436
crossref_primary_10_3389_fimmu_2017_00666
crossref_primary_10_1002_jcp_29924
crossref_primary_10_3892_ol_2019_10355
crossref_primary_10_3390_molecules26041113
crossref_primary_10_1002_tox_22582
crossref_primary_10_1016_j_phymed_2022_154215
crossref_primary_10_1038_s41598_019_38810_5
crossref_primary_10_1016_j_jbiotec_2017_02_006
crossref_primary_10_1038_s41416_020_0885_8
crossref_primary_10_3390_ijms20215348
crossref_primary_10_1002_ijc_30649
crossref_primary_10_1016_j_phymed_2018_06_023
crossref_primary_10_1371_journal_pone_0101579
crossref_primary_10_1016_j_ijbiomac_2024_129291
crossref_primary_10_3390_cancers12010108
crossref_primary_10_1007_s11033_022_07711_8
crossref_primary_10_1021_jf4030272
crossref_primary_10_1016_j_biopha_2018_04_086
crossref_primary_10_1080_0028825X_2024_2375996
crossref_primary_10_1007_s00280_014_2559_9
crossref_primary_10_1371_journal_pone_0125774
crossref_primary_10_1016_j_taap_2012_07_005
crossref_primary_10_1080_01635581_2017_1247889
crossref_primary_10_1177_1010428317707437
crossref_primary_10_1016_j_ijbiomac_2022_05_136
crossref_primary_10_1517_14728222_2013_741594
crossref_primary_10_2139_ssrn_3989678
crossref_primary_10_1016_j_cbi_2022_110177
crossref_primary_10_1016_j_phymed_2016_09_003
ContentType Journal Article
Copyright Copyright © 2011 Landes Bioscience 2011
Copyright_xml – notice: Copyright © 2011 Landes Bioscience 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.4161/auto.7.8.15698
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1554-8635
EndPage 882
ExternalDocumentID 21490426
10_4161_auto_7_8_15698
10915698
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0BK
0R~
23N
30N
53G
5GY
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
AWYRJ
BAWUL
BLEHA
C1A
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
EMOBN
F5P
GTTXZ
H13
HYE
KYCEM
M4Z
O9-
OK1
P2P
RNANH
ROSJB
RPM
RTWRZ
SNACF
SV3
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
-
0R
AAAVI
ABJVF
ABQHQ
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
V1K
ZA5
4.4
AAGDL
AAGME
AAHIA
AAYXX
ACDHJ
ACZPZ
ADHGD
ADOPC
ADYSH
AFRVT
AIYEW
AMPGV
AURDB
BFWEY
CITATION
CWRZV
IPNFZ
LJTGL
PCLFJ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c432t-6c2046b044f0277941319630e8ad765ac5061b3fa56e2a8938cd19d3a36e7e513
ISSN 1554-8627
1554-8635
IngestDate Thu Jul 10 16:38:08 EDT 2025
Wed Feb 19 02:33:51 EST 2025
Tue Jul 01 01:44:05 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
Tue May 21 11:32:50 EDT 2019
Fri Jan 15 03:37:19 EST 2021
Wed Dec 25 09:03:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-6c2046b044f0277941319630e8ad765ac5061b3fa56e2a8938cd19d3a36e7e513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21490426
PQID 874896369
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_874896369
landesbioscience_primary_autophagy_article_15698
crossref_primary_10_4161_auto_7_8_15698
informaworld_taylorfrancis_310_4161_auto_7_8_15698
pubmed_primary_21490426
crossref_citationtrail_10_4161_auto_7_8_15698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Autophagy
PublicationTitleAlternate Autophagy
PublicationYear 2011
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
SSID ssj0036892
Score 2.3011827
Snippet Autophagy is a self-digestive process that degrades the cytoplasmic constituents. Immunomodulatory protein, one major bioactive component of Ganoderma, has...
SourceID proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 873
SubjectTerms Adenine - analogs & derivatives
Adenine - pharmacology
Animals
Apoptosis - drug effects
Autophagy - drug effects
Binding
Biology
Bioscience
Calcium
Calcium - metabolism
Cancer
Carcinoma, Non-Small-Cell Lung - pathology
Cell
Cell Proliferation - drug effects
Cell Survival - drug effects
Cycle
Fungal Proteins - pharmacology
Ganoderma - chemistry
Gene Silencing - drug effects
Immunologic Factors - pharmacology
Landes
Lung Neoplasms - pathology
Mice
Microtubule-Associated Proteins - metabolism
Organogenesis
Proteins
Signal Transduction - drug effects
Tumor Stem Cell Assay
Tumor Suppressor Protein p53 - metabolism
Xenograft Model Antitumor Assays
Title GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells
URI https://www.tandfonline.com/doi/abs/10.4161/auto.7.8.15698
http://www.landesbioscience.com/journals/autophagy/article/15698/
https://www.ncbi.nlm.nih.gov/pubmed/21490426
https://www.proquest.com/docview/874896369
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx2B92H1rdkMPgw1SZa5ly_ZjKWuzbmtfUtanCdmSmaFxShw_tL9-51i24oQF1kEw4SBLcb7P56LLOYR8CLJcJ_AmsBQggABFeSwJMwMxT-ppsHdJZJpdvmdichGcXoaXg8Gv3q6lepmOs9u_niv5H1RBBrjiKdk7IOs6BQF8B3zhCgjD9Z8wPvnx1e6-HBV4zGM-m2usxoXL5k3-haK0x0dOVIklz2ZqNMP9dxjJ2vLGEJDXuCVL1ZhfQNlDgOW8ZNUMl6xxVn90VeOxXCTHohFUfX_2sLtxtU2gZke_b8rRee2wBOvIjhX08tPJprfYDAZbiU4L8KXZ9wIbfpv3ZyPs9Go7G9Eq0DBgECVZI2r6MpuWpNO6UY9ccU-DxraySWeMbWWiTT2PURkaMXjGcTSOxxCE2lrWG7mzfYj_MEi8R-77EEZghQvunXWWmou4KZrtfrNN6omdf17ves1pWUtpu0se4w5UXMxrk4-a7bFK47NMn5BHbbBBDy1znpKBKZ-RB7b86M1zsgD-7FNV0k320JY9FNlDHXtojz37tOUOddwBCXXcoUgVityhljuNoHpBLo6_TI8mrK3BwbKA-0smMt8LROoFQY6r_Qn4PKizPRMrHYlQZSE4hCnPVSiMr8D5jTN9kGiuuDDwmh_wl2QHhjZ7hHI_jMFa5NqPRJBkOhXwSSIeGZ0GQsdDwro_WWZtgnqsk3IlIVBFUCQ-kIxkLBtQhuSja39tU7Nsben3MZPLZjIst5VrJN9206dNZN0wk6ooQdOcY-NrnQ-Jt7WpA0G2aqLrnXYkkaDQEQJVmnldyRjzQQkukiF5Zcnj-uro_Pru470hD1ev61uys1zU5h2408v0ffNO_AHb79P5
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQ5UF6F5ekDEhyakI0TJxYnhGi30C6XVuoByXJsB1ZsktUmOSy_nplks6IVe6mUU-TEsj2vzx5_A_A2MrmVqAlehkuAAEUHnoyNQ8yTBRb9nUxcl-U7FZOL6OtlfLkDH4e7MJRWSRg674kiOltNyk2b0aThFI9_0G1T-Ymf-gg-ZHoLbsdSJFS-gAfTwQxzkXYVkclfehi2Jz1j43--v-KRrvCV3oN9Si-kk5o1s6TbHoh2DuloH34MQ-nzUH77bZP55s81lscbjvUB3F8HquxTL1kPYceVj-BOX7py9RiWx2cnh0yXbEYXTKqislQHrFquWMf8MCsZXVxhx7qkYmuFZgVl_hGGbotDNistilTNqNvFL_1zhW9YWZVeXej5nNFpApujGWKGhHLZvaifwMXRl_PPE29dv8EzEQ8bT5gQ0XcWRFFOJ8US_SXpe-BSbRMRaxNjMJHxXMfChRoDp9TYsbRcc-FQRMb8AHaxa_cMGA9jhOpBbsNERNLYTOAjE544m0XCpiPwhjVUZk1uTjU25gpBDs2jogGpRKWqm8cRvNu0X_S0Hltbhv-KhGq6jZS8r3qi-LaP3l8XnE03k3pWou35To0XNh9BsLXpZhHU2owMf2eDDCo0BrQEunRVW6uUuIQEF3IET3vZ3PwrRChMePn5TcbzBu5Ozs9O1enJ9NsL2Bv21YPxS9htlq17hYFZk73uFPAvkHs5Pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEQgOlEdpl_LwAQkOTZqNEyc5osJ2y2PhQKVKHCzHdsqKTbLaJIfl1zOTx4pW7KVSTpETy5nnF4-_AXgT6MwkaAlOiiJAgKI8Jwm1RcyTegbjXRLZtsp3JqbnwaeL8KKvqqz6skrC0FlHFNH6ajLupcnIwCkdP1ZNXbqRG7uIPZL4NtwRxBpOxze82eCFuYjbhsgULh3M2qOOsPE_z18JSFfoSh_ALlUX0kZNTyxpt-ehbTya7MLPYSVdGcpvt6lTV_-5RvJ4s6U-god9msred3r1GG7Z4gnc7RpXrp_C6vTr2RFTBZvT8ZIyLw11AStXa9byPswLRsdW2KkqqNVarlhOdX-EoJv8iM0LgwpVMZp2-UtdrvEOK8rCqXK1WDDaS2ALdEJMk0qu2hvVHpxPPv44mTp99wZHB9yvHaF9FEvqBUFG-8QJRkuyds_GykQiVDrEVCLlmQqF9RWmTbE248RwxYVFBRnzZ7CDU9sDYNwPEah7mfEjESTapAKvJOKRNWkgTDwCZxCh1D21OXXYWEiEOPQdJS1IRjKW7XccwdvN-GVH6rF1pP-vRsi6_Y2SdT1PJN_20LvrerOZZlrNC_Q832gwCnoE3tahGyHI3okMb2eDCkp0BSQCVdiyqWRMTEKCi2QE-51qbt7lIxAmtPz8Jut5Dfe-f5jIL2ezz4dwf_ip7o1fwE69auxLzMrq9FVrfn8BqD434w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GMI%2C+an+immunomodulatory+protein+from+Ganoderma+microsporum%2C+induces+autophagy+in+non-small+cell+lung+cancer+cells&rft.jtitle=Autophagy&rft.au=Chu-Chyn+Ou&rft.au=Ming-Fang+Wu&rft.au=Tzu-Chin+Wu&rft.au=Jiunn-Liang+Ko&rft.date=2011-08-01&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=7&rft.issue=8&rft.spage=873&rft.epage=882&rft_id=info:doi/10.4161%2Fauto.7.8.15698&rft.externalDocID=21490426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon