Learning Disease Causality Knowledge From the Web of Health Data
Health information becomes importantly valuable for protecting public health in the current coronavirus situation. Knowledge-based information systems can play a crucial role in helping individuals to practice risk assessment and remote diagnosis. We introduce a novel approach that will develop caus...
Saved in:
Published in | International journal on semantic web and information systems Vol. 18; no. 1; pp. 1 - 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hershey
IGI Global
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Health information becomes importantly valuable for protecting public health in the current coronavirus situation. Knowledge-based information systems can play a crucial role in helping individuals to practice risk assessment and remote diagnosis. We introduce a novel approach that will develop causality-focused knowledge learning in a robust and transparent manner. Then, the machine gains the causality and probability knowledge for inference (thinking) and accurate prediction later. Besides, the hidden knowledge can be discovered beyond the existing understanding of the diseases. The whole approach is built on a Causal Probability Description Logic Framework that combines Natural Language Processing (NLP), Causality Analysis and extended Knowledge Graph (KG) technologies together. The experimental work has processed 801 diseases in total (from the UK NHS website linking with DBpedia datasets). As a result, the machine learnt comprehensive health causal knowledge and relations among the diseases, symptoms, and other facts efficiently. |
---|---|
AbstractList | Health information becomes importantly valuable for protecting public health in the current coronavirus situation. Knowledge-based information systems can play a crucial role in helping individuals to practice risk assessment and remote diagnosis. We introduce a novel approach that will develop causality-focused knowledge learning in a robust and transparent manner. Then, the machine gains the causality and probability knowledge for inference (thinking) and accurate prediction later. Besides, the hidden knowledge can be discovered beyond the existing understanding of the diseases. The whole approach is built on a Causal Probability Description Logic Framework that combines Natural Language Processing (NLP), Causality Analysis and extended Knowledge Graph (KG) technologies together. The experimental work has processed 801 diseases in total (from the UK NHS website linking with DBpedia datasets). As a result, the machine learnt comprehensive health causal knowledge and relations among the diseases, symptoms, and other facts efficiently. Health information becomes importantly valuable for protecting public health in the current coronavirus situation. Knowledge-based information systems can play a crucial role in helping individuals to practice risk assessment and remote diagnosis. The authors introduce a novel approach that will develop causality-focused knowledge learning in a robust and transparent manner. Then, the machine gains the causality and probability knowledge for inference (thinking) and accurate prediction later. In addition, the hidden knowledge can be discovered beyond the existing understanding of the diseases. The whole approach is built on a causal probability description logic framework that combines natural language processing (NLP), causality analysis, and extended knowledge graph (KG) technologies. The experimental work has processed 801 diseases in total (from the UK NHS website linking with DBpedia datasets). As a result, the machine learnt comprehensive health causal knowledge and relations among the diseases, symptoms, and other facts efficiently. |
Audience | Academic |
Author | Reiff-Marganiec, Stephan Yu, Hong Qing |
AuthorAffiliation | University of Derby, UK |
AuthorAffiliation_xml | – name: University of Derby, UK |
Author_xml | – sequence: 1 givenname: Hong surname: Yu middlename: Qing fullname: Yu, Hong Qing organization: University of Derby, UK – sequence: 2 givenname: Stephan surname: Reiff-Marganiec fullname: Reiff-Marganiec, Stephan organization: University of Derby, UK |
BookMark | eNp1kc1LAzEUxIMoWD-O3gOeW5PNppu9WVq1tQUPVXoMr7tJm7JNNEkR_3tTViyKkkNC-M0b3swZOrbOKoSuKOnlhIqbyeN8MZn3srKgOT9CHcp51u1nJT3-fgt2is5C2BDCOGO0g25nCrw1doVHJigICg9hF6Ax8QNPrXtvVL1S-N67LY5rhRdqiZ3GYwVNXOMRRLhAJxqaoC6_7nP0cn_3PBx3Z08Pk-Fg1q1ylsVkDYQVeU1rTVUtas2yHEpYErbMC01rrjOmK4CCVZnQRUlzwUtS5H2RYNAlO0fX7dxX7952KkS5cTtvk6XMBKekT1jJD9QKGiWN1S56qLYmVHJQ8DKZCiES1fuDSqdWW1OlULVJ_z8E3VZQeReCV1q-erMF_yEpkfvsZZu9bLNPPPvFVyZCNM4mI9P8qxq1KrMyh-325civcuR3OXJq_xxCBfsEzzmeBA |
CitedBy_id | crossref_primary_10_3390_bioengineering10101134 crossref_primary_10_1007_s00500_024_09938_y crossref_primary_10_1002_spe_3212 crossref_primary_10_1016_j_jik_2022_100295 crossref_primary_10_4018_IJSWIS_313946 crossref_primary_10_1016_j_csa_2024_100046 crossref_primary_10_3390_diagnostics12071531 crossref_primary_10_1002_int_23061 crossref_primary_10_1109_TCE_2023_3255831 crossref_primary_10_32604_cmes_2024_056500 crossref_primary_10_4018_IJDSGBT_335917 crossref_primary_10_1007_s11365_023_00940_8 crossref_primary_10_1155_2024_6631016 crossref_primary_10_1016_j_stae_2023_100064 crossref_primary_10_4018_IJSWIS_316535 crossref_primary_10_1007_s11365_023_00875_0 crossref_primary_10_4018_IJSWIS_340938 crossref_primary_10_1007_s11042_023_16922_5 crossref_primary_10_31083_j_rcm2406168 crossref_primary_10_31083_j_rcm2411330 crossref_primary_10_1016_j_socscimed_2024_116923 crossref_primary_10_4018_IJSWIS_340379 crossref_primary_10_1002_hcs2_115 crossref_primary_10_3390_su16083103 crossref_primary_10_1016_j_techfore_2024_123798 crossref_primary_10_32604_cmes_2024_050825 |
Cites_doi | 10.1186/s12911-018-0651-5 10.1371/journal.pone.0209018 10.1109/HIC.2016.7797722 10.1109/JIOT.2020.3047662</bok> 10.1145/3440067.3440077 10.1055/s-0039-1677908 10.1007/11926078_66 10.1038/s41467-020-17419-7 10.1136/gutjnl-2019-318374 10.1080/01621459.1986.10478354 10.1007/s00330-019-06589-8 10.1136/amiajnl-2011-000101 10.2202/1557-4679.1203 10.3390/su10020300 10.1038/nature21056 10.1080/10810730.2011.604702 10.7753/IJCATR0707.1002 10.1371/journal.pone.0116656 10.1053/j.jrn.2012.02.002 10.5455/aim.2016.24.364-369 10.1017/CBO9781316471104 10.1007/978-3-319-19135-5 10.4018/IJBDAH.2018010101 10.1145/3184066.3184080 10.5120/ijca2016908193 10.1136/svn-2017-000101 10.1007/978-3-030-63092-8_3 10.1613/jair.5222 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 IGI Global 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 IGI Global – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.4018/IJSWIS.297145 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health |
EISSN | 1552-6291 |
EndPage | 19 |
ExternalDocumentID | A759324888 10_4018_IJSWIS_297145 ning_Disease_Causality_Kn10_4018_IJSWIS_29714518 |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | 0R~ 29J 4.4 5GY AAYVP ABBKS ABEPT ABGRR ADEKF AENEX ALMA_UNASSIGNED_HOLDINGS AXMGO BAWSF BDBYZ BLRFH BTFVE BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG CTSEY EBS F5P H13 HZ~ IAO ICD IGYUU JRD MV1 NEEBM O9- P2P RIF XH6 AAYXX ABJCF ABPHS ADMLS AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ ITC K7- M7S PHGZM PHGZT PTHSS PMFND 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c432t-62a0374d1df1ed8df324a9ab03b47f1d5f23fcaa73c28f791485907468d8daf93 |
IEDL.DBID | BENPR |
ISSN | 1552-6283 |
IngestDate | Sat Jul 19 17:11:19 EDT 2025 Tue Jun 17 21:48:35 EDT 2025 Tue Jun 10 21:20:38 EDT 2025 Tue Jul 01 02:29:14 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Wed Aug 23 04:21:53 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0/deed.en_US |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-62a0374d1df1ed8df324a9ab03b47f1d5f23fcaa73c28f791485907468d8daf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.igi-global.com/ViewTitle.aspx?TitleId=297145&isxn=9781799893967 |
PQID | 2851060395 |
PQPubID | 2045800 |
PageCount | 19 |
ParticipantIDs | gale_infotracacademiconefile_A759324888 proquest_journals_2851060395 crossref_primary_10_4018_IJSWIS_297145 crossref_citationtrail_10_4018_IJSWIS_297145 igi_journals_ning_Disease_Causality_Kn10_4018_IJSWIS_29714518 gale_infotracmisc_A759324888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hershey |
PublicationPlace_xml | – name: Hershey |
PublicationTitle | International journal on semantic web and information systems |
PublicationYear | 2022 |
Publisher | IGI Global |
Publisher_xml | – name: IGI Global |
References | S.El-Sappagh (IJSWIS.297145-7) 2018; 18 A. M.Kibriya (IJSWIS.297145-15) 2004; Vol. 3339 IJSWIS.297145-17 IJSWIS.297145-16 IJSWIS.297145-38 IJSWIS.297145-37 IJSWIS.297145-9 IJSWIS.297145-36 IJSWIS.297145-8 IJSWIS.297145-13 IJSWIS.297145-35 H.Boshnak (IJSWIS.297145-3) 2019; 16 IJSWIS.297145-12 N.Papachristou (IJSWIS.297145-25) 2016 IJSWIS.297145-34 IJSWIS.297145-11 IJSWIS.297145-33 IJSWIS.297145-5 IJSWIS.297145-4 IJSWIS.297145-31 IJSWIS.297145-30 IJSWIS.297145-6 J.Pearl (IJSWIS.297145-26) 2010; 6 IJSWIS.297145-0 IJSWIS.297145-2 A.Konys (IJSWIS.297145-18) 2018; 2018 F.Wang (IJSWIS.297145-32) 2019; 28 V.Krishnamurthy (IJSWIS.297145-19) 2016 R.Agrawal (IJSWIS.297145-1) 1994 IJSWIS.297145-29 C.Kaur (IJSWIS.297145-14) 2019; 7 IJSWIS.297145-27 IJSWIS.297145-24 IJSWIS.297145-23 V.Gutierrez-Basulto (IJSWIS.297145-10) 2017; 58 IJSWIS.297145-21 IJSWIS.297145-20 Laskar (IJSWIS.297145-22) 2016; 133 K.Sheridan (IJSWIS.297145-28) 2012; 22 |
References_xml | – ident: IJSWIS.297145-31 – volume: 18 start-page: 76 year: 2018 ident: IJSWIS.297145-7 article-title: SNOMED CT standard ontology based on the ontology for general medical science. publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-018-0651-5 – ident: IJSWIS.297145-6 doi: 10.1371/journal.pone.0209018 – year: 2016 ident: IJSWIS.297145-25 article-title: Comparing machine learning clustering with latent class analysis on cancer symptoms’ data. publication-title: Proceedings of the IEEE Healthcare Innovation Point-of-Care Technologies Conference 2016 doi: 10.1109/HIC.2016.7797722 – ident: IJSWIS.297145-33 – ident: IJSWIS.297145-2 doi: 10.1109/JIOT.2020.3047662</bok> – ident: IJSWIS.297145-36 doi: 10.1145/3440067.3440077 – volume: 28 start-page: 16 issue: 1 year: 2019 ident: IJSWIS.297145-32 article-title: AI in Health: State of the Art, Challenges, and Future Directions. publication-title: Yearbook of Medical Informatics doi: 10.1055/s-0039-1677908 – ident: IJSWIS.297145-29 doi: 10.1007/11926078_66 – ident: IJSWIS.297145-9 – ident: IJSWIS.297145-17 – ident: IJSWIS.297145-27 doi: 10.1038/s41467-020-17419-7 – ident: IJSWIS.297145-5 – ident: IJSWIS.297145-38 doi: 10.1136/gutjnl-2019-318374 – ident: IJSWIS.297145-12 doi: 10.1080/01621459.1986.10478354 – volume: 7 start-page: 1148 issue: 5 year: 2019 ident: IJSWIS.297145-14 article-title: Disease Prediction System using Improved K-means Clustering Algorithm and Machine Learning. publication-title: International Journal on Computer Science and Engineering – ident: IJSWIS.297145-16 doi: 10.1007/s00330-019-06589-8 – ident: IJSWIS.297145-34 doi: 10.1136/amiajnl-2011-000101 – volume: 6 start-page: 2 year: 2010 ident: IJSWIS.297145-26 article-title: An Introduction to Causal Inference. publication-title: The International Journal of Biostatistics doi: 10.2202/1557-4679.1203 – volume: 2018 start-page: 300 issue: 10 year: 2018 ident: IJSWIS.297145-18 article-title: An Ontology-Based Knowledge Modelling for a Sustainability Assessment Domain. publication-title: Sustainability doi: 10.3390/su10020300 – ident: IJSWIS.297145-8 doi: 10.1038/nature21056 – ident: IJSWIS.297145-4 doi: 10.1080/10810730.2011.604702 – ident: IJSWIS.297145-30 doi: 10.7753/IJCATR0707.1002 – year: 1994 ident: IJSWIS.297145-1 article-title: Fast Algorithms for Mining Association Rules in Large Databases. publication-title: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94) – ident: IJSWIS.297145-23 doi: 10.1371/journal.pone.0116656 – ident: IJSWIS.297145-11 – volume: 22 start-page: e27 issue: 3 year: 2012 ident: IJSWIS.297145-28 article-title: Choosing a Bread That Will Fit the Chronic Kidney Disease Diet: An Emphasis on Sodium and Phosphorus. publication-title: Journal of Renal Nutrition doi: 10.1053/j.jrn.2012.02.002 – ident: IJSWIS.297145-21 doi: 10.5455/aim.2016.24.364-369 – ident: IJSWIS.297145-24 – year: 2016 ident: IJSWIS.297145-19 publication-title: Partially Observed Markov Decision Processing – from filtering to controlled sensing doi: 10.1017/CBO9781316471104 – ident: IJSWIS.297145-20 doi: 10.1007/978-3-319-19135-5 – ident: IJSWIS.297145-35 doi: 10.4018/IJBDAH.2018010101 – volume: Vol. 3339 year: 2004 ident: IJSWIS.297145-15 article-title: Multinomial Naive Bayes for Text Categorization Revisited publication-title: AI 2004: Advances in Artificial Intelligence. AI 2004 – ident: IJSWIS.297145-0 doi: 10.1145/3184066.3184080 – volume: 133 start-page: 24 year: 2016 ident: IJSWIS.297145-22 article-title: Automated Disease Prediction System (ADPS): A User Input-based Reliable Architecture for Disease Prediction. publication-title: International Journal of Computers and Applications doi: 10.5120/ijca2016908193 – ident: IJSWIS.297145-13 doi: 10.1136/svn-2017-000101 – ident: IJSWIS.297145-37 doi: 10.1007/978-3-030-63092-8_3 – volume: 58 start-page: 1 year: 2017 ident: IJSWIS.297145-10 article-title: Probabilistic Description Logics for Subjective Uncertainty. publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.5222 – volume: 16 start-page: 68 issue: 10 year: 2019 ident: IJSWIS.297145-3 article-title: Ontology-Based Knowledge Modelling for Clinical Data Representation in Electronic Health Records publication-title: International Journal of Computer Science and Information Security |
SSID | ssj0035331 |
Score | 2.4295244 |
Snippet | Health information becomes importantly valuable for protecting public health in the current coronavirus situation. Knowledge-based information systems can play... |
SourceID | proquest gale crossref igi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Computational linguistics Information systems Knowledge representation Language processing Learning Natural language interfaces Natural language processing Public health Risk assessment Signs and symptoms Web sites |
Title | Learning Disease Causality Knowledge From the Web of Health Data |
URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.297145 https://www.proquest.com/docview/2851060395 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsQwDLUYuIAQYhXDphwQXCi0SZf0gNiHTSDEIrhFadogJJgBZvh_7EnKIpZz3Ki1kxfbqZ8BlmWoeaW5CXhqZBALjThYhGVQxkWR2TitUkP5jrPz9OgmPrlL7nzCret_q6wxsQ_UZcdQjnyDo2sQpqHIk63nl4C6RtHtqm-h0YAhhGCJwdfQ7sH5xWWNxSJxHQmJZyxI8SR1LJsYU8iN45Or2-OrdZ5nEdUyfTmVPDY3Hu4ffiB0_9hpjcOY9xfZjjPwBAxU7UkY-cIiOAmjLvXGXEXRFGx7ztR7tu9uX9iefuv2_W12WqfQWOu188TQ-2O3VcE61j_N9nVPT8NN6-B67yjwjRICEwvewy_TRCNTRqWNqlKWFr0knesiFEWc2ahMLBfWaJ0Jw6XNcgyBEgqKU4nC2uZiBgbbnXY1CwwHqeu4QFsRsbzQNqwQS02IboHFUKkJa7WilPEs4tTM4lFhNEF6VU6vyum1CSsf4s-OPuMvwVXSuqJthfMZ7asD8K2IoErtZAl6mog2sgkL3yRxO5hvw5toN-V3YleRupVXt_pQtzpt__oaEU1fW_xzks_FN_f_8DwMc6qP6OdoFmCw9_pWLaLX0iuWoCFbh0t-gb4D0UvoPw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLRVVVHaqkt5-NDHpSmJnYdzQIDYbndZ4AIIbq7j2Aip7FJ2UdU_1d_YmdjhIdreONtxos8z45lx5huAdzLW3GpuIp4bGaVCox2s4jqq06oqXJrb3FC-Y28_7x-lOyfZyQz8bmth6LfK1iY2hroeG8qRr3F0DeI8FmW2cfEjoq5RdLvattDwYjG0v35iyDZZH3Rxf99z3vtyuN2PQleByKSCT6Oca-JcqZPaJbaWtUOXQpe6ikWVFi6pM8eFM1oXwnDpihLjhYwiyFziZO2IfAlN_lwqREkaJXtfW8svMt__kFjN8DVSeE5PjGDk2mDn4Hhw8JmXRUKVU7fOwHASPDo7Pbt3HjSHXG8engfvlG15cXoBM3a0AE9vcRYuwDOf6GO-fuklbAaG1lPW9Xc9bFtfTRrvng3bhB3rXY7PGfqa7NhWbOzC06yrp_oVHD0IgK9hdjQe2TfAcJB6nAuUDKKxF9rFFi23idEJcRiYdeBTC5QygbOcWmd8Vxi7EK7K46o8rh34cD39wpN1_GviR0JdkRLjekaHWgT8KqLDUltFhn4t2jbZgaU7M1H5zJ3hddw3FfR-oghuFeBW13Cr4eivn5HQ8u2O3yxyI-qL_x9ehcf9w71dtTvYH76FJ5wqM5rs0BLMTi-v7DL6S9NqpRFSBt8eWiv-ANNjIxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Disease+Causality+Knowledge+From+the+Web+of+Health+Data&rft.jtitle=International+journal+on+semantic+web+and+information+systems&rft.au=Yu%2C+Hong+Qing&rft.au=Reiff-Marganiec%2C+Stephan&rft.date=2022-01-01&rft.issn=1552-6283&rft.eissn=1552-6291&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.4018%2FIJSWIS.297145&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJSWIS_297145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-6283&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-6283&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-6283&client=summon |