Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate and Tropical Landscapes
Monitoring forest–agriculture mosaics is crucial for understanding landscape heterogeneity and managing biodiversity. Mapping these mosaics from remotely sensed imagery remains challenging, since ecological gradients from forested to agricultural areas make characterizing vegetation more difficult....
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 8; p. 979 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
24.04.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monitoring forest–agriculture mosaics is crucial for understanding landscape heterogeneity and managing biodiversity. Mapping these mosaics from remotely sensed imagery remains challenging, since ecological gradients from forested to agricultural areas make characterizing vegetation more difficult. The recent synthetic aperture radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series provide a great opportunity to monitor forest–agriculture mosaics due to their high spatial and temporal resolutions. However, while a few studies have used the temporal resolution of S-2 time series alone to map land cover and land use in cropland and/or forested areas, S-1 time series have not yet been investigated alone for this purpose. The combined use of S-1 & S-2 time series has been assessed for only one or a few land cover classes. In this study, we assessed the potential of S-1 data alone, S-2 data alone, and their combined use for mapping forest–agriculture mosaics over two study areas: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical forested landscape in Paragominas (Brazil). Satellite images were classified using an incremental procedure based on an importance rank of the input features. The classifications obtained with S-2 data alone (mean kappa index = 0.59–0.83) were more accurate than those obtained with S-1 data alone (mean kappa index = 0.28–0.72). Accuracy increased when combining S-1 and 2 data (mean kappa index = 0.55–0.85). The method enables defining the number and type of features that discriminate land cover classes in an optimal manner according to the type of landscape considered. The best configuration for the Spanish and Brazilian study areas included 5 and 10 features, respectively, for S-2 data alone and 10 and 20 features, respectively, for S-1 data alone. Short-wave infrared and VV and VH polarizations were key features of S-2 and S-1 data, respectively. In addition, the method enables defining key periods that discriminate land cover classes according to the type of images used. For example, in the Cantabrian Range, winter and summer were key for S-2 time series, while spring and winter were key for S-1 time series. |
---|---|
AbstractList | Monitoring forest–agriculture mosaics is crucial for understanding landscape heterogeneity and managing biodiversity. Mapping these mosaics from remotely sensed imagery remains challenging, since ecological gradients from forested to agricultural areas make characterizing vegetation more difficult. The recent synthetic aperture radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series provide a great opportunity to monitor forest–agriculture mosaics due to their high spatial and temporal resolutions. However, while a few studies have used the temporal resolution of S-2 time series alone to map land cover and land use in cropland and/or forested areas, S-1 time series have not yet been investigated alone for this purpose. The combined use of S-1 & S-2 time series has been assessed for only one or a few land cover classes. In this study, we assessed the potential of S-1 data alone, S-2 data alone, and their combined use for mapping forest–agriculture mosaics over two study areas: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical forested landscape in Paragominas (Brazil). Satellite images were classified using an incremental procedure based on an importance rank of the input features. The classifications obtained with S-2 data alone (mean kappa index = 0.59–0.83) were more accurate than those obtained with S-1 data alone (mean kappa index = 0.28–0.72). Accuracy increased when combining S-1 and 2 data (mean kappa index = 0.55–0.85). The method enables defining the number and type of features that discriminate land cover classes in an optimal manner according to the type of landscape considered. The best configuration for the Spanish and Brazilian study areas included 5 and 10 features, respectively, for S-2 data alone and 10 and 20 features, respectively, for S-1 data alone. Short-wave infrared and VV and VH polarizations were key features of S-2 and S-1 data, respectively. In addition, the method enables defining key periods that discriminate land cover classes according to the type of images used. For example, in the Cantabrian Range, winter and summer were key for S-2 time series, while spring and winter were key for S-1 time series. |
Author | Ciudad, Carlos Poccard-Chapuis, René Betbeder, Julie Mercier, Audrey Baudry, Jacques Rumiano, Florent Hubert-Moy, Laurence Blanc, Lilian Cornu, Guillaume Marchamalo, Miguel Gond, Valéry Bourgoin, Clément |
Author_xml | – sequence: 1 givenname: Audrey orcidid: 0000-0003-4601-0637 surname: Mercier fullname: Mercier, Audrey – sequence: 2 givenname: Julie orcidid: 0000-0003-1542-3455 surname: Betbeder fullname: Betbeder, Julie – sequence: 3 givenname: Florent orcidid: 0000-0001-8615-7161 surname: Rumiano fullname: Rumiano, Florent – sequence: 4 givenname: Jacques surname: Baudry fullname: Baudry, Jacques – sequence: 5 givenname: Valéry orcidid: 0000-0002-0080-3140 surname: Gond fullname: Gond, Valéry – sequence: 6 givenname: Lilian surname: Blanc fullname: Blanc, Lilian – sequence: 7 givenname: Clément orcidid: 0000-0003-4923-3035 surname: Bourgoin fullname: Bourgoin, Clément – sequence: 8 givenname: Guillaume orcidid: 0000-0002-7523-5176 surname: Cornu fullname: Cornu, Guillaume – sequence: 9 givenname: Carlos orcidid: 0000-0001-7367-9374 surname: Ciudad fullname: Ciudad, Carlos – sequence: 10 givenname: Miguel orcidid: 0000-0001-9237-4146 surname: Marchamalo fullname: Marchamalo, Miguel – sequence: 11 givenname: René surname: Poccard-Chapuis fullname: Poccard-Chapuis, René – sequence: 12 givenname: Laurence surname: Hubert-Moy fullname: Hubert-Moy, Laurence |
BackLink | https://hal.science/hal-02376202$$DView record in HAL |
BookMark | eNpVkc9uEzEQxi1UJErphSewxAmkBf_L2j5GUUsrBXEgnK2Jd1wcbdaLvRuJGy_AiTfkSXASVGAuM_Ppm580M8_JxZAGJOQlZ2-ltOxdLpwzw6y2T8ilYFo0Slhx8U_9jFyXsmM1pOSWqUvy4-YA_QxTTANNgX7CYYoD9g2nMHRU0E3cY1VzxEJDynR9lFfpgJmueiglhugfp29TxjL9-v5z-ZCjn_tpzkg_pALRFxoHusH9iBkmPME3OY11uD8xi4cRywvyNEBf8PpPviKfb282q7tm_fH9_Wq5brySYmoW0AWx9V4bJgzjInSqFdx0UiuJZssV99xbvbUGbeALDBhaBLnQiqOvnbwi92dul2Dnxhz3kL-5BNGdhJQfHOQp-h6dbk3oWAjaLIQynYau5bwiEILRWvLKen1mfYH-P9Tdcu2OGhNSt4KJw9H76uwdc_o611u5XZrzUFd1QjLFhLbSVNebs8vnVErG8IjlzB0_7f5-Wv4GOZqdmA |
CitedBy_id | crossref_primary_10_1016_j_agee_2022_108263 crossref_primary_10_1016_j_ecolind_2023_110157 crossref_primary_10_3390_rs16030595 crossref_primary_10_3390_rs14174233 crossref_primary_10_3390_rs11161920 crossref_primary_10_3390_geographies2040042 crossref_primary_10_1016_j_jsames_2022_104020 crossref_primary_10_1002_ldr_4027 crossref_primary_10_1016_j_isprsjprs_2022_03_012 crossref_primary_10_3390_rs12020302 crossref_primary_10_1111_2041_210X_13359 crossref_primary_10_2166_wcc_2023_238 crossref_primary_10_3390_ijerph192215108 crossref_primary_10_1016_j_asr_2021_09_019 crossref_primary_10_3389_fenrg_2021_649305 crossref_primary_10_3390_su13116039 crossref_primary_10_1088_1748_9326_ac31eb crossref_primary_10_3390_land11071023 crossref_primary_10_3390_rs16040686 crossref_primary_10_1016_j_aeaoa_2023_100207 crossref_primary_10_3389_fenvs_2022_939151 crossref_primary_10_1080_01431161_2021_1978584 crossref_primary_10_3390_rs13183600 crossref_primary_10_3390_rs14195000 crossref_primary_10_3390_rs11161899 crossref_primary_10_1016_j_isprsjprs_2020_03_009 crossref_primary_10_3390_rs15030554 crossref_primary_10_1007_s11629_023_8181_8 crossref_primary_10_3390_rs14010179 crossref_primary_10_3390_rs13061138 crossref_primary_10_3390_rs13173488 crossref_primary_10_1002_ecs2_4744 crossref_primary_10_1016_j_heliyon_2023_e12864 crossref_primary_10_3390_agriculture12070955 crossref_primary_10_3390_rs12233922 crossref_primary_10_3390_rs12030522 crossref_primary_10_1016_j_ecolind_2021_107481 crossref_primary_10_3390_rs12183062 crossref_primary_10_3390_rs12213484 crossref_primary_10_1109_JSTARS_2023_3316304 crossref_primary_10_1007_s10668_021_01885_0 crossref_primary_10_1016_j_ejrs_2022_11_004 crossref_primary_10_1080_10106049_2019_1704070 crossref_primary_10_3390_f11090941 crossref_primary_10_1007_s00477_021_02014_z crossref_primary_10_3390_rs13040700 crossref_primary_10_3390_f13091457 crossref_primary_10_3390_rs14194858 crossref_primary_10_1016_j_ecolind_2020_106386 crossref_primary_10_3390_app112110309 crossref_primary_10_3390_rs13122321 crossref_primary_10_3390_rs13061084 crossref_primary_10_1016_j_apgeog_2022_102788 crossref_primary_10_3390_rs13050950 crossref_primary_10_1080_10106049_2020_1773544 crossref_primary_10_1016_j_jag_2019_101978 crossref_primary_10_3390_agriculture12122080 crossref_primary_10_1016_j_rsase_2020_100349 crossref_primary_10_3390_rs12193218 crossref_primary_10_1016_j_rse_2021_112709 crossref_primary_10_3390_rs13152988 crossref_primary_10_1002_rse2_199 crossref_primary_10_1080_01431161_2020_1783017 crossref_primary_10_1007_s42979_021_00929_6 crossref_primary_10_3390_rs12121952 crossref_primary_10_1016_j_rsase_2021_100495 crossref_primary_10_3390_land11030360 crossref_primary_10_1071_MF20105 crossref_primary_10_1016_j_landusepol_2022_106318 |
Cites_doi | 10.1016/S0034-4257(02)00096-2 10.1093/bib/bbq011 10.1111/gcb.13904 10.1117/1.JRS.12.016008 10.1038/nature18326 10.3390/rs8010070 10.1016/j.isprsjprs.2013.04.007 10.1016/j.rse.2017.10.034 10.1109/JSTARS.2015.2464698 10.1016/j.isprsjprs.2016.01.011 10.1016/j.jag.2018.01.001 10.1016/j.jag.2017.11.004 10.12899/ASR-1463 10.3390/rs10040635 10.1117/1.JRS.8.083648 10.1109/JSTARS.2017.2786468 10.1111/j.1461-0248.2010.01559.x 10.1016/S0167-8809(99)00028-6 10.1191/0309133304pp413pr 10.1016/j.rse.2018.06.036 10.1016/j.biocon.2005.07.019 10.1007/s13280-011-0147-3 10.3390/f7120315 10.3390/f6051516 10.3390/rs9020173 10.1016/j.rse.2016.10.010 10.1016/j.isprsjprs.2016.12.008 10.1016/j.rse.2009.04.005 10.1016/j.rse.2007.01.015 10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2 10.1109/JSTARS.2014.2322311 10.3390/s90100463 10.1109/LGRS.2017.2681128 10.1016/j.isprsjprs.2016.03.008 10.1016/0034-4257(88)90106-X 10.1080/2150704X.2017.1295479 10.1007/s10980-012-9737-0 10.1016/0022-1694(95)02968-0 10.1038/23127 10.3390/f9060303 10.1007/s10980-015-0324-z 10.1038/nature10452 10.3390/rs8030166 10.1080/01431169208904219 10.1111/j.1365-2664.2007.01393.x 10.1080/2150704X.2017.1354262 10.14358/PERS.70.5.627 10.4236/ars.2013.22020 10.1023/A:1010933404324 10.3390/ijgi7010003 10.1016/S0034-4257(00)00166-8 10.1016/j.rse.2017.08.028 10.1038/s41598-018-20156-z 10.1080/02757259409532206 10.1016/j.jag.2016.10.007 10.1016/j.rse.2017.10.005 10.1002/hyp.6609 10.1080/01431160500214050 10.1016/j.rse.2018.11.007 10.5589/m03-069 10.1016/j.rse.2005.01.008 10.1177/001316446002000104 10.1016/S0034-4257(96)00067-3 10.1016/j.pce.2014.11.001 10.1016/j.rse.2003.10.021 10.3390/rs8050362 10.2307/1936256 10.1098/rstb.2013.0307 10.1146/annurev.ecolsys.34.011802.132419 10.1016/j.foreco.2004.10.071 10.1109/36.602537 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS 1XC BXJBU IHQJB VOOES DOA |
DOI | 10.3390/rs11080979 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Agriculture Environmental Sciences |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_768fd0ff785248d7ad611fe3eaf87731 oai_HAL_hal_02376202v1 10_3390_rs11080979 |
GeographicLocations | Brazil France Spain |
GeographicLocations_xml | – name: Spain – name: France – name: Brazil |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI RIG 1XC 2XV BXJBU C1A IAO IHQJB IPNFZ ITC VOOES |
ID | FETCH-LOGICAL-c432t-5adf2bcc78028012fd46218d3743e8b141c1c97b98e9f15efef6ea35741ecefe3 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:14:42 EDT 2024 Sat Dec 14 06:22:57 EST 2024 Sat Nov 09 08:44:59 EST 2024 Fri Dec 06 00:58:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | brazilian amazon decision trees optical and SAR satellite images remote sensing random forests feature selection cantabrian range |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-5adf2bcc78028012fd46218d3743e8b141c1c97b98e9f15efef6ea35741ecefe3 |
ORCID | 0000-0003-1542-3455 0000-0001-9237-4146 0000-0001-8615-7161 0000-0002-0080-3140 0000-0001-7367-9374 0000-0003-4601-0637 0000-0002-7523-5176 0000-0003-4923-3035 0000-0003-3605-4230 0000-0003-2200-0637 |
OpenAccessLink | https://www.proquest.com/docview/2304027938?pq-origsite=%requestingapplication% |
PQID | 2304027938 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_768fd0ff785248d7ad611fe3eaf87731 hal_primary_oai_HAL_hal_02376202v1 proquest_journals_2304027938 crossref_primary_10_3390_rs11080979 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-24 |
PublicationDateYYYYMMDD | 2019-04-24 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – sequence: 0 name: MDPI – name: MDPI AG |
References | ref13 ref57 ref12 ref56 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 Lee (ref15) 2009 ref16 Woodhouse (ref66) 2017 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 Rosenfield (ref59) 1986; 52 ref60 ref62 ref61 |
References_xml | – volume: 52 start-page: 5 year: 1986 ident: ref59 article-title: A coefficient of agreement as a measure of thematic classification accuracy publication-title: Photogramm. Eng. Remote Sens. contributor: fullname: Rosenfield – ident: ref55 doi: 10.1016/S0034-4257(02)00096-2 – ident: ref57 doi: 10.1093/bib/bbq011 – ident: ref10 doi: 10.1111/gcb.13904 – ident: ref39 doi: 10.1117/1.JRS.12.016008 – ident: ref47 doi: 10.1038/nature18326 – ident: ref22 doi: 10.3390/rs8010070 – ident: ref43 – year: 2017 ident: ref66 contributor: fullname: Woodhouse – ident: ref80 doi: 10.1016/j.isprsjprs.2013.04.007 – ident: ref38 doi: 10.1016/j.rse.2017.10.034 – ident: ref71 doi: 10.1109/JSTARS.2015.2464698 – ident: ref61 doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref70 doi: 10.1016/j.jag.2018.01.001 – ident: ref26 doi: 10.1016/j.jag.2017.11.004 – ident: ref34 doi: 10.12899/ASR-1463 – ident: ref33 doi: 10.3390/rs10040635 – ident: ref72 doi: 10.1117/1.JRS.8.083648 – ident: ref69 – ident: ref27 doi: 10.1109/JSTARS.2017.2786468 – ident: ref5 doi: 10.1111/j.1461-0248.2010.01559.x – ident: ref53 – ident: ref3 doi: 10.1016/S0167-8809(99)00028-6 – ident: ref12 doi: 10.1191/0309133304pp413pr – ident: ref31 doi: 10.1016/j.rse.2018.06.036 – ident: ref44 doi: 10.1016/j.biocon.2005.07.019 – ident: ref8 doi: 10.1007/s13280-011-0147-3 – ident: ref45 doi: 10.3390/f7120315 – ident: ref83 doi: 10.3390/f6051516 – ident: ref82 – ident: ref62 doi: 10.3390/rs9020173 – ident: ref63 doi: 10.1016/j.rse.2016.10.010 – ident: ref50 – ident: ref11 doi: 10.1016/j.isprsjprs.2016.12.008 – ident: ref17 doi: 10.1016/j.rse.2009.04.005 – ident: ref21 doi: 10.1016/j.rse.2007.01.015 – ident: ref13 doi: 10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2 – ident: ref16 doi: 10.1109/JSTARS.2014.2322311 – ident: ref20 doi: 10.3390/s90100463 – ident: ref37 doi: 10.1109/LGRS.2017.2681128 – ident: ref14 doi: 10.1016/j.isprsjprs.2016.03.008 – ident: ref56 doi: 10.1016/0034-4257(88)90106-X – ident: ref78 doi: 10.1080/2150704X.2017.1295479 – ident: ref9 doi: 10.1007/s10980-012-9737-0 – ident: ref75 doi: 10.1016/0022-1694(95)02968-0 – ident: ref4 doi: 10.1038/23127 – ident: ref46 doi: 10.3390/f9060303 – ident: ref42 doi: 10.1007/s10980-015-0324-z – ident: ref2 doi: 10.1038/nature10452 – ident: ref23 doi: 10.3390/rs8030166 – ident: ref77 doi: 10.1080/01431169208904219 – ident: ref6 doi: 10.1111/j.1365-2664.2007.01393.x – ident: ref25 doi: 10.1080/2150704X.2017.1354262 – ident: ref64 doi: 10.14358/PERS.70.5.627 – ident: ref18 doi: 10.4236/ars.2013.22020 – ident: ref29 – ident: ref51 – ident: ref48 – ident: ref60 doi: 10.1023/A:1010933404324 – ident: ref36 doi: 10.3390/ijgi7010003 – ident: ref67 doi: 10.1016/S0034-4257(00)00166-8 – ident: ref24 doi: 10.1016/j.rse.2017.08.028 – year: 2009 ident: ref15 contributor: fullname: Lee – ident: ref32 doi: 10.1038/s41598-018-20156-z – ident: ref52 doi: 10.1080/02757259409532206 – ident: ref41 doi: 10.1016/j.jag.2016.10.007 – ident: ref28 doi: 10.1016/j.rse.2017.10.005 – ident: ref74 doi: 10.1002/hyp.6609 – ident: ref65 doi: 10.1080/01431160500214050 – ident: ref49 – ident: ref30 doi: 10.1016/j.rse.2018.11.007 – ident: ref19 doi: 10.5589/m03-069 – ident: ref73 doi: 10.1016/j.rse.2005.01.008 – ident: ref58 doi: 10.1177/001316446002000104 – ident: ref54 doi: 10.1016/S0034-4257(96)00067-3 – ident: ref68 doi: 10.1016/j.pce.2014.11.001 – ident: ref79 doi: 10.1016/j.rse.2003.10.021 – ident: ref35 doi: 10.3390/rs8050362 – ident: ref81 doi: 10.2307/1936256 – ident: ref1 doi: 10.1098/rstb.2013.0307 – ident: ref7 doi: 10.1146/annurev.ecolsys.34.011802.132419 – ident: ref40 doi: 10.1016/j.foreco.2004.10.071 – ident: ref76 doi: 10.1109/36.602537 |
SSID | ssj0000331904 |
Score | 2.532816 |
Snippet | Monitoring forest–agriculture mosaics is crucial for understanding landscape heterogeneity and managing biodiversity. Mapping these mosaics from remotely... Monitoring forest-agriculture mosaics is crucial for understanding landscape heterogeneity and managing biodiversity. Mapping these mosaics from remotely... |
SourceID | doaj hal proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 979 |
SubjectTerms | Agricultural land Agricultural management Agriculture Biodiversity Brazilian Amazon cantabrian range Classification Climate change decision trees Environmental Sciences feature selection Forests Geography Habitats Heterogeneity Humanities and Social Sciences Land cover Land use Landscape Mapping Mosaics optical and SAR satellite images random forests Remote sensing Satellite imagery Short wave radiation Studies Synthetic aperture radar Temporal resolution Time series Tropical forests Vegetation mapping Winter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvRSlZfY8pDVco2IH0mc4xaBVgi4dJG4RX6MC1KVRZsFiRt_gFP_YX9JZ5ywbHvppcdYiWV5xp5v7C_fMHYUXaUggsy88y7TkZYUhCKrQ-llbaL1STL_8qqcXOvzm-JmpdQXccJ6eeB-4o4RDseQx1iZQmoTKhtKISIosNFUleoTn1yuJFNpD1boWrnu9UgV5vXH844I73lNnK2VCJSE-jGu3BIN8q_dOIWYs4_sw4AN-bgf0wZ7B-0mWx_KlN8-bbGX06U2N59F_o2YPi38yAS3beCS0_8cnM67oOMIRvkFNZ8QSZOn4pdEC1p-TUU5u8Wv55_j7_NBgAP45ayzd77jdy2fAiJqEpJInU_ns3uyZ-qzI9ZUt82uz06nJ5NsqKeQea3kIitsiNJ5Xxm6TxUyBl1ihA8KUQQYJ7TwwteVqw3UURRowliCVQWCDvD4pHbYWjtrYZdxK-p0Qyhc4XRVBIMbp7Ql2keFkFsYsS-vc9zc97IZDaYbZInmzRIj9pWmf_kGSV2nBnSAZnCA5l8OMGKf0Xh_9DEZXzTUlhPlR-byEV_af7VtMyzSrqHzcMzKa2U-_Y-B7LH3iKbSVZPU-2xtMX-AA0QsC3eYnPM31TTrgw priority: 102 providerName: Directory of Open Access Journals |
Title | Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate and Tropical Landscapes |
URI | https://www.proquest.com/docview/2304027938 https://hal.science/hal-02376202 https://doaj.org/article/768fd0ff785248d7ad611fe3eaf87731 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPQAHBAXEQllZwDVq_EjsnNC22mWF2grBVuotcvxoK1XJkixI3PgDnPiH_BJmvN5t4cAxjmNH-ezxPL7MEPI2NEr44HlmG9tkMuCW8q7IKldaXulgbEyZf3Jazs_kh_PiPDnchkSr3MjEKKhdZ9FHfoDOSzChKqHfLb9kWDUKo6uphMZdssu4KpHSp2fvtz6WXMACy-U6K6kA6_6gH5D2nlfI3Lp1DsV0_XC6XCIZ8h-ZHA-a2SPyMGmIdLKG9DG549s98mBy0acsGX6P3Eulyy-_PyE_p9t83bQL9DOyf1p_nTFqWkc5xX88KPrA_EBBQaXH2HyExE0aC2IiVWj7NBbqHFa_f_y6NR096QZzZQd61dKFBy0bk0vEwRd9t0SM45gDMqmGp-RsNl0czbNUYyGzUvBVVhgXeGOt0hhjZTw4WcKp7wRoFl43TDLLbKWaSvsqsAJgDaU3ogBFxFu4Es_ITtu1_jmhhlUxasiaopGqcBqEKTeldko4lxs_Im82X7xerlNp1GCCIC71DS4jcohgbHtg-uvY0PUXddpNNdhIweUhKF1wCRMYVzIGL-NN0EoJNiKvAcq_xphPjmtsy5EGxHP-DTrtb5Cu08Yd6ptl9uL_t1-S-6A7xcASl_tkZ9V_9a9AP1k147gIx2T3cHr68dM4Wvl_AM4H6e4 |
link.rule.ids | 230,314,780,784,864,885,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgLAoLBAXElAIWsI0aP5I4KzRUHQaY6Yap1J3lZ1sJJUMyRWLHD7DiD_kS7vVkpoUFyziOE-Xavq_jcwl5E20lQgw8c9bZTEZcUsEXWe1Lx2sVjUuU-fOTcnoqP54VZ0PArR9glZs9MW3UvnUYIz_E4CW4ULVQb5dfM6wahdnVoYTGbXJHClDdeFJ88n4bY8kFTLBcrllJBXj3h12PsPe8RuTWDT2U6PpBu1wgGPKfPTkpmskDcn-wEOl4LdKH5FZo9si98Xk3sGSEPbI7lC6_-P6I_Dze8nXTNtLPiP5pwpeMUdN4yime8aAYAws9BQOVzrD5CIGbNBXERKjQ9mks1Nmvfv_4deN1dN725tL19LKhiwBWNpJLpMEXXbtEGacxe0RS9Y_J6eR4cTTNhhoLmZOCr7LC-Mitc5XCHCvj0csStL4XYFkEZZlkjrm6srUKdWQFiDWWwYgCDJHg4Eo8ITtN24SnhBpWp6whs4WVVeEVbKbclMpXwvvchBF5vfnjermm0tDggqBc9LVcRuQdCmPbA-mvU0PbnethNWnwkaLPY6xUwSW8wPiSMfiYYKKqKsFG5BWI8q8xpuOZxrYcYUA859-g08FG0npYuL2-nmb7_7_9kuxOF_OZnn04-fSM3AU7KiWZuDwgO6vuKjwHW2VlX6QJ-Qf6wepB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKkF7QFCoCC2wAq5WvLt-nlBaEgVIowpSqTdrn20lZKd2qMSNP8Cp_5BfwsxmkxYOHL1er62d2Xl-niHknVO5sM7ySCutosThkbImjUqTaV4WTmpfMv94lk1Ok09n6VnAP3UBVrmWiV5Qm0ZjjHyAwUtwoUpRDFyARZx8GL9fXEXYQQozraGdxn2yBVox5j2ydTianXzZRFxiAewWJ6sapQJ8_UHbIQg-LhHHdUcr-eL9oGsuEBr5j4T2amf8mDwK9iIdrgj8hNyz9S7ZGZ63oWaG3SUPQyPzix9Pya_Rpno3bRz9ilig2n6LGJW1oZziHx8UI2K2o2Cu0ikOHyGMk_r2mAgc2jyNbTu75e-fN3deR4-bTl7qjl7WdG7B5sZSE37xedsskOJ-zQ5xVd0zcjoezY8mUei4EOlE8GWUSuO40jovMOPKuDNJBjaAEbCjtlAsYZrpMldlYUvHUiCyy6wUKZglVsOV2CO9uqntc0IlK30OkalUJXlqChCtXGaFyYUxsbR98na949ViVVijAocE6VLd0qVPDpEYmxlYDNsPNO15Fc5WBR6TM7FzeZHyBF4gTcYYfIyVrshzwfrkDZDyrzUmw2mFYzGCgnjMr2HSwZrSVTjGXXXLdC_-f_s1eQDcWE0_zj7vk20wqnzGiScHpLdsv9uXYLgs1avAkX8Aytbv3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Sentinel-1+and+2+Time+Series+for+Land+Cover+Classification+of+Forest%E2%80%93Agriculture+Mosaics+in+Temperate+and+Tropical+Landscapes&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Mercier%2C+Audrey&rft.au=Betbeder%2C+Julie&rft.au=Rumiano%2C+Florent&rft.au=Baudry%2C+Jacques+J.&rft.date=2019-04-24&rft.pub=MDPI&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Frs11080979&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02376202v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |