Learning skillful medium-range global weather forecasting

Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. He...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 382; no. 6677; pp. 1416 - 1421
Main Authors Lam, Remi, Sanchez-Gonzalez, Alvaro, Willson, Matthew, Wirnsberger, Peter, Fortunato, Meire, Alet, Ferran, Ravuri, Suman, Ewalds, Timo, Eaton-Rosen, Zach, Hu, Weihua, Merose, Alexander, Hoyer, Stephan, Holland, George, Vinyals, Oriol, Stott, Jacklynn, Pritzel, Alexander, Mohamed, Shakir, Battaglia, Peter
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 22.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning–based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems. The numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam et al . introduced a machine learning–based method that has been trained directly from reanalysis data of past atmospheric conditions. In this way, the authors were able to quickly predict hundreds of weather variables globally up to 10 days in advance and at high resolution. Their predictions were more accurate than those of traditional weather models in 90% of tested cases and displayed better severe event prediction for tropical cyclones, atmospheric rivers, and extreme temperatures. —H. Jesse Smith Machine learning leads to better, faster, and cheaper weather forecasting.
AbstractList Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning–based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems. The numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam et al . introduced a machine learning–based method that has been trained directly from reanalysis data of past atmospheric conditions. In this way, the authors were able to quickly predict hundreds of weather variables globally up to 10 days in advance and at high resolution. Their predictions were more accurate than those of traditional weather models in 90% of tested cases and displayed better severe event prediction for tropical cyclones, atmospheric rivers, and extreme temperatures. —H. Jesse Smith Machine learning leads to better, faster, and cheaper weather forecasting.
Editor’s summaryThe numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam et al. introduced a machine learning–based method that has been trained directly from reanalysis data of past atmospheric conditions. In this way, the authors were able to quickly predict hundreds of weather variables globally up to 10 days in advance and at high resolution. Their predictions were more accurate than those of traditional weather models in 90% of tested cases and displayed better severe event prediction for tropical cyclones, atmospheric rivers, and extreme temperatures. —H. Jesse Smith
Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.
Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.
Author Eaton-Rosen, Zach
Mohamed, Shakir
Wirnsberger, Peter
Hu, Weihua
Sanchez-Gonzalez, Alvaro
Willson, Matthew
Vinyals, Oriol
Fortunato, Meire
Battaglia, Peter
Hoyer, Stephan
Pritzel, Alexander
Lam, Remi
Ravuri, Suman
Ewalds, Timo
Holland, George
Stott, Jacklynn
Merose, Alexander
Alet, Ferran
Author_xml – sequence: 1
  givenname: Remi
  orcidid: 0000-0003-4222-5358
  surname: Lam
  fullname: Lam, Remi
  organization: Google DeepMind, London, UK
– sequence: 2
  givenname: Alvaro
  orcidid: 0000-0001-5055-5790
  surname: Sanchez-Gonzalez
  fullname: Sanchez-Gonzalez, Alvaro
  organization: Google DeepMind, London, UK
– sequence: 3
  givenname: Matthew
  orcidid: 0000-0002-8730-1927
  surname: Willson
  fullname: Willson, Matthew
  organization: Google DeepMind, London, UK
– sequence: 4
  givenname: Peter
  orcidid: 0000-0001-5961-5817
  surname: Wirnsberger
  fullname: Wirnsberger, Peter
  organization: Google DeepMind, London, UK
– sequence: 5
  givenname: Meire
  orcidid: 0009-0002-7058-4657
  surname: Fortunato
  fullname: Fortunato, Meire
  organization: Google DeepMind, London, UK
– sequence: 6
  givenname: Ferran
  orcidid: 0009-0000-3059-0062
  surname: Alet
  fullname: Alet, Ferran
  organization: Google DeepMind, London, UK
– sequence: 7
  givenname: Suman
  orcidid: 0000-0002-7481-7633
  surname: Ravuri
  fullname: Ravuri, Suman
  organization: Google DeepMind, London, UK
– sequence: 8
  givenname: Timo
  orcidid: 0000-0002-9693-7986
  surname: Ewalds
  fullname: Ewalds, Timo
  organization: Google DeepMind, London, UK
– sequence: 9
  givenname: Zach
  orcidid: 0009-0002-2102-6982
  surname: Eaton-Rosen
  fullname: Eaton-Rosen, Zach
  organization: Google DeepMind, London, UK
– sequence: 10
  givenname: Weihua
  orcidid: 0000-0003-2956-2616
  surname: Hu
  fullname: Hu, Weihua
  organization: Google DeepMind, London, UK
– sequence: 11
  givenname: Alexander
  orcidid: 0000-0003-2944-5639
  surname: Merose
  fullname: Merose, Alexander
  organization: Google Research, Mountain View, CA, USA
– sequence: 12
  givenname: Stephan
  orcidid: 0000-0002-5207-0380
  surname: Hoyer
  fullname: Hoyer, Stephan
  organization: Google Research, Mountain View, CA, USA
– sequence: 13
  givenname: George
  surname: Holland
  fullname: Holland, George
  organization: Google DeepMind, London, UK
– sequence: 14
  givenname: Oriol
  orcidid: 0000-0001-7848-7283
  surname: Vinyals
  fullname: Vinyals, Oriol
  organization: Google DeepMind, London, UK
– sequence: 15
  givenname: Jacklynn
  orcidid: 0009-0004-7859-3384
  surname: Stott
  fullname: Stott, Jacklynn
  organization: Google DeepMind, London, UK
– sequence: 16
  givenname: Alexander
  surname: Pritzel
  fullname: Pritzel, Alexander
  organization: Google DeepMind, London, UK
– sequence: 17
  givenname: Shakir
  orcidid: 0000-0002-1184-5776
  surname: Mohamed
  fullname: Mohamed, Shakir
  organization: Google DeepMind, London, UK
– sequence: 18
  givenname: Peter
  orcidid: 0000-0003-3622-7111
  surname: Battaglia
  fullname: Battaglia, Peter
  organization: Google DeepMind, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37962497$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LxDAQhoMouq6evUnBi5e6-WrTHEX8ggUveg5pMl2zpqkmLeK_N7L1IngamHneYeY5RvthCIDQGcFXhNB6lYyDYOBKW0cZq_fQgmBZlZJito8WGLO6bLCojtBxSluM80yyQ3TEhKwpl2KB5Bp0DC5sivTmvO8mX_Rg3dSXUYcNFBs_tNoXn6DHV4hFN0QwOo05cIIOOu0TnM51iV7ubp9vHsr10_3jzfW6NJzRsayY6BpeARcY2w6M1TVppa147nJLueFUdBSYrUmNsaAVs9yCtU3bEWhIy5bocrf3PQ4fE6RR9S4Z8F4HGKakaNNIKZkgMqMXf9DtMMWQr1NUYk4ZFaTJ1PlMTW3-Vb1H1-v4pX6lZKDaASYOKUXolHGjHt0QxqidVwSrH_lqlq9m-Tm3-pP7Xf1f4hvdDokR
CitedBy_id crossref_primary_10_3389_fmars_2024_1383997
crossref_primary_10_3847_1538_4357_ad7bb3
crossref_primary_10_1038_s41586_024_07744_y
crossref_primary_10_1016_j_aosl_2023_100441
crossref_primary_10_1016_j_eng_2024_04_009
crossref_primary_10_1016_j_uclim_2024_102003
crossref_primary_10_1029_2024GB008127
crossref_primary_10_1007_s11430_023_1427_x
crossref_primary_10_1029_2023MS004019
crossref_primary_10_1029_2023JD040134
crossref_primary_10_1063_5_0156999
crossref_primary_10_1103_PhysRevB_109_245120
crossref_primary_10_3724_j_1006_8775_2024_040
crossref_primary_10_1038_s41559_024_02623_1
crossref_primary_10_5194_gmd_17_7915_2024
crossref_primary_10_5194_gmd_17_8873_2024
crossref_primary_10_1002_asl_1297
crossref_primary_10_1038_s41467_025_56573_8
crossref_primary_10_1038_s41612_025_00949_6
crossref_primary_10_1073_pnas_2411258121
crossref_primary_10_1007_s11207_024_02361_4
crossref_primary_10_1016_j_acha_2025_101763
crossref_primary_10_1080_15435075_2024_2382351
crossref_primary_10_1016_j_molp_2025_01_020
crossref_primary_10_1016_j_jhydrol_2024_132113
crossref_primary_10_3390_w16223328
crossref_primary_10_5194_gmd_17_2569_2024
crossref_primary_10_1007_s10489_024_05947_4
crossref_primary_10_1021_acsestair_4c00075
crossref_primary_10_1016_j_atmosenv_2024_120797
crossref_primary_10_1029_2023MS003715
crossref_primary_10_1038_s41612_024_00776_1
crossref_primary_10_1016_j_wace_2024_100689
crossref_primary_10_1038_s42254_024_00776_3
crossref_primary_10_5194_gmd_18_921_2025
crossref_primary_10_3390_atmos15050610
crossref_primary_10_1016_j_applthermaleng_2024_125033
crossref_primary_10_1016_j_oceaneng_2025_120370
crossref_primary_10_1016_j_xgen_2024_100691
crossref_primary_10_3389_frai_2024_1427534
crossref_primary_10_1109_ACCESS_2024_3395532
crossref_primary_10_3390_su152416681
crossref_primary_10_1016_j_ijdrr_2024_105042
crossref_primary_10_1017_jfm_2024_77
crossref_primary_10_1007_s00163_024_00441_x
crossref_primary_10_1016_j_proci_2024_105730
crossref_primary_10_3934_fods_2024051
crossref_primary_10_1038_s41586_024_08252_9
crossref_primary_10_1016_j_uclim_2025_102300
crossref_primary_10_1038_s41598_024_80685_8
crossref_primary_10_3724_j_1006_8775_2024_028
crossref_primary_10_1016_j_procs_2025_02_269
crossref_primary_10_1029_2024JH000207
crossref_primary_10_1016_j_scs_2024_106010
crossref_primary_10_1371_journal_pcbi_1012731
crossref_primary_10_1088_2515_7620_ad4984
crossref_primary_10_3390_atmos14010157
crossref_primary_10_1029_2024GL111076
crossref_primary_10_1088_1748_9326_ad6fbb
crossref_primary_10_1088_2632_2153_ada19f
crossref_primary_10_1038_d41586_024_02558_4
crossref_primary_10_3390_su16135713
crossref_primary_10_5194_tc_19_731_2025
crossref_primary_10_3390_rs16224231
crossref_primary_10_1360_N072023_0274
crossref_primary_10_1360_TB_2024_1156
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126149
crossref_primary_10_1186_s42774_024_00186_0
crossref_primary_10_1109_TGRS_2024_3487774
crossref_primary_10_1007_s00376_024_3305_9
crossref_primary_10_3390_app14072950
crossref_primary_10_1029_2024JH000438
crossref_primary_10_1088_2632_2153_ad9883
crossref_primary_10_1038_s41467_024_50714_1
crossref_primary_10_1088_1748_9326_ad893f
crossref_primary_10_1029_2024GL110651
crossref_primary_10_3390_rs17020191
crossref_primary_10_1088_2515_7620_ad810f
crossref_primary_10_1016_j_envsoft_2025_106350
crossref_primary_10_1088_1748_9326_ad93e8
crossref_primary_10_1146_annurev_conmatphys_043024_114758
crossref_primary_10_3390_atmos15091069
crossref_primary_10_5194_gmd_18_1829_2025
crossref_primary_10_1029_2024EA003613
crossref_primary_10_2151_jmsj_2025_016
crossref_primary_10_1063_5_0214806
crossref_primary_10_1017_eds_2024_19
crossref_primary_10_3390_atmos15060689
crossref_primary_10_1029_2024GL110960
crossref_primary_10_1029_2024GL111136
crossref_primary_10_1038_s41612_024_00741_y
crossref_primary_10_1029_2024GL111134
crossref_primary_10_3390_knowledge4040031
crossref_primary_10_1016_j_cpc_2024_109462
crossref_primary_10_1002_qj_4581
crossref_primary_10_1038_s41592_025_02612_7
crossref_primary_10_3390_atmos15070810
crossref_primary_10_1016_j_xinn_2024_100770
crossref_primary_10_1109_TNSE_2025_3526850
crossref_primary_10_1016_j_knosys_2024_112090
crossref_primary_10_1029_2024MS004655
crossref_primary_10_3390_rs17020206
crossref_primary_10_1016_j_cma_2025_117790
crossref_primary_10_3390_su17052019
crossref_primary_10_5194_acp_25_2845_2025
crossref_primary_10_1038_s41558_024_02095_y
crossref_primary_10_1109_MGRS_2024_3493972
crossref_primary_10_1038_s42256_024_00962_z
crossref_primary_10_1016_j_oceaneng_2024_120230
crossref_primary_10_1109_TGRS_2024_3386930
crossref_primary_10_1038_s41598_024_75385_2
crossref_primary_10_1109_ACCESS_2025_3547038
crossref_primary_10_1038_s44221_024_00199_5
crossref_primary_10_1029_2023EA003455
crossref_primary_10_1134_S1995080224603746
crossref_primary_10_3390_ijms25126583
crossref_primary_10_1007_s10489_024_06196_1
crossref_primary_10_1093_pnasnexus_pgae151
crossref_primary_10_1002_asl_1268
crossref_primary_10_1016_j_infgeo_2025_100001
crossref_primary_10_1029_2023MS004080
crossref_primary_10_1360_SSTe_2024_0090
crossref_primary_10_1109_JSTARS_2024_3365612
crossref_primary_10_1029_2024EA003952
crossref_primary_10_1109_MC_2023_3241692
crossref_primary_10_1016_j_envint_2024_108997
crossref_primary_10_1016_j_fmre_2024_03_006
crossref_primary_10_1017_dce_2024_35
crossref_primary_10_5194_gmd_17_53_2024
crossref_primary_10_1038_s41467_025_57450_0
crossref_primary_10_1063_5_0211403
crossref_primary_10_1541_ieejpes_145_NL1_6
crossref_primary_10_5194_acp_25_759_2025
crossref_primary_10_3389_frwa_2024_1439906
crossref_primary_10_3390_en17225575
crossref_primary_10_1016_j_agrformet_2024_110229
crossref_primary_10_1016_j_jcp_2024_113705
crossref_primary_10_1029_2023GL104370
crossref_primary_10_1016_j_rse_2024_114375
crossref_primary_10_1007_s42791_024_00068_y
crossref_primary_10_1360_TB_2024_0543
crossref_primary_10_3390_electronics13204032
crossref_primary_10_1007_s11069_025_07195_2
crossref_primary_10_1007_s00521_024_10248_5
crossref_primary_10_3390_atmos15080977
crossref_primary_10_1038_s41467_024_47778_4
crossref_primary_10_1029_2024MS004796
crossref_primary_10_1016_j_buildenv_2025_112668
crossref_primary_10_1016_j_commtr_2024_100120
crossref_primary_10_30748_soi_2024_178_01
crossref_primary_10_1016_j_eng_2024_07_003
crossref_primary_10_1038_s41612_024_00638_w
crossref_primary_10_3390_e27030279
crossref_primary_10_1016_j_nhres_2024_11_004
crossref_primary_10_1007_s11430_024_1452_3
crossref_primary_10_1016_j_inpa_2023_05_001
crossref_primary_10_1016_j_jcp_2024_113132
crossref_primary_10_1002_met_2192
crossref_primary_10_1007_s10707_024_00511_1
crossref_primary_10_1088_2632_2153_ad8981
crossref_primary_10_1093_nar_gkaf020
crossref_primary_10_1029_2023JD039311
crossref_primary_10_1109_TKDE_2024_3490843
crossref_primary_10_1063_5_0256654
crossref_primary_10_1109_LGRS_2024_3398709
crossref_primary_10_3390_atmos15070837
crossref_primary_10_1016_j_jcp_2024_112953
crossref_primary_10_1016_j_neunet_2024_107106
crossref_primary_10_1038_s41612_024_00769_0
crossref_primary_10_1017_eds_2024_49
crossref_primary_10_1017_eds_2024_45
crossref_primary_10_3390_math12101483
crossref_primary_10_1016_j_xinn_2024_100691
crossref_primary_10_1109_TGRS_2024_3480888
crossref_primary_10_5194_gmd_17_7629_2024
crossref_primary_10_1109_TKDE_2024_3371931
crossref_primary_10_3390_en17163961
crossref_primary_10_1007_s11430_024_1439_y
crossref_primary_10_1029_2024GL114396
crossref_primary_10_1002_met_70009
crossref_primary_10_3390_fluids9080178
crossref_primary_10_1029_2023MS003792
crossref_primary_10_1002_qj_4934
crossref_primary_10_1016_j_eswa_2024_126036
crossref_primary_10_1007_s00376_024_3313_9
crossref_primary_10_1029_2024JH000170
crossref_primary_10_1038_s41467_025_57389_2
crossref_primary_10_3390_rs16234545
crossref_primary_10_1016_j_cma_2024_117441
crossref_primary_10_3103_S0027134924702217
crossref_primary_10_3390_jmse12091483
crossref_primary_10_1016_j_eswa_2025_126907
crossref_primary_10_1109_JSYST_2024_3496754
crossref_primary_10_1016_j_engstruct_2024_118009
crossref_primary_10_5194_tc_18_1791_2024
crossref_primary_10_1007_s00376_024_4219_2
crossref_primary_10_1063_5_0234960
crossref_primary_10_1080_19942060_2024_2399672
crossref_primary_10_1002_qj_4708
crossref_primary_10_5194_gmd_17_2347_2024
crossref_primary_10_1038_s41612_023_00512_1
crossref_primary_10_3390_en17061365
crossref_primary_10_1109_TGRS_2024_3496895
crossref_primary_10_5488_cmp_27_33101
crossref_primary_10_1109_TGRS_2024_3476127
crossref_primary_10_1029_2024JH000168
crossref_primary_10_1002_qj_4946
crossref_primary_10_1029_2023GL104174
crossref_primary_10_3390_rs16020376
crossref_primary_10_1002_solr_202400664
crossref_primary_10_3390_atmos16010082
crossref_primary_10_1360_TB_2024_0100
crossref_primary_10_3847_2041_8213_ada427
crossref_primary_10_1017_eds_2024_21
crossref_primary_10_1038_s42256_024_00867_x
crossref_primary_10_1029_2024EA003523
crossref_primary_10_1016_j_jhydrol_2024_132610
crossref_primary_10_3390_app14051871
crossref_primary_10_1021_acsestair_3c00033
crossref_primary_10_5194_gmd_17_2987_2024
crossref_primary_10_3389_fcell_2024_1240384
crossref_primary_10_2208_jscejj_24_16106
crossref_primary_10_1007_s10236_024_01643_6
crossref_primary_10_1038_s41586_024_08564_w
crossref_primary_10_1038_s43247_025_02207_2
crossref_primary_10_1029_2022MS003475
crossref_primary_10_1038_s44358_025_00022_3
crossref_primary_10_1109_TGRS_2024_3447073
crossref_primary_10_1007_s00477_024_02738_8
crossref_primary_10_1016_j_jclepro_2024_144287
crossref_primary_10_1029_2023GL107938
crossref_primary_10_1109_JSTARS_2024_3397078
crossref_primary_10_1029_2023JD040698
crossref_primary_10_1109_TSG_2024_3459653
crossref_primary_10_5194_ascmo_11_23_2025
crossref_primary_10_1038_s42005_024_01880_7
crossref_primary_10_1038_s44287_023_00009_2
crossref_primary_10_1038_s44304_024_00014_x
crossref_primary_10_1002_met_70038
crossref_primary_10_1002_qj_4966
crossref_primary_10_5194_acp_25_2365_2025
crossref_primary_10_3103_S106837392407001X
crossref_primary_10_1109_TGRS_2024_3488727
crossref_primary_10_1016_j_neunet_2024_106180
crossref_primary_10_1088_2632_072X_ad7b95
crossref_primary_10_1007_s10707_025_00542_2
crossref_primary_10_1016_j_cma_2024_117410
crossref_primary_10_1029_2023GL105747
crossref_primary_10_1360_N072024_0186
crossref_primary_10_1029_2023MS004203
crossref_primary_10_3390_atmos15101229
crossref_primary_10_1002_qj_4731
crossref_primary_10_1029_2024JH000496
crossref_primary_10_1016_j_optlaseng_2025_108875
crossref_primary_10_1002_qj_4858
crossref_primary_10_1016_j_asr_2024_09_003
crossref_primary_10_5194_gmd_17_6775_2024
crossref_primary_10_1785_0220240028
crossref_primary_10_1088_1748_9326_ad41f0
crossref_primary_10_5194_npg_31_247_2024
crossref_primary_10_1186_s40623_024_02104_6
crossref_primary_10_22201_dgtic_26832968e_2024_10_10
crossref_primary_10_1016_j_jag_2025_104473
crossref_primary_10_1038_s41597_024_03679_1
crossref_primary_10_3390_batteries10030106
crossref_primary_10_3390_atmos15040499
crossref_primary_10_3103_S0027134924702254
crossref_primary_10_1088_1361_6501_ad73fa
crossref_primary_10_1002_wcc_914
crossref_primary_10_3389_fdata_2024_1448571
crossref_primary_10_5194_npg_30_217_2023
crossref_primary_10_3390_w16192870
crossref_primary_10_1126_sciadv_adr3559
crossref_primary_10_1029_2024MS004395
crossref_primary_10_1007_s00376_024_4372_7
crossref_primary_10_1002_met_2200
crossref_primary_10_1002_met_70021
crossref_primary_10_1063_5_0189174
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126220
crossref_primary_10_1109_JSTARS_2025_3532219
crossref_primary_10_1038_s41467_025_57640_w
crossref_primary_10_1029_2024JD041914
crossref_primary_10_1038_s42254_024_00712_5
crossref_primary_10_1109_TCSS_2024_3427222
crossref_primary_10_3390_app14156658
crossref_primary_10_1016_j_knosys_2024_111385
Cites_doi 10.3390/econometrics8020018
10.1175/BAMS-D-13-00191.1
10.1029/2019MS001705
10.1109/5.58337
10.1371/journal.pone.0118432
10.1029/2020MS002109
10.1175/AMSMONOGRAPHS-D-18-0020.1
10.1175/2007JHM855.1
10.1038/nature14956
10.1029/2020MS002405
10.3402/tellusa.v68.30229
10.1126/sciadv.aax4631
10.1002/qj.3803
10.1175/MWR-D-11-00301.1
10.1029/2002JD002258
10.1126/scirobotics.aay5063
10.1006/aama.1994.1008
10.1038/s41467-022-32483-x
10.1145/3592979.3593412
10.1175/2009JTECHA1267.1
10.1002/met.1405
10.1175/MWR-D-11-00126.1
10.1002/qj.4174
10.1029/2020MS002203
10.1002/qj.4351
10.1029/2019GL083662
10.1175/2010BAMS2853.1
10.1175/2009BAMS2755.1
10.1002/qj.656
10.1038/s41586-021-03854-z
10.5334/jors.148
ContentType Journal Article
Copyright Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.adi2336
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1421
ExternalDocumentID 37962497
10_1126_science_adi2336
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c432t-537f845e4700dfecda61b9d54f844d24c427f2e3d616007253d4dedd8bf1e81b3
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 18:43:03 EDT 2025
Sat Aug 23 12:30:12 EDT 2025
Thu Apr 03 07:05:20 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Tue Jul 01 03:13:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6677
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-537f845e4700dfecda61b9d54f844d24c427f2e3d616007253d4dedd8bf1e81b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0004-7859-3384
0000-0002-1184-5776
0000-0003-3622-7111
0009-0002-2102-6982
0000-0003-4222-5358
0000-0001-5055-5790
0009-0002-7058-4657
0000-0002-7481-7633
0000-0003-2956-2616
0000-0002-9693-7986
0000-0002-5207-0380
0000-0003-2944-5639
0000-0002-8730-1927
0009-0000-3059-0062
0000-0001-5961-5817
0000-0001-7848-7283
OpenAccessLink https://www.science.org/doi/pdf/10.1126/science.adi2336
PMID 37962497
PQID 2904232718
PQPubID 1256
PageCount 6
ParticipantIDs proquest_miscellaneous_2889993719
proquest_journals_2904232718
pubmed_primary_37962497
crossref_citationtrail_10_1126_science_adi2336
crossref_primary_10_1126_science_adi2336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-22
PublicationDateYYYYMMDD 2023-12-22
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2023
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_28_2
Levinson D. H. (e_1_3_2_44_2) 2010; 91
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_47_2
e_1_3_2_66_2
Vaswani A. (e_1_3_2_46_2) 2017; 30
Battaglia P. (e_1_3_2_49_2) 2016; 29
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
Alet F. (e_1_3_2_21_2) 2019; 97
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Lopez-Gomez I. (e_1_3_2_4_2) 2022; 2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_61_2
Sanchez-Gonzalez A. (e_1_3_2_19_2) 2020; 119
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
Shi X. (e_1_3_2_5_2) 2017; 30
References_xml – ident: e_1_3_2_18_2
– ident: e_1_3_2_57_2
– ident: e_1_3_2_26_2
  doi: 10.3390/econometrics8020018
– ident: e_1_3_2_51_2
– ident: e_1_3_2_29_2
  doi: 10.1175/BAMS-D-13-00191.1
– ident: e_1_3_2_10_2
  doi: 10.1029/2019MS001705
– ident: e_1_3_2_43_2
– ident: e_1_3_2_20_2
– ident: e_1_3_2_6_2
– ident: e_1_3_2_48_2
– ident: e_1_3_2_42_2
– volume: 119
  start-page: 8459
  year: 2020
  ident: e_1_3_2_19_2
  article-title: Learning to simulate complex physics with graph networks
  publication-title: Proc. Mach. Learn. Res.
– ident: e_1_3_2_23_2
  doi: 10.1109/5.58337
– ident: e_1_3_2_38_2
  doi: 10.1371/journal.pone.0118432
– ident: e_1_3_2_50_2
– ident: e_1_3_2_56_2
– volume: 30
  start-page: 5617
  year: 2017
  ident: e_1_3_2_5_2
  article-title: Deep learning for precipitation nowcasting: A benchmark and a new model
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_2_11_2
  doi: 10.1029/2020MS002109
– ident: e_1_3_2_36_2
– ident: e_1_3_2_47_2
– ident: e_1_3_2_2_2
  doi: 10.1175/AMSMONOGRAPHS-D-18-0020.1
– ident: e_1_3_2_33_2
  doi: 10.1175/2007JHM855.1
– ident: e_1_3_2_39_2
– ident: e_1_3_2_3_2
  doi: 10.1038/nature14956
– ident: e_1_3_2_14_2
– ident: e_1_3_2_25_2
– ident: e_1_3_2_12_2
  doi: 10.1029/2020MS002405
– ident: e_1_3_2_17_2
– volume: 97
  start-page: 212
  year: 2019
  ident: e_1_3_2_21_2
  article-title: Graph element networks: adaptive, structured computation and memory
  publication-title: Proc. Mach. Learn. Res.
– ident: e_1_3_2_69_2
– ident: e_1_3_2_66_2
– ident: e_1_3_2_52_2
– ident: e_1_3_2_65_2
  doi: 10.3402/tellusa.v68.30229
– volume: 30
  start-page: 5998
  year: 2017
  ident: e_1_3_2_46_2
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_2_55_2
– ident: e_1_3_2_60_2
– ident: e_1_3_2_63_2
– ident: e_1_3_2_74_2
– ident: e_1_3_2_35_2
  doi: 10.1126/sciadv.aax4631
– ident: e_1_3_2_22_2
  doi: 10.1002/qj.3803
– ident: e_1_3_2_71_2
  doi: 10.1175/MWR-D-11-00301.1
– ident: e_1_3_2_58_2
– ident: e_1_3_2_15_2
– ident: e_1_3_2_54_2
– ident: e_1_3_2_68_2
– ident: e_1_3_2_73_2
  doi: 10.1029/2002JD002258
– ident: e_1_3_2_41_2
  doi: 10.1126/scirobotics.aay5063
– ident: e_1_3_2_64_2
  doi: 10.1006/aama.1994.1008
– ident: e_1_3_2_8_2
  doi: 10.1038/s41467-022-32483-x
– ident: e_1_3_2_16_2
  doi: 10.1145/3592979.3593412
– ident: e_1_3_2_45_2
  doi: 10.1175/2009JTECHA1267.1
– ident: e_1_3_2_76_2
– ident: e_1_3_2_59_2
– ident: e_1_3_2_31_2
– ident: e_1_3_2_72_2
  doi: 10.1002/met.1405
– ident: e_1_3_2_34_2
  doi: 10.1175/MWR-D-11-00126.1
– ident: e_1_3_2_61_2
– ident: e_1_3_2_37_2
– ident: e_1_3_2_53_2
  doi: 10.1002/qj.4174
– ident: e_1_3_2_75_2
– ident: e_1_3_2_67_2
– ident: e_1_3_2_9_2
  doi: 10.1029/2020MS002203
– ident: e_1_3_2_40_2
  doi: 10.1002/qj.4351
– volume: 29
  start-page: 4502
  year: 2016
  ident: e_1_3_2_49_2
  article-title: Interaction networks for learning about objects, relations and physics
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_2_32_2
  doi: 10.1029/2019GL083662
– volume: 91
  start-page: 377
  year: 2010
  ident: e_1_3_2_44_2
  article-title: Toward a homogenous global tropical cyclone best-track dataset
  publication-title: Bull. Am. Meteorol. Soc.
– ident: e_1_3_2_27_2
– volume: 2
  year: 2022
  ident: e_1_3_2_4_2
  article-title: Global extreme heat forecasting using neural weather models
  publication-title: Artif. Intell. Earth Syst.
– ident: e_1_3_2_28_2
  doi: 10.1175/2010BAMS2853.1
– ident: e_1_3_2_30_2
  doi: 10.1175/2009BAMS2755.1
– ident: e_1_3_2_70_2
  doi: 10.1002/qj.656
– ident: e_1_3_2_7_2
  doi: 10.1038/s41586-021-03854-z
– ident: e_1_3_2_13_2
– ident: e_1_3_2_62_2
  doi: 10.5334/jors.148
SSID ssj0009593
Score 2.757704
Snippet Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses...
Editor’s summaryThe numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1416
SubjectTerms Atmospheric conditions
Atmospheric models
Cyclones
Global weather
Machine learning
Mathematical models
Numerical models
Tropical cyclones
Weather
Weather forecasting
Weather patterns
Title Learning skillful medium-range global weather forecasting
URI https://www.ncbi.nlm.nih.gov/pubmed/37962497
https://www.proquest.com/docview/2904232718
https://www.proquest.com/docview/2889993719
Volume 382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEBtfHQMFiYfxkCqxHSd-7BilQJkQdNLeIid2REWXTk0Kov8c_xrn2U6NWBHjJaqcOFHvfj7fne8DoRf6bJByyULBIp2SA-aOIKkMeSppFTNZZJnOHf5wysZn9N15ct7r_fSillZtMSjX1-aV_A9XYQz4qrNkb8DZ7qUwAL-Bv3AFDsP1n3g8cX6N5utsPtfRxvqofHURLnXKgCv28d1oeTqgUJWiad1mZVVSt7pB1eyObzymdXGIQxMt4IIH7DTPkzAx2PqkLmad3wZmfFHr8M2iXsNOtDYpNd_EcuH7e2zSl209vrmzrBsdfWZAtQkktj4KTHS8B95YtNNNksxN_oEvt23ZZLNrGVEd6S6TOCK-LCcZ9kDLmG0RY4RzTGPmbfQxNbnZf24iXttLNRByhgm5plz3ePg5_3gyyidvT9_fQrsY7BQQtLvD45Pj0da6z7a6lJe35T7wu2K0xdq50nqm99Bda64EQ4O9PdRT9T66bRqY_thHe5aGTXBk65e_vI-4g2XgYBn4sAwMLAMLy8CD5QN0Nno9fTUObYeOsIRl3YYJSauMJoqmUSQrVUrB4oLLhMIolZiWFKcVVkSyWPdBwAmRVCops6KKFRhM5CHaqRe1eowCmQicFAJzXFWgVFYFGLJVKQsMMiMSWPbRwJEnL235et1FZZ5fmbGY5ZaeuaVnHx11Ey5N5Zbtjx46eud2eTc55jpkDIPu1kfPu9sgfPWJmqjVYgXPZBnXCn7M--iR4VP3LZJyhilPD_7-8ifozmbFHKKddrlST0HPbYtnFku_AABYrwE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+skillful+medium-range+global+weather+forecasting&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lam%2C+Remi&rft.au=Sanchez-Gonzalez%2C+Alvaro&rft.au=Willson%2C+Matthew&rft.au=Wirnsberger%2C+Peter&rft.date=2023-12-22&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=382&rft.issue=6677&rft.spage=1416&rft.epage=1421&rft_id=info:doi/10.1126%2Fscience.adi2336&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon