Learning skillful medium-range global weather forecasting
Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. He...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 382; no. 6677; pp. 1416 - 1421 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
22.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning–based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.
The numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam
et al
. introduced a machine learning–based method that has been trained directly from reanalysis data of past atmospheric conditions. In this way, the authors were able to quickly predict hundreds of weather variables globally up to 10 days in advance and at high resolution. Their predictions were more accurate than those of traditional weather models in 90% of tested cases and displayed better severe event prediction for tropical cyclones, atmospheric rivers, and extreme temperatures. —H. Jesse Smith
Machine learning leads to better, faster, and cheaper weather forecasting. |
---|---|
AbstractList | Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning–based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.
The numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam
et al
. introduced a machine learning–based method that has been trained directly from reanalysis data of past atmospheric conditions. In this way, the authors were able to quickly predict hundreds of weather variables globally up to 10 days in advance and at high resolution. Their predictions were more accurate than those of traditional weather models in 90% of tested cases and displayed better severe event prediction for tropical cyclones, atmospheric rivers, and extreme temperatures. —H. Jesse Smith
Machine learning leads to better, faster, and cheaper weather forecasting. Editor’s summaryThe numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam et al. introduced a machine learning–based method that has been trained directly from reanalysis data of past atmospheric conditions. In this way, the authors were able to quickly predict hundreds of weather variables globally up to 10 days in advance and at high resolution. Their predictions were more accurate than those of traditional weather models in 90% of tested cases and displayed better severe event prediction for tropical cyclones, atmospheric rivers, and extreme temperatures. —H. Jesse Smith Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems. Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems. |
Author | Eaton-Rosen, Zach Mohamed, Shakir Wirnsberger, Peter Hu, Weihua Sanchez-Gonzalez, Alvaro Willson, Matthew Vinyals, Oriol Fortunato, Meire Battaglia, Peter Hoyer, Stephan Pritzel, Alexander Lam, Remi Ravuri, Suman Ewalds, Timo Holland, George Stott, Jacklynn Merose, Alexander Alet, Ferran |
Author_xml | – sequence: 1 givenname: Remi orcidid: 0000-0003-4222-5358 surname: Lam fullname: Lam, Remi organization: Google DeepMind, London, UK – sequence: 2 givenname: Alvaro orcidid: 0000-0001-5055-5790 surname: Sanchez-Gonzalez fullname: Sanchez-Gonzalez, Alvaro organization: Google DeepMind, London, UK – sequence: 3 givenname: Matthew orcidid: 0000-0002-8730-1927 surname: Willson fullname: Willson, Matthew organization: Google DeepMind, London, UK – sequence: 4 givenname: Peter orcidid: 0000-0001-5961-5817 surname: Wirnsberger fullname: Wirnsberger, Peter organization: Google DeepMind, London, UK – sequence: 5 givenname: Meire orcidid: 0009-0002-7058-4657 surname: Fortunato fullname: Fortunato, Meire organization: Google DeepMind, London, UK – sequence: 6 givenname: Ferran orcidid: 0009-0000-3059-0062 surname: Alet fullname: Alet, Ferran organization: Google DeepMind, London, UK – sequence: 7 givenname: Suman orcidid: 0000-0002-7481-7633 surname: Ravuri fullname: Ravuri, Suman organization: Google DeepMind, London, UK – sequence: 8 givenname: Timo orcidid: 0000-0002-9693-7986 surname: Ewalds fullname: Ewalds, Timo organization: Google DeepMind, London, UK – sequence: 9 givenname: Zach orcidid: 0009-0002-2102-6982 surname: Eaton-Rosen fullname: Eaton-Rosen, Zach organization: Google DeepMind, London, UK – sequence: 10 givenname: Weihua orcidid: 0000-0003-2956-2616 surname: Hu fullname: Hu, Weihua organization: Google DeepMind, London, UK – sequence: 11 givenname: Alexander orcidid: 0000-0003-2944-5639 surname: Merose fullname: Merose, Alexander organization: Google Research, Mountain View, CA, USA – sequence: 12 givenname: Stephan orcidid: 0000-0002-5207-0380 surname: Hoyer fullname: Hoyer, Stephan organization: Google Research, Mountain View, CA, USA – sequence: 13 givenname: George surname: Holland fullname: Holland, George organization: Google DeepMind, London, UK – sequence: 14 givenname: Oriol orcidid: 0000-0001-7848-7283 surname: Vinyals fullname: Vinyals, Oriol organization: Google DeepMind, London, UK – sequence: 15 givenname: Jacklynn orcidid: 0009-0004-7859-3384 surname: Stott fullname: Stott, Jacklynn organization: Google DeepMind, London, UK – sequence: 16 givenname: Alexander surname: Pritzel fullname: Pritzel, Alexander organization: Google DeepMind, London, UK – sequence: 17 givenname: Shakir orcidid: 0000-0002-1184-5776 surname: Mohamed fullname: Mohamed, Shakir organization: Google DeepMind, London, UK – sequence: 18 givenname: Peter orcidid: 0000-0003-3622-7111 surname: Battaglia fullname: Battaglia, Peter organization: Google DeepMind, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37962497$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LxDAQhoMouq6evUnBi5e6-WrTHEX8ggUveg5pMl2zpqkmLeK_N7L1IngamHneYeY5RvthCIDQGcFXhNB6lYyDYOBKW0cZq_fQgmBZlZJito8WGLO6bLCojtBxSluM80yyQ3TEhKwpl2KB5Bp0DC5sivTmvO8mX_Rg3dSXUYcNFBs_tNoXn6DHV4hFN0QwOo05cIIOOu0TnM51iV7ubp9vHsr10_3jzfW6NJzRsayY6BpeARcY2w6M1TVppa147nJLueFUdBSYrUmNsaAVs9yCtU3bEWhIy5bocrf3PQ4fE6RR9S4Z8F4HGKakaNNIKZkgMqMXf9DtMMWQr1NUYk4ZFaTJ1PlMTW3-Vb1H1-v4pX6lZKDaASYOKUXolHGjHt0QxqidVwSrH_lqlq9m-Tm3-pP7Xf1f4hvdDokR |
CitedBy_id | crossref_primary_10_3389_fmars_2024_1383997 crossref_primary_10_3847_1538_4357_ad7bb3 crossref_primary_10_1038_s41586_024_07744_y crossref_primary_10_1016_j_aosl_2023_100441 crossref_primary_10_1016_j_eng_2024_04_009 crossref_primary_10_1016_j_uclim_2024_102003 crossref_primary_10_1029_2024GB008127 crossref_primary_10_1007_s11430_023_1427_x crossref_primary_10_1029_2023MS004019 crossref_primary_10_1029_2023JD040134 crossref_primary_10_1063_5_0156999 crossref_primary_10_1103_PhysRevB_109_245120 crossref_primary_10_3724_j_1006_8775_2024_040 crossref_primary_10_1038_s41559_024_02623_1 crossref_primary_10_5194_gmd_17_7915_2024 crossref_primary_10_5194_gmd_17_8873_2024 crossref_primary_10_1002_asl_1297 crossref_primary_10_1038_s41467_025_56573_8 crossref_primary_10_1038_s41612_025_00949_6 crossref_primary_10_1073_pnas_2411258121 crossref_primary_10_1007_s11207_024_02361_4 crossref_primary_10_1016_j_acha_2025_101763 crossref_primary_10_1080_15435075_2024_2382351 crossref_primary_10_1016_j_molp_2025_01_020 crossref_primary_10_1016_j_jhydrol_2024_132113 crossref_primary_10_3390_w16223328 crossref_primary_10_5194_gmd_17_2569_2024 crossref_primary_10_1007_s10489_024_05947_4 crossref_primary_10_1021_acsestair_4c00075 crossref_primary_10_1016_j_atmosenv_2024_120797 crossref_primary_10_1029_2023MS003715 crossref_primary_10_1038_s41612_024_00776_1 crossref_primary_10_1016_j_wace_2024_100689 crossref_primary_10_1038_s42254_024_00776_3 crossref_primary_10_5194_gmd_18_921_2025 crossref_primary_10_3390_atmos15050610 crossref_primary_10_1016_j_applthermaleng_2024_125033 crossref_primary_10_1016_j_oceaneng_2025_120370 crossref_primary_10_1016_j_xgen_2024_100691 crossref_primary_10_3389_frai_2024_1427534 crossref_primary_10_1109_ACCESS_2024_3395532 crossref_primary_10_3390_su152416681 crossref_primary_10_1016_j_ijdrr_2024_105042 crossref_primary_10_1017_jfm_2024_77 crossref_primary_10_1007_s00163_024_00441_x crossref_primary_10_1016_j_proci_2024_105730 crossref_primary_10_3934_fods_2024051 crossref_primary_10_1038_s41586_024_08252_9 crossref_primary_10_1016_j_uclim_2025_102300 crossref_primary_10_1038_s41598_024_80685_8 crossref_primary_10_3724_j_1006_8775_2024_028 crossref_primary_10_1016_j_procs_2025_02_269 crossref_primary_10_1029_2024JH000207 crossref_primary_10_1016_j_scs_2024_106010 crossref_primary_10_1371_journal_pcbi_1012731 crossref_primary_10_1088_2515_7620_ad4984 crossref_primary_10_3390_atmos14010157 crossref_primary_10_1029_2024GL111076 crossref_primary_10_1088_1748_9326_ad6fbb crossref_primary_10_1088_2632_2153_ada19f crossref_primary_10_1038_d41586_024_02558_4 crossref_primary_10_3390_su16135713 crossref_primary_10_5194_tc_19_731_2025 crossref_primary_10_3390_rs16224231 crossref_primary_10_1360_N072023_0274 crossref_primary_10_1360_TB_2024_1156 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126149 crossref_primary_10_1186_s42774_024_00186_0 crossref_primary_10_1109_TGRS_2024_3487774 crossref_primary_10_1007_s00376_024_3305_9 crossref_primary_10_3390_app14072950 crossref_primary_10_1029_2024JH000438 crossref_primary_10_1088_2632_2153_ad9883 crossref_primary_10_1038_s41467_024_50714_1 crossref_primary_10_1088_1748_9326_ad893f crossref_primary_10_1029_2024GL110651 crossref_primary_10_3390_rs17020191 crossref_primary_10_1088_2515_7620_ad810f crossref_primary_10_1016_j_envsoft_2025_106350 crossref_primary_10_1088_1748_9326_ad93e8 crossref_primary_10_1146_annurev_conmatphys_043024_114758 crossref_primary_10_3390_atmos15091069 crossref_primary_10_5194_gmd_18_1829_2025 crossref_primary_10_1029_2024EA003613 crossref_primary_10_2151_jmsj_2025_016 crossref_primary_10_1063_5_0214806 crossref_primary_10_1017_eds_2024_19 crossref_primary_10_3390_atmos15060689 crossref_primary_10_1029_2024GL110960 crossref_primary_10_1029_2024GL111136 crossref_primary_10_1038_s41612_024_00741_y crossref_primary_10_1029_2024GL111134 crossref_primary_10_3390_knowledge4040031 crossref_primary_10_1016_j_cpc_2024_109462 crossref_primary_10_1002_qj_4581 crossref_primary_10_1038_s41592_025_02612_7 crossref_primary_10_3390_atmos15070810 crossref_primary_10_1016_j_xinn_2024_100770 crossref_primary_10_1109_TNSE_2025_3526850 crossref_primary_10_1016_j_knosys_2024_112090 crossref_primary_10_1029_2024MS004655 crossref_primary_10_3390_rs17020206 crossref_primary_10_1016_j_cma_2025_117790 crossref_primary_10_3390_su17052019 crossref_primary_10_5194_acp_25_2845_2025 crossref_primary_10_1038_s41558_024_02095_y crossref_primary_10_1109_MGRS_2024_3493972 crossref_primary_10_1038_s42256_024_00962_z crossref_primary_10_1016_j_oceaneng_2024_120230 crossref_primary_10_1109_TGRS_2024_3386930 crossref_primary_10_1038_s41598_024_75385_2 crossref_primary_10_1109_ACCESS_2025_3547038 crossref_primary_10_1038_s44221_024_00199_5 crossref_primary_10_1029_2023EA003455 crossref_primary_10_1134_S1995080224603746 crossref_primary_10_3390_ijms25126583 crossref_primary_10_1007_s10489_024_06196_1 crossref_primary_10_1093_pnasnexus_pgae151 crossref_primary_10_1002_asl_1268 crossref_primary_10_1016_j_infgeo_2025_100001 crossref_primary_10_1029_2023MS004080 crossref_primary_10_1360_SSTe_2024_0090 crossref_primary_10_1109_JSTARS_2024_3365612 crossref_primary_10_1029_2024EA003952 crossref_primary_10_1109_MC_2023_3241692 crossref_primary_10_1016_j_envint_2024_108997 crossref_primary_10_1016_j_fmre_2024_03_006 crossref_primary_10_1017_dce_2024_35 crossref_primary_10_5194_gmd_17_53_2024 crossref_primary_10_1038_s41467_025_57450_0 crossref_primary_10_1063_5_0211403 crossref_primary_10_1541_ieejpes_145_NL1_6 crossref_primary_10_5194_acp_25_759_2025 crossref_primary_10_3389_frwa_2024_1439906 crossref_primary_10_3390_en17225575 crossref_primary_10_1016_j_agrformet_2024_110229 crossref_primary_10_1016_j_jcp_2024_113705 crossref_primary_10_1029_2023GL104370 crossref_primary_10_1016_j_rse_2024_114375 crossref_primary_10_1007_s42791_024_00068_y crossref_primary_10_1360_TB_2024_0543 crossref_primary_10_3390_electronics13204032 crossref_primary_10_1007_s11069_025_07195_2 crossref_primary_10_1007_s00521_024_10248_5 crossref_primary_10_3390_atmos15080977 crossref_primary_10_1038_s41467_024_47778_4 crossref_primary_10_1029_2024MS004796 crossref_primary_10_1016_j_buildenv_2025_112668 crossref_primary_10_1016_j_commtr_2024_100120 crossref_primary_10_30748_soi_2024_178_01 crossref_primary_10_1016_j_eng_2024_07_003 crossref_primary_10_1038_s41612_024_00638_w crossref_primary_10_3390_e27030279 crossref_primary_10_1016_j_nhres_2024_11_004 crossref_primary_10_1007_s11430_024_1452_3 crossref_primary_10_1016_j_inpa_2023_05_001 crossref_primary_10_1016_j_jcp_2024_113132 crossref_primary_10_1002_met_2192 crossref_primary_10_1007_s10707_024_00511_1 crossref_primary_10_1088_2632_2153_ad8981 crossref_primary_10_1093_nar_gkaf020 crossref_primary_10_1029_2023JD039311 crossref_primary_10_1109_TKDE_2024_3490843 crossref_primary_10_1063_5_0256654 crossref_primary_10_1109_LGRS_2024_3398709 crossref_primary_10_3390_atmos15070837 crossref_primary_10_1016_j_jcp_2024_112953 crossref_primary_10_1016_j_neunet_2024_107106 crossref_primary_10_1038_s41612_024_00769_0 crossref_primary_10_1017_eds_2024_49 crossref_primary_10_1017_eds_2024_45 crossref_primary_10_3390_math12101483 crossref_primary_10_1016_j_xinn_2024_100691 crossref_primary_10_1109_TGRS_2024_3480888 crossref_primary_10_5194_gmd_17_7629_2024 crossref_primary_10_1109_TKDE_2024_3371931 crossref_primary_10_3390_en17163961 crossref_primary_10_1007_s11430_024_1439_y crossref_primary_10_1029_2024GL114396 crossref_primary_10_1002_met_70009 crossref_primary_10_3390_fluids9080178 crossref_primary_10_1029_2023MS003792 crossref_primary_10_1002_qj_4934 crossref_primary_10_1016_j_eswa_2024_126036 crossref_primary_10_1007_s00376_024_3313_9 crossref_primary_10_1029_2024JH000170 crossref_primary_10_1038_s41467_025_57389_2 crossref_primary_10_3390_rs16234545 crossref_primary_10_1016_j_cma_2024_117441 crossref_primary_10_3103_S0027134924702217 crossref_primary_10_3390_jmse12091483 crossref_primary_10_1016_j_eswa_2025_126907 crossref_primary_10_1109_JSYST_2024_3496754 crossref_primary_10_1016_j_engstruct_2024_118009 crossref_primary_10_5194_tc_18_1791_2024 crossref_primary_10_1007_s00376_024_4219_2 crossref_primary_10_1063_5_0234960 crossref_primary_10_1080_19942060_2024_2399672 crossref_primary_10_1002_qj_4708 crossref_primary_10_5194_gmd_17_2347_2024 crossref_primary_10_1038_s41612_023_00512_1 crossref_primary_10_3390_en17061365 crossref_primary_10_1109_TGRS_2024_3496895 crossref_primary_10_5488_cmp_27_33101 crossref_primary_10_1109_TGRS_2024_3476127 crossref_primary_10_1029_2024JH000168 crossref_primary_10_1002_qj_4946 crossref_primary_10_1029_2023GL104174 crossref_primary_10_3390_rs16020376 crossref_primary_10_1002_solr_202400664 crossref_primary_10_3390_atmos16010082 crossref_primary_10_1360_TB_2024_0100 crossref_primary_10_3847_2041_8213_ada427 crossref_primary_10_1017_eds_2024_21 crossref_primary_10_1038_s42256_024_00867_x crossref_primary_10_1029_2024EA003523 crossref_primary_10_1016_j_jhydrol_2024_132610 crossref_primary_10_3390_app14051871 crossref_primary_10_1021_acsestair_3c00033 crossref_primary_10_5194_gmd_17_2987_2024 crossref_primary_10_3389_fcell_2024_1240384 crossref_primary_10_2208_jscejj_24_16106 crossref_primary_10_1007_s10236_024_01643_6 crossref_primary_10_1038_s41586_024_08564_w crossref_primary_10_1038_s43247_025_02207_2 crossref_primary_10_1029_2022MS003475 crossref_primary_10_1038_s44358_025_00022_3 crossref_primary_10_1109_TGRS_2024_3447073 crossref_primary_10_1007_s00477_024_02738_8 crossref_primary_10_1016_j_jclepro_2024_144287 crossref_primary_10_1029_2023GL107938 crossref_primary_10_1109_JSTARS_2024_3397078 crossref_primary_10_1029_2023JD040698 crossref_primary_10_1109_TSG_2024_3459653 crossref_primary_10_5194_ascmo_11_23_2025 crossref_primary_10_1038_s42005_024_01880_7 crossref_primary_10_1038_s44287_023_00009_2 crossref_primary_10_1038_s44304_024_00014_x crossref_primary_10_1002_met_70038 crossref_primary_10_1002_qj_4966 crossref_primary_10_5194_acp_25_2365_2025 crossref_primary_10_3103_S106837392407001X crossref_primary_10_1109_TGRS_2024_3488727 crossref_primary_10_1016_j_neunet_2024_106180 crossref_primary_10_1088_2632_072X_ad7b95 crossref_primary_10_1007_s10707_025_00542_2 crossref_primary_10_1016_j_cma_2024_117410 crossref_primary_10_1029_2023GL105747 crossref_primary_10_1360_N072024_0186 crossref_primary_10_1029_2023MS004203 crossref_primary_10_3390_atmos15101229 crossref_primary_10_1002_qj_4731 crossref_primary_10_1029_2024JH000496 crossref_primary_10_1016_j_optlaseng_2025_108875 crossref_primary_10_1002_qj_4858 crossref_primary_10_1016_j_asr_2024_09_003 crossref_primary_10_5194_gmd_17_6775_2024 crossref_primary_10_1785_0220240028 crossref_primary_10_1088_1748_9326_ad41f0 crossref_primary_10_5194_npg_31_247_2024 crossref_primary_10_1186_s40623_024_02104_6 crossref_primary_10_22201_dgtic_26832968e_2024_10_10 crossref_primary_10_1016_j_jag_2025_104473 crossref_primary_10_1038_s41597_024_03679_1 crossref_primary_10_3390_batteries10030106 crossref_primary_10_3390_atmos15040499 crossref_primary_10_3103_S0027134924702254 crossref_primary_10_1088_1361_6501_ad73fa crossref_primary_10_1002_wcc_914 crossref_primary_10_3389_fdata_2024_1448571 crossref_primary_10_5194_npg_30_217_2023 crossref_primary_10_3390_w16192870 crossref_primary_10_1126_sciadv_adr3559 crossref_primary_10_1029_2024MS004395 crossref_primary_10_1007_s00376_024_4372_7 crossref_primary_10_1002_met_2200 crossref_primary_10_1002_met_70021 crossref_primary_10_1063_5_0189174 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126220 crossref_primary_10_1109_JSTARS_2025_3532219 crossref_primary_10_1038_s41467_025_57640_w crossref_primary_10_1029_2024JD041914 crossref_primary_10_1038_s42254_024_00712_5 crossref_primary_10_1109_TCSS_2024_3427222 crossref_primary_10_3390_app14156658 crossref_primary_10_1016_j_knosys_2024_111385 |
Cites_doi | 10.3390/econometrics8020018 10.1175/BAMS-D-13-00191.1 10.1029/2019MS001705 10.1109/5.58337 10.1371/journal.pone.0118432 10.1029/2020MS002109 10.1175/AMSMONOGRAPHS-D-18-0020.1 10.1175/2007JHM855.1 10.1038/nature14956 10.1029/2020MS002405 10.3402/tellusa.v68.30229 10.1126/sciadv.aax4631 10.1002/qj.3803 10.1175/MWR-D-11-00301.1 10.1029/2002JD002258 10.1126/scirobotics.aay5063 10.1006/aama.1994.1008 10.1038/s41467-022-32483-x 10.1145/3592979.3593412 10.1175/2009JTECHA1267.1 10.1002/met.1405 10.1175/MWR-D-11-00126.1 10.1002/qj.4174 10.1029/2020MS002203 10.1002/qj.4351 10.1029/2019GL083662 10.1175/2010BAMS2853.1 10.1175/2009BAMS2755.1 10.1002/qj.656 10.1038/s41586-021-03854-z 10.5334/jors.148 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.adi2336 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1421 |
ExternalDocumentID | 37962497 10_1126_science_adi2336 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c432t-537f845e4700dfecda61b9d54f844d24c427f2e3d616007253d4dedd8bf1e81b3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 18:43:03 EDT 2025 Sat Aug 23 12:30:12 EDT 2025 Thu Apr 03 07:05:20 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 03:13:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6677 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c432t-537f845e4700dfecda61b9d54f844d24c427f2e3d616007253d4dedd8bf1e81b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0004-7859-3384 0000-0002-1184-5776 0000-0003-3622-7111 0009-0002-2102-6982 0000-0003-4222-5358 0000-0001-5055-5790 0009-0002-7058-4657 0000-0002-7481-7633 0000-0003-2956-2616 0000-0002-9693-7986 0000-0002-5207-0380 0000-0003-2944-5639 0000-0002-8730-1927 0009-0000-3059-0062 0000-0001-5961-5817 0000-0001-7848-7283 |
OpenAccessLink | https://www.science.org/doi/pdf/10.1126/science.adi2336 |
PMID | 37962497 |
PQID | 2904232718 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2889993719 proquest_journals_2904232718 pubmed_primary_37962497 crossref_citationtrail_10_1126_science_adi2336 crossref_primary_10_1126_science_adi2336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-22 |
PublicationDateYYYYMMDD | 2023-12-22 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2023 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_28_2 Levinson D. H. (e_1_3_2_44_2) 2010; 91 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_47_2 e_1_3_2_66_2 Vaswani A. (e_1_3_2_46_2) 2017; 30 Battaglia P. (e_1_3_2_49_2) 2016; 29 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 Alet F. (e_1_3_2_21_2) 2019; 97 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Lopez-Gomez I. (e_1_3_2_4_2) 2022; 2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_61_2 Sanchez-Gonzalez A. (e_1_3_2_19_2) 2020; 119 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 Shi X. (e_1_3_2_5_2) 2017; 30 |
References_xml | – ident: e_1_3_2_18_2 – ident: e_1_3_2_57_2 – ident: e_1_3_2_26_2 doi: 10.3390/econometrics8020018 – ident: e_1_3_2_51_2 – ident: e_1_3_2_29_2 doi: 10.1175/BAMS-D-13-00191.1 – ident: e_1_3_2_10_2 doi: 10.1029/2019MS001705 – ident: e_1_3_2_43_2 – ident: e_1_3_2_20_2 – ident: e_1_3_2_6_2 – ident: e_1_3_2_48_2 – ident: e_1_3_2_42_2 – volume: 119 start-page: 8459 year: 2020 ident: e_1_3_2_19_2 article-title: Learning to simulate complex physics with graph networks publication-title: Proc. Mach. Learn. Res. – ident: e_1_3_2_23_2 doi: 10.1109/5.58337 – ident: e_1_3_2_38_2 doi: 10.1371/journal.pone.0118432 – ident: e_1_3_2_50_2 – ident: e_1_3_2_56_2 – volume: 30 start-page: 5617 year: 2017 ident: e_1_3_2_5_2 article-title: Deep learning for precipitation nowcasting: A benchmark and a new model publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_2_11_2 doi: 10.1029/2020MS002109 – ident: e_1_3_2_36_2 – ident: e_1_3_2_47_2 – ident: e_1_3_2_2_2 doi: 10.1175/AMSMONOGRAPHS-D-18-0020.1 – ident: e_1_3_2_33_2 doi: 10.1175/2007JHM855.1 – ident: e_1_3_2_39_2 – ident: e_1_3_2_3_2 doi: 10.1038/nature14956 – ident: e_1_3_2_14_2 – ident: e_1_3_2_25_2 – ident: e_1_3_2_12_2 doi: 10.1029/2020MS002405 – ident: e_1_3_2_17_2 – volume: 97 start-page: 212 year: 2019 ident: e_1_3_2_21_2 article-title: Graph element networks: adaptive, structured computation and memory publication-title: Proc. Mach. Learn. Res. – ident: e_1_3_2_69_2 – ident: e_1_3_2_66_2 – ident: e_1_3_2_52_2 – ident: e_1_3_2_65_2 doi: 10.3402/tellusa.v68.30229 – volume: 30 start-page: 5998 year: 2017 ident: e_1_3_2_46_2 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_2_55_2 – ident: e_1_3_2_60_2 – ident: e_1_3_2_63_2 – ident: e_1_3_2_74_2 – ident: e_1_3_2_35_2 doi: 10.1126/sciadv.aax4631 – ident: e_1_3_2_22_2 doi: 10.1002/qj.3803 – ident: e_1_3_2_71_2 doi: 10.1175/MWR-D-11-00301.1 – ident: e_1_3_2_58_2 – ident: e_1_3_2_15_2 – ident: e_1_3_2_54_2 – ident: e_1_3_2_68_2 – ident: e_1_3_2_73_2 doi: 10.1029/2002JD002258 – ident: e_1_3_2_41_2 doi: 10.1126/scirobotics.aay5063 – ident: e_1_3_2_64_2 doi: 10.1006/aama.1994.1008 – ident: e_1_3_2_8_2 doi: 10.1038/s41467-022-32483-x – ident: e_1_3_2_16_2 doi: 10.1145/3592979.3593412 – ident: e_1_3_2_45_2 doi: 10.1175/2009JTECHA1267.1 – ident: e_1_3_2_76_2 – ident: e_1_3_2_59_2 – ident: e_1_3_2_31_2 – ident: e_1_3_2_72_2 doi: 10.1002/met.1405 – ident: e_1_3_2_34_2 doi: 10.1175/MWR-D-11-00126.1 – ident: e_1_3_2_61_2 – ident: e_1_3_2_37_2 – ident: e_1_3_2_53_2 doi: 10.1002/qj.4174 – ident: e_1_3_2_75_2 – ident: e_1_3_2_67_2 – ident: e_1_3_2_9_2 doi: 10.1029/2020MS002203 – ident: e_1_3_2_40_2 doi: 10.1002/qj.4351 – volume: 29 start-page: 4502 year: 2016 ident: e_1_3_2_49_2 article-title: Interaction networks for learning about objects, relations and physics publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_2_32_2 doi: 10.1029/2019GL083662 – volume: 91 start-page: 377 year: 2010 ident: e_1_3_2_44_2 article-title: Toward a homogenous global tropical cyclone best-track dataset publication-title: Bull. Am. Meteorol. Soc. – ident: e_1_3_2_27_2 – volume: 2 year: 2022 ident: e_1_3_2_4_2 article-title: Global extreme heat forecasting using neural weather models publication-title: Artif. Intell. Earth Syst. – ident: e_1_3_2_28_2 doi: 10.1175/2010BAMS2853.1 – ident: e_1_3_2_30_2 doi: 10.1175/2009BAMS2755.1 – ident: e_1_3_2_70_2 doi: 10.1002/qj.656 – ident: e_1_3_2_7_2 doi: 10.1038/s41586-021-03854-z – ident: e_1_3_2_13_2 – ident: e_1_3_2_62_2 doi: 10.5334/jors.148 |
SSID | ssj0009593 |
Score | 2.757704 |
Snippet | Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses... Editor’s summaryThe numerical models used to predict weather are large, complex, and computationally demanding and do not learn from past weather patterns. Lam... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1416 |
SubjectTerms | Atmospheric conditions Atmospheric models Cyclones Global weather Machine learning Mathematical models Numerical models Tropical cyclones Weather Weather forecasting Weather patterns |
Title | Learning skillful medium-range global weather forecasting |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37962497 https://www.proquest.com/docview/2904232718 https://www.proquest.com/docview/2889993719 |
Volume | 382 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEBtfHQMFiYfxkCqxHSd-7BilQJkQdNLeIid2REWXTk0Kov8c_xrn2U6NWBHjJaqcOFHvfj7fne8DoRf6bJByyULBIp2SA-aOIKkMeSppFTNZZJnOHf5wysZn9N15ct7r_fSillZtMSjX1-aV_A9XYQz4qrNkb8DZ7qUwAL-Bv3AFDsP1n3g8cX6N5utsPtfRxvqofHURLnXKgCv28d1oeTqgUJWiad1mZVVSt7pB1eyObzymdXGIQxMt4IIH7DTPkzAx2PqkLmad3wZmfFHr8M2iXsNOtDYpNd_EcuH7e2zSl209vrmzrBsdfWZAtQkktj4KTHS8B95YtNNNksxN_oEvt23ZZLNrGVEd6S6TOCK-LCcZ9kDLmG0RY4RzTGPmbfQxNbnZf24iXttLNRByhgm5plz3ePg5_3gyyidvT9_fQrsY7BQQtLvD45Pj0da6z7a6lJe35T7wu2K0xdq50nqm99Bda64EQ4O9PdRT9T66bRqY_thHe5aGTXBk65e_vI-4g2XgYBn4sAwMLAMLy8CD5QN0Nno9fTUObYeOsIRl3YYJSauMJoqmUSQrVUrB4oLLhMIolZiWFKcVVkSyWPdBwAmRVCops6KKFRhM5CHaqRe1eowCmQicFAJzXFWgVFYFGLJVKQsMMiMSWPbRwJEnL235et1FZZ5fmbGY5ZaeuaVnHx11Ey5N5Zbtjx46eud2eTc55jpkDIPu1kfPu9sgfPWJmqjVYgXPZBnXCn7M--iR4VP3LZJyhilPD_7-8ifozmbFHKKddrlST0HPbYtnFku_AABYrwE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+skillful+medium-range+global+weather+forecasting&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Lam%2C+Remi&rft.au=Sanchez-Gonzalez%2C+Alvaro&rft.au=Willson%2C+Matthew&rft.au=Wirnsberger%2C+Peter&rft.date=2023-12-22&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=382&rft.issue=6677&rft.spage=1416&rft.epage=1421&rft_id=info:doi/10.1126%2Fscience.adi2336&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |