BatchFLEX: feature-level equalization of X-batch
Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 40; no. 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.10.2024
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motivation
Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators.
Results
Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis.
Availability and implementation
Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/. |
---|---|
AbstractList | Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators. Results Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis. Availability and implementation Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/. Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators. Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis. Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/. Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators. Results Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis. Availability and implementation Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/. Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators.MOTIVATIONIntegrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators.Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis.RESULTSHere, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis.Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.AVAILABILITY AND IMPLEMENTATIONOur tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/. |
Author | Soupir, Alex C Yu, Xiaoqing Davis, Joshua T Rodriguez, Paulo C Teng, Mingxiang Dao, Ken Phong Grass, G Daniel Hesterberg, Rebecca S Obermayer, Alyssa N Shaw, Timothy I Wang, Xuefeng Fridley, Brooke L Avram, Dorina Manley, Brandon J Duong, Thac Yang, Ching-Yao |
Author_xml | – sequence: 1 givenname: Joshua T surname: Davis fullname: Davis, Joshua T – sequence: 2 givenname: Alyssa N surname: Obermayer fullname: Obermayer, Alyssa N – sequence: 3 givenname: Alex C orcidid: 0000-0003-1251-9179 surname: Soupir fullname: Soupir, Alex C – sequence: 4 givenname: Rebecca S orcidid: 0000-0003-0472-7517 surname: Hesterberg fullname: Hesterberg, Rebecca S – sequence: 5 givenname: Thac surname: Duong fullname: Duong, Thac – sequence: 6 givenname: Ching-Yao surname: Yang fullname: Yang, Ching-Yao – sequence: 7 givenname: Ken Phong surname: Dao fullname: Dao, Ken Phong – sequence: 8 givenname: Brandon J surname: Manley fullname: Manley, Brandon J – sequence: 9 givenname: G Daniel surname: Grass fullname: Grass, G Daniel – sequence: 10 givenname: Dorina surname: Avram fullname: Avram, Dorina – sequence: 11 givenname: Paulo C surname: Rodriguez fullname: Rodriguez, Paulo C – sequence: 12 givenname: Brooke L orcidid: 0000-0001-7739-7956 surname: Fridley fullname: Fridley, Brooke L – sequence: 13 givenname: Xiaoqing surname: Yu fullname: Yu, Xiaoqing – sequence: 14 givenname: Mingxiang orcidid: 0000-0002-8536-8941 surname: Teng fullname: Teng, Mingxiang – sequence: 15 givenname: Xuefeng orcidid: 0000-0001-5775-408X surname: Wang fullname: Wang, Xuefeng – sequence: 16 givenname: Timothy I orcidid: 0000-0002-9316-1924 surname: Shaw fullname: Shaw, Timothy I email: timothy.shaw@moffitt.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39360977$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9Lw0AQxRdRtK1-BSl48RK7k_3vRVSsCgUvCt6WTTqxKWm27iYF_fSmtBb15GkW5vceb_b1yX7tayTkFOgFUMNGWenLuvBh4Zoyj6OscSi02iM9YFIlXAPs_3gfkX6Mc0qpoEIekiNmmKRGqR6hN67JZ-PJ3evlsEDXtAGTCldYDfG9dVX52fn7euiL4WuSrdFjclC4KuLJdg7Iy_ju-fYhmTzdP95eT5Kcs7RJOJPSMCGFnHKlFFMCNWSGI5UF0xI018J0mQGmgnGV6tQZDoVAxXOuHGcDcrXxXbbZAqc51k1wlV2GcuHCh_WutL83dTmzb35lAbiW3JjO4XzrEPx7i7GxizLmWFWuRt9GywBSkRqhaYee_UHnvg11d19HpZoCY2wd6fRnpF2W79_sALkB8uBjDFjsEKB2XZv9XZvd1tYJYSP07fK_mi_ZY58n |
Cites_doi | 10.1038/nbt.2931 10.1186/s12859-016-1212-5 10.1084/jem.20110538 10.1158/2326-6066.CIR-13-0209 10.1186/1471-2105-14-7 10.1038/s41598-017-11110-6 10.1093/bioinformatics/btw538 10.1093/biostatistics/kxv027 10.1093/nar/gkv007 10.1038/srep00765 10.1371/journal.pgen.0030161 10.1038/ni.2262 10.4049/jimmunol.1002695 10.1038/ni1008-1091 10.1016/j.cell.2015.12.032 10.1007/978-1-0716-0327-7_16 10.1093/nargab/lqaa078 10.1093/biostatistics/kxj037 10.1021/acs.jproteome.0c00488 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1093/bioinformatics/btae587 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
ExternalDocumentID | PMC11486499 39360977 10_1093_bioinformatics_btae587 10.1093/bioinformatics/btae587 |
Genre | Journal Article Report |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA273034 – fundername: NCI NIH HHS grantid: R01 CA262121 – fundername: NCI NIH HHS grantid: T32 CA233399 – fundername: American Cancer Society grantid: IRG-21-145-25 – fundername: NCI NIH HHS grantid: P01 CA250984 – fundername: ; grantid: T32 CA233399 – fundername: ; grantid: IRG-21-145-25 |
GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c432t-4366935656d4777375e81b94e06f386184859ae511d5347282a941f5e74c47a43 |
IEDL.DBID | TOX |
ISSN | 1367-4811 1367-4803 |
IngestDate | Thu Aug 21 18:31:20 EDT 2025 Fri Jul 11 00:40:21 EDT 2025 Wed Aug 13 02:35:02 EDT 2025 Tue Jul 22 01:42:05 EDT 2025 Tue Jul 01 02:34:05 EDT 2025 Mon Jun 30 08:34:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-4366935656d4777375e81b94e06f386184859ae511d5347282a941f5e74c47a43 |
Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Report-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Joshua T Davis and Alyssa N Obermayer equal contribution. |
ORCID | 0000-0003-1251-9179 0000-0003-0472-7517 0000-0001-7739-7956 0000-0002-9316-1924 0000-0001-5775-408X 0000-0002-8536-8941 |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btae587 |
PMID | 39360977 |
PQID | 3128013334 |
PQPubID | 36124 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11486499 proquest_miscellaneous_3112529580 proquest_journals_3128013334 pubmed_primary_39360977 crossref_primary_10_1093_bioinformatics_btae587 oup_primary_10_1093_bioinformatics_btae587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2024 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Sturm (2024101722010719400_btae587-B18) 2020; 2120 Desch (2024101722010719400_btae587-B1) 2011; 208 Oytam (2024101722010719400_btae587-B14) 2016; 17 Painter (2024101722010719400_btae587-B15) 2011; 186 Messina (2024101722010719400_btae587-B10) 2012; 2 Zhang (2024101722010719400_btae587-B19) 2020; 2 Johnson (2024101722010719400_btae587-B5) 2007; 8 Nygaard (2024101722010719400_btae587-B13) 2016; 17 Manimaran (2024101722010719400_btae587-B9) 2016; 32 Mostafavi (2024101722010719400_btae587-B11) 2016; 164 Li J, Bushel PR, Chu TM (2024101722010719400_btae587-B7) 2009 Leek (2024101722010719400_btae587-B6) 2007; 3 Nyamundanda (2024101722010719400_btae587-B12) 2017; 7 Heng (2024101722010719400_btae587-B4) 2008; 9 Zhu (2024101722010719400_btae587-B20) 2021; 20 Risso (2024101722010719400_btae587-B16) 2014; 32 Hanzelmann (2024101722010719400_btae587-B3) 2013; 14 Elpek (2024101722010719400_btae587-B2) 2014; 2 Malhotra (2024101722010719400_btae587-B8) 2012; 13 Ritchie (2024101722010719400_btae587-B17) 2015; 43 |
References_xml | – volume: 32 start-page: 896 year: 2014 ident: 2024101722010719400_btae587-B16 article-title: Normalization of RNA-seq data using factor analysis of control genes or samples publication-title: Nat Biotechnol doi: 10.1038/nbt.2931 – volume: 17 start-page: 332 year: 2016 ident: 2024101722010719400_btae587-B14 article-title: Risk-conscious correction of batch effects: maximising information extraction from high-throughput genomic datasets publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1212-5 – volume: 208 start-page: 1789 year: 2011 ident: 2024101722010719400_btae587-B1 article-title: CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen publication-title: J Exp Med doi: 10.1084/jem.20110538 – volume: 2 start-page: 655 year: 2014 ident: 2024101722010719400_btae587-B2 article-title: The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-13-0209 – volume: 14 start-page: 7 year: 2013 ident: 2024101722010719400_btae587-B3 article-title: GSVA: gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-7 – volume: 7 start-page: 10849 year: 2017 ident: 2024101722010719400_btae587-B12 article-title: A novel statistical method to diagnose, quantify and correct batch effects in genomic studies publication-title: Sci Rep doi: 10.1038/s41598-017-11110-6 – volume: 32 start-page: 3836 year: 2016 ident: 2024101722010719400_btae587-B9 article-title: BatchQC: interactive software for evaluating sample and batch effects in genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw538 – volume: 17 start-page: 29 year: 2016 ident: 2024101722010719400_btae587-B13 article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses publication-title: Biostatistics doi: 10.1093/biostatistics/kxv027 – volume: 43 start-page: e47 year: 2015 ident: 2024101722010719400_btae587-B17 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 2 start-page: 765 year: 2012 ident: 2024101722010719400_btae587-B10 article-title: 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? publication-title: Sci Rep doi: 10.1038/srep00765 – volume: 3 start-page: 1724 year: 2007 ident: 2024101722010719400_btae587-B6 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030161 – volume: 13 start-page: 499 year: 2012 ident: 2024101722010719400_btae587-B8 article-title: Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks publication-title: Nat Immunol doi: 10.1038/ni.2262 – volume: 186 start-page: 3047 year: 2011 ident: 2024101722010719400_btae587-B15 article-title: Transcriptomes of the B and T lineages compared by multiplatform microarray profiling publication-title: J Immunol doi: 10.4049/jimmunol.1002695 – volume: 9 start-page: 1091 year: 2008 ident: 2024101722010719400_btae587-B4 article-title: The immunological genome project: networks of gene expression in immune cells publication-title: Nat Immunol doi: 10.1038/ni1008-1091 – start-page: 141 year: 2009 ident: 2024101722010719400_btae587-B7 – volume: 164 start-page: 564 year: 2016 ident: 2024101722010719400_btae587-B11 article-title: Parsing the interferon transcriptional network and its disease associations publication-title: Cell doi: 10.1016/j.cell.2015.12.032 – volume: 2120 start-page: 223 year: 2020 ident: 2024101722010719400_btae587-B18 article-title: Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-0327-7_16 – volume: 2 start-page: lqaa078 year: 2020 ident: 2024101722010719400_btae587-B19 article-title: ComBat-seq: batch effect adjustment for RNA-seq count data publication-title: NAR Genom Bioinform doi: 10.1093/nargab/lqaa078 – volume: 8 start-page: 118 year: 2007 ident: 2024101722010719400_btae587-B5 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 20 start-page: 1079 year: 2021 ident: 2024101722010719400_btae587-B20 article-title: BatchServer: a web server for batch effect evaluation, visualization, and correction publication-title: J Proteome Res doi: 10.1021/acs.jproteome.0c00488 |
SSID | ssj0005056 |
Score | 2.460674 |
Snippet | Motivation
Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other... Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown... Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Applications Note Availability Biological effects Computational Biology - methods Data analysis DNA microarrays Gene expression Gene Expression Profiling - methods Humans Immune system Impact analysis Real time RNA processing Software |
Title | BatchFLEX: feature-level equalization of X-batch |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39360977 https://www.proquest.com/docview/3128013334 https://www.proquest.com/docview/3112529580 https://pubmed.ncbi.nlm.nih.gov/PMC11486499 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KQfAivo3WEsGTsDTJvrLeVFqK-Li0kFvIJhtakES0PfjvnU3S2hQEPeWws4Sd2WS-Yef7FuBaplhXeakgNDOCMJGmJMkSTqQRWSCUr42y5OTnFzGesseIRx3wV1yY7SN8RQd6XjYiola4eKAXieGh5Y9jJrZq-ZPX6KepA_P5igf869RWCmrR2jbQ5XaT5EbWGe3DXgMX3bs6vgfQMcUh7NQXSH4dgXePf9LZ6GkY3bq5qTQ6yZttA3JNxZasOZZumbsR0db0GKaj4eRhTJo7EEjKaLAgjAqhqEVdGZNSUskNAk3FjCdyGtrbWkKucFW-n3HKJBZQiWJ-zo1kKZMJoyfQLcrCnIFrlEoTnfvayyTLhcFnqHnKc50haAi5A4OVW-L3Wuoiro-oadx2ZNw40oEb9N6fjXsrJ8fNd_IZU0yPCEIpZQ5crYdxh9tji6Qw5dLaIAgLFA89B07rmKxfSRUVHkJYB8JWtNYGVj27PVLMZ5WKti0EBdZ75_9ZxAXsBohq6m6-HnQXH0tziahkoftVNd-vtuM3yqDmfA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BatchFLEX%3A+feature-level+equalization+of+X-batch&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Davis%2C+Joshua+T&rft.au=Obermayer%2C+Alyssa+N&rft.au=Soupir%2C+Alex+C&rft.au=Hesterberg%2C+Rebecca+S&rft.date=2024-10-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=40&rft.issue=10&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae587&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btae587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |