BatchFLEX: feature-level equalization of X-batch

Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 40; no. 10
Main Authors Davis, Joshua T, Obermayer, Alyssa N, Soupir, Alex C, Hesterberg, Rebecca S, Duong, Thac, Yang, Ching-Yao, Dao, Ken Phong, Manley, Brandon J, Grass, G Daniel, Avram, Dorina, Rodriguez, Paulo C, Fridley, Brooke L, Yu, Xiaoqing, Teng, Mingxiang, Wang, Xuefeng, Shaw, Timothy I
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2024
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators. Results Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis. Availability and implementation Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.
AbstractList Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators. Results Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis. Availability and implementation Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.
Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators. Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis. Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.
Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators. Results Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis. Availability and implementation Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.
Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators.MOTIVATIONIntegrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators.Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis.RESULTSHere, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis.Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.AVAILABILITY AND IMPLEMENTATIONOur tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.
Author Soupir, Alex C
Yu, Xiaoqing
Davis, Joshua T
Rodriguez, Paulo C
Teng, Mingxiang
Dao, Ken Phong
Grass, G Daniel
Hesterberg, Rebecca S
Obermayer, Alyssa N
Shaw, Timothy I
Wang, Xuefeng
Fridley, Brooke L
Avram, Dorina
Manley, Brandon J
Duong, Thac
Yang, Ching-Yao
Author_xml – sequence: 1
  givenname: Joshua T
  surname: Davis
  fullname: Davis, Joshua T
– sequence: 2
  givenname: Alyssa N
  surname: Obermayer
  fullname: Obermayer, Alyssa N
– sequence: 3
  givenname: Alex C
  orcidid: 0000-0003-1251-9179
  surname: Soupir
  fullname: Soupir, Alex C
– sequence: 4
  givenname: Rebecca S
  orcidid: 0000-0003-0472-7517
  surname: Hesterberg
  fullname: Hesterberg, Rebecca S
– sequence: 5
  givenname: Thac
  surname: Duong
  fullname: Duong, Thac
– sequence: 6
  givenname: Ching-Yao
  surname: Yang
  fullname: Yang, Ching-Yao
– sequence: 7
  givenname: Ken Phong
  surname: Dao
  fullname: Dao, Ken Phong
– sequence: 8
  givenname: Brandon J
  surname: Manley
  fullname: Manley, Brandon J
– sequence: 9
  givenname: G Daniel
  surname: Grass
  fullname: Grass, G Daniel
– sequence: 10
  givenname: Dorina
  surname: Avram
  fullname: Avram, Dorina
– sequence: 11
  givenname: Paulo C
  surname: Rodriguez
  fullname: Rodriguez, Paulo C
– sequence: 12
  givenname: Brooke L
  orcidid: 0000-0001-7739-7956
  surname: Fridley
  fullname: Fridley, Brooke L
– sequence: 13
  givenname: Xiaoqing
  surname: Yu
  fullname: Yu, Xiaoqing
– sequence: 14
  givenname: Mingxiang
  orcidid: 0000-0002-8536-8941
  surname: Teng
  fullname: Teng, Mingxiang
– sequence: 15
  givenname: Xuefeng
  orcidid: 0000-0001-5775-408X
  surname: Wang
  fullname: Wang, Xuefeng
– sequence: 16
  givenname: Timothy I
  orcidid: 0000-0002-9316-1924
  surname: Shaw
  fullname: Shaw, Timothy I
  email: timothy.shaw@moffitt.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39360977$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9Lw0AQxRdRtK1-BSl48RK7k_3vRVSsCgUvCt6WTTqxKWm27iYF_fSmtBb15GkW5vceb_b1yX7tayTkFOgFUMNGWenLuvBh4Zoyj6OscSi02iM9YFIlXAPs_3gfkX6Mc0qpoEIekiNmmKRGqR6hN67JZ-PJ3evlsEDXtAGTCldYDfG9dVX52fn7euiL4WuSrdFjclC4KuLJdg7Iy_ju-fYhmTzdP95eT5Kcs7RJOJPSMCGFnHKlFFMCNWSGI5UF0xI018J0mQGmgnGV6tQZDoVAxXOuHGcDcrXxXbbZAqc51k1wlV2GcuHCh_WutL83dTmzb35lAbiW3JjO4XzrEPx7i7GxizLmWFWuRt9GywBSkRqhaYee_UHnvg11d19HpZoCY2wd6fRnpF2W79_sALkB8uBjDFjsEKB2XZv9XZvd1tYJYSP07fK_mi_ZY58n
Cites_doi 10.1038/nbt.2931
10.1186/s12859-016-1212-5
10.1084/jem.20110538
10.1158/2326-6066.CIR-13-0209
10.1186/1471-2105-14-7
10.1038/s41598-017-11110-6
10.1093/bioinformatics/btw538
10.1093/biostatistics/kxv027
10.1093/nar/gkv007
10.1038/srep00765
10.1371/journal.pgen.0030161
10.1038/ni.2262
10.4049/jimmunol.1002695
10.1038/ni1008-1091
10.1016/j.cell.2015.12.032
10.1007/978-1-0716-0327-7_16
10.1093/nargab/lqaa078
10.1093/biostatistics/kxj037
10.1021/acs.jproteome.0c00488
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btae587
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC11486499
39360977
10_1093_bioinformatics_btae587
10.1093/bioinformatics/btae587
Genre Journal Article
Report
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA273034
– fundername: NCI NIH HHS
  grantid: R01 CA262121
– fundername: NCI NIH HHS
  grantid: T32 CA233399
– fundername: American Cancer Society
  grantid: IRG-21-145-25
– fundername: NCI NIH HHS
  grantid: P01 CA250984
– fundername: ;
  grantid: T32 CA233399
– fundername: ;
  grantid: IRG-21-145-25
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c432t-4366935656d4777375e81b94e06f386184859ae511d5347282a941f5e74c47a43
IEDL.DBID TOX
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:31:20 EDT 2025
Fri Jul 11 00:40:21 EDT 2025
Wed Aug 13 02:35:02 EDT 2025
Tue Jul 22 01:42:05 EDT 2025
Tue Jul 01 02:34:05 EDT 2025
Mon Jun 30 08:34:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-4366935656d4777375e81b94e06f386184859ae511d5347282a941f5e74c47a43
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Joshua T Davis and Alyssa N Obermayer equal contribution.
ORCID 0000-0003-1251-9179
0000-0003-0472-7517
0000-0001-7739-7956
0000-0002-9316-1924
0000-0001-5775-408X
0000-0002-8536-8941
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btae587
PMID 39360977
PQID 3128013334
PQPubID 36124
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11486499
proquest_miscellaneous_3112529580
proquest_journals_3128013334
pubmed_primary_39360977
crossref_primary_10_1093_bioinformatics_btae587
oup_primary_10_1093_bioinformatics_btae587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Sturm (2024101722010719400_btae587-B18) 2020; 2120
Desch (2024101722010719400_btae587-B1) 2011; 208
Oytam (2024101722010719400_btae587-B14) 2016; 17
Painter (2024101722010719400_btae587-B15) 2011; 186
Messina (2024101722010719400_btae587-B10) 2012; 2
Zhang (2024101722010719400_btae587-B19) 2020; 2
Johnson (2024101722010719400_btae587-B5) 2007; 8
Nygaard (2024101722010719400_btae587-B13) 2016; 17
Manimaran (2024101722010719400_btae587-B9) 2016; 32
Mostafavi (2024101722010719400_btae587-B11) 2016; 164
Li J, Bushel PR, Chu TM (2024101722010719400_btae587-B7) 2009
Leek (2024101722010719400_btae587-B6) 2007; 3
Nyamundanda (2024101722010719400_btae587-B12) 2017; 7
Heng (2024101722010719400_btae587-B4) 2008; 9
Zhu (2024101722010719400_btae587-B20) 2021; 20
Risso (2024101722010719400_btae587-B16) 2014; 32
Hanzelmann (2024101722010719400_btae587-B3) 2013; 14
Elpek (2024101722010719400_btae587-B2) 2014; 2
Malhotra (2024101722010719400_btae587-B8) 2012; 13
Ritchie (2024101722010719400_btae587-B17) 2015; 43
References_xml – volume: 32
  start-page: 896
  year: 2014
  ident: 2024101722010719400_btae587-B16
  article-title: Normalization of RNA-seq data using factor analysis of control genes or samples
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2931
– volume: 17
  start-page: 332
  year: 2016
  ident: 2024101722010719400_btae587-B14
  article-title: Risk-conscious correction of batch effects: maximising information extraction from high-throughput genomic datasets
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1212-5
– volume: 208
  start-page: 1789
  year: 2011
  ident: 2024101722010719400_btae587-B1
  article-title: CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen
  publication-title: J Exp Med
  doi: 10.1084/jem.20110538
– volume: 2
  start-page: 655
  year: 2014
  ident: 2024101722010719400_btae587-B2
  article-title: The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-13-0209
– volume: 14
  start-page: 7
  year: 2013
  ident: 2024101722010719400_btae587-B3
  article-title: GSVA: gene set variation analysis for microarray and RNA-seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-7
– volume: 7
  start-page: 10849
  year: 2017
  ident: 2024101722010719400_btae587-B12
  article-title: A novel statistical method to diagnose, quantify and correct batch effects in genomic studies
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-11110-6
– volume: 32
  start-page: 3836
  year: 2016
  ident: 2024101722010719400_btae587-B9
  article-title: BatchQC: interactive software for evaluating sample and batch effects in genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw538
– volume: 17
  start-page: 29
  year: 2016
  ident: 2024101722010719400_btae587-B13
  article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxv027
– volume: 43
  start-page: e47
  year: 2015
  ident: 2024101722010719400_btae587-B17
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 2
  start-page: 765
  year: 2012
  ident: 2024101722010719400_btae587-B10
  article-title: 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy?
  publication-title: Sci Rep
  doi: 10.1038/srep00765
– volume: 3
  start-page: 1724
  year: 2007
  ident: 2024101722010719400_btae587-B6
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030161
– volume: 13
  start-page: 499
  year: 2012
  ident: 2024101722010719400_btae587-B8
  article-title: Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks
  publication-title: Nat Immunol
  doi: 10.1038/ni.2262
– volume: 186
  start-page: 3047
  year: 2011
  ident: 2024101722010719400_btae587-B15
  article-title: Transcriptomes of the B and T lineages compared by multiplatform microarray profiling
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1002695
– volume: 9
  start-page: 1091
  year: 2008
  ident: 2024101722010719400_btae587-B4
  article-title: The immunological genome project: networks of gene expression in immune cells
  publication-title: Nat Immunol
  doi: 10.1038/ni1008-1091
– start-page: 141
  year: 2009
  ident: 2024101722010719400_btae587-B7
– volume: 164
  start-page: 564
  year: 2016
  ident: 2024101722010719400_btae587-B11
  article-title: Parsing the interferon transcriptional network and its disease associations
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.032
– volume: 2120
  start-page: 223
  year: 2020
  ident: 2024101722010719400_btae587-B18
  article-title: Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-0327-7_16
– volume: 2
  start-page: lqaa078
  year: 2020
  ident: 2024101722010719400_btae587-B19
  article-title: ComBat-seq: batch effect adjustment for RNA-seq count data
  publication-title: NAR Genom Bioinform
  doi: 10.1093/nargab/lqaa078
– volume: 8
  start-page: 118
  year: 2007
  ident: 2024101722010719400_btae587-B5
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 20
  start-page: 1079
  year: 2021
  ident: 2024101722010719400_btae587-B20
  article-title: BatchServer: a web server for batch effect evaluation, visualization, and correction
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.0c00488
SSID ssj0005056
Score 2.460674
Snippet Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other...
Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown...
Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Applications Note
Availability
Biological effects
Computational Biology - methods
Data analysis
DNA microarrays
Gene expression
Gene Expression Profiling - methods
Humans
Immune system
Impact analysis
Real time
RNA processing
Software
Title BatchFLEX: feature-level equalization of X-batch
URI https://www.ncbi.nlm.nih.gov/pubmed/39360977
https://www.proquest.com/docview/3128013334
https://www.proquest.com/docview/3112529580
https://pubmed.ncbi.nlm.nih.gov/PMC11486499
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KQfAivo3WEsGTsDTJvrLeVFqK-Li0kFvIJhtakES0PfjvnU3S2hQEPeWws4Sd2WS-Yef7FuBaplhXeakgNDOCMJGmJMkSTqQRWSCUr42y5OTnFzGesseIRx3wV1yY7SN8RQd6XjYiola4eKAXieGh5Y9jJrZq-ZPX6KepA_P5igf869RWCmrR2jbQ5XaT5EbWGe3DXgMX3bs6vgfQMcUh7NQXSH4dgXePf9LZ6GkY3bq5qTQ6yZttA3JNxZasOZZumbsR0db0GKaj4eRhTJo7EEjKaLAgjAqhqEVdGZNSUskNAk3FjCdyGtrbWkKucFW-n3HKJBZQiWJ-zo1kKZMJoyfQLcrCnIFrlEoTnfvayyTLhcFnqHnKc50haAi5A4OVW-L3Wuoiro-oadx2ZNw40oEb9N6fjXsrJ8fNd_IZU0yPCEIpZQ5crYdxh9tji6Qw5dLaIAgLFA89B07rmKxfSRUVHkJYB8JWtNYGVj27PVLMZ5WKti0EBdZ75_9ZxAXsBohq6m6-HnQXH0tziahkoftVNd-vtuM3yqDmfA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BatchFLEX%3A+feature-level+equalization+of+X-batch&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Davis%2C+Joshua+T&rft.au=Obermayer%2C+Alyssa+N&rft.au=Soupir%2C+Alex+C&rft.au=Hesterberg%2C+Rebecca+S&rft.date=2024-10-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=40&rft.issue=10&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae587&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btae587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon