Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network
Tropical cyclone intensity estimation is a challenging task as it required domain knowledge while extracting features, significant pre-processing, various sets of parameters obtained from satellites, and human intervention for analysis. The inconsistency of results, significant pre-processing of dat...
Saved in:
Published in | IEEE transactions on image processing Vol. 27; no. 2; pp. 692 - 702 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Tropical cyclone intensity estimation is a challenging task as it required domain knowledge while extracting features, significant pre-processing, various sets of parameters obtained from satellites, and human intervention for analysis. The inconsistency of results, significant pre-processing of data, complexity of the problem domain, and problems on generalizability are some of the issues related to intensity estimation. In this study, we design a deep convolutional neural network architecture for categorizing hurricanes based on intensity using graphics processing unit. Our model has achieved better accuracy and lower root-mean-square error by just using satellite images than 'state-of-the-art' techniques. Visualizations of learned features at various layers and their deconvolutions are also presented for understanding the learning process. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2017.2766358 |