A bio-optical inversion model to retrieve absorption contributions and phytoplankton size structure from total minus water spectral absorption using genetic algorithm

We propose a bio-optical inversion model that retrieves the absorption contributions of phytoplankton and colored detrital matter (CDM), as well as the phytoplankton size classes (PSCs), from total minus water absorption spectra. The model is based on three-component separation of phytoplankton size...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of oceanology and limnology Vol. 31; no. 5; pp. 970 - 978
Main Author 林俊芳 曹文熙 周雯 胡水波 王桂芬 孙兆华 许占堂 宋庆君
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.09.2013
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0254-4059
2096-5508
1993-5005
2523-3521
DOI10.1007/s00343-013-2330-9

Cover

More Information
Summary:We propose a bio-optical inversion model that retrieves the absorption contributions of phytoplankton and colored detrital matter (CDM), as well as the phytoplankton size classes (PSCs), from total minus water absorption spectra. The model is based on three-component separation of phytoplankton size structure and a genetic algorithm. The model performance was tested on two independent datasets (the NASA bio-Optical Marine Algorithm Dataset (NOMAD) and the northern South China Sea (NSCS) dataset). The relationships between the estimated and measured values were strongly linear, especially for aCDM(412), and the Root Mean Square Error (RMSE) of the CDM exponential slope (ScDM) was relatively low. Next, the inversion model was directly applied to in-situ total minus water absorption spectra determined by an underwater meter during a cruise in September 2008, to retrieve the phytoplankton size structure in the seawater. By comparing the measured and retrieved chlorophyll a concentrations, we demonstrated that total and size-specific chlorophyll a concentrations could be retrieved by the model with relatively high accuracy. Finally, we applied the bio-optical inversion model to investigate changes in phytoplankton size structure induced by an anti-cyclonic eddy in the NSCS.
Bibliography:LIN Junfang , CAO Wenxi , ZHOU Wen , HU Shuibo, WANG Guifen, SUN Zhaohua, XU Zhantang , SONG Qingjun
We propose a bio-optical inversion model that retrieves the absorption contributions of phytoplankton and colored detrital matter (CDM), as well as the phytoplankton size classes (PSCs), from total minus water absorption spectra. The model is based on three-component separation of phytoplankton size structure and a genetic algorithm. The model performance was tested on two independent datasets (the NASA bio-Optical Marine Algorithm Dataset (NOMAD) and the northern South China Sea (NSCS) dataset). The relationships between the estimated and measured values were strongly linear, especially for aCDM(412), and the Root Mean Square Error (RMSE) of the CDM exponential slope (ScDM) was relatively low. Next, the inversion model was directly applied to in-situ total minus water absorption spectra determined by an underwater meter during a cruise in September 2008, to retrieve the phytoplankton size structure in the seawater. By comparing the measured and retrieved chlorophyll a concentrations, we demonstrated that total and size-specific chlorophyll a concentrations could be retrieved by the model with relatively high accuracy. Finally, we applied the bio-optical inversion model to investigate changes in phytoplankton size structure induced by an anti-cyclonic eddy in the NSCS.
37-1150/P
inversion; phytoplankton size classes; absorption coefficients; genetic algorithm
http://dx.doi.org/10.1007/s00343-013-2330-9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0254-4059
2096-5508
1993-5005
2523-3521
DOI:10.1007/s00343-013-2330-9