The Holographic Nature of Null Infinity

We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null inf...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 10; no. 2; p. 041
Main Authors Laddha, Alok, Prabhu, Siddharth, Raju, Suvrat, Shrivastava, Pushkal
Format Journal Article
LanguageEnglish
Published SciPost 18.02.2021
Online AccessGet full text

Cover

Loading…
Abstract We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment (-infty,u) of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
AbstractList We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment $(-\infty,u)$ of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment (-infty,u) of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
ArticleNumber 041
Author Prabhu, Siddharth
Raju, Suvrat
Shrivastava, Pushkal
Laddha, Alok
Author_xml – sequence: 1
  givenname: Alok
  surname: Laddha
  fullname: Laddha, Alok
  organization: Chennai Mathematical Institute
– sequence: 2
  givenname: Siddharth
  surname: Prabhu
  fullname: Prabhu, Siddharth
  organization: Tata Institute of Fundamental Research
– sequence: 3
  givenname: Suvrat
  surname: Raju
  fullname: Raju, Suvrat
  organization: Tata Institute of Fundamental Research
– sequence: 4
  givenname: Pushkal
  surname: Shrivastava
  fullname: Shrivastava, Pushkal
  organization: Tata Institute of Fundamental Research
BookMark eNp9kE1LAzEURYNUsNb-BGF2rqbmZZLMFFdS1BaKFqzr8PLVpoyTkpku-u-trUJx4epdLtzD41yTXhMbR8gt0BEDLqv7dxMWse0W6307-i5HlMMF6TPBWc6lKHpn-YoM23ZDKWUAY5CiT-6Wa5dNYx1XCbfrYLJX7HbJZdFnr7u6zmaND03o9jfk0mPduuHPHZCP56flZJrP315mk8d5bnjBurxAzqkFbuzYQAVQUAoSSqYrQ4X3tvKUWcFL4aR0uvJoQXurpTeiLNGPiwGZnbg24kZtU_jEtFcRgzoWMa0Upi6Y2inupKNaVhqp5SWgNoxqxwvU2lXg8MB6OLFMim2bnFcmdNiF2HQJQ62AqqNCdabwWKqDwsNa_Fn_fvP_7guOR3tu
CitedBy_id crossref_primary_10_1007_JHEP01_2022_126
crossref_primary_10_1007_JHEP05_2021_210
crossref_primary_10_1103_PhysRevD_108_086035
crossref_primary_10_1103_PhysRevD_109_084055
crossref_primary_10_1103_PhysRevD_110_026026
crossref_primary_10_1103_PhysRevLett_129_071602
crossref_primary_10_21468_SciPostPhys_12_1_003
crossref_primary_10_1007_JHEP01_2024_132
crossref_primary_10_1007_JHEP05_2021_291
crossref_primary_10_1103_PhysRevD_107_026009
crossref_primary_10_1007_JHEP05_2024_300
crossref_primary_10_1016_j_physrep_2021_10_001
crossref_primary_10_1007_JHEP06_2024_081
crossref_primary_10_1103_PhysRevLett_128_111301
crossref_primary_10_1007_JHEP07_2021_004
crossref_primary_10_1103_PhysRevD_109_026007
crossref_primary_10_1007_JHEP02_2023_016
crossref_primary_10_1007_JHEP05_2021_126
crossref_primary_10_1007_JHEP01_2023_129
crossref_primary_10_1103_PhysRevD_108_106005
crossref_primary_10_1140_epjc_s10052_024_12461_x
crossref_primary_10_1007_JHEP10_2022_031
crossref_primary_10_1007_JHEP12_2023_120
crossref_primary_10_1007_JHEP03_2022_040
crossref_primary_10_1007_JHEP08_2021_003
crossref_primary_10_1007_JHEP08_2024_016
crossref_primary_10_1007_JHEP09_2022_089
crossref_primary_10_21468_SciPostPhys_10_5_106
crossref_primary_10_1007_JHEP08_2022_227
crossref_primary_10_1007_JHEP05_2022_047
crossref_primary_10_1007_JHEP12_2024_170
crossref_primary_10_1016_j_physletb_2025_139381
crossref_primary_10_1140_epjc_s10052_021_09680_x
crossref_primary_10_1007_JHEP09_2024_157
crossref_primary_10_1140_epjc_s10052_022_10376_z
crossref_primary_10_1007_JHEP10_2023_151
crossref_primary_10_1007_JHEP09_2024_195
crossref_primary_10_1007_JHEP08_2021_119
crossref_primary_10_1007_JHEP01_2022_182
crossref_primary_10_1007_JHEP03_2022_110
crossref_primary_10_21468_SciPostPhys_12_4_135
crossref_primary_10_1007_JHEP01_2023_138
crossref_primary_10_1007_s00023_024_01428_z
crossref_primary_10_21468_SciPostPhysCore_5_2_033
crossref_primary_10_1007_JHEP11_2021_192
crossref_primary_10_1007_JHEP04_2024_079
crossref_primary_10_1103_PhysRevD_106_066005
crossref_primary_10_1007_JHEP02_2024_125
crossref_primary_10_1007_JHEP08_2022_118
crossref_primary_10_1007_JHEP12_2022_095
crossref_primary_10_1007_JHEP03_2021_253
crossref_primary_10_1007_JHEP09_2024_022
crossref_primary_10_1007_JHEP04_2023_028
crossref_primary_10_21468_SciPostPhys_10_5_103
crossref_primary_10_1007_JHEP06_2021_134
crossref_primary_10_1007_JHEP06_2022_124
crossref_primary_10_1209_0295_5075_ac81e8
crossref_primary_10_1007_JHEP11_2021_067
crossref_primary_10_1088_1361_6382_aca192
crossref_primary_10_1116_5_0091962
crossref_primary_10_1007_JHEP07_2024_086
crossref_primary_10_1007_JHEP11_2021_040
crossref_primary_10_1142_S0217751X22501056
crossref_primary_10_1142_S0218271824410220
crossref_primary_10_1007_JHEP08_2021_104
crossref_primary_10_1088_1751_8121_ac9a40
crossref_primary_10_3390_universe10090367
crossref_primary_10_1007_JHEP05_2024_135
crossref_primary_10_1007_JHEP08_2023_056
crossref_primary_10_1103_PhysRevD_107_024038
crossref_primary_10_1007_JHEP05_2024_016
crossref_primary_10_1007_JHEP06_2023_109
crossref_primary_10_1007_JHEP05_2022_153
crossref_primary_10_1016_j_physletb_2022_136995
crossref_primary_10_1007_JHEP03_2022_019
crossref_primary_10_1103_PhysRevD_106_025021
crossref_primary_10_1007_JHEP01_2025_063
crossref_primary_10_1007_JHEP05_2024_261
crossref_primary_10_1103_PhysRevD_107_026016
crossref_primary_10_1007_JHEP04_2021_225
crossref_primary_10_1088_1361_6382_acbe8b
crossref_primary_10_21468_SciPostPhys_15_5_199
crossref_primary_10_1007_JHEP12_2024_028
crossref_primary_10_1103_PhysRevD_108_066013
crossref_primary_10_1007_JHEP10_2021_226
crossref_primary_10_1103_PhysRevD_106_086002
crossref_primary_10_1007_JHEP11_2021_152
Cites_doi 10.1088/1361-6382/aa5b5f
10.1088/1126-6708/2007/03/122
10.1142/S0129055X0600270X
10.1007/s10714-008-0661-1
10.1007/JHEP03(2016)023
10.1088/1742-6596/33/1/027
10.1103/PhysRevD.96.085006
10.1098/rspa.1962.0161
10.1103/PhysRevD.100.085017
10.1007/JHEP10(2012)092
10.1007/JHEP12(2015)094
10.1007/JHEP03(2020)149
10.1103/PhysRevD.96.085002
10.1007/JHEP11(2010)014
10.1103/PhysRevD.97.046002
10.1103/PhysRevD.96.025004
10.1103/PhysRevLett.71.1291
10.1007/JHEP02(2018)171
10.1007/JHEP10(2019)018
10.21468/SciPostPhys.7.4.057
10.1007/JHEP01(2018)014
10.1007/JHEP08(2019)021
10.1088/0264-9381/23/7/001
10.1088/1126-6708/2004/11/011
10.1016/j.nuclphysb.2003.09.051
10.1007/JHEP02(2013)062
10.1103/PhysRevD.97.046014
10.1103/PhysRevD.96.065026
10.1016/0003-4916(74)90404-7
10.1088/0264-9381/26/22/224001
10.1140/epjc/s10052-018-6058-8
10.1007/JHEP03(2020)130
10.1088/1126-6708/2008/04/096
10.1103/PhysRevD.89.086010
10.1103/PhysRevLett.106.141301
10.1007/s002200100381
10.1007/JHEP11(2019)005
10.1103/PhysRevLett.105.171601
10.1140/epjc/s10052-016-4548-0
10.1007/JHEP08(2019)168
10.1007/JHEP12(2019)057
10.21468/SciPostPhys.6.6.073
10.1007/JHEP08(2017)050
10.1007/JHEP03(2019)017
10.1007/JHEP01(2018)142
10.1016/S0550-3213(03)00494-2
10.1007/JHEP02(2020)067
10.1088/1361-6382/ab42ce
10.1007/JHEP05(2010)062
10.1103/PhysRevD.97.066009
10.1007/JHEP10(2020)116
10.1063/1.525169
10.1063/1.523863
10.1103/PhysRevD.75.024007
10.1088/0264-9381/24/5/F01
10.1007/s10714-018-2464-3
10.1103/PhysRevLett.46.573
10.1007/JHEP10(2013)107
10.1088/1126-6708/2005/10/059
10.1016/j.physletb.2018.04.010
10.1016/S0370-2693(98)00377-3
10.1007/JHEP11(2012)046
10.1088/1361-6382/aa8388
10.1007/JHEP05(2019)121
10.1088/0264-9381/28/14/145007
10.1103/PhysRevLett.43.181
10.1088/0264-9381/24/11/C01
10.1007/JHEP09(2020)130
10.1142/S0218271819440115
10.1063/1.4993198
10.1103/PhysRevD.91.126005
10.1088/1126-6708/2006/08/045
0.1103/PhysRevD.101.104039
10.1088/0264-9381/21/23/022
10.1103/PhysRevD.93.025030
10.1098/rspa.1981.0109
10.1007/JHEP02(2012)024
10.1007/JHEP04(2018)039
10.1016/j.nuclphysb.2018.08.019
10.1007/JHEP05(2020)013
10.1088/1361-6382/aa9602
10.1103/PhysRevD.101.106014
10.1088/0264-9381/31/1/015008
10.1007/JHEP07(2014)152
10.1088/1751-8113/42/50/504007
10.1016/j.nuclphysb.2017.10.025
10.1007/JHEP10(2013)212
10.1103/PhysRevD.96.065022
10.1016/j.physletb.2016.07.062
10.1103/PhysRevLett.119.121601
10.1007/JHEP01(2019)205
10.1002/prop.201300020
10.1016/j.physletb.2004.10.060
10.1007/s00023-018-0650-1
10.1103/PhysRevD.100.046002
10.1007/JHEP10(2019)167
10.1023/A:1026654312961
10.1103/PhysRevD.86.024020
10.1007/JHEP05(2016)004
10.1007/JHEP05(2015)151
10.1007/JHEP02(2019)086
10.1007/JHEP05(2018)186
10.1103/PhysRevLett.116.231301
10.1103/PhysRevD.79.044010
10.1007/JHEP01(2019)184
10.1088/0264-9381/23/9/010
10.1103/PhysRevD.101.066029
10.1103/PhysRevLett.114.111602
10.1007/s10714-019-2609-z
10.1007/JHEP07(2018)165
10.1088/1126-6708/2004/12/041
10.1016/j.physrep.2019.09.006
10.1007/JHEP11(2017)168
10.1007/JHEP07(2019)128
10.1007/JHEP08(2017)124
10.1103/PhysRevD.98.025020
10.1088/1361-6382/ab74f6
10.1103/PhysRevLett.105.111103
10.1103/PhysRevLett.96.181602
10.1103/PhysRevD.98.085018
10.1007/JHEP07(2017)142
10.1007/JHEP11(2018)200
10.1007/JHEP10(2016)137
10.1088/1361-6382/aa8aad
10.1103/PhysRevD.96.066033
10.1103/PhysRevD.101.066010
10.1088/1126-6708/2007/07/062
10.1007/JHEP02(2020)125
10.4310/ATMP.1998.v2.n2.a2
10.1088/1361-6382/ab954a
10.1007/JHEP01(2017)112
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhys.10.2.041
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_4e6e0b68ba0d471abc20be43abbe81ea
10_21468_SciPostPhys_10_2_041
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c432t-3a440d14cd9c181130016172b8c05ffd8f02d5475e66eb8fad1bfdb6fc577af93
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Wed Aug 27 01:22:42 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
Tue Jul 01 03:56:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-3a440d14cd9c181130016172b8c05ffd8f02d5475e66eb8fad1bfdb6fc577af93
OpenAccessLink https://doaj.org/article/4e6e0b68ba0d471abc20be43abbe81ea
ParticipantIDs doaj_primary_oai_doaj_org_article_4e6e0b68ba0d471abc20be43abbe81ea
crossref_citationtrail_10_21468_SciPostPhys_10_2_041
crossref_primary_10_21468_SciPostPhys_10_2_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-18
PublicationDateYYYYMMDD 2021-02-18
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-18
  day: 18
PublicationDecade 2020
PublicationTitle SciPost physics
PublicationYear 2021
Publisher SciPost
Publisher_xml – name: SciPost
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref131
ref94
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref45
  doi: 10.1088/1361-6382/aa5b5f
– ident: ref93
  doi: 10.1088/1126-6708/2007/03/122
– ident: ref21
  doi: 10.1142/S0129055X0600270X
– ident: ref107
  doi: 10.1007/s10714-008-0661-1
– ident: ref40
  doi: 10.1007/JHEP03(2016)023
– ident: ref23
  doi: 10.1088/1742-6596/33/1/027
– ident: ref55
  doi: 10.1103/PhysRevD.96.085006
– ident: ref109
  doi: 10.1098/rspa.1962.0161
– ident: ref74
  doi: 10.1103/PhysRevD.100.085017
– ident: ref11
  doi: 10.1007/JHEP10(2012)092
– ident: ref112
  doi: 10.1007/JHEP12(2015)094
– ident: ref8
  doi: 10.1007/JHEP03(2020)149
– ident: ref101
  doi: 10.1103/PhysRevD.96.085002
– ident: ref30
  doi: 10.1007/JHEP11(2010)014
– ident: ref53
  doi: 10.1103/PhysRevD.97.046002
– ident: ref50
  doi: 10.1103/PhysRevD.96.025004
– ident: ref116
  doi: 10.1103/PhysRevLett.71.1291
– ident: ref110
  doi: 10.1007/JHEP02(2018)171
– ident: ref75
  doi: 10.1007/JHEP10(2019)018
– ident: ref92
  doi: 10.21468/SciPostPhys.7.4.057
– ident: ref57
  doi: 10.1007/JHEP01(2018)014
– ident: ref113
  doi: 10.1007/JHEP08(2019)021
– ident: ref127
  doi: 10.1088/0264-9381/23/7/001
– ident: ref19
  doi: 10.1088/1126-6708/2004/11/011
– ident: ref15
  doi: 10.1016/j.nuclphysb.2003.09.051
– ident: ref121
  doi: 10.1007/JHEP02(2013)062
– ident: ref96
  doi: 10.1103/PhysRevD.97.046014
– ident: ref13
  doi: 10.1103/PhysRevD.96.065026
– ident: ref108
  doi: 10.1016/0003-4916(74)90404-7
– ident: ref120
  doi: 10.1088/0264-9381/26/22/224001
– ident: ref66
  doi: 10.1140/epjc/s10052-018-6058-8
– ident: ref79
  doi: 10.1007/JHEP03(2020)130
– ident: ref27
  doi: 10.1088/1126-6708/2008/04/096
– ident: ref124
  doi: 10.1103/PhysRevD.89.086010
– ident: ref31
  doi: 10.1103/PhysRevLett.106.141301
– ident: ref131
  doi: 10.1007/s002200100381
– ident: ref86
  doi: 10.1007/JHEP11(2019)005
– ident: ref10
  doi: 10.1103/PhysRevLett.105.171601
– ident: ref43
  doi: 10.1140/epjc/s10052-016-4548-0
– ident: ref77
  doi: 10.1007/JHEP08(2019)168
– ident: ref85
  doi: 10.1007/JHEP12(2019)057
– ident: ref6
  doi: 10.21468/SciPostPhys.6.6.073
– ident: ref47
  doi: 10.1007/JHEP08(2017)050
– ident: ref71
  doi: 10.1007/JHEP03(2019)017
– ident: ref102
  doi: 10.1007/JHEP01(2018)142
– ident: ref9
  doi: 10.1016/S0550-3213(03)00494-2
– ident: ref82
  doi: 10.1007/JHEP02(2020)067
– ident: ref76
  doi: 10.1088/1361-6382/ab42ce
– ident: ref29
  doi: 10.1007/JHEP05(2010)062
– ident: ref61
  doi: 10.1103/PhysRevD.97.066009
– ident: ref88
  doi: 10.1007/JHEP10(2020)116
– ident: ref104
  doi: 10.1063/1.525169
– ident: ref130
  doi: 10.1063/1.523863
– ident: ref24
  doi: 10.1103/PhysRevD.75.024007
– ident: ref25
  doi: 10.1088/0264-9381/24/5/F01
– ident: ref97
  doi: 10.1007/s10714-018-2464-3
– ident: ref98
  doi: 10.1103/PhysRevLett.46.573
– ident: ref125
  doi: 10.1007/JHEP10(2013)107
– ident: ref20
  doi: 10.1088/1126-6708/2005/10/059
– ident: ref64
  doi: 10.1016/j.physletb.2018.04.010
– ident: ref3
  doi: 10.1016/S0370-2693(98)00377-3
– ident: ref35
  doi: 10.1007/JHEP11(2012)046
– ident: ref59
  doi: 10.1088/1361-6382/aa8388
– ident: ref80
  doi: 10.1007/JHEP05(2019)121
– ident: ref32
  doi: 10.1088/0264-9381/28/14/145007
– ident: ref106
  doi: 10.1103/PhysRevLett.43.181
– ident: ref26
  doi: 10.1088/0264-9381/24/11/C01
– ident: ref81
  doi: 10.1007/JHEP09(2020)130
– ident: ref4
  doi: 10.1142/S0218271819440115
– ident: ref51
  doi: 10.1063/1.4993198
– ident: ref38
  doi: 10.1103/PhysRevD.91.126005
– ident: ref117
  doi: 10.1088/1126-6708/2006/08/045
– ident: ref114
  doi: 0.1103/PhysRevD.101.104039
– ident: ref16
  doi: 10.1088/0264-9381/21/23/022
– ident: ref39
  doi: 10.1103/PhysRevD.93.025030
– ident: ref105
  doi: 10.1098/rspa.1981.0109
– ident: ref33
  doi: 10.1007/JHEP02(2012)024
– ident: ref63
  doi: 10.1007/JHEP04(2018)039
– ident: ref70
  doi: 10.1016/j.nuclphysb.2018.08.019
– ident: ref7
  doi: 10.1007/JHEP05(2020)013
– ident: ref58
  doi: 10.1088/1361-6382/aa9602
– ident: ref73
  doi: 10.1103/PhysRevD.101.106014
– ident: ref95
  doi: 10.1088/0264-9381/31/1/015008
– ident: ref99
  doi: 10.1007/JHEP07(2014)152
– ident: ref128
  doi: 10.1088/1751-8113/42/50/504007
– ident: ref49
  doi: 10.1016/j.nuclphysb.2017.10.025
– ident: ref123
  doi: 10.1007/JHEP10(2013)212
– ident: ref14
  doi: 10.1103/PhysRevD.96.065022
– ident: ref42
  doi: 10.1016/j.physletb.2016.07.062
– ident: ref44
  doi: 10.1103/PhysRevLett.119.121601
– ident: ref65
  doi: 10.1007/JHEP01(2019)205
– ident: ref126
  doi: 10.1002/prop.201300020
– ident: ref18
  doi: 10.1016/j.physletb.2004.10.060
– ident: ref41
  doi: 10.1007/s00023-018-0650-1
– ident: ref115
  doi: 10.1103/PhysRevD.100.046002
– ident: ref84
  doi: 10.1007/JHEP10(2019)167
– ident: ref1
  doi: 10.1023/A:1026654312961
– ident: ref34
  doi: 10.1103/PhysRevD.86.024020
– ident: ref5
  doi: 10.1007/JHEP05(2016)004
– ident: ref100
  doi: 10.1007/JHEP05(2015)151
– ident: ref103
  doi: 10.1007/JHEP02(2019)086
– ident: ref60
  doi: 10.1007/JHEP05(2018)186
– ident: ref129
  doi: 10.1103/PhysRevLett.116.231301
– ident: ref94
  doi: 10.1103/PhysRevD.79.044010
– ident: ref78
  doi: 10.1007/JHEP01(2019)184
– ident: ref22
  doi: 10.1088/0264-9381/23/9/010
– ident: ref83
  doi: 10.1103/PhysRevD.101.066029
– ident: ref36
  doi: 10.1103/PhysRevLett.114.111602
– ident: ref68
  doi: 10.1007/s10714-019-2609-z
– ident: ref67
  doi: 10.1007/JHEP07(2018)165
– ident: ref17
  doi: 10.1088/1126-6708/2004/12/041
– ident: ref48
  doi: 10.1016/j.physrep.2019.09.006
– ident: ref52
  doi: 10.1007/JHEP11(2017)168
– ident: ref91
  doi: 10.1007/JHEP07(2019)128
– ident: ref46
  doi: 10.1007/JHEP08(2017)124
– ident: ref62
  doi: 10.1103/PhysRevD.98.025020
– ident: ref87
  doi: 10.1088/1361-6382/ab74f6
– ident: ref28
  doi: 10.1103/PhysRevLett.105.111103
– ident: ref118
  doi: 10.1103/PhysRevLett.96.181602
– ident: ref69
  doi: 10.1103/PhysRevD.98.085018
– ident: ref56
  doi: 10.1007/JHEP07(2017)142
– ident: ref72
  doi: 10.1007/JHEP11(2018)200
– ident: ref37
  doi: 10.1007/JHEP10(2016)137
– ident: ref54
  doi: 10.1088/1361-6382/aa8aad
– ident: ref122
  doi: 10.1103/PhysRevD.96.066033
– ident: ref111
  doi: 10.1103/PhysRevD.101.066010
– ident: ref119
  doi: 10.1088/1126-6708/2007/07/062
– ident: ref90
  doi: 10.1007/JHEP02(2020)125
– ident: ref2
  doi: 10.4310/ATMP.1998.v2.n2.a2
– ident: ref89
  doi: 10.1088/1361-6382/ab954a
– ident: ref12
  doi: 10.1007/JHEP01(2017)112
SSID ssj0002119165
Score 2.5474865
Snippet We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 041
Title The Holographic Nature of Null Infinity
URI https://doaj.org/article/4e6e0b68ba0d471abc20be43abbe81ea
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf7EHwlHaz2edRxVIFe7LQW9gnFCQVrQf_vTubtMSTF69DNiTfZHdmNrPfh9CNt9oy2F4i1MWCeScLY0gsaBRGSyBYibA18DIT0zl7XvBFT-oLesJaeuAWuDELIhArlDXEp4XUWEeJDawy1gZVhpwapZjXK6ZgDc68ZYK3R3ZAu1qN01wB_VtorByBcURY-SsY9Tj7c3CZHKD9LivEd-3THKKd0Byh3dyd6T6P0W1yJp5u6KWXDs8yHSdeRTxLJSR-auIyTc3vEzSfPL4-TItO4aBwrKLrojKMEV8y57VLoRZ-LUG9Qa1yhMfoVSTUcyZ5ECJYFY0vbYSDc45LaaKuTtGgWTXhDGHNg9LEexlNBZTxVphodFBBeq-cUkPENq9au47-G1Qo3upUBmSE6h5C2VgnhIZotB323vJf_DXgHnDcXgz01dmQnFp3Tq3_cur5f9zkAu1RaEAB9RZ1iQbrj69wlTKItb3OH8sPApDHBA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Holographic+Nature+of+Null+Infinity&rft.jtitle=SciPost+physics&rft.au=Alok+Laddha%2C+Siddharth+G.+Prabhu%2C+Suvrat+Raju%2C+Pushkal+Shrivastava&rft.date=2021-02-18&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=10&rft.issue=2&rft.spage=041&rft_id=info:doi/10.21468%2FSciPostPhys.10.2.041&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4e6e0b68ba0d471abc20be43abbe81ea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon