The Holographic Nature of Null Infinity
We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null inf...
Saved in:
Published in | SciPost physics Vol. 10; no. 2; p. 041 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
SciPost
18.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions.
Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment (-infty,u) of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey.
We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space. |
---|---|
AbstractList | We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment $(-\infty,u)$ of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space. We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment (-infty,u) of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space. |
ArticleNumber | 041 |
Author | Prabhu, Siddharth Raju, Suvrat Shrivastava, Pushkal Laddha, Alok |
Author_xml | – sequence: 1 givenname: Alok surname: Laddha fullname: Laddha, Alok organization: Chennai Mathematical Institute – sequence: 2 givenname: Siddharth surname: Prabhu fullname: Prabhu, Siddharth organization: Tata Institute of Fundamental Research – sequence: 3 givenname: Suvrat surname: Raju fullname: Raju, Suvrat organization: Tata Institute of Fundamental Research – sequence: 4 givenname: Pushkal surname: Shrivastava fullname: Shrivastava, Pushkal organization: Tata Institute of Fundamental Research |
BookMark | eNp9kE1LAzEURYNUsNb-BGF2rqbmZZLMFFdS1BaKFqzr8PLVpoyTkpku-u-trUJx4epdLtzD41yTXhMbR8gt0BEDLqv7dxMWse0W6307-i5HlMMF6TPBWc6lKHpn-YoM23ZDKWUAY5CiT-6Wa5dNYx1XCbfrYLJX7HbJZdFnr7u6zmaND03o9jfk0mPduuHPHZCP56flZJrP315mk8d5bnjBurxAzqkFbuzYQAVQUAoSSqYrQ4X3tvKUWcFL4aR0uvJoQXurpTeiLNGPiwGZnbg24kZtU_jEtFcRgzoWMa0Upi6Y2inupKNaVhqp5SWgNoxqxwvU2lXg8MB6OLFMim2bnFcmdNiF2HQJQ62AqqNCdabwWKqDwsNa_Fn_fvP_7guOR3tu |
CitedBy_id | crossref_primary_10_1007_JHEP01_2022_126 crossref_primary_10_1007_JHEP05_2021_210 crossref_primary_10_1103_PhysRevD_108_086035 crossref_primary_10_1103_PhysRevD_109_084055 crossref_primary_10_1103_PhysRevD_110_026026 crossref_primary_10_1103_PhysRevLett_129_071602 crossref_primary_10_21468_SciPostPhys_12_1_003 crossref_primary_10_1007_JHEP01_2024_132 crossref_primary_10_1007_JHEP05_2021_291 crossref_primary_10_1103_PhysRevD_107_026009 crossref_primary_10_1007_JHEP05_2024_300 crossref_primary_10_1016_j_physrep_2021_10_001 crossref_primary_10_1007_JHEP06_2024_081 crossref_primary_10_1103_PhysRevLett_128_111301 crossref_primary_10_1007_JHEP07_2021_004 crossref_primary_10_1103_PhysRevD_109_026007 crossref_primary_10_1007_JHEP02_2023_016 crossref_primary_10_1007_JHEP05_2021_126 crossref_primary_10_1007_JHEP01_2023_129 crossref_primary_10_1103_PhysRevD_108_106005 crossref_primary_10_1140_epjc_s10052_024_12461_x crossref_primary_10_1007_JHEP10_2022_031 crossref_primary_10_1007_JHEP12_2023_120 crossref_primary_10_1007_JHEP03_2022_040 crossref_primary_10_1007_JHEP08_2021_003 crossref_primary_10_1007_JHEP08_2024_016 crossref_primary_10_1007_JHEP09_2022_089 crossref_primary_10_21468_SciPostPhys_10_5_106 crossref_primary_10_1007_JHEP08_2022_227 crossref_primary_10_1007_JHEP05_2022_047 crossref_primary_10_1007_JHEP12_2024_170 crossref_primary_10_1016_j_physletb_2025_139381 crossref_primary_10_1140_epjc_s10052_021_09680_x crossref_primary_10_1007_JHEP09_2024_157 crossref_primary_10_1140_epjc_s10052_022_10376_z crossref_primary_10_1007_JHEP10_2023_151 crossref_primary_10_1007_JHEP09_2024_195 crossref_primary_10_1007_JHEP08_2021_119 crossref_primary_10_1007_JHEP01_2022_182 crossref_primary_10_1007_JHEP03_2022_110 crossref_primary_10_21468_SciPostPhys_12_4_135 crossref_primary_10_1007_JHEP01_2023_138 crossref_primary_10_1007_s00023_024_01428_z crossref_primary_10_21468_SciPostPhysCore_5_2_033 crossref_primary_10_1007_JHEP11_2021_192 crossref_primary_10_1007_JHEP04_2024_079 crossref_primary_10_1103_PhysRevD_106_066005 crossref_primary_10_1007_JHEP02_2024_125 crossref_primary_10_1007_JHEP08_2022_118 crossref_primary_10_1007_JHEP12_2022_095 crossref_primary_10_1007_JHEP03_2021_253 crossref_primary_10_1007_JHEP09_2024_022 crossref_primary_10_1007_JHEP04_2023_028 crossref_primary_10_21468_SciPostPhys_10_5_103 crossref_primary_10_1007_JHEP06_2021_134 crossref_primary_10_1007_JHEP06_2022_124 crossref_primary_10_1209_0295_5075_ac81e8 crossref_primary_10_1007_JHEP11_2021_067 crossref_primary_10_1088_1361_6382_aca192 crossref_primary_10_1116_5_0091962 crossref_primary_10_1007_JHEP07_2024_086 crossref_primary_10_1007_JHEP11_2021_040 crossref_primary_10_1142_S0217751X22501056 crossref_primary_10_1142_S0218271824410220 crossref_primary_10_1007_JHEP08_2021_104 crossref_primary_10_1088_1751_8121_ac9a40 crossref_primary_10_3390_universe10090367 crossref_primary_10_1007_JHEP05_2024_135 crossref_primary_10_1007_JHEP08_2023_056 crossref_primary_10_1103_PhysRevD_107_024038 crossref_primary_10_1007_JHEP05_2024_016 crossref_primary_10_1007_JHEP06_2023_109 crossref_primary_10_1007_JHEP05_2022_153 crossref_primary_10_1016_j_physletb_2022_136995 crossref_primary_10_1007_JHEP03_2022_019 crossref_primary_10_1103_PhysRevD_106_025021 crossref_primary_10_1007_JHEP01_2025_063 crossref_primary_10_1007_JHEP05_2024_261 crossref_primary_10_1103_PhysRevD_107_026016 crossref_primary_10_1007_JHEP04_2021_225 crossref_primary_10_1088_1361_6382_acbe8b crossref_primary_10_21468_SciPostPhys_15_5_199 crossref_primary_10_1007_JHEP12_2024_028 crossref_primary_10_1103_PhysRevD_108_066013 crossref_primary_10_1007_JHEP10_2021_226 crossref_primary_10_1103_PhysRevD_106_086002 crossref_primary_10_1007_JHEP11_2021_152 |
Cites_doi | 10.1088/1361-6382/aa5b5f 10.1088/1126-6708/2007/03/122 10.1142/S0129055X0600270X 10.1007/s10714-008-0661-1 10.1007/JHEP03(2016)023 10.1088/1742-6596/33/1/027 10.1103/PhysRevD.96.085006 10.1098/rspa.1962.0161 10.1103/PhysRevD.100.085017 10.1007/JHEP10(2012)092 10.1007/JHEP12(2015)094 10.1007/JHEP03(2020)149 10.1103/PhysRevD.96.085002 10.1007/JHEP11(2010)014 10.1103/PhysRevD.97.046002 10.1103/PhysRevD.96.025004 10.1103/PhysRevLett.71.1291 10.1007/JHEP02(2018)171 10.1007/JHEP10(2019)018 10.21468/SciPostPhys.7.4.057 10.1007/JHEP01(2018)014 10.1007/JHEP08(2019)021 10.1088/0264-9381/23/7/001 10.1088/1126-6708/2004/11/011 10.1016/j.nuclphysb.2003.09.051 10.1007/JHEP02(2013)062 10.1103/PhysRevD.97.046014 10.1103/PhysRevD.96.065026 10.1016/0003-4916(74)90404-7 10.1088/0264-9381/26/22/224001 10.1140/epjc/s10052-018-6058-8 10.1007/JHEP03(2020)130 10.1088/1126-6708/2008/04/096 10.1103/PhysRevD.89.086010 10.1103/PhysRevLett.106.141301 10.1007/s002200100381 10.1007/JHEP11(2019)005 10.1103/PhysRevLett.105.171601 10.1140/epjc/s10052-016-4548-0 10.1007/JHEP08(2019)168 10.1007/JHEP12(2019)057 10.21468/SciPostPhys.6.6.073 10.1007/JHEP08(2017)050 10.1007/JHEP03(2019)017 10.1007/JHEP01(2018)142 10.1016/S0550-3213(03)00494-2 10.1007/JHEP02(2020)067 10.1088/1361-6382/ab42ce 10.1007/JHEP05(2010)062 10.1103/PhysRevD.97.066009 10.1007/JHEP10(2020)116 10.1063/1.525169 10.1063/1.523863 10.1103/PhysRevD.75.024007 10.1088/0264-9381/24/5/F01 10.1007/s10714-018-2464-3 10.1103/PhysRevLett.46.573 10.1007/JHEP10(2013)107 10.1088/1126-6708/2005/10/059 10.1016/j.physletb.2018.04.010 10.1016/S0370-2693(98)00377-3 10.1007/JHEP11(2012)046 10.1088/1361-6382/aa8388 10.1007/JHEP05(2019)121 10.1088/0264-9381/28/14/145007 10.1103/PhysRevLett.43.181 10.1088/0264-9381/24/11/C01 10.1007/JHEP09(2020)130 10.1142/S0218271819440115 10.1063/1.4993198 10.1103/PhysRevD.91.126005 10.1088/1126-6708/2006/08/045 0.1103/PhysRevD.101.104039 10.1088/0264-9381/21/23/022 10.1103/PhysRevD.93.025030 10.1098/rspa.1981.0109 10.1007/JHEP02(2012)024 10.1007/JHEP04(2018)039 10.1016/j.nuclphysb.2018.08.019 10.1007/JHEP05(2020)013 10.1088/1361-6382/aa9602 10.1103/PhysRevD.101.106014 10.1088/0264-9381/31/1/015008 10.1007/JHEP07(2014)152 10.1088/1751-8113/42/50/504007 10.1016/j.nuclphysb.2017.10.025 10.1007/JHEP10(2013)212 10.1103/PhysRevD.96.065022 10.1016/j.physletb.2016.07.062 10.1103/PhysRevLett.119.121601 10.1007/JHEP01(2019)205 10.1002/prop.201300020 10.1016/j.physletb.2004.10.060 10.1007/s00023-018-0650-1 10.1103/PhysRevD.100.046002 10.1007/JHEP10(2019)167 10.1023/A:1026654312961 10.1103/PhysRevD.86.024020 10.1007/JHEP05(2016)004 10.1007/JHEP05(2015)151 10.1007/JHEP02(2019)086 10.1007/JHEP05(2018)186 10.1103/PhysRevLett.116.231301 10.1103/PhysRevD.79.044010 10.1007/JHEP01(2019)184 10.1088/0264-9381/23/9/010 10.1103/PhysRevD.101.066029 10.1103/PhysRevLett.114.111602 10.1007/s10714-019-2609-z 10.1007/JHEP07(2018)165 10.1088/1126-6708/2004/12/041 10.1016/j.physrep.2019.09.006 10.1007/JHEP11(2017)168 10.1007/JHEP07(2019)128 10.1007/JHEP08(2017)124 10.1103/PhysRevD.98.025020 10.1088/1361-6382/ab74f6 10.1103/PhysRevLett.105.111103 10.1103/PhysRevLett.96.181602 10.1103/PhysRevD.98.085018 10.1007/JHEP07(2017)142 10.1007/JHEP11(2018)200 10.1007/JHEP10(2016)137 10.1088/1361-6382/aa8aad 10.1103/PhysRevD.96.066033 10.1103/PhysRevD.101.066010 10.1088/1126-6708/2007/07/062 10.1007/JHEP02(2020)125 10.4310/ATMP.1998.v2.n2.a2 10.1088/1361-6382/ab954a 10.1007/JHEP01(2017)112 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.21468/SciPostPhys.10.2.041 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_4e6e0b68ba0d471abc20be43abbe81ea 10_21468_SciPostPhys_10_2_041 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c432t-3a440d14cd9c181130016172b8c05ffd8f02d5475e66eb8fad1bfdb6fc577af93 |
IEDL.DBID | DOA |
ISSN | 2542-4653 |
IngestDate | Wed Aug 27 01:22:42 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 Tue Jul 01 03:56:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-3a440d14cd9c181130016172b8c05ffd8f02d5475e66eb8fad1bfdb6fc577af93 |
OpenAccessLink | https://doaj.org/article/4e6e0b68ba0d471abc20be43abbe81ea |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e6e0b68ba0d471abc20be43abbe81ea crossref_citationtrail_10_21468_SciPostPhys_10_2_041 crossref_primary_10_21468_SciPostPhys_10_2_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-18 |
PublicationDateYYYYMMDD | 2021-02-18 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | SciPost physics |
PublicationYear | 2021 |
Publisher | SciPost |
Publisher_xml | – name: SciPost |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref131 ref94 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref45 doi: 10.1088/1361-6382/aa5b5f – ident: ref93 doi: 10.1088/1126-6708/2007/03/122 – ident: ref21 doi: 10.1142/S0129055X0600270X – ident: ref107 doi: 10.1007/s10714-008-0661-1 – ident: ref40 doi: 10.1007/JHEP03(2016)023 – ident: ref23 doi: 10.1088/1742-6596/33/1/027 – ident: ref55 doi: 10.1103/PhysRevD.96.085006 – ident: ref109 doi: 10.1098/rspa.1962.0161 – ident: ref74 doi: 10.1103/PhysRevD.100.085017 – ident: ref11 doi: 10.1007/JHEP10(2012)092 – ident: ref112 doi: 10.1007/JHEP12(2015)094 – ident: ref8 doi: 10.1007/JHEP03(2020)149 – ident: ref101 doi: 10.1103/PhysRevD.96.085002 – ident: ref30 doi: 10.1007/JHEP11(2010)014 – ident: ref53 doi: 10.1103/PhysRevD.97.046002 – ident: ref50 doi: 10.1103/PhysRevD.96.025004 – ident: ref116 doi: 10.1103/PhysRevLett.71.1291 – ident: ref110 doi: 10.1007/JHEP02(2018)171 – ident: ref75 doi: 10.1007/JHEP10(2019)018 – ident: ref92 doi: 10.21468/SciPostPhys.7.4.057 – ident: ref57 doi: 10.1007/JHEP01(2018)014 – ident: ref113 doi: 10.1007/JHEP08(2019)021 – ident: ref127 doi: 10.1088/0264-9381/23/7/001 – ident: ref19 doi: 10.1088/1126-6708/2004/11/011 – ident: ref15 doi: 10.1016/j.nuclphysb.2003.09.051 – ident: ref121 doi: 10.1007/JHEP02(2013)062 – ident: ref96 doi: 10.1103/PhysRevD.97.046014 – ident: ref13 doi: 10.1103/PhysRevD.96.065026 – ident: ref108 doi: 10.1016/0003-4916(74)90404-7 – ident: ref120 doi: 10.1088/0264-9381/26/22/224001 – ident: ref66 doi: 10.1140/epjc/s10052-018-6058-8 – ident: ref79 doi: 10.1007/JHEP03(2020)130 – ident: ref27 doi: 10.1088/1126-6708/2008/04/096 – ident: ref124 doi: 10.1103/PhysRevD.89.086010 – ident: ref31 doi: 10.1103/PhysRevLett.106.141301 – ident: ref131 doi: 10.1007/s002200100381 – ident: ref86 doi: 10.1007/JHEP11(2019)005 – ident: ref10 doi: 10.1103/PhysRevLett.105.171601 – ident: ref43 doi: 10.1140/epjc/s10052-016-4548-0 – ident: ref77 doi: 10.1007/JHEP08(2019)168 – ident: ref85 doi: 10.1007/JHEP12(2019)057 – ident: ref6 doi: 10.21468/SciPostPhys.6.6.073 – ident: ref47 doi: 10.1007/JHEP08(2017)050 – ident: ref71 doi: 10.1007/JHEP03(2019)017 – ident: ref102 doi: 10.1007/JHEP01(2018)142 – ident: ref9 doi: 10.1016/S0550-3213(03)00494-2 – ident: ref82 doi: 10.1007/JHEP02(2020)067 – ident: ref76 doi: 10.1088/1361-6382/ab42ce – ident: ref29 doi: 10.1007/JHEP05(2010)062 – ident: ref61 doi: 10.1103/PhysRevD.97.066009 – ident: ref88 doi: 10.1007/JHEP10(2020)116 – ident: ref104 doi: 10.1063/1.525169 – ident: ref130 doi: 10.1063/1.523863 – ident: ref24 doi: 10.1103/PhysRevD.75.024007 – ident: ref25 doi: 10.1088/0264-9381/24/5/F01 – ident: ref97 doi: 10.1007/s10714-018-2464-3 – ident: ref98 doi: 10.1103/PhysRevLett.46.573 – ident: ref125 doi: 10.1007/JHEP10(2013)107 – ident: ref20 doi: 10.1088/1126-6708/2005/10/059 – ident: ref64 doi: 10.1016/j.physletb.2018.04.010 – ident: ref3 doi: 10.1016/S0370-2693(98)00377-3 – ident: ref35 doi: 10.1007/JHEP11(2012)046 – ident: ref59 doi: 10.1088/1361-6382/aa8388 – ident: ref80 doi: 10.1007/JHEP05(2019)121 – ident: ref32 doi: 10.1088/0264-9381/28/14/145007 – ident: ref106 doi: 10.1103/PhysRevLett.43.181 – ident: ref26 doi: 10.1088/0264-9381/24/11/C01 – ident: ref81 doi: 10.1007/JHEP09(2020)130 – ident: ref4 doi: 10.1142/S0218271819440115 – ident: ref51 doi: 10.1063/1.4993198 – ident: ref38 doi: 10.1103/PhysRevD.91.126005 – ident: ref117 doi: 10.1088/1126-6708/2006/08/045 – ident: ref114 doi: 0.1103/PhysRevD.101.104039 – ident: ref16 doi: 10.1088/0264-9381/21/23/022 – ident: ref39 doi: 10.1103/PhysRevD.93.025030 – ident: ref105 doi: 10.1098/rspa.1981.0109 – ident: ref33 doi: 10.1007/JHEP02(2012)024 – ident: ref63 doi: 10.1007/JHEP04(2018)039 – ident: ref70 doi: 10.1016/j.nuclphysb.2018.08.019 – ident: ref7 doi: 10.1007/JHEP05(2020)013 – ident: ref58 doi: 10.1088/1361-6382/aa9602 – ident: ref73 doi: 10.1103/PhysRevD.101.106014 – ident: ref95 doi: 10.1088/0264-9381/31/1/015008 – ident: ref99 doi: 10.1007/JHEP07(2014)152 – ident: ref128 doi: 10.1088/1751-8113/42/50/504007 – ident: ref49 doi: 10.1016/j.nuclphysb.2017.10.025 – ident: ref123 doi: 10.1007/JHEP10(2013)212 – ident: ref14 doi: 10.1103/PhysRevD.96.065022 – ident: ref42 doi: 10.1016/j.physletb.2016.07.062 – ident: ref44 doi: 10.1103/PhysRevLett.119.121601 – ident: ref65 doi: 10.1007/JHEP01(2019)205 – ident: ref126 doi: 10.1002/prop.201300020 – ident: ref18 doi: 10.1016/j.physletb.2004.10.060 – ident: ref41 doi: 10.1007/s00023-018-0650-1 – ident: ref115 doi: 10.1103/PhysRevD.100.046002 – ident: ref84 doi: 10.1007/JHEP10(2019)167 – ident: ref1 doi: 10.1023/A:1026654312961 – ident: ref34 doi: 10.1103/PhysRevD.86.024020 – ident: ref5 doi: 10.1007/JHEP05(2016)004 – ident: ref100 doi: 10.1007/JHEP05(2015)151 – ident: ref103 doi: 10.1007/JHEP02(2019)086 – ident: ref60 doi: 10.1007/JHEP05(2018)186 – ident: ref129 doi: 10.1103/PhysRevLett.116.231301 – ident: ref94 doi: 10.1103/PhysRevD.79.044010 – ident: ref78 doi: 10.1007/JHEP01(2019)184 – ident: ref22 doi: 10.1088/0264-9381/23/9/010 – ident: ref83 doi: 10.1103/PhysRevD.101.066029 – ident: ref36 doi: 10.1103/PhysRevLett.114.111602 – ident: ref68 doi: 10.1007/s10714-019-2609-z – ident: ref67 doi: 10.1007/JHEP07(2018)165 – ident: ref17 doi: 10.1088/1126-6708/2004/12/041 – ident: ref48 doi: 10.1016/j.physrep.2019.09.006 – ident: ref52 doi: 10.1007/JHEP11(2017)168 – ident: ref91 doi: 10.1007/JHEP07(2019)128 – ident: ref46 doi: 10.1007/JHEP08(2017)124 – ident: ref62 doi: 10.1103/PhysRevD.98.025020 – ident: ref87 doi: 10.1088/1361-6382/ab74f6 – ident: ref28 doi: 10.1103/PhysRevLett.105.111103 – ident: ref118 doi: 10.1103/PhysRevLett.96.181602 – ident: ref69 doi: 10.1103/PhysRevD.98.085018 – ident: ref56 doi: 10.1007/JHEP07(2017)142 – ident: ref72 doi: 10.1007/JHEP11(2018)200 – ident: ref37 doi: 10.1007/JHEP10(2016)137 – ident: ref54 doi: 10.1088/1361-6382/aa8aad – ident: ref122 doi: 10.1103/PhysRevD.96.066033 – ident: ref111 doi: 10.1103/PhysRevD.101.066010 – ident: ref119 doi: 10.1088/1126-6708/2007/07/062 – ident: ref90 doi: 10.1007/JHEP02(2020)125 – ident: ref2 doi: 10.4310/ATMP.1998.v2.n2.a2 – ident: ref89 doi: 10.1088/1361-6382/ab954a – ident: ref12 doi: 10.1007/JHEP01(2017)112 |
SSID | ssj0002119165 |
Score | 2.5474865 |
Snippet | We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 041 |
Title | The Holographic Nature of Null Infinity |
URI | https://doaj.org/article/4e6e0b68ba0d471abc20be43abbe81ea |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf7EHwlHaz2edRxVIFe7LQW9gnFCQVrQf_vTubtMSTF69DNiTfZHdmNrPfh9CNt9oy2F4i1MWCeScLY0gsaBRGSyBYibA18DIT0zl7XvBFT-oLesJaeuAWuDELIhArlDXEp4XUWEeJDawy1gZVhpwapZjXK6ZgDc68ZYK3R3ZAu1qN01wB_VtorByBcURY-SsY9Tj7c3CZHKD9LivEd-3THKKd0Byh3dyd6T6P0W1yJp5u6KWXDs8yHSdeRTxLJSR-auIyTc3vEzSfPL4-TItO4aBwrKLrojKMEV8y57VLoRZ-LUG9Qa1yhMfoVSTUcyZ5ECJYFY0vbYSDc45LaaKuTtGgWTXhDGHNg9LEexlNBZTxVphodFBBeq-cUkPENq9au47-G1Qo3upUBmSE6h5C2VgnhIZotB323vJf_DXgHnDcXgz01dmQnFp3Tq3_cur5f9zkAu1RaEAB9RZ1iQbrj69wlTKItb3OH8sPApDHBA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Holographic+Nature+of+Null+Infinity&rft.jtitle=SciPost+physics&rft.au=Alok+Laddha%2C+Siddharth+G.+Prabhu%2C+Suvrat+Raju%2C+Pushkal+Shrivastava&rft.date=2021-02-18&rft.pub=SciPost&rft.eissn=2542-4653&rft.volume=10&rft.issue=2&rft.spage=041&rft_id=info:doi/10.21468%2FSciPostPhys.10.2.041&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4e6e0b68ba0d471abc20be43abbe81ea |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |