Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils

In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains un...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 156; pp. 434 - 442
Main Authors Khan, Muhammad Atikul Islam, Biswas, Bhabananda, Smith, Euan, Mahmud, Siraje Arif, Hasan, Nur A., Khan, Md Abdul Wadud, Naidu, Ravi, Megharaj, Mallavarapu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 30.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2–29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites. [Display omitted] •Impact of petroleum hydrocarbon was assessed by soil metagenomics study.•Influence of contrasting soils and various plants was also studied.•Hydrocarbon loading and its exposure had a great influence on microbial community.•Microbial diversity slightly increased in soil planted with Australian native than wheat.•Rhizosphere accommodated more microbial diversity than the bulk soil.
AbstractList In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2-29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites.In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2-29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites.
In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2–29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites.
In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2–29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites. [Display omitted] •Impact of petroleum hydrocarbon was assessed by soil metagenomics study.•Influence of contrasting soils and various plants was also studied.•Hydrocarbon loading and its exposure had a great influence on microbial community.•Microbial diversity slightly increased in soil planted with Australian native than wheat.•Rhizosphere accommodated more microbial diversity than the bulk soil.
Author Smith, Euan
Megharaj, Mallavarapu
Hasan, Nur A.
Khan, Muhammad Atikul Islam
Mahmud, Siraje Arif
Biswas, Bhabananda
Naidu, Ravi
Khan, Md Abdul Wadud
Author_xml – sequence: 1
  givenname: Muhammad Atikul Islam
  surname: Khan
  fullname: Khan, Muhammad Atikul Islam
  email: Muhammad.Khan@mymail.unisa.edu.au
  organization: Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
– sequence: 2
  givenname: Bhabananda
  surname: Biswas
  fullname: Biswas, Bhabananda
  email: Bhaba.Biswas@unisa.edu.au
  organization: Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
– sequence: 3
  givenname: Euan
  surname: Smith
  fullname: Smith, Euan
  email: Euan.Smith@unisa.edu.au
  organization: Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
– sequence: 4
  givenname: Siraje Arif
  surname: Mahmud
  fullname: Mahmud, Siraje Arif
  organization: Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka 1342, Bangladesh
– sequence: 5
  givenname: Nur A.
  surname: Hasan
  fullname: Hasan, Nur A.
  organization: University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA
– sequence: 6
  givenname: Md Abdul Wadud
  surname: Khan
  fullname: Khan, Md Abdul Wadud
  organization: Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
– sequence: 7
  givenname: Ravi
  surname: Naidu
  fullname: Naidu, Ravi
  email: Ravi.Naidu@newcastle.edu.au
  organization: Global Centre for Environmental Remediation, The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia
– sequence: 8
  givenname: Mallavarapu
  surname: Megharaj
  fullname: Megharaj, Mallavarapu
  email: Megh.Mallavarapu@newcastle.edu.au
  organization: Global Centre for Environmental Remediation, The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29604472$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFb4BQjlwSxo4dJxyQUMU_qQgJwdmyndlmVll7sb1bLZ-elG0vHIDDaC6_9zTz3gU7CzEgY885NBx492rToI8YDo0A3jfQNgDdI7biMEAtJJdnbAVc6rpTvD1nFzlvAKAFpZ6wczF0IKUWK_b1M_kUHdm5GumAKVM5Vn6y4QZzdUtlqtJEP2PeTZiwsmGspuOYorfJxZArCpWPoSSbC4WbKkea81P2eG3njM_u9yX7_v7dt6uP9fWXD5-u3l7XXrai1MK6XmjrvHdeoVyu7_reD4NS4yCFdshb4K232kmllumdHgdtlXN-jRp9e8lennx3Kf7YYy5mS9njPNuAcZ-NgE6Ljmsl_gMVIHvFOSzoi3t077Y4ml2irU1H8xDZArw-AUtuOSdcG0_FFvodA82Gg7nrx2zMqR9z14-B1iwfLmL5h_jB_x-yNycZLnkeCJPJnjB4HCmhL2aM9HeDX-QGrKQ
CitedBy_id crossref_primary_10_1016_j_ecoenv_2019_110079
crossref_primary_10_1093_femsec_fiy230
crossref_primary_10_1016_j_jenvman_2023_118601
crossref_primary_10_1166_jbmb_2021_2102
crossref_primary_10_1007_s10021_022_00797_y
crossref_primary_10_1016_j_jhazmat_2022_129469
crossref_primary_10_21307_pjm_2018_046
crossref_primary_10_3103_S0096392523010029
crossref_primary_10_1016_j_scitotenv_2023_169425
crossref_primary_10_55959_MSU0137_0952_16_78_1_3
crossref_primary_10_3390_ijerph15102155
crossref_primary_10_1016_j_chemosphere_2022_134804
crossref_primary_10_2139_ssrn_4049454
crossref_primary_10_3390_soilsystems2030051
crossref_primary_10_3934_environsci_2024033
crossref_primary_10_1071_SR22092
crossref_primary_10_1007_s00248_022_02030_8
crossref_primary_10_1007_s11356_020_11301_1
crossref_primary_10_1016_j_chemosphere_2018_08_094
crossref_primary_10_1016_j_chemosphere_2022_135868
crossref_primary_10_1016_j_chemosphere_2021_130135
crossref_primary_10_1007_s42729_025_02247_9
crossref_primary_10_1016_j_heliyon_2020_e04278
crossref_primary_10_1007_s11356_022_23875_z
crossref_primary_10_55959_MSU0137_0944_17_2024_79_1_42_50
crossref_primary_10_1016_j_jenvman_2019_04_111
crossref_primary_10_1007_s11356_020_11290_1
crossref_primary_10_1016_j_eti_2023_103210
crossref_primary_10_3103_S0147687424010034
crossref_primary_10_1016_j_ecoenv_2020_111551
crossref_primary_10_1007_s11356_024_33326_6
crossref_primary_10_1016_j_seppur_2023_125881
crossref_primary_10_1016_j_scitotenv_2019_05_090
crossref_primary_10_1007_s11356_023_29151_y
crossref_primary_10_1016_j_jhazmat_2021_125990
crossref_primary_10_1016_j_envpol_2022_119531
crossref_primary_10_1016_j_scitotenv_2020_138439
Cites_doi 10.1007/s00253-016-7965-y
10.1016/j.scitotenv.2008.09.026
10.1128/AEM.69.3.1800-1809.2003
10.1016/j.soilbio.2008.05.021
10.1016/j.scitotenv.2007.04.005
10.1016/j.eti.2015.04.005
10.1002/jat.1521
10.1002/etc.5620181110
10.1016/j.jenvman.2014.01.031
10.1111/j.1574-6941.2009.00654.x
10.1016/j.envint.2011.06.003
10.1111/j.1574-6941.2010.00982.x
10.1128/MR.54.3.305-315.1990
10.1111/j.1365-2672.2007.03401.x
10.1071/SR10159
10.1007/s00248-005-0205-0
10.1016/j.soilbio.2009.09.012
10.1128/AEM.71.12.8228-8235.2005
10.1002/btpr.2249
10.1128/AEM.05402-11
10.1186/gb-2013-14-6-209
10.1128/AEM.02747-12
10.1038/ismej.2010.35
10.1016/j.envpol.2017.01.022
10.1016/S1001-0742(10)60517-7
10.1007/s11769-013-0641-6
10.1111/j.1574-6941.2005.00026.x
10.1007/s00244-016-0318-0
10.1021/es2013598
10.1080/15226510903213928
10.1007/s00248-006-9136-7
10.1038/ismej.2013.119
10.1016/j.envint.2015.09.017
10.1016/j.scitotenv.2014.04.032
10.1002/ieam.1580
10.1007/s00284-016-1001-4
10.1017/S0954102014000728
10.1016/j.ecoenv.2015.11.029
10.1016/j.ecoenv.2017.10.072
10.1016/j.soilbio.2011.09.003
10.1016/j.envpol.2004.06.002
10.1016/j.ecoenv.2005.03.026
10.1111/j.1574-6941.1999.tb00617.x
10.1016/bs.agron.2014.10.005
10.1038/ismej.2013.196
10.1038/nature11336
10.1038/ismej.2010.58
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ecoenv.2018.03.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
EndPage 442
ExternalDocumentID 29604472
10_1016_j_ecoenv_2018_03_006
S0147651318301891
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
OK1
R2-
SEN
SEW
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c432t-2ab827abccbc5e4006688c9955d9427be13013ca7b455b458b7d97a5bbcfe7ec3
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Thu Jul 10 17:43:37 EDT 2025
Thu Jul 10 17:17:31 EDT 2025
Thu Apr 03 07:06:46 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 03:59:55 EDT 2025
Fri Feb 23 02:28:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrocarbon toxicity
Reference vs Australian native plant
16S rRNA gene diversity
Rhizosphere microbiome
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-2ab827abccbc5e4006688c9955d9427be13013ca7b455b458b7d97a5bbcfe7ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29604472
PQID 2020485110
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2067261752
proquest_miscellaneous_2020485110
pubmed_primary_29604472
crossref_citationtrail_10_1016_j_ecoenv_2018_03_006
crossref_primary_10_1016_j_ecoenv_2018_03_006
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2018_03_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-30
PublicationDateYYYYMMDD 2018-07-30
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-30
  day: 30
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Stroud (bib39) 2007; 102
Costa (bib12) 2006; 56
Wang (bib48) 2013; 23
Shahi (bib36) 2016; 125
Liang (bib22) 2014; 487
Nie (bib30) 2009; 41
Leahy, Colwell (bib21) 1990; 54
Girvan (bib14) 2003; 69
Kirk (bib17) 2005; 133
Turner (bib46) 2013; 7
Hackenberger (bib15) 2018; 148
Oksanen J. et al., Community Ecology Package, version 2.4-6
Megharaj (bib26) 2011; 37
Bulgarelli (bib10) 2012; 488
Thavamani (bib44) 2015; 4
Brockett (bib9) 2012; 44
Berg, Smalla (bib5) 2009; 68
Sutton (bib41) 2013; 79
,
Aguilera (bib3) 2010; 30
Aleer (bib4) 2014; 136
Joynt (bib16) 2006; 51
Meudec (bib27) 2007; 381
Olson (bib32) 1999; 18
Cury (bib13) 2015; 27
Abbasian (bib1) 2016; 72
Vázquez-Baeza, Y.. et al., 2013. Example files and supporting material for "EMPeror: An interactive analysis and visualization tool for high throughput microbial ecology datasets.". GigaScience Database.
Nedunuri (bib29) 2009; 12
Turner (bib45) 2013; 14
Kleber (bib18) 2015
Teixeira (bib43) 2010; 4
Ramadass (bib33) 2016; 71
Tang (bib42) 2011; 23
Lauber (bib20) 2008; 40
Kostka (bib19) 2011; 77
de Boer (bib8) 2011; 46
Militon (bib28) 2010; 74
Su, Yang (bib40) 2009; 407
Abbasian (bib2) 2016; 32
Siciliano, Germida (bib38) 1999; 29
Wilson (bib49) 1985; 4
Biswas (bib7) 2017; 223
Lozupone, Knight (bib23) 2005; 71
Richardson (bib34) 2015; 11
Margesin (bib25) 2007; 53
Biswas (bib6) 2015; 85
Chaparro (bib11) 2014; 8
Rousk (bib35) 2010; 4
Sheppard (bib37) 2011; 49
Mahbub (bib24) 2017; 101
Winding (bib50) 2005; 62
Brockett (10.1016/j.ecoenv.2018.03.006_bib9) 2012; 44
Turner (10.1016/j.ecoenv.2018.03.006_bib45) 2013; 14
10.1016/j.ecoenv.2018.03.006_bib31
Hackenberger (10.1016/j.ecoenv.2018.03.006_bib15) 2018; 148
Su (10.1016/j.ecoenv.2018.03.006_bib40) 2009; 407
Nedunuri (10.1016/j.ecoenv.2018.03.006_bib29) 2009; 12
Nie (10.1016/j.ecoenv.2018.03.006_bib30) 2009; 41
Liang (10.1016/j.ecoenv.2018.03.006_bib22) 2014; 487
Stroud (10.1016/j.ecoenv.2018.03.006_bib39) 2007; 102
Kleber (10.1016/j.ecoenv.2018.03.006_bib18) 2015
Margesin (10.1016/j.ecoenv.2018.03.006_bib25) 2007; 53
Siciliano (10.1016/j.ecoenv.2018.03.006_bib38) 1999; 29
Abbasian (10.1016/j.ecoenv.2018.03.006_bib1) 2016; 72
Teixeira (10.1016/j.ecoenv.2018.03.006_bib43) 2010; 4
Bulgarelli (10.1016/j.ecoenv.2018.03.006_bib10) 2012; 488
Lauber (10.1016/j.ecoenv.2018.03.006_bib20) 2008; 40
Aguilera (10.1016/j.ecoenv.2018.03.006_bib3) 2010; 30
Ramadass (10.1016/j.ecoenv.2018.03.006_bib33) 2016; 71
Militon (10.1016/j.ecoenv.2018.03.006_bib28) 2010; 74
Biswas (10.1016/j.ecoenv.2018.03.006_bib7) 2017; 223
Cury (10.1016/j.ecoenv.2018.03.006_bib13) 2015; 27
Mahbub (10.1016/j.ecoenv.2018.03.006_bib24) 2017; 101
Tang (10.1016/j.ecoenv.2018.03.006_bib42) 2011; 23
Aleer (10.1016/j.ecoenv.2018.03.006_bib4) 2014; 136
Lozupone (10.1016/j.ecoenv.2018.03.006_bib23) 2005; 71
Leahy (10.1016/j.ecoenv.2018.03.006_bib21) 1990; 54
Meudec (10.1016/j.ecoenv.2018.03.006_bib27) 2007; 381
Sheppard (10.1016/j.ecoenv.2018.03.006_bib37) 2011; 49
Girvan (10.1016/j.ecoenv.2018.03.006_bib14) 2003; 69
Turner (10.1016/j.ecoenv.2018.03.006_bib46) 2013; 7
Biswas (10.1016/j.ecoenv.2018.03.006_bib6) 2015; 85
Rousk (10.1016/j.ecoenv.2018.03.006_bib35) 2010; 4
10.1016/j.ecoenv.2018.03.006_bib47
Thavamani (10.1016/j.ecoenv.2018.03.006_bib44) 2015; 4
Winding (10.1016/j.ecoenv.2018.03.006_bib50) 2005; 62
Sutton (10.1016/j.ecoenv.2018.03.006_bib41) 2013; 79
Richardson (10.1016/j.ecoenv.2018.03.006_bib34) 2015; 11
Wang (10.1016/j.ecoenv.2018.03.006_bib48) 2013; 23
Abbasian (10.1016/j.ecoenv.2018.03.006_bib2) 2016; 32
de Boer (10.1016/j.ecoenv.2018.03.006_bib8) 2011; 46
Berg (10.1016/j.ecoenv.2018.03.006_bib5) 2009; 68
Chaparro (10.1016/j.ecoenv.2018.03.006_bib11) 2014; 8
Costa (10.1016/j.ecoenv.2018.03.006_bib12) 2006; 56
Joynt (10.1016/j.ecoenv.2018.03.006_bib16) 2006; 51
Olson (10.1016/j.ecoenv.2018.03.006_bib32) 1999; 18
Kirk (10.1016/j.ecoenv.2018.03.006_bib17) 2005; 133
Megharaj (10.1016/j.ecoenv.2018.03.006_bib26) 2011; 37
Wilson (10.1016/j.ecoenv.2018.03.006_bib49) 1985; 4
Kostka (10.1016/j.ecoenv.2018.03.006_bib19) 2011; 77
Shahi (10.1016/j.ecoenv.2018.03.006_bib36) 2016; 125
References_xml – volume: 79
  start-page: 619
  year: 2013
  end-page: 630
  ident: bib41
  article-title: Impact of long-term diesel contamination on soil microbial community structure
  publication-title: Appl. Environ. Microbiol.
– volume: 7
  start-page: 2248
  year: 2013
  end-page: 2258
  ident: bib46
  article-title: Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants
  publication-title: ISME J.
– volume: 488
  start-page: 91
  year: 2012
  end-page: 95
  ident: bib10
  article-title: Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota
  publication-title: Nature
– volume: 32
  start-page: 638
  year: 2016
  end-page: 648
  ident: bib2
  article-title: Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis
  publication-title: Biotechnol. Prog.
– volume: 18
  start-page: 2448
  year: 1999
  end-page: 2453
  ident: bib32
  article-title: Biodegradation rates of separated diesel components
  publication-title: Environ. Toxicol. Chem.
– volume: 4
  start-page: 989
  year: 2010
  end-page: 1001
  ident: bib43
  article-title: Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica
  publication-title: ISME J.
– volume: 68
  start-page: 1
  year: 2009
  end-page: 13
  ident: bib5
  article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere
  publication-title: FEMS Microbiol. Ecol.
– volume: 40
  start-page: 2407
  year: 2008
  end-page: 2415
  ident: bib20
  article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types
  publication-title: Soil Biol. Biochem.
– volume: 37
  start-page: 1362
  year: 2011
  end-page: 1375
  ident: bib26
  article-title: Bioremediation approaches for organic pollutants: a critical perspective
  publication-title: Environ. Int.
– volume: 44
  start-page: 9
  year: 2012
  end-page: 20
  ident: bib9
  article-title: Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada
  publication-title: Soil Biol. Biochem.
– volume: 77
  start-page: 7962
  year: 2011
  end-page: 7974
  ident: bib19
  article-title: Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill
  publication-title: Appl. Environ. Microbiol.
– volume: 27
  start-page: 263
  year: 2015
  end-page: 273
  ident: bib13
  article-title: Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands
  publication-title: Antarct. Sci.
– start-page: 1
  year: 2015
  end-page: 140
  ident: bib18
  article-title: Mineral–organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agron.
– volume: 71
  start-page: 8228
  year: 2005
  end-page: 8235
  ident: bib23
  article-title: UniFrac: a new phylogenetic method for comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
– volume: 53
  start-page: 259
  year: 2007
  end-page: 269
  ident: bib25
  article-title: Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time
  publication-title: Microbiol. Ecol.
– volume: 41
  start-page: 2535
  year: 2009
  end-page: 2542
  ident: bib30
  article-title: Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization
  publication-title: Soil Biol. Biochem.
– volume: 133
  start-page: 455
  year: 2005
  end-page: 465
  ident: bib17
  article-title: The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil
  publication-title: Environ. Pollut.
– volume: 62
  start-page: 230
  year: 2005
  end-page: 248
  ident: bib50
  article-title: The use of microorganisms in ecological soil classification and assessment concepts
  publication-title: Ecotoxicol. Environ. Saf.
– reference: Oksanen J. et al., Community Ecology Package, version 2.4-6,
– volume: 102
  start-page: 1239
  year: 2007
  end-page: 1253
  ident: bib39
  article-title: Microbe‐aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation
  publication-title: J. Appl. Microbiol.
– volume: 4
  start-page: 721
  year: 1985
  end-page: 726
  ident: bib49
  article-title: Biodegradation of chemicals in the subsurface environment: influence of microbial adaptation on the fate of organic pollutants in ground water
  publication-title: Environ. Toxicol. Chem.
– volume: 74
  start-page: 669
  year: 2010
  end-page: 681
  ident: bib28
  article-title: Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil
  publication-title: FEMS Microbiol. Ecol.
– volume: 125
  start-page: 153
  year: 2016
  end-page: 160
  ident: bib36
  article-title: Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 8
  start-page: 790
  year: 2014
  end-page: 803
  ident: bib11
  article-title: Rhizosphere microbiome assemblage is affected by plant development
  publication-title: ISME J.
– volume: 4
  start-page: 1340
  year: 2010
  end-page: 1351
  ident: bib35
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: ISME J.
– volume: 14
  start-page: 1
  year: 2013
  ident: bib45
  article-title: The plant microbiome
  publication-title: Genome Biol.
– volume: 46
  start-page: 60
  year: 2011
  end-page: 68
  ident: bib8
  article-title: The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation
  publication-title: Environ. Sci. Technol.
– volume: 223
  start-page: 255
  year: 2017
  end-page: 265
  ident: bib7
  article-title: Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: a
  publication-title: Environ. Pollut.
– volume: 11
  start-page: 235
  year: 2015
  end-page: 241
  ident: bib34
  article-title: The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils
  publication-title: Integr. Environ. Assess. Manag.
– volume: 23
  start-page: 845
  year: 2011
  end-page: 851
  ident: bib42
  article-title: Eco-toxicity of petroleum hydrocarbon contaminated soil
  publication-title: J. Environ. Sci.
– volume: 381
  start-page: 146
  year: 2007
  end-page: 156
  ident: bib27
  article-title: Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis
  publication-title: Sci. Total Environ.
– volume: 49
  start-page: 261
  year: 2011
  end-page: 269
  ident: bib37
  article-title: Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil
  publication-title: Soil Res.
– reference: ,
– volume: 30
  start-page: 291
  year: 2010
  end-page: 301
  ident: bib3
  article-title: Review on the effects of exposure to spilled oils on human health
  publication-title: J. Appl. Toxicol.
– volume: 85
  start-page: 168
  year: 2015
  end-page: 181
  ident: bib6
  article-title: Bioremediation of PAHs and VOCs: advances in clay mineral–microbial interaction
  publication-title: Environ. Int.
– volume: 56
  start-page: 236
  year: 2006
  end-page: 249
  ident: bib12
  article-title: Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds
  publication-title: FEMS Microbiol. Ecol.
– volume: 71
  start-page: 561
  year: 2016
  end-page: 571
  ident: bib33
  article-title: Earthworm comet assay for assessing the risk of weathered petroleum hydrocarbon contaminated soils: need to look further than target contaminants
  publication-title: Arc. Environ. Contam. Toxicol.
– volume: 29
  start-page: 263
  year: 1999
  end-page: 272
  ident: bib38
  article-title: Taxonomic diversity of bacteria associated with the roots of field-grown transgenic
  publication-title: FEMS Microbiol. Ecol.
– volume: 51
  start-page: 209
  year: 2006
  end-page: 219
  ident: bib16
  article-title: Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons
  publication-title: Microbiol. Ecol.
– volume: 487
  start-page: 272
  year: 2014
  end-page: 278
  ident: bib22
  article-title: Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites
  publication-title: Sci. Total Environ.
– volume: 148
  start-page: 480
  year: 2018
  end-page: 489
  ident: bib15
  article-title: Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 12
  start-page: 200
  year: 2009
  end-page: 214
  ident: bib29
  article-title: Management practices and phytoremediation by native grasses
  publication-title: Int. J. Phytoremediat.
– volume: 54
  start-page: 305
  year: 1990
  end-page: 315
  ident: bib21
  article-title: Microbial degradation of hydrocarbons in the environment
  publication-title: Microbiol. Rev.
– volume: 69
  start-page: 1800
  year: 2003
  end-page: 1809
  ident: bib14
  article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils
  publication-title: Appl. Environ. Microbiol.
– volume: 101
  start-page: 2163
  year: 2017
  end-page: 2175
  ident: bib24
  article-title: Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 407
  start-page: 1027
  year: 2009
  end-page: 1034
  ident: bib40
  article-title: Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil
  publication-title: Sci. Total Environ.
– volume: 4
  start-page: 98
  year: 2015
  end-page: 109
  ident: bib44
  article-title: Risk based land management requires focus beyond the target contaminants—a case study involving weathered hydrocarbon contaminated soils
  publication-title: Environ. Technol. Innov.
– reference: Vázquez-Baeza, Y.. et al., 2013. Example files and supporting material for "EMPeror: An interactive analysis and visualization tool for high throughput microbial ecology datasets.". GigaScience Database.
– volume: 72
  start-page: 663
  year: 2016
  end-page: 670
  ident: bib1
  article-title: The biodiversity changes in the microbial population of soils contaminated with crude oil
  publication-title: Curr. Microbiol.
– volume: 23
  start-page: 708
  year: 2013
  end-page: 715
  ident: bib48
  article-title: Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China
  publication-title: Chin. Geogr. Sci.
– volume: 136
  start-page: 27
  year: 2014
  end-page: 36
  ident: bib4
  article-title: Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils
  publication-title: J. Environ. Manag.
– volume: 101
  start-page: 2163
  year: 2017
  ident: 10.1016/j.ecoenv.2018.03.006_bib24
  article-title: Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7965-y
– volume: 407
  start-page: 1027
  year: 2009
  ident: 10.1016/j.ecoenv.2018.03.006_bib40
  article-title: Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.09.026
– volume: 69
  start-page: 1800
  year: 2003
  ident: 10.1016/j.ecoenv.2018.03.006_bib14
  article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.3.1800-1809.2003
– volume: 40
  start-page: 2407
  year: 2008
  ident: 10.1016/j.ecoenv.2018.03.006_bib20
  article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.05.021
– volume: 381
  start-page: 146
  year: 2007
  ident: 10.1016/j.ecoenv.2018.03.006_bib27
  article-title: Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.04.005
– volume: 4
  start-page: 98
  year: 2015
  ident: 10.1016/j.ecoenv.2018.03.006_bib44
  article-title: Risk based land management requires focus beyond the target contaminants—a case study involving weathered hydrocarbon contaminated soils
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2015.04.005
– volume: 30
  start-page: 291
  year: 2010
  ident: 10.1016/j.ecoenv.2018.03.006_bib3
  article-title: Review on the effects of exposure to spilled oils on human health
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1521
– volume: 18
  start-page: 2448
  year: 1999
  ident: 10.1016/j.ecoenv.2018.03.006_bib32
  article-title: Biodegradation rates of separated diesel components
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620181110
– volume: 136
  start-page: 27
  year: 2014
  ident: 10.1016/j.ecoenv.2018.03.006_bib4
  article-title: Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.01.031
– volume: 68
  start-page: 1
  year: 2009
  ident: 10.1016/j.ecoenv.2018.03.006_bib5
  article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2009.00654.x
– volume: 37
  start-page: 1362
  year: 2011
  ident: 10.1016/j.ecoenv.2018.03.006_bib26
  article-title: Bioremediation approaches for organic pollutants: a critical perspective
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2011.06.003
– volume: 74
  start-page: 669
  year: 2010
  ident: 10.1016/j.ecoenv.2018.03.006_bib28
  article-title: Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2010.00982.x
– volume: 54
  start-page: 305
  year: 1990
  ident: 10.1016/j.ecoenv.2018.03.006_bib21
  article-title: Microbial degradation of hydrocarbons in the environment
  publication-title: Microbiol. Rev.
  doi: 10.1128/MR.54.3.305-315.1990
– volume: 102
  start-page: 1239
  year: 2007
  ident: 10.1016/j.ecoenv.2018.03.006_bib39
  article-title: Microbe‐aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2007.03401.x
– volume: 49
  start-page: 261
  year: 2011
  ident: 10.1016/j.ecoenv.2018.03.006_bib37
  article-title: Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil
  publication-title: Soil Res.
  doi: 10.1071/SR10159
– volume: 51
  start-page: 209
  year: 2006
  ident: 10.1016/j.ecoenv.2018.03.006_bib16
  article-title: Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons
  publication-title: Microbiol. Ecol.
  doi: 10.1007/s00248-005-0205-0
– volume: 41
  start-page: 2535
  year: 2009
  ident: 10.1016/j.ecoenv.2018.03.006_bib30
  article-title: Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.09.012
– volume: 71
  start-page: 8228
  year: 2005
  ident: 10.1016/j.ecoenv.2018.03.006_bib23
  article-title: UniFrac: a new phylogenetic method for comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.12.8228-8235.2005
– volume: 32
  start-page: 638
  year: 2016
  ident: 10.1016/j.ecoenv.2018.03.006_bib2
  article-title: Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.2249
– ident: 10.1016/j.ecoenv.2018.03.006_bib31
– volume: 77
  start-page: 7962
  year: 2011
  ident: 10.1016/j.ecoenv.2018.03.006_bib19
  article-title: Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.05402-11
– volume: 14
  start-page: 1
  year: 2013
  ident: 10.1016/j.ecoenv.2018.03.006_bib45
  article-title: The plant microbiome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-6-209
– volume: 79
  start-page: 619
  year: 2013
  ident: 10.1016/j.ecoenv.2018.03.006_bib41
  article-title: Impact of long-term diesel contamination on soil microbial community structure
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02747-12
– volume: 4
  start-page: 989
  year: 2010
  ident: 10.1016/j.ecoenv.2018.03.006_bib43
  article-title: Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.35
– volume: 223
  start-page: 255
  year: 2017
  ident: 10.1016/j.ecoenv.2018.03.006_bib7
  article-title: Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: a 14C-tracer study
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.022
– volume: 23
  start-page: 845
  year: 2011
  ident: 10.1016/j.ecoenv.2018.03.006_bib42
  article-title: Eco-toxicity of petroleum hydrocarbon contaminated soil
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(10)60517-7
– volume: 23
  start-page: 708
  year: 2013
  ident: 10.1016/j.ecoenv.2018.03.006_bib48
  article-title: Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-013-0641-6
– volume: 56
  start-page: 236
  year: 2006
  ident: 10.1016/j.ecoenv.2018.03.006_bib12
  article-title: Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2005.00026.x
– volume: 71
  start-page: 561
  year: 2016
  ident: 10.1016/j.ecoenv.2018.03.006_bib33
  article-title: Earthworm comet assay for assessing the risk of weathered petroleum hydrocarbon contaminated soils: need to look further than target contaminants
  publication-title: Arc. Environ. Contam. Toxicol.
  doi: 10.1007/s00244-016-0318-0
– volume: 46
  start-page: 60
  year: 2011
  ident: 10.1016/j.ecoenv.2018.03.006_bib8
  article-title: The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2013598
– volume: 12
  start-page: 200
  year: 2009
  ident: 10.1016/j.ecoenv.2018.03.006_bib29
  article-title: Management practices and phytoremediation by native grasses
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226510903213928
– volume: 53
  start-page: 259
  year: 2007
  ident: 10.1016/j.ecoenv.2018.03.006_bib25
  article-title: Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time
  publication-title: Microbiol. Ecol.
  doi: 10.1007/s00248-006-9136-7
– volume: 7
  start-page: 2248
  year: 2013
  ident: 10.1016/j.ecoenv.2018.03.006_bib46
  article-title: Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.119
– volume: 85
  start-page: 168
  year: 2015
  ident: 10.1016/j.ecoenv.2018.03.006_bib6
  article-title: Bioremediation of PAHs and VOCs: advances in clay mineral–microbial interaction
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.09.017
– volume: 487
  start-page: 272
  year: 2014
  ident: 10.1016/j.ecoenv.2018.03.006_bib22
  article-title: Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.04.032
– volume: 11
  start-page: 235
  year: 2015
  ident: 10.1016/j.ecoenv.2018.03.006_bib34
  article-title: The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils
  publication-title: Integr. Environ. Assess. Manag.
  doi: 10.1002/ieam.1580
– volume: 72
  start-page: 663
  year: 2016
  ident: 10.1016/j.ecoenv.2018.03.006_bib1
  article-title: The biodiversity changes in the microbial population of soils contaminated with crude oil
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-016-1001-4
– volume: 27
  start-page: 263
  year: 2015
  ident: 10.1016/j.ecoenv.2018.03.006_bib13
  article-title: Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102014000728
– volume: 125
  start-page: 153
  year: 2016
  ident: 10.1016/j.ecoenv.2018.03.006_bib36
  article-title: Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.11.029
– volume: 148
  start-page: 480
  year: 2018
  ident: 10.1016/j.ecoenv.2018.03.006_bib15
  article-title: Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.10.072
– volume: 44
  start-page: 9
  year: 2012
  ident: 10.1016/j.ecoenv.2018.03.006_bib9
  article-title: Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.09.003
– volume: 133
  start-page: 455
  year: 2005
  ident: 10.1016/j.ecoenv.2018.03.006_bib17
  article-title: The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2004.06.002
– volume: 62
  start-page: 230
  year: 2005
  ident: 10.1016/j.ecoenv.2018.03.006_bib50
  article-title: The use of microorganisms in ecological soil classification and assessment concepts
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2005.03.026
– volume: 4
  start-page: 721
  year: 1985
  ident: 10.1016/j.ecoenv.2018.03.006_bib49
  article-title: Biodegradation of chemicals in the subsurface environment: influence of microbial adaptation on the fate of organic pollutants in ground water
  publication-title: Environ. Toxicol. Chem.
– volume: 29
  start-page: 263
  year: 1999
  ident: 10.1016/j.ecoenv.2018.03.006_bib38
  article-title: Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1999.tb00617.x
– start-page: 1
  year: 2015
  ident: 10.1016/j.ecoenv.2018.03.006_bib18
  article-title: Mineral–organic associations: formation, properties, and relevance in soil environments
  doi: 10.1016/bs.agron.2014.10.005
– volume: 8
  start-page: 790
  year: 2014
  ident: 10.1016/j.ecoenv.2018.03.006_bib11
  article-title: Rhizosphere microbiome assemblage is affected by plant development
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.196
– volume: 488
  start-page: 91
  year: 2012
  ident: 10.1016/j.ecoenv.2018.03.006_bib10
  article-title: Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota
  publication-title: Nature
  doi: 10.1038/nature11336
– volume: 4
  start-page: 1340
  year: 2010
  ident: 10.1016/j.ecoenv.2018.03.006_bib35
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.58
– ident: 10.1016/j.ecoenv.2018.03.006_bib47
SSID ssj0003055
Score 2.4218931
Snippet In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 434
SubjectTerms 16S rRNA gene diversity
Actinobacteria
Actinobacteria - isolation & purification
Australia
bacteria
bacterial communities
Biomass
DNA fingerprinting
DNA, Bacterial - isolation & purification
ecotoxicology
Gene Expression Profiling
Hydrocarbon toxicity
hydrocarbons
Hydrocarbons - analysis
indigenous species
Metagenomics
microbiome
mined soils
organic matter
petroleum
Petroleum - analysis
plants (botany)
polluted soils
Proteobacteria
Proteobacteria - isolation & purification
Reference vs Australian native plant
Rhizosphere
Rhizosphere microbiome
RNA, Ribosomal, 16S - isolation & purification
Soil - chemistry
Soil Microbiology
soil pH
soil physical properties
Soil Pollutants - analysis
toxicity
Title Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils
URI https://dx.doi.org/10.1016/j.ecoenv.2018.03.006
https://www.ncbi.nlm.nih.gov/pubmed/29604472
https://www.proquest.com/docview/2020485110
https://www.proquest.com/docview/2067261752
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEB5EOTgQ8TzvXPUkB77WbZNm0z7Kouz9UA45wbeQpFmusnRluwq--Lc7k7SKD57gQykNExiSSWYm_eYLwGFhyzzjPsP1jSlK7oRLrPBVwjPhRDrlzodE8ex8NLnMf17JqxUY97UwBKvs9v64p4fdumsZdqM5vKnrIcGS1EhmZJRpVsQKdmxBmz56eIZ5EKNVhDGqhKT78rmA8cIMzzd3BPAqItXp6DX39Fr4GdzQ6SZsdPEjO44qfoIV32zBh5PAPX2_BevxGI7F6qLPcHFWB6Yl7FL1CAwWi31bRmewbEGgu5bIBTwzTcX-3Vfo08zCojmyumEBy25aQkezdl7P2m24PD35O54k3TUKicsFXybc2IIrY52zTvqcgoyicGUpZVXmXFmPbgxnxiibS4lPYVVVKiOtdVOvvBNfYLWZN34HGKY_yolKFlRSi4ljiY7PeLp3qDRTnvkBiH70tOs4xumqi5nuwWTXOo65pjHXqdCozgCSp143kWPjDXnVT4x-YSsa3cAbPb_386hxGdG_EdP4-W2LQsRgjNFn-j-ZkSICe8kH8DUawZO-nEhucsV3363bHnykr3BunO7D6nJx679hwLO0B8GiD2DteHzx-w-9f_yanD8CjAYAow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La-MwEB5KStmFpbTdV7btVgt7NbElK7KPpbSk2yaHkkBuQpIV1qU4JU4X-u93xrIDPbSBHnyxJRhGo3nI33wC-J3ZPE24T3B_Y4mSOuEiK3wR8UQ4ES-4802hOJ4MR7P0z1zOd-Ci64UhWGXr-4NPb7x1-2bQanPwWJYDgiWpoUzIKOMkow72XWKnkj3YPb--GU02DplIrQKSUUU0oeuga2BeWOT56h9hvLLAdjp8LUK9loE2kejqAPbbFJKdBykPYcdXR7B32dBPPx_Bp3ASx0KD0We4G5cN2RJOKToQBgv9vjWjY1i2ItxdTfwCnpmqYH-fCwxrZmXRIllZsQbObmoCSLN6WT7UX2B2dTm9GEXtTQqRSwVfR9zYjCtjnbNO-pTyjCxzeS5lkadcWY-RDBfHKJtKiU9mVZErI611C6-8E1-hVy0r_x0YVkDKiUJm1FWLtWOOsc94unooNwue-D6ITnvatTTjdNvFg-7wZPc66FyTznUsNIrTh2gz6zHQbGwZr7qF0S_MRWMk2DLzV7eOGncS_R4xlV8-1TiISIwxAY3fGjNUxGEveR--BSPYyMuJ5yZV_Me7ZTuDD6Pp-FbfXk9ujuEjfWmOkeMT6K1XT_4U85-1_dna939HOwG_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+diversity+changes+with+rhizosphere+and+hydrocarbons+in+contrasting+soils&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Khan%2C+Muhammad+Atikul+Islam&rft.au=Biswas%2C+Bhabananda&rft.au=Smith%2C+Euan&rft.au=Mahmud%2C+Siraje+Arif&rft.date=2018-07-30&rft.eissn=1090-2414&rft.volume=156&rft.spage=434&rft_id=info:doi/10.1016%2Fj.ecoenv.2018.03.006&rft_id=info%3Apmid%2F29604472&rft.externalDocID=29604472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon