Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils
In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains un...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 156; pp. 434 - 442 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
30.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2–29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites.
[Display omitted]
•Impact of petroleum hydrocarbon was assessed by soil metagenomics study.•Influence of contrasting soils and various plants was also studied.•Hydrocarbon loading and its exposure had a great influence on microbial community.•Microbial diversity slightly increased in soil planted with Australian native than wheat.•Rhizosphere accommodated more microbial diversity than the bulk soil. |
---|---|
AbstractList | In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2-29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites.In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2-29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites. In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2–29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites. In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2–29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites. [Display omitted] •Impact of petroleum hydrocarbon was assessed by soil metagenomics study.•Influence of contrasting soils and various plants was also studied.•Hydrocarbon loading and its exposure had a great influence on microbial community.•Microbial diversity slightly increased in soil planted with Australian native than wheat.•Rhizosphere accommodated more microbial diversity than the bulk soil. |
Author | Smith, Euan Megharaj, Mallavarapu Hasan, Nur A. Khan, Muhammad Atikul Islam Mahmud, Siraje Arif Biswas, Bhabananda Naidu, Ravi Khan, Md Abdul Wadud |
Author_xml | – sequence: 1 givenname: Muhammad Atikul Islam surname: Khan fullname: Khan, Muhammad Atikul Islam email: Muhammad.Khan@mymail.unisa.edu.au organization: Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia – sequence: 2 givenname: Bhabananda surname: Biswas fullname: Biswas, Bhabananda email: Bhaba.Biswas@unisa.edu.au organization: Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia – sequence: 3 givenname: Euan surname: Smith fullname: Smith, Euan email: Euan.Smith@unisa.edu.au organization: Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia – sequence: 4 givenname: Siraje Arif surname: Mahmud fullname: Mahmud, Siraje Arif organization: Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka 1342, Bangladesh – sequence: 5 givenname: Nur A. surname: Hasan fullname: Hasan, Nur A. organization: University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA – sequence: 6 givenname: Md Abdul Wadud surname: Khan fullname: Khan, Md Abdul Wadud organization: Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA – sequence: 7 givenname: Ravi surname: Naidu fullname: Naidu, Ravi email: Ravi.Naidu@newcastle.edu.au organization: Global Centre for Environmental Remediation, The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia – sequence: 8 givenname: Mallavarapu surname: Megharaj fullname: Megharaj, Mallavarapu email: Megh.Mallavarapu@newcastle.edu.au organization: Global Centre for Environmental Remediation, The University of Newcastle, ACT building, Callaghan, NSW 2308, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29604472$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLeFb4BQjlwSxo4dJxyQUMU_qQgJwdmyndlmVll7sb1bLZ-elG0vHIDDaC6_9zTz3gU7CzEgY885NBx492rToI8YDo0A3jfQNgDdI7biMEAtJJdnbAVc6rpTvD1nFzlvAKAFpZ6wczF0IKUWK_b1M_kUHdm5GumAKVM5Vn6y4QZzdUtlqtJEP2PeTZiwsmGspuOYorfJxZArCpWPoSSbC4WbKkea81P2eG3njM_u9yX7_v7dt6uP9fWXD5-u3l7XXrai1MK6XmjrvHdeoVyu7_reD4NS4yCFdshb4K232kmllumdHgdtlXN-jRp9e8lennx3Kf7YYy5mS9njPNuAcZ-NgE6Ljmsl_gMVIHvFOSzoi3t077Y4ml2irU1H8xDZArw-AUtuOSdcG0_FFvodA82Gg7nrx2zMqR9z14-B1iwfLmL5h_jB_x-yNycZLnkeCJPJnjB4HCmhL2aM9HeDX-QGrKQ |
CitedBy_id | crossref_primary_10_1016_j_ecoenv_2019_110079 crossref_primary_10_1093_femsec_fiy230 crossref_primary_10_1016_j_jenvman_2023_118601 crossref_primary_10_1166_jbmb_2021_2102 crossref_primary_10_1007_s10021_022_00797_y crossref_primary_10_1016_j_jhazmat_2022_129469 crossref_primary_10_21307_pjm_2018_046 crossref_primary_10_3103_S0096392523010029 crossref_primary_10_1016_j_scitotenv_2023_169425 crossref_primary_10_55959_MSU0137_0952_16_78_1_3 crossref_primary_10_3390_ijerph15102155 crossref_primary_10_1016_j_chemosphere_2022_134804 crossref_primary_10_2139_ssrn_4049454 crossref_primary_10_3390_soilsystems2030051 crossref_primary_10_3934_environsci_2024033 crossref_primary_10_1071_SR22092 crossref_primary_10_1007_s00248_022_02030_8 crossref_primary_10_1007_s11356_020_11301_1 crossref_primary_10_1016_j_chemosphere_2018_08_094 crossref_primary_10_1016_j_chemosphere_2022_135868 crossref_primary_10_1016_j_chemosphere_2021_130135 crossref_primary_10_1007_s42729_025_02247_9 crossref_primary_10_1016_j_heliyon_2020_e04278 crossref_primary_10_1007_s11356_022_23875_z crossref_primary_10_55959_MSU0137_0944_17_2024_79_1_42_50 crossref_primary_10_1016_j_jenvman_2019_04_111 crossref_primary_10_1007_s11356_020_11290_1 crossref_primary_10_1016_j_eti_2023_103210 crossref_primary_10_3103_S0147687424010034 crossref_primary_10_1016_j_ecoenv_2020_111551 crossref_primary_10_1007_s11356_024_33326_6 crossref_primary_10_1016_j_seppur_2023_125881 crossref_primary_10_1016_j_scitotenv_2019_05_090 crossref_primary_10_1007_s11356_023_29151_y crossref_primary_10_1016_j_jhazmat_2021_125990 crossref_primary_10_1016_j_envpol_2022_119531 crossref_primary_10_1016_j_scitotenv_2020_138439 |
Cites_doi | 10.1007/s00253-016-7965-y 10.1016/j.scitotenv.2008.09.026 10.1128/AEM.69.3.1800-1809.2003 10.1016/j.soilbio.2008.05.021 10.1016/j.scitotenv.2007.04.005 10.1016/j.eti.2015.04.005 10.1002/jat.1521 10.1002/etc.5620181110 10.1016/j.jenvman.2014.01.031 10.1111/j.1574-6941.2009.00654.x 10.1016/j.envint.2011.06.003 10.1111/j.1574-6941.2010.00982.x 10.1128/MR.54.3.305-315.1990 10.1111/j.1365-2672.2007.03401.x 10.1071/SR10159 10.1007/s00248-005-0205-0 10.1016/j.soilbio.2009.09.012 10.1128/AEM.71.12.8228-8235.2005 10.1002/btpr.2249 10.1128/AEM.05402-11 10.1186/gb-2013-14-6-209 10.1128/AEM.02747-12 10.1038/ismej.2010.35 10.1016/j.envpol.2017.01.022 10.1016/S1001-0742(10)60517-7 10.1007/s11769-013-0641-6 10.1111/j.1574-6941.2005.00026.x 10.1007/s00244-016-0318-0 10.1021/es2013598 10.1080/15226510903213928 10.1007/s00248-006-9136-7 10.1038/ismej.2013.119 10.1016/j.envint.2015.09.017 10.1016/j.scitotenv.2014.04.032 10.1002/ieam.1580 10.1007/s00284-016-1001-4 10.1017/S0954102014000728 10.1016/j.ecoenv.2015.11.029 10.1016/j.ecoenv.2017.10.072 10.1016/j.soilbio.2011.09.003 10.1016/j.envpol.2004.06.002 10.1016/j.ecoenv.2005.03.026 10.1111/j.1574-6941.1999.tb00617.x 10.1016/bs.agron.2014.10.005 10.1038/ismej.2013.196 10.1038/nature11336 10.1038/ismej.2010.58 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ecoenv.2018.03.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
EndPage | 442 |
ExternalDocumentID | 29604472 10_1016_j_ecoenv_2018_03_006 S0147651318301891 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 OK1 R2- SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c432t-2ab827abccbc5e4006688c9955d9427be13013ca7b455b458b7d97a5bbcfe7ec3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Thu Jul 10 17:43:37 EDT 2025 Thu Jul 10 17:17:31 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 03:59:55 EDT 2025 Fri Feb 23 02:28:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrocarbon toxicity Reference vs Australian native plant 16S rRNA gene diversity Rhizosphere microbiome |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-2ab827abccbc5e4006688c9955d9427be13013ca7b455b458b7d97a5bbcfe7ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29604472 |
PQID | 2020485110 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2067261752 proquest_miscellaneous_2020485110 pubmed_primary_29604472 crossref_citationtrail_10_1016_j_ecoenv_2018_03_006 crossref_primary_10_1016_j_ecoenv_2018_03_006 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2018_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-30 |
PublicationDateYYYYMMDD | 2018-07-30 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Stroud (bib39) 2007; 102 Costa (bib12) 2006; 56 Wang (bib48) 2013; 23 Shahi (bib36) 2016; 125 Liang (bib22) 2014; 487 Nie (bib30) 2009; 41 Leahy, Colwell (bib21) 1990; 54 Girvan (bib14) 2003; 69 Kirk (bib17) 2005; 133 Turner (bib46) 2013; 7 Hackenberger (bib15) 2018; 148 Oksanen J. et al., Community Ecology Package, version 2.4-6 Megharaj (bib26) 2011; 37 Bulgarelli (bib10) 2012; 488 Thavamani (bib44) 2015; 4 Brockett (bib9) 2012; 44 Berg, Smalla (bib5) 2009; 68 Sutton (bib41) 2013; 79 , Aguilera (bib3) 2010; 30 Aleer (bib4) 2014; 136 Joynt (bib16) 2006; 51 Meudec (bib27) 2007; 381 Olson (bib32) 1999; 18 Cury (bib13) 2015; 27 Abbasian (bib1) 2016; 72 Vázquez-Baeza, Y.. et al., 2013. Example files and supporting material for "EMPeror: An interactive analysis and visualization tool for high throughput microbial ecology datasets.". GigaScience Database. Nedunuri (bib29) 2009; 12 Turner (bib45) 2013; 14 Kleber (bib18) 2015 Teixeira (bib43) 2010; 4 Ramadass (bib33) 2016; 71 Tang (bib42) 2011; 23 Lauber (bib20) 2008; 40 Kostka (bib19) 2011; 77 de Boer (bib8) 2011; 46 Militon (bib28) 2010; 74 Su, Yang (bib40) 2009; 407 Abbasian (bib2) 2016; 32 Siciliano, Germida (bib38) 1999; 29 Wilson (bib49) 1985; 4 Biswas (bib7) 2017; 223 Lozupone, Knight (bib23) 2005; 71 Richardson (bib34) 2015; 11 Margesin (bib25) 2007; 53 Biswas (bib6) 2015; 85 Chaparro (bib11) 2014; 8 Rousk (bib35) 2010; 4 Sheppard (bib37) 2011; 49 Mahbub (bib24) 2017; 101 Winding (bib50) 2005; 62 Brockett (10.1016/j.ecoenv.2018.03.006_bib9) 2012; 44 Turner (10.1016/j.ecoenv.2018.03.006_bib45) 2013; 14 10.1016/j.ecoenv.2018.03.006_bib31 Hackenberger (10.1016/j.ecoenv.2018.03.006_bib15) 2018; 148 Su (10.1016/j.ecoenv.2018.03.006_bib40) 2009; 407 Nedunuri (10.1016/j.ecoenv.2018.03.006_bib29) 2009; 12 Nie (10.1016/j.ecoenv.2018.03.006_bib30) 2009; 41 Liang (10.1016/j.ecoenv.2018.03.006_bib22) 2014; 487 Stroud (10.1016/j.ecoenv.2018.03.006_bib39) 2007; 102 Kleber (10.1016/j.ecoenv.2018.03.006_bib18) 2015 Margesin (10.1016/j.ecoenv.2018.03.006_bib25) 2007; 53 Siciliano (10.1016/j.ecoenv.2018.03.006_bib38) 1999; 29 Abbasian (10.1016/j.ecoenv.2018.03.006_bib1) 2016; 72 Teixeira (10.1016/j.ecoenv.2018.03.006_bib43) 2010; 4 Bulgarelli (10.1016/j.ecoenv.2018.03.006_bib10) 2012; 488 Lauber (10.1016/j.ecoenv.2018.03.006_bib20) 2008; 40 Aguilera (10.1016/j.ecoenv.2018.03.006_bib3) 2010; 30 Ramadass (10.1016/j.ecoenv.2018.03.006_bib33) 2016; 71 Militon (10.1016/j.ecoenv.2018.03.006_bib28) 2010; 74 Biswas (10.1016/j.ecoenv.2018.03.006_bib7) 2017; 223 Cury (10.1016/j.ecoenv.2018.03.006_bib13) 2015; 27 Mahbub (10.1016/j.ecoenv.2018.03.006_bib24) 2017; 101 Tang (10.1016/j.ecoenv.2018.03.006_bib42) 2011; 23 Aleer (10.1016/j.ecoenv.2018.03.006_bib4) 2014; 136 Lozupone (10.1016/j.ecoenv.2018.03.006_bib23) 2005; 71 Leahy (10.1016/j.ecoenv.2018.03.006_bib21) 1990; 54 Meudec (10.1016/j.ecoenv.2018.03.006_bib27) 2007; 381 Sheppard (10.1016/j.ecoenv.2018.03.006_bib37) 2011; 49 Girvan (10.1016/j.ecoenv.2018.03.006_bib14) 2003; 69 Turner (10.1016/j.ecoenv.2018.03.006_bib46) 2013; 7 Biswas (10.1016/j.ecoenv.2018.03.006_bib6) 2015; 85 Rousk (10.1016/j.ecoenv.2018.03.006_bib35) 2010; 4 10.1016/j.ecoenv.2018.03.006_bib47 Thavamani (10.1016/j.ecoenv.2018.03.006_bib44) 2015; 4 Winding (10.1016/j.ecoenv.2018.03.006_bib50) 2005; 62 Sutton (10.1016/j.ecoenv.2018.03.006_bib41) 2013; 79 Richardson (10.1016/j.ecoenv.2018.03.006_bib34) 2015; 11 Wang (10.1016/j.ecoenv.2018.03.006_bib48) 2013; 23 Abbasian (10.1016/j.ecoenv.2018.03.006_bib2) 2016; 32 de Boer (10.1016/j.ecoenv.2018.03.006_bib8) 2011; 46 Berg (10.1016/j.ecoenv.2018.03.006_bib5) 2009; 68 Chaparro (10.1016/j.ecoenv.2018.03.006_bib11) 2014; 8 Costa (10.1016/j.ecoenv.2018.03.006_bib12) 2006; 56 Joynt (10.1016/j.ecoenv.2018.03.006_bib16) 2006; 51 Olson (10.1016/j.ecoenv.2018.03.006_bib32) 1999; 18 Kirk (10.1016/j.ecoenv.2018.03.006_bib17) 2005; 133 Megharaj (10.1016/j.ecoenv.2018.03.006_bib26) 2011; 37 Wilson (10.1016/j.ecoenv.2018.03.006_bib49) 1985; 4 Kostka (10.1016/j.ecoenv.2018.03.006_bib19) 2011; 77 Shahi (10.1016/j.ecoenv.2018.03.006_bib36) 2016; 125 |
References_xml | – volume: 79 start-page: 619 year: 2013 end-page: 630 ident: bib41 article-title: Impact of long-term diesel contamination on soil microbial community structure publication-title: Appl. Environ. Microbiol. – volume: 7 start-page: 2248 year: 2013 end-page: 2258 ident: bib46 article-title: Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants publication-title: ISME J. – volume: 488 start-page: 91 year: 2012 end-page: 95 ident: bib10 article-title: Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota publication-title: Nature – volume: 32 start-page: 638 year: 2016 end-page: 648 ident: bib2 article-title: Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis publication-title: Biotechnol. Prog. – volume: 18 start-page: 2448 year: 1999 end-page: 2453 ident: bib32 article-title: Biodegradation rates of separated diesel components publication-title: Environ. Toxicol. Chem. – volume: 4 start-page: 989 year: 2010 end-page: 1001 ident: bib43 article-title: Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica publication-title: ISME J. – volume: 68 start-page: 1 year: 2009 end-page: 13 ident: bib5 article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere publication-title: FEMS Microbiol. Ecol. – volume: 40 start-page: 2407 year: 2008 end-page: 2415 ident: bib20 article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types publication-title: Soil Biol. Biochem. – volume: 37 start-page: 1362 year: 2011 end-page: 1375 ident: bib26 article-title: Bioremediation approaches for organic pollutants: a critical perspective publication-title: Environ. Int. – volume: 44 start-page: 9 year: 2012 end-page: 20 ident: bib9 article-title: Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada publication-title: Soil Biol. Biochem. – volume: 77 start-page: 7962 year: 2011 end-page: 7974 ident: bib19 article-title: Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill publication-title: Appl. Environ. Microbiol. – volume: 27 start-page: 263 year: 2015 end-page: 273 ident: bib13 article-title: Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands publication-title: Antarct. Sci. – start-page: 1 year: 2015 end-page: 140 ident: bib18 article-title: Mineral–organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agron. – volume: 71 start-page: 8228 year: 2005 end-page: 8235 ident: bib23 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. – volume: 53 start-page: 259 year: 2007 end-page: 269 ident: bib25 article-title: Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time publication-title: Microbiol. Ecol. – volume: 41 start-page: 2535 year: 2009 end-page: 2542 ident: bib30 article-title: Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization publication-title: Soil Biol. Biochem. – volume: 133 start-page: 455 year: 2005 end-page: 465 ident: bib17 article-title: The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil publication-title: Environ. Pollut. – volume: 62 start-page: 230 year: 2005 end-page: 248 ident: bib50 article-title: The use of microorganisms in ecological soil classification and assessment concepts publication-title: Ecotoxicol. Environ. Saf. – reference: Oksanen J. et al., Community Ecology Package, version 2.4-6, – volume: 102 start-page: 1239 year: 2007 end-page: 1253 ident: bib39 article-title: Microbe‐aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation publication-title: J. Appl. Microbiol. – volume: 4 start-page: 721 year: 1985 end-page: 726 ident: bib49 article-title: Biodegradation of chemicals in the subsurface environment: influence of microbial adaptation on the fate of organic pollutants in ground water publication-title: Environ. Toxicol. Chem. – volume: 74 start-page: 669 year: 2010 end-page: 681 ident: bib28 article-title: Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil publication-title: FEMS Microbiol. Ecol. – volume: 125 start-page: 153 year: 2016 end-page: 160 ident: bib36 article-title: Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach publication-title: Ecotoxicol. Environ. Saf. – volume: 8 start-page: 790 year: 2014 end-page: 803 ident: bib11 article-title: Rhizosphere microbiome assemblage is affected by plant development publication-title: ISME J. – volume: 4 start-page: 1340 year: 2010 end-page: 1351 ident: bib35 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME J. – volume: 14 start-page: 1 year: 2013 ident: bib45 article-title: The plant microbiome publication-title: Genome Biol. – volume: 46 start-page: 60 year: 2011 end-page: 68 ident: bib8 article-title: The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation publication-title: Environ. Sci. Technol. – volume: 223 start-page: 255 year: 2017 end-page: 265 ident: bib7 article-title: Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: a publication-title: Environ. Pollut. – volume: 11 start-page: 235 year: 2015 end-page: 241 ident: bib34 article-title: The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils publication-title: Integr. Environ. Assess. Manag. – volume: 23 start-page: 845 year: 2011 end-page: 851 ident: bib42 article-title: Eco-toxicity of petroleum hydrocarbon contaminated soil publication-title: J. Environ. Sci. – volume: 381 start-page: 146 year: 2007 end-page: 156 ident: bib27 article-title: Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis publication-title: Sci. Total Environ. – volume: 49 start-page: 261 year: 2011 end-page: 269 ident: bib37 article-title: Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil publication-title: Soil Res. – reference: , – volume: 30 start-page: 291 year: 2010 end-page: 301 ident: bib3 article-title: Review on the effects of exposure to spilled oils on human health publication-title: J. Appl. Toxicol. – volume: 85 start-page: 168 year: 2015 end-page: 181 ident: bib6 article-title: Bioremediation of PAHs and VOCs: advances in clay mineral–microbial interaction publication-title: Environ. Int. – volume: 56 start-page: 236 year: 2006 end-page: 249 ident: bib12 article-title: Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds publication-title: FEMS Microbiol. Ecol. – volume: 71 start-page: 561 year: 2016 end-page: 571 ident: bib33 article-title: Earthworm comet assay for assessing the risk of weathered petroleum hydrocarbon contaminated soils: need to look further than target contaminants publication-title: Arc. Environ. Contam. Toxicol. – volume: 29 start-page: 263 year: 1999 end-page: 272 ident: bib38 article-title: Taxonomic diversity of bacteria associated with the roots of field-grown transgenic publication-title: FEMS Microbiol. Ecol. – volume: 51 start-page: 209 year: 2006 end-page: 219 ident: bib16 article-title: Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons publication-title: Microbiol. Ecol. – volume: 487 start-page: 272 year: 2014 end-page: 278 ident: bib22 article-title: Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites publication-title: Sci. Total Environ. – volume: 148 start-page: 480 year: 2018 end-page: 489 ident: bib15 article-title: Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole publication-title: Ecotoxicol. Environ. Saf. – volume: 12 start-page: 200 year: 2009 end-page: 214 ident: bib29 article-title: Management practices and phytoremediation by native grasses publication-title: Int. J. Phytoremediat. – volume: 54 start-page: 305 year: 1990 end-page: 315 ident: bib21 article-title: Microbial degradation of hydrocarbons in the environment publication-title: Microbiol. Rev. – volume: 69 start-page: 1800 year: 2003 end-page: 1809 ident: bib14 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils publication-title: Appl. Environ. Microbiol. – volume: 101 start-page: 2163 year: 2017 end-page: 2175 ident: bib24 article-title: Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values publication-title: Appl. Microbiol. Biotechnol. – volume: 407 start-page: 1027 year: 2009 end-page: 1034 ident: bib40 article-title: Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil publication-title: Sci. Total Environ. – volume: 4 start-page: 98 year: 2015 end-page: 109 ident: bib44 article-title: Risk based land management requires focus beyond the target contaminants—a case study involving weathered hydrocarbon contaminated soils publication-title: Environ. Technol. Innov. – reference: Vázquez-Baeza, Y.. et al., 2013. Example files and supporting material for "EMPeror: An interactive analysis and visualization tool for high throughput microbial ecology datasets.". GigaScience Database. – volume: 72 start-page: 663 year: 2016 end-page: 670 ident: bib1 article-title: The biodiversity changes in the microbial population of soils contaminated with crude oil publication-title: Curr. Microbiol. – volume: 23 start-page: 708 year: 2013 end-page: 715 ident: bib48 article-title: Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China publication-title: Chin. Geogr. Sci. – volume: 136 start-page: 27 year: 2014 end-page: 36 ident: bib4 article-title: Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils publication-title: J. Environ. Manag. – volume: 101 start-page: 2163 year: 2017 ident: 10.1016/j.ecoenv.2018.03.006_bib24 article-title: Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7965-y – volume: 407 start-page: 1027 year: 2009 ident: 10.1016/j.ecoenv.2018.03.006_bib40 article-title: Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.09.026 – volume: 69 start-page: 1800 year: 2003 ident: 10.1016/j.ecoenv.2018.03.006_bib14 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.3.1800-1809.2003 – volume: 40 start-page: 2407 year: 2008 ident: 10.1016/j.ecoenv.2018.03.006_bib20 article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.05.021 – volume: 381 start-page: 146 year: 2007 ident: 10.1016/j.ecoenv.2018.03.006_bib27 article-title: Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.04.005 – volume: 4 start-page: 98 year: 2015 ident: 10.1016/j.ecoenv.2018.03.006_bib44 article-title: Risk based land management requires focus beyond the target contaminants—a case study involving weathered hydrocarbon contaminated soils publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2015.04.005 – volume: 30 start-page: 291 year: 2010 ident: 10.1016/j.ecoenv.2018.03.006_bib3 article-title: Review on the effects of exposure to spilled oils on human health publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1521 – volume: 18 start-page: 2448 year: 1999 ident: 10.1016/j.ecoenv.2018.03.006_bib32 article-title: Biodegradation rates of separated diesel components publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620181110 – volume: 136 start-page: 27 year: 2014 ident: 10.1016/j.ecoenv.2018.03.006_bib4 article-title: Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.01.031 – volume: 68 start-page: 1 year: 2009 ident: 10.1016/j.ecoenv.2018.03.006_bib5 article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2009.00654.x – volume: 37 start-page: 1362 year: 2011 ident: 10.1016/j.ecoenv.2018.03.006_bib26 article-title: Bioremediation approaches for organic pollutants: a critical perspective publication-title: Environ. Int. doi: 10.1016/j.envint.2011.06.003 – volume: 74 start-page: 669 year: 2010 ident: 10.1016/j.ecoenv.2018.03.006_bib28 article-title: Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00982.x – volume: 54 start-page: 305 year: 1990 ident: 10.1016/j.ecoenv.2018.03.006_bib21 article-title: Microbial degradation of hydrocarbons in the environment publication-title: Microbiol. Rev. doi: 10.1128/MR.54.3.305-315.1990 – volume: 102 start-page: 1239 year: 2007 ident: 10.1016/j.ecoenv.2018.03.006_bib39 article-title: Microbe‐aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2007.03401.x – volume: 49 start-page: 261 year: 2011 ident: 10.1016/j.ecoenv.2018.03.006_bib37 article-title: Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil publication-title: Soil Res. doi: 10.1071/SR10159 – volume: 51 start-page: 209 year: 2006 ident: 10.1016/j.ecoenv.2018.03.006_bib16 article-title: Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons publication-title: Microbiol. Ecol. doi: 10.1007/s00248-005-0205-0 – volume: 41 start-page: 2535 year: 2009 ident: 10.1016/j.ecoenv.2018.03.006_bib30 article-title: Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.09.012 – volume: 71 start-page: 8228 year: 2005 ident: 10.1016/j.ecoenv.2018.03.006_bib23 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8228-8235.2005 – volume: 32 start-page: 638 year: 2016 ident: 10.1016/j.ecoenv.2018.03.006_bib2 article-title: Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis publication-title: Biotechnol. Prog. doi: 10.1002/btpr.2249 – ident: 10.1016/j.ecoenv.2018.03.006_bib31 – volume: 77 start-page: 7962 year: 2011 ident: 10.1016/j.ecoenv.2018.03.006_bib19 article-title: Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.05402-11 – volume: 14 start-page: 1 year: 2013 ident: 10.1016/j.ecoenv.2018.03.006_bib45 article-title: The plant microbiome publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-209 – volume: 79 start-page: 619 year: 2013 ident: 10.1016/j.ecoenv.2018.03.006_bib41 article-title: Impact of long-term diesel contamination on soil microbial community structure publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02747-12 – volume: 4 start-page: 989 year: 2010 ident: 10.1016/j.ecoenv.2018.03.006_bib43 article-title: Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica publication-title: ISME J. doi: 10.1038/ismej.2010.35 – volume: 223 start-page: 255 year: 2017 ident: 10.1016/j.ecoenv.2018.03.006_bib7 article-title: Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: a 14C-tracer study publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.022 – volume: 23 start-page: 845 year: 2011 ident: 10.1016/j.ecoenv.2018.03.006_bib42 article-title: Eco-toxicity of petroleum hydrocarbon contaminated soil publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(10)60517-7 – volume: 23 start-page: 708 year: 2013 ident: 10.1016/j.ecoenv.2018.03.006_bib48 article-title: Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-013-0641-6 – volume: 56 start-page: 236 year: 2006 ident: 10.1016/j.ecoenv.2018.03.006_bib12 article-title: Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2005.00026.x – volume: 71 start-page: 561 year: 2016 ident: 10.1016/j.ecoenv.2018.03.006_bib33 article-title: Earthworm comet assay for assessing the risk of weathered petroleum hydrocarbon contaminated soils: need to look further than target contaminants publication-title: Arc. Environ. Contam. Toxicol. doi: 10.1007/s00244-016-0318-0 – volume: 46 start-page: 60 year: 2011 ident: 10.1016/j.ecoenv.2018.03.006_bib8 article-title: The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation publication-title: Environ. Sci. Technol. doi: 10.1021/es2013598 – volume: 12 start-page: 200 year: 2009 ident: 10.1016/j.ecoenv.2018.03.006_bib29 article-title: Management practices and phytoremediation by native grasses publication-title: Int. J. Phytoremediat. doi: 10.1080/15226510903213928 – volume: 53 start-page: 259 year: 2007 ident: 10.1016/j.ecoenv.2018.03.006_bib25 article-title: Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time publication-title: Microbiol. Ecol. doi: 10.1007/s00248-006-9136-7 – volume: 7 start-page: 2248 year: 2013 ident: 10.1016/j.ecoenv.2018.03.006_bib46 article-title: Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants publication-title: ISME J. doi: 10.1038/ismej.2013.119 – volume: 85 start-page: 168 year: 2015 ident: 10.1016/j.ecoenv.2018.03.006_bib6 article-title: Bioremediation of PAHs and VOCs: advances in clay mineral–microbial interaction publication-title: Environ. Int. doi: 10.1016/j.envint.2015.09.017 – volume: 487 start-page: 272 year: 2014 ident: 10.1016/j.ecoenv.2018.03.006_bib22 article-title: Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.04.032 – volume: 11 start-page: 235 year: 2015 ident: 10.1016/j.ecoenv.2018.03.006_bib34 article-title: The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils publication-title: Integr. Environ. Assess. Manag. doi: 10.1002/ieam.1580 – volume: 72 start-page: 663 year: 2016 ident: 10.1016/j.ecoenv.2018.03.006_bib1 article-title: The biodiversity changes in the microbial population of soils contaminated with crude oil publication-title: Curr. Microbiol. doi: 10.1007/s00284-016-1001-4 – volume: 27 start-page: 263 year: 2015 ident: 10.1016/j.ecoenv.2018.03.006_bib13 article-title: Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands publication-title: Antarct. Sci. doi: 10.1017/S0954102014000728 – volume: 125 start-page: 153 year: 2016 ident: 10.1016/j.ecoenv.2018.03.006_bib36 article-title: Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.11.029 – volume: 148 start-page: 480 year: 2018 ident: 10.1016/j.ecoenv.2018.03.006_bib15 article-title: Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.10.072 – volume: 44 start-page: 9 year: 2012 ident: 10.1016/j.ecoenv.2018.03.006_bib9 article-title: Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.09.003 – volume: 133 start-page: 455 year: 2005 ident: 10.1016/j.ecoenv.2018.03.006_bib17 article-title: The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2004.06.002 – volume: 62 start-page: 230 year: 2005 ident: 10.1016/j.ecoenv.2018.03.006_bib50 article-title: The use of microorganisms in ecological soil classification and assessment concepts publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2005.03.026 – volume: 4 start-page: 721 year: 1985 ident: 10.1016/j.ecoenv.2018.03.006_bib49 article-title: Biodegradation of chemicals in the subsurface environment: influence of microbial adaptation on the fate of organic pollutants in ground water publication-title: Environ. Toxicol. Chem. – volume: 29 start-page: 263 year: 1999 ident: 10.1016/j.ecoenv.2018.03.006_bib38 article-title: Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1999.tb00617.x – start-page: 1 year: 2015 ident: 10.1016/j.ecoenv.2018.03.006_bib18 article-title: Mineral–organic associations: formation, properties, and relevance in soil environments doi: 10.1016/bs.agron.2014.10.005 – volume: 8 start-page: 790 year: 2014 ident: 10.1016/j.ecoenv.2018.03.006_bib11 article-title: Rhizosphere microbiome assemblage is affected by plant development publication-title: ISME J. doi: 10.1038/ismej.2013.196 – volume: 488 start-page: 91 year: 2012 ident: 10.1016/j.ecoenv.2018.03.006_bib10 article-title: Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota publication-title: Nature doi: 10.1038/nature11336 – volume: 4 start-page: 1340 year: 2010 ident: 10.1016/j.ecoenv.2018.03.006_bib35 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME J. doi: 10.1038/ismej.2010.58 – ident: 10.1016/j.ecoenv.2018.03.006_bib47 |
SSID | ssj0003055 |
Score | 2.4218931 |
Snippet | In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 434 |
SubjectTerms | 16S rRNA gene diversity Actinobacteria Actinobacteria - isolation & purification Australia bacteria bacterial communities Biomass DNA fingerprinting DNA, Bacterial - isolation & purification ecotoxicology Gene Expression Profiling Hydrocarbon toxicity hydrocarbons Hydrocarbons - analysis indigenous species Metagenomics microbiome mined soils organic matter petroleum Petroleum - analysis plants (botany) polluted soils Proteobacteria Proteobacteria - isolation & purification Reference vs Australian native plant Rhizosphere Rhizosphere microbiome RNA, Ribosomal, 16S - isolation & purification Soil - chemistry Soil Microbiology soil pH soil physical properties Soil Pollutants - analysis toxicity |
Title | Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils |
URI | https://dx.doi.org/10.1016/j.ecoenv.2018.03.006 https://www.ncbi.nlm.nih.gov/pubmed/29604472 https://www.proquest.com/docview/2020485110 https://www.proquest.com/docview/2067261752 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEB5EOTgQ8TzvXPUkB77WbZNm0z7Kouz9UA45wbeQpFmusnRluwq--Lc7k7SKD57gQykNExiSSWYm_eYLwGFhyzzjPsP1jSlK7oRLrPBVwjPhRDrlzodE8ex8NLnMf17JqxUY97UwBKvs9v64p4fdumsZdqM5vKnrIcGS1EhmZJRpVsQKdmxBmz56eIZ5EKNVhDGqhKT78rmA8cIMzzd3BPAqItXp6DX39Fr4GdzQ6SZsdPEjO44qfoIV32zBh5PAPX2_BevxGI7F6qLPcHFWB6Yl7FL1CAwWi31bRmewbEGgu5bIBTwzTcX-3Vfo08zCojmyumEBy25aQkezdl7P2m24PD35O54k3TUKicsFXybc2IIrY52zTvqcgoyicGUpZVXmXFmPbgxnxiibS4lPYVVVKiOtdVOvvBNfYLWZN34HGKY_yolKFlRSi4ljiY7PeLp3qDRTnvkBiH70tOs4xumqi5nuwWTXOo65pjHXqdCozgCSp143kWPjDXnVT4x-YSsa3cAbPb_386hxGdG_EdP4-W2LQsRgjNFn-j-ZkSICe8kH8DUawZO-nEhucsV3363bHnykr3BunO7D6nJx679hwLO0B8GiD2DteHzx-w-9f_yanD8CjAYAow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La-MwEB5KStmFpbTdV7btVgt7NbElK7KPpbSk2yaHkkBuQpIV1qU4JU4X-u93xrIDPbSBHnyxJRhGo3nI33wC-J3ZPE24T3B_Y4mSOuEiK3wR8UQ4ES-4802hOJ4MR7P0z1zOd-Ci64UhWGXr-4NPb7x1-2bQanPwWJYDgiWpoUzIKOMkow72XWKnkj3YPb--GU02DplIrQKSUUU0oeuga2BeWOT56h9hvLLAdjp8LUK9loE2kejqAPbbFJKdBykPYcdXR7B32dBPPx_Bp3ASx0KD0We4G5cN2RJOKToQBgv9vjWjY1i2ItxdTfwCnpmqYH-fCwxrZmXRIllZsQbObmoCSLN6WT7UX2B2dTm9GEXtTQqRSwVfR9zYjCtjnbNO-pTyjCxzeS5lkadcWY-RDBfHKJtKiU9mVZErI611C6-8E1-hVy0r_x0YVkDKiUJm1FWLtWOOsc94unooNwue-D6ITnvatTTjdNvFg-7wZPc66FyTznUsNIrTh2gz6zHQbGwZr7qF0S_MRWMk2DLzV7eOGncS_R4xlV8-1TiISIwxAY3fGjNUxGEveR--BSPYyMuJ5yZV_Me7ZTuDD6Pp-FbfXk9ujuEjfWmOkeMT6K1XT_4U85-1_dna939HOwG_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+diversity+changes+with+rhizosphere+and+hydrocarbons+in+contrasting+soils&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Khan%2C+Muhammad+Atikul+Islam&rft.au=Biswas%2C+Bhabananda&rft.au=Smith%2C+Euan&rft.au=Mahmud%2C+Siraje+Arif&rft.date=2018-07-30&rft.eissn=1090-2414&rft.volume=156&rft.spage=434&rft_id=info:doi/10.1016%2Fj.ecoenv.2018.03.006&rft_id=info%3Apmid%2F29604472&rft.externalDocID=29604472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |