Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review

Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts...

Full description

Saved in:
Bibliographic Details
Published inJournal of Alloys and Compounds Vol. 819; p. 153346
Main Authors Wang, Jiajia, Yue, Xiyan, Yang, Yanyan, Sirisomboonchai, Suchada, Wang, Peifen, Ma, Xuli, Abudula, Abuliti, Guan, Guoqing
Format Journal Article
LanguageEnglish
Japanese
Published Lausanne Elsevier B.V 05.04.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts with low-cost to replace the noble-metal-based ones. To date, a series of transition-metal-based bifunctional electrocatalysts for both anode and cathode have been already developed for the overall water splitting. Herein, the characteristics of hydrogen and oxygen evolution reactions on the electrodes of water electrolysis cell and the basic methods for the evaluation of the performance of electrocatalysts are introduced at first and then, the prospects of various earth-abundant transition-metal-based bifunctional electrocatalysts are critically reviewed. Finally, the challenges in the development of earth-abundant transition-metal-based bifunctional electrocatalysts are discussed. It is expected to provide a guidance for the design and fabrication of the novel bifunctional electrocatalysts with high performance in a practical water splitting process. [Display omitted] •Mechanisms on HER and OER on the cathode and anode of water electrolysis cell are summarized.•Evaluation parameters for electrochemical water splitting are systematically reviewed.•Various transition-metal-based bifunctional electrocatalysts are analyzed and discussed.•Challenges for the development of transition-metal-based bifunctional electrocatalysts are presented.•Outlook on design and construction of bifunctional electrocatalysts in a practical water splitting process is given.
AbstractList Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts with low-cost to replace the noble-metal-based ones. To date, a series of transition-metal-based bifunctional electrocatalysts for both anode and cathode have been already developed for the overall water splitting. Herein, the characteristics of hydrogen and oxygen evolution reactions on the electrodes of water electrolysis cell and the basic methods for the evaluation of the performance of electrocatalysts are introduced at first and then, the prospects of various earth-abundant transition-metal-based bifunctional electrocatalysts are critically reviewed. Finally, the challenges in the development of earth-abundant transition-metal-based bifunctional electrocatalysts are discussed. It is expected to provide a guidance for the design and fabrication of the novel bifunctional electrocatalysts with high performance in a practical water splitting process.
Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts with low-cost to replace the noble-metal-based ones. To date, a series of transition-metal-based bifunctional electrocatalysts for both anode and cathode have been already developed for the overall water splitting. Herein, the characteristics of hydrogen and oxygen evolution reactions on the electrodes of water electrolysis cell and the basic methods for the evaluation of the performance of electrocatalysts are introduced at first and then, the prospects of various earth-abundant transition-metal-based bifunctional electrocatalysts are critically reviewed. Finally, the challenges in the development of earth-abundant transition-metal-based bifunctional electrocatalysts are discussed. It is expected to provide a guidance for the design and fabrication of the novel bifunctional electrocatalysts with high performance in a practical water splitting process. [Display omitted] •Mechanisms on HER and OER on the cathode and anode of water electrolysis cell are summarized.•Evaluation parameters for electrochemical water splitting are systematically reviewed.•Various transition-metal-based bifunctional electrocatalysts are analyzed and discussed.•Challenges for the development of transition-metal-based bifunctional electrocatalysts are presented.•Outlook on design and construction of bifunctional electrocatalysts in a practical water splitting process is given.
ArticleNumber 153346
Author Wang, Jiajia
Yang, Yanyan
Yue, Xiyan
Sirisomboonchai, Suchada
Abudula, Abuliti
Ma, Xuli
Guan, Guoqing
Wang, Peifen
Author_xml – sequence: 1
  givenname: Jiajia
  surname: Wang
  fullname: Wang, Jiajia
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 2
  givenname: Xiyan
  surname: Yue
  fullname: Yue, Xiyan
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 3
  givenname: Yanyan
  surname: Yang
  fullname: Yang, Yanyan
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People’s Republic of China
– sequence: 4
  givenname: Suchada
  surname: Sirisomboonchai
  fullname: Sirisomboonchai, Suchada
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 5
  givenname: Peifen
  surname: Wang
  fullname: Wang, Peifen
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 6
  givenname: Xuli
  surname: Ma
  fullname: Ma, Xuli
  organization: College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People’s Republic of China
– sequence: 7
  givenname: Abuliti
  surname: Abudula
  fullname: Abudula, Abuliti
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 8
  givenname: Guoqing
  orcidid: 0000-0002-5875-3596
  surname: Guan
  fullname: Guan, Guoqing
  email: guan@hirosaki-u.ac.jp
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
BackLink https://cir.nii.ac.jp/crid/1872272493134788224$$DView record in CiNii
BookMark eNqFkU1r3DAQhkVJoZu0P6EgSK_e6su2lB5KCOkHBHppz2IsjxsZr7SVtAn595FxTr3kIoHmeTXMM-fkLMSAhHzkbM8Z7z7P-xmWxcXDXjBu9ryVUnVvyI7rXjaq68wZ2TEj2kZLrd-R85xnxiop-Y6kW0jlvoHhFEYIhZYEIfviY2gOWGBpBsg40sFPp-DWZ1iog1p4yiXTKSYaHzDV9hQXdCVFd48H7yr1CAUTzcfFl-LD3yt6TRM-eHx8T95OsGT88HJfkD_fbn_f_Gjufn3_eXN91zglRWkEMKV7dJoZQDaKjvcS1SjFMEzGARo9QC-cUQ6N0a1wk-nbiQ0MGYyD6OUFudz-Pab474S52DmeUh0gWyFbpUUnO1apdqNcijknnOwx-QOkJ8uZXfXa2b7otateu-mtuS__5ZwvsBqqCv3yavrTlg7e1-B61m0J0QtV1yJVr7UQqmJfNwyrp-ou2ew8BoejT9W2HaN_pdEzFSyotQ
CitedBy_id crossref_primary_10_1039_D1DT04086C
crossref_primary_10_3390_en17071591
crossref_primary_10_1016_j_jallcom_2022_164603
crossref_primary_10_1021_acssuschemeng_0c07700
crossref_primary_10_1039_D3QM00586K
crossref_primary_10_1039_D4CP00672K
crossref_primary_10_1039_D4GC00719K
crossref_primary_10_3390_en18061515
crossref_primary_10_1016_j_cej_2021_129333
crossref_primary_10_1016_j_jcis_2022_04_127
crossref_primary_10_1016_j_ijhydene_2024_10_184
crossref_primary_10_1016_j_jallcom_2020_156422
crossref_primary_10_1016_j_jallcom_2020_157511
crossref_primary_10_1039_D2SE01196D
crossref_primary_10_1039_D4SE00552J
crossref_primary_10_1016_j_ijhydene_2021_03_037
crossref_primary_10_1016_j_jallcom_2022_164852
crossref_primary_10_1016_j_ijhydene_2024_10_194
crossref_primary_10_1021_acs_chemmater_4c01684
crossref_primary_10_1016_j_inoche_2024_113672
crossref_primary_10_1016_j_fuel_2021_120558
crossref_primary_10_1016_j_jcis_2024_10_061
crossref_primary_10_1016_j_apsusc_2024_159651
crossref_primary_10_1016_j_rser_2025_115385
crossref_primary_10_3390_nano11123379
crossref_primary_10_1016_j_ijhydene_2024_09_189
crossref_primary_10_1002_cssc_202002002
crossref_primary_10_1007_s42247_020_00123_z
crossref_primary_10_1016_j_jssc_2021_122799
crossref_primary_10_1016_j_jallcom_2024_176946
crossref_primary_10_1016_j_susmat_2024_e01036
crossref_primary_10_1039_D1SE01535D
crossref_primary_10_1021_acs_langmuir_3c00695
crossref_primary_10_1021_acsmaterialslett_4c00587
crossref_primary_10_1016_j_gce_2022_11_001
crossref_primary_10_1016_j_jece_2021_105776
crossref_primary_10_1016_j_vacuum_2020_109661
crossref_primary_10_1039_D2QI02548E
crossref_primary_10_1016_j_mtchem_2020_100399
crossref_primary_10_1016_j_ijhydene_2024_12_103
crossref_primary_10_1016_j_jallcom_2020_154374
crossref_primary_10_1016_j_diamond_2024_111379
crossref_primary_10_1016_j_apcatb_2021_120658
crossref_primary_10_1016_j_ijhydene_2023_05_333
crossref_primary_10_1016_j_jpowsour_2021_229688
crossref_primary_10_1002_adfm_202107597
crossref_primary_10_1016_j_jallcom_2023_171516
crossref_primary_10_1016_j_ijhydene_2022_09_070
crossref_primary_10_1007_s10853_022_07779_4
crossref_primary_10_1002_adfm_202106149
crossref_primary_10_1016_j_jallcom_2022_164023
crossref_primary_10_1016_j_jallcom_2022_164264
crossref_primary_10_1007_s13204_021_02134_6
crossref_primary_10_1039_D3RA03394E
crossref_primary_10_1016_j_ijhydene_2022_01_165
crossref_primary_10_1016_j_susmat_2024_e00991
crossref_primary_10_1002_eem2_12873
crossref_primary_10_1021_acsami_3c17540
crossref_primary_10_1039_D3NJ01457F
crossref_primary_10_1021_acsanm_0c01624
crossref_primary_10_1016_j_ijhydene_2023_10_121
crossref_primary_10_1021_acsomega_1c01251
crossref_primary_10_1016_j_ijhydene_2023_05_209
crossref_primary_10_1016_j_electacta_2024_145114
crossref_primary_10_1016_j_jcis_2023_03_004
crossref_primary_10_1002_smll_202200586
crossref_primary_10_1016_j_jcis_2022_03_103
crossref_primary_10_1002_er_7849
crossref_primary_10_1016_j_ceramint_2022_09_329
crossref_primary_10_1016_j_jallcom_2022_165243
crossref_primary_10_1002_smtd_202101308
crossref_primary_10_1016_j_jmrt_2022_08_042
crossref_primary_10_1002_chem_202003473
crossref_primary_10_1016_j_ccr_2021_214243
crossref_primary_10_3389_fchem_2024_1469804
crossref_primary_10_1016_j_apsusc_2020_145944
crossref_primary_10_1016_j_mtphys_2023_101169
crossref_primary_10_1007_s43207_024_00378_w
crossref_primary_10_1039_D4TA06599A
crossref_primary_10_1039_D3TA01629C
crossref_primary_10_1016_j_jphotochem_2024_116160
crossref_primary_10_1016_j_cej_2024_149213
crossref_primary_10_1039_D0CY01115K
crossref_primary_10_1002_ente_202201416
crossref_primary_10_1016_j_fuel_2024_134100
crossref_primary_10_1002_slct_202403155
crossref_primary_10_3390_catal12111417
crossref_primary_10_1016_j_ijhydene_2022_03_065
crossref_primary_10_1016_j_ijhydene_2023_03_221
crossref_primary_10_1002_smll_202403415
crossref_primary_10_1016_j_matre_2024_100283
crossref_primary_10_1016_j_jallcom_2022_165059
crossref_primary_10_1016_j_jallcom_2020_156625
crossref_primary_10_1016_j_jallcom_2023_169251
crossref_primary_10_3390_catal13050798
crossref_primary_10_1016_j_jcis_2021_05_003
crossref_primary_10_1021_acs_inorgchem_1c00734
crossref_primary_10_1021_acs_inorgchem_1c03323
crossref_primary_10_1007_s11581_024_05376_w
crossref_primary_10_1016_j_jelechem_2023_117478
crossref_primary_10_1016_j_ijhydene_2020_10_026
crossref_primary_10_1016_j_mtener_2021_100911
crossref_primary_10_1016_j_carbpol_2024_122351
crossref_primary_10_1039_D2NJ03654A
crossref_primary_10_1016_j_ijhydene_2023_11_054
crossref_primary_10_1016_j_jelechem_2021_115950
crossref_primary_10_1039_D3RA03117A
crossref_primary_10_1016_j_cej_2021_130137
crossref_primary_10_1016_j_nexus_2025_100399
crossref_primary_10_1039_D4SE00180J
crossref_primary_10_3390_nano11030657
crossref_primary_10_1016_j_ijhydene_2024_11_474
crossref_primary_10_1016_j_ccr_2021_214144
crossref_primary_10_1016_j_electacta_2023_143335
crossref_primary_10_1021_acsami_4c04157
crossref_primary_10_1002_ijch_202100110
crossref_primary_10_1016_j_micromeso_2020_110760
crossref_primary_10_1016_j_apsusc_2021_151900
crossref_primary_10_1002_chem_202404684
crossref_primary_10_1016_j_jiec_2022_11_054
crossref_primary_10_1007_s12598_021_01735_y
crossref_primary_10_2139_ssrn_4127613
crossref_primary_10_1016_j_colsurfa_2021_126265
crossref_primary_10_1002_aesr_202400258
crossref_primary_10_1088_1361_6528_ac8060
crossref_primary_10_22201_fesz_23958723e_2020_0_211
crossref_primary_10_1002_er_7380
crossref_primary_10_1016_j_ijhydene_2025_02_246
crossref_primary_10_1021_acsaem_3c01338
crossref_primary_10_1016_j_jallcom_2020_157729
crossref_primary_10_3390_s24030756
crossref_primary_10_1039_D0TA09495A
crossref_primary_10_1007_s00894_021_04864_4
crossref_primary_10_1002_cey2_575
crossref_primary_10_1021_acsomega_1c03115
crossref_primary_10_1038_s41598_025_87423_8
crossref_primary_10_1016_j_ijhydene_2021_12_055
crossref_primary_10_1016_j_inoche_2024_112798
crossref_primary_10_1016_j_ijhydene_2022_01_108
crossref_primary_10_1016_j_surfin_2024_105536
crossref_primary_10_1016_j_jallcom_2021_161180
crossref_primary_10_1002_aenm_202201913
crossref_primary_10_1007_s11814_023_1421_3
crossref_primary_10_1016_j_ccr_2021_214289
crossref_primary_10_1016_j_electacta_2021_139745
crossref_primary_10_1002_er_7800
crossref_primary_10_1002_adsu_202200076
crossref_primary_10_1016_j_ijhydene_2025_01_219
crossref_primary_10_26599_NRE_2023_9120086
crossref_primary_10_1016_j_jallcom_2020_155685
crossref_primary_10_1039_D2EE01094A
crossref_primary_10_1007_s41918_022_00136_8
crossref_primary_10_1016_j_ccr_2023_215029
crossref_primary_10_1016_j_mtsust_2024_100761
crossref_primary_10_1007_s11705_024_2420_6
crossref_primary_10_1021_acsanm_4c01126
crossref_primary_10_1039_D3MA00289F
crossref_primary_10_1016_j_pecs_2023_101101
crossref_primary_10_1016_j_ijhydene_2023_11_307
crossref_primary_10_1039_D5DT00005J
crossref_primary_10_1002_cctc_202400259
crossref_primary_10_1016_j_ijhydene_2022_02_223
crossref_primary_10_20517_cs_2024_37
crossref_primary_10_1002_advs_202304120
crossref_primary_10_1016_j_cej_2021_129972
crossref_primary_10_1016_j_jclepro_2021_127909
crossref_primary_10_1039_D0TA12152E
crossref_primary_10_1021_acsaenm_4c00034
crossref_primary_10_1021_acsanm_2c04580
crossref_primary_10_1016_j_colsurfa_2021_127007
crossref_primary_10_1016_j_dyepig_2022_110606
crossref_primary_10_1039_D2RA07901A
crossref_primary_10_1039_D0TA05865C
crossref_primary_10_1039_D2TA02685F
crossref_primary_10_3390_catal10101182
crossref_primary_10_1016_j_cclet_2024_109588
crossref_primary_10_1021_acs_energyfuels_1c01790
crossref_primary_10_1016_j_ijhydene_2022_12_066
crossref_primary_10_1016_j_est_2023_109133
crossref_primary_10_1016_j_jallcom_2020_154535
crossref_primary_10_1021_acsami_4c10870
crossref_primary_10_3389_fchem_2024_1394191
crossref_primary_10_1039_D2NR06824A
crossref_primary_10_1007_s12598_021_01791_4
crossref_primary_10_1039_D2QM00964A
crossref_primary_10_1016_j_jcis_2024_11_025
crossref_primary_10_1039_D2RA07642J
crossref_primary_10_1039_D1SE01563J
crossref_primary_10_1039_D1DT01855H
crossref_primary_10_1016_j_apsusc_2023_158558
crossref_primary_10_1021_acscatal_4c03700
crossref_primary_10_1016_j_apcatb_2025_125270
crossref_primary_10_1021_acscatal_2c05942
crossref_primary_10_1002_tcr_202200149
crossref_primary_10_1016_j_ijhydene_2024_11_283
crossref_primary_10_1039_D3MH00788J
crossref_primary_10_1016_j_apsusc_2023_159083
crossref_primary_10_3390_catal10121461
crossref_primary_10_1016_j_apsusc_2022_153814
crossref_primary_10_1016_j_jallcom_2022_168340
crossref_primary_10_1016_j_jallcom_2023_171124
crossref_primary_10_1007_s12274_021_3660_0
crossref_primary_10_1016_j_ijhydene_2022_12_291
crossref_primary_10_1021_acsanm_0c02431
crossref_primary_10_1039_D0MA00192A
crossref_primary_10_1007_s00339_024_07429_3
crossref_primary_10_1021_acscatal_4c01091
crossref_primary_10_1149_1945_7111_ac8d2f
crossref_primary_10_1016_j_fuel_2023_130653
crossref_primary_10_1016_j_jpowsour_2022_232417
crossref_primary_10_1039_D1SE01112J
crossref_primary_10_1039_D1TA10850F
crossref_primary_10_1021_acs_energyfuels_3c01398
crossref_primary_10_1002_slct_202202700
crossref_primary_10_1016_j_ijhydene_2025_02_173
crossref_primary_10_1007_s12598_021_01914_x
crossref_primary_10_1016_j_ijhydene_2023_08_333
crossref_primary_10_1021_acs_energyfuels_0c03084
crossref_primary_10_1016_j_ijhydene_2023_08_215
crossref_primary_10_1016_j_jallcom_2022_166613
crossref_primary_10_1016_j_ceramint_2024_03_306
crossref_primary_10_1021_acs_energyfuels_0c02313
crossref_primary_10_1039_D4SE01073F
crossref_primary_10_1016_j_electacta_2023_141816
crossref_primary_10_1039_D4NA00930D
crossref_primary_10_1002_smll_202302738
crossref_primary_10_1016_j_ijhydene_2024_03_065
crossref_primary_10_1039_D1TA05239J
crossref_primary_10_1016_j_mtnano_2021_100156
crossref_primary_10_3390_catal12121576
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1016_j_mtener_2024_101737
crossref_primary_10_1039_D3TA05396B
crossref_primary_10_1016_j_apsusc_2021_151847
crossref_primary_10_3389_fenrg_2022_901395
crossref_primary_10_1088_2053_1583_ac9c15
crossref_primary_10_1007_s11581_023_05248_9
crossref_primary_10_1016_j_ijhydene_2020_12_029
crossref_primary_10_1016_j_nxmate_2025_100560
crossref_primary_10_1021_acs_inorgchem_3c02537
crossref_primary_10_1021_acs_jpclett_1c01497
crossref_primary_10_2139_ssrn_4166801
crossref_primary_10_1016_j_ijhydene_2020_09_242
crossref_primary_10_1016_j_poly_2020_114871
crossref_primary_10_1002_cctc_202300040
crossref_primary_10_1021_acsmaterialslett_4c00831
crossref_primary_10_1039_D4TA02891K
crossref_primary_10_1016_j_mtcomm_2024_109745
crossref_primary_10_1039_D4CC06469K
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1016_j_ijhydene_2021_02_140
crossref_primary_10_1016_j_jallcom_2020_155131
crossref_primary_10_35234_fumbd_783922
crossref_primary_10_1016_j_ijhydene_2022_04_151
crossref_primary_10_1016_j_ijhydene_2023_12_278
crossref_primary_10_1007_s43207_023_00319_z
crossref_primary_10_1016_j_jtice_2022_104591
crossref_primary_10_1021_acsaem_3c01146
crossref_primary_10_1016_j_ijhydene_2023_11_218
crossref_primary_10_1021_acsami_1c14234
crossref_primary_10_1021_acs_energyfuels_1c00388
crossref_primary_10_1016_j_apsusc_2023_156361
crossref_primary_10_1021_acsaem_3c01944
crossref_primary_10_1016_j_xcrp_2024_102369
crossref_primary_10_1039_D3SE00685A
crossref_primary_10_1007_s11244_023_01794_8
crossref_primary_10_1021_acsami_2c16873
crossref_primary_10_1007_s10562_021_03816_0
crossref_primary_10_1002_asia_202301107
crossref_primary_10_3389_fenve_2023_1228992
crossref_primary_10_1016_j_ijhydene_2023_06_059
crossref_primary_10_1016_j_apsusc_2025_162352
crossref_primary_10_1007_s13204_020_01550_4
crossref_primary_10_3390_molecules28237727
crossref_primary_10_1016_j_ijhydene_2023_01_119
crossref_primary_10_1016_j_jece_2022_108429
crossref_primary_10_1002_smsc_202100104
crossref_primary_10_1002_advs_202308063
crossref_primary_10_1021_acsanm_4c03641
crossref_primary_10_1016_j_gce_2024_09_009
crossref_primary_10_3389_fenrg_2024_1465349
crossref_primary_10_1002_adsu_202400645
crossref_primary_10_1039_D0CC04236F
crossref_primary_10_1002_slct_202301980
crossref_primary_10_1039_D2SE01780F
crossref_primary_10_1039_D2TA07677B
crossref_primary_10_1016_j_jelechem_2024_118109
crossref_primary_10_1002_celc_202200093
crossref_primary_10_1016_j_energy_2021_122129
crossref_primary_10_1016_j_est_2023_109127
crossref_primary_10_1039_D4TA06710J
crossref_primary_10_1021_acsaem_3c02392
crossref_primary_10_12677_AAC_2023_134052
crossref_primary_10_1007_s40843_020_1452_9
crossref_primary_10_1016_j_apsusc_2022_156049
crossref_primary_10_1039_D1TA09424F
crossref_primary_10_1016_j_ccr_2022_214864
crossref_primary_10_1016_j_est_2023_110348
crossref_primary_10_1016_j_ccr_2024_216288
crossref_primary_10_20964_2022_12_37
crossref_primary_10_1016_j_jelechem_2024_118455
crossref_primary_10_1016_j_ijhydene_2020_05_139
crossref_primary_10_1016_j_heliyon_2023_e23450
crossref_primary_10_1021_acsmaterialsau_2c00073
crossref_primary_10_1021_acsmaterialslett_3c00022
crossref_primary_10_1002_smll_202408727
crossref_primary_10_1039_D3NR05957J
crossref_primary_10_1039_D3DT00307H
crossref_primary_10_1016_j_jelechem_2022_116235
crossref_primary_10_1016_j_apmt_2023_101841
crossref_primary_10_1016_j_cej_2022_141056
crossref_primary_10_1016_j_nanoen_2022_108008
crossref_primary_10_1149_1945_7111_adba15
crossref_primary_10_1039_D4NR01404A
crossref_primary_10_3390_catal14090570
crossref_primary_10_1021_acs_energyfuels_3c00373
Cites_doi 10.1021/nl403661s
10.1002/adma.201807134
10.1021/ja201269b
10.1016/j.jallcom.2019.01.012
10.1016/j.carbon.2019.04.002
10.1021/acscatal.6b03192
10.1002/anie.201900428
10.1039/C6TA02334G
10.1039/C8EE01669K
10.1016/j.jallcom.2019.01.088
10.1002/smll.201403715
10.1021/jp0131931
10.1039/C5EE01155H
10.1016/j.jelechem.2006.11.008
10.1021/acscentsci.8b00426
10.1016/j.apcatb.2019.01.034
10.1002/anie.201900109
10.1002/cssc.201802500
10.1002/chem.201804492
10.1002/adma.201900510
10.1016/0254-0584(86)90045-3
10.1016/j.apcatb.2019.01.007
10.1039/C4EE01760A
10.1021/acsnano.7b03290
10.1021/acsami.6b10552
10.1002/adma.201703792
10.1038/ncomms6982
10.1021/cr100246c
10.1038/srep13801
10.1016/j.electacta.2019.134983
10.1007/s40820-019-0289-6
10.1039/C9DT00957D
10.1063/1.1742616
10.1021/acssuschemeng.7b02926
10.1002/cctc.201000397
10.1016/j.electacta.2018.12.091
10.1016/j.jallcom.2019.05.036
10.1021/acscatal.8b01567
10.1016/j.jallcom.2019.05.071
10.1021/acscatal.6b01848
10.1039/C8TA10856K
10.1016/j.apcatb.2019.118051
10.1002/adma.201604898
10.1039/C7QM00119C
10.1016/S0378-7753(01)00921-1
10.1039/C8NH00520F
10.1038/s41560-017-0048-1
10.1016/j.materresbull.2019.04.016
10.1016/j.apcatb.2019.04.089
10.1039/C6TA08335H
10.1039/C4CS00448E
10.1021/jp970930d
10.1021/j100053a042
10.1016/j.jallcom.2018.06.321
10.1021/acscatal.6b02479
10.1002/anie.201809787
10.1039/C5CS00434A
10.1016/j.apcatb.2018.09.064
10.1016/j.nanoen.2018.12.018
10.1039/C7CC02621H
10.1016/j.electacta.2019.03.179
10.1016/j.nanoen.2019.03.022
10.1016/j.apcatb.2018.09.061
10.1016/j.carbon.2018.09.088
10.1002/smll.201902427
10.1021/acsnano.5b05984
10.1002/advs.201900119
10.1038/s41570-016-0003
10.1021/acs.jpclett.6b02147
10.1002/adfm.201803291
10.1021/acscatal.9b01940
10.1039/C6CS00328A
10.1039/C8TA11250A
10.1126/science.aad4998
10.1016/j.jcis.2017.09.093
10.1016/j.jallcom.2018.06.008
10.1038/ncomms8992
10.1002/anie.201502173
10.1021/acsami.7b16407
10.1021/acsami.6b02352
10.1016/j.carbon.2019.01.065
10.1016/j.electacta.2019.07.022
10.1002/aenm.201803867
10.1149/1.3483106
10.1038/natrevmats.2017.59
10.1039/C8TA08223E
10.1016/j.carbon.2019.01.011
10.1002/aenm.201901130
10.1016/j.nanoen.2018.06.071
10.1016/j.nanoen.2017.11.045
10.1016/j.apcatb.2019.01.094
10.1002/aenm.201703538
10.1002/adma.201502696
10.1016/j.jallcom.2019.06.047
10.1016/j.jpowsour.2016.09.161
10.1039/C4CS00470A
10.1016/j.jallcom.2019.03.313
10.1002/ppsc.201800252
10.1039/C6TA08075H
10.1039/C3CS60468C
10.1002/aenm.201803185
10.1039/C7CC03826G
10.1016/j.jallcom.2019.04.150
10.1016/j.nanoen.2018.11.023
10.1038/s41467-018-07790-x
10.1039/C6TA06534A
10.1021/jp505394e
10.1002/adma.201806682
10.1016/j.carbon.2018.12.085
10.1016/j.carbon.2019.04.021
10.1021/jacs.7b12420
10.1039/C7SC04851C
10.1016/j.apcatb.2019.05.029
10.1016/j.jallcom.2019.05.103
10.1016/j.jcat.2018.11.023
10.1021/nn500880v
10.3390/en20400873
10.1016/j.mtener.2019.01.004
10.1021/acscatal.8b01794
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Apr 5, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 5, 2020
DBID RYH
AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2019.153346
DatabaseName CiNii Complete
CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2019_153346
S092583881934592X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
29J
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGQPQ
AIGII
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c432t-2a0487ec809ae0d26173e4d32bbf9cae98ba72c94ce99852cf975f0b0e0adb273
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Sun Jul 13 05:34:04 EDT 2025
Thu Apr 24 23:11:46 EDT 2025
Tue Jul 01 03:58:23 EDT 2025
Thu Jun 26 22:49:06 EDT 2025
Fri Feb 23 02:48:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrochemical water splitting
Electrode
Catalyst design
Transition-metal-based compounds
Bifunctional electrocatalysts
Hydrogen production
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-2a0487ec809ae0d26173e4d32bbf9cae98ba72c94ce99852cf975f0b0e0adb273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5875-3596
0000-0002-5565-6977
0000-0002-7209-1031
PQID 2354826360
PQPubID 2045454
ParticipantIDs proquest_journals_2354826360
crossref_primary_10_1016_j_jallcom_2019_153346
crossref_citationtrail_10_1016_j_jallcom_2019_153346
nii_cinii_1872272493134788224
elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_153346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-05
PublicationDateYYYYMMDD 2020-04-05
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-05
  day: 05
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of Alloys and Compounds
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhu, Cao, Jiang, Yang, Hu, Song, Wan (bib97) 2016; 4
Li, Hao, Abudula, Guan (bib5) 2016; 4
Faber, Jin (bib11) 2014; 7
Xu, Yan, He, Zhan, Yang, Zhao, Qi, Xia (bib61) 2019; 145
Lv, Feng, Wang, Dou, Zhang, Zhou, Yang, Luo, Yang, Li (bib82) 2018; 4
Pan, Sun, Liu, Cao, Wu, Cheong, Chen, Wang, Li, Liu, Wang, Peng, Chen, Li (bib111) 2018; 140
Cao, Gong, Liu, Xiao, Lv, Zhou, Gai (bib9) 2019; 797
Li, Xu, Li, Liang, Zhang, Fu, Lv (bib50) 2019; 145
Sheng, Gasteiger, Shao-Horn (bib28) 2010; 157
Zhang, Webster, Cheong, Tilley, Lu, Amal (bib81) 2019; 36
Man, Su, Calle-Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (bib23) 2011; 3
Luo, Guo (bib83) 2017; 2
Zhang, Zhang, Wei, Xia, Pi, Song, Zheng, Gao, Fu, Chu (bib59) 2019; 797
Yan, Xia, Zhao, Wang (bib18) 2016; 4
Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib33) 2017; 355
Li, Li, Yu, Li, Yang, Zhang, Ramakrishna, Xie, Peng (bib14) 2019; 148
Wu, Ji, Hu, Liang, Xu, Yu, Li, Yu (bib105) 2018; 51
Wang, Xu, Xu, Zhou, Shao (bib4) 2019; 58
Yu, Li, Chen, Xu, Zhen, Wu, Dravid (bib39) 2016; 8
Li, Duan, Han, Fan, Li, Zhang, Zhang, Peng, Wang (bib1) 2019; 148
Shan, Ling, Davey, Zheng, Qiao (bib79) 2019
Huang, Song, Deng, Zha, Huang, Wu, Li (bib62) 2019; 245
Hu, Li, Li, Liu, Zhu, Chai, Zhang, Liu, He (bib102) 2019; 9
Wei, Liu, Gao, Sun, Liu, Zhang, Guo (bib45) 2019; 796
Sun, Wang, Wu, Wang, Rooney, Sun (bib56) 2017; 53
Voiry, Salehi, Silva, Fujita, Chen, Asefa, Shenoy, Eda, Chhowalla (bib92) 2013; 13
Xu, Jiang, Zhang, Hu, Li (bib51) 2019; 242
Menezes, Indra, Zaharieva, Walter, Loos, Hoffmann, Schlögl, Dau, Driess (bib49) 2019; 12
Casalongue, Benck, Tsai, Karlsson, Kaya, Ng, Pettersson, Abild-Pedersen, Nørskov, Ogasawara (bib122) 2014; 118
Hu, Li, Han, Wang, Huang, Chai, Zhang, Liu, He (bib76) 2019; 9
Kumatani, Miura, Kuramochi, Ohto, Wakisaka, Nagata, Ida, Takahashi, Hu, Jeong (bib120) 2019; 6
Li, Sirisomboonchai, Yoshida, An, Hao, Abudula, Guan (bib94) 2018; 6
Chunduri, Gupta, Bapat, Bhide, Fernandes, Patel, Bambole, Miotello, Patel (bib77) 2019; 259
Fang, Xue, Hui, Yu, Liu, Xing, Lu, He, Liu, Li (bib74) 2019; 59
Patil, Satilmis, Khalily, Uyar (bib107) 2019; 12
Doyle, Lyons (bib32) 2016
Song, Cao, Yang, Yang, Wang, Ma, Shao (bib98) 2019; 142
Sun, Liu, Chen, Li, Yu, Pan (bib114) 2019; 307
Xing, Li, Guo, Jin, Li, Wang, Jiao (bib117) 2019; 298
Wu, Xie, Ma, Tian, Gu, Yan, Zhang, Yang, Fu (bib75) 2018; 44
Gao, Cao, Gao, Xu, Zheng, Jiang, Yu (bib99) 2014; 8
Guo, Park, Yi, Henzie, Kim, Wang, Jiang, Bando, Sugahara, Tang, Yamauchi (bib24) 2019; 31
Li, Fang, Wang, Wei, Qi, Hoh, Hao, Sun, Wang, Yin (bib119) 2019; 15
Zhang, Huang, Chen, Chen, Song, Li, Ostrikov (bib73) 2019; 254
Park, Choi, Oh, Jin, Joo, Baik, Lee (bib116) 2019; 4
Markovic, Grgur, Ross (bib27) 1997; 101
Pozio, De Francesco, Cemmi, Cardellini, Giorgi (bib42) 2002; 105
Odedairo, Yan, Yao, Ostrikov, Zhu (bib72) 2017; 29
Liang, Brüller, Dong, Zhang, Feng, Müllen (bib103) 2015; 6
Gao, Liu, Biskupek, Kaiser, Song, Streb (bib60) 2019; 58
Zheng, Peng, Li, Yang, Yang, Li, Wang, Wei (bib89) 2018; 9
Jia, Ramaswamy, Hafiz, Tylus, Strickland, Wu, Barbiellini, Bansil, Holby, Zelenay (bib118) 2015; 9
Morales-Guio, Stern, Hu (bib19) 2014; 43
Wang, Hung, Hsu, Zhang, Miao, Chan, Xiong, Liu (bib123) 2016; 7
Zhao, Yang, Liu, Wang, Zhang, Wang, Tang, Liu, Mei, Chen (bib84) 2018; 8
Kou, Smart, Yao, Chen, Thota, Ping, Li (bib90) 2018; 8
Cao, Zhou, Zhang, Wang, Liu (bib91) 2018; 10
Rossmeisl, Qu, Zhu, Kroes, Nørskov (bib31) 2007; 607
Hu, Wu, Hinokuma, Ohto, Wakisaka, Fujita, Ito (bib80) 2019; 7
Read, Callejas, Holder, Schaak (bib65) 2016; 8
Tang, Zhu, Dong, Zhang, Li, Liu, Lan (bib8) 2019; 245
Wu, Tao, Qing, Xu, Yang, Luo, Tian, Liu, Lu (bib69) 2019; 31
Guo, Qian, Zhang, Qian, Xu, Qian, Yang, Yuan, Fan (bib67) 2018; 765
Bockris (bib34) 1956; 24
Nellist, Laskowski, Qiu, Hajibabaei, Sivula, Hamann, Boettcher (bib124) 2018; 3
Liang, Yang, Dang, Qi, Yuan, Gao, Zhang, Zheng, Cao (bib70) 2019; 25
Jiao, Zheng, Jaroniec, Qiao (bib38) 2015; 44
Spanos, Tesch, Yu, Tüysüz, Zhang, Feng, Müllen, Schlögl, Mechler (bib12) 2019; 9
Zhu, Shao, Qian, Huang (bib54) 2019; 56
Anjum, Lee, Lee (bib106) 2018; 8
Dutta, Indra, Feng, Han, Song (bib95) 2019; 241
Hu, Li, Liu, Zhu, Chai, Zhang, Liu, He (bib16) 2019; 58
Roger, Shipman, Symes (bib37) 2017; 1
Lin, Yan, Li, Si, Wang, Qi, Cao, Zhong, Fei, Feng (bib63) 2019; 11
Sun, Zhang, Xu, Lian, Li, Chen, Su (bib13) 2019; 12
Menezes, Indra, Zaharieva, Walter, Loos, Hoffmann, Schlögl, Dau, Driess (bib108) 2019; 12
Deng, Ting, Neo, Zhang, Peterson, Yeo (bib121) 2016; 6
Peng, Shen, Zheng, Xiang, Deng, Mao, Feng, Zhang, Li, Wei (bib46) 2019; 369
Shinagawa, Garcia-Esparza, Takanabe (bib30) 2015; 5
Gasteiger, Markovic, Ross, Cairns (bib41) 1994; 98
Xiong, Li, Young, Tan, Yin, Mi, Hu (bib93) 2019; 791
Kaneti, Tang, Salunkhe, Jiang, Yu, Wu, Yamauchi (bib66) 2017; 29
Stern, Feng, Song, Hu (bib64) 2015; 8
Zhu, Liu, Yan, Shi (bib57) 2018; 512
Guo, Zhang, Sun, Tang, Liu, Zhang (bib86) 2017; 5
Li, Wang, Li, Liu, Li, Wu, Guo, Ye, Wang, Cheng (bib68) 2019; 319
Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (bib25) 2016; 6
Zhao, Rui, Dou, Sun (bib26) 2018; 28
Green, Kucernak (bib43) 2002; 106
Duan, O’Donnell, Sun, Wang, Wang (bib100) 2015; 11
Qu, Zheng, Zhang, Davey, Dai, Qiao (bib101) 2017; 11
Wu, Xu, Hu, Liang, Lin, Chen, Yu (bib104) 2015; 54
Peng, Yu, Jiang, Wu, Xia, Dong (bib115) 2019; 144
Si, Deng, Chen, Wang, Liu, Wu, Zhang, Zhou, Zhang (bib96) 2019; 794
Yang, Zhang, Lin, Li, Chan, Yang, Gao (bib88) 2017; 7
Raja, Lin, Lu (bib113) 2019; 57
Elakkiya, Ramkumar, Maduraiveeran (bib58) 2019; 116
Wang, Sun, Yu, Liu, Wang, Jiang, Xie (bib3) 2019; 7
Zequine, Bhoyate, Wang, Li, Siam, Kahol, Gupta (bib44) 2019; 784
Wang, Cui, Liu, Xing, Asiri, Sun (bib87) 2016; 28
Matsumoto, Sato (bib35) 1986; 14
Gao, Liang, Zheng, Xu, Jiang, Gao, Li, Yu (bib85) 2015; 6
Jamesh (bib17) 2016; 333
Moni, Hyun, Vignesh, Shanmugam (bib55) 2017; 53
Hui, Xue, Huang, Yu, Zhang, Zhang, Jia, Zhao, Li, Liu, Li (bib110) 2018; 9
Shi, Zhang (bib10) 2016; 45
Joo, Kim, Lee, Choi, Lee (bib2) 2019; 31
Ham, Lee (bib71) 2009; 2
Suen, Hung, Quan, Zhang, Xu, Chen (bib22) 2017; 46
Jiao, Hassan, Bo, Zhou (bib52) 2018; 764
Gong, Zhi, Yu, Zhou, Li, Jiao, Wang (bib6) 2019; 48
Wang, Li, Wang, Tan, Wu, Liu, Gai, Yang (bib48) 2019; 326
Li, Zhu, Wang, Wang, Pinna, Lu (bib53) 2019; 9
Zong, Qian, Tang, Liu, Tian, Wang (bib7) 2019; 784
Zou, Zhang (bib20) 2015; 44
Liu, Zhong, Meng, Zhang, Yan, Jiang (bib36) 2017; 1
Xu, Wang, Liu, Zhang, Liu, Yan, Zeng, Pei, Liu, Luo (bib40) 2016; 4
Li, Wang, Xie, Liang, Hong, Dai (bib29) 2011; 133
Menezes, Panda, Garai, Walter, Guiet, Driess (bib109) 2018; 57
Cook, Dogutan, Reece, Surendranath, Teets, Nocera (bib21) 2010; 110
Zhang, Mou, Lu, Song, Wang (bib112) 2019; 254
Li, Huang, Sun, Luo, Yang, Qin, Wang, Li, Lv, Zhang, Guo (bib78) 2019; 15
Sung, Lee, Kim (bib15) 2019; 800
Liu, Jiang, Li, Zhou, Li, Li, Shao (bib47) 2019; 247
Joo (10.1016/j.jallcom.2019.153346_bib2) 2019; 31
Liu (10.1016/j.jallcom.2019.153346_bib47) 2019; 247
Wang (10.1016/j.jallcom.2019.153346_bib3) 2019; 7
Cao (10.1016/j.jallcom.2019.153346_bib9) 2019; 797
Sun (10.1016/j.jallcom.2019.153346_bib56) 2017; 53
Xiong (10.1016/j.jallcom.2019.153346_bib93) 2019; 791
Voiry (10.1016/j.jallcom.2019.153346_bib92) 2013; 13
Suen (10.1016/j.jallcom.2019.153346_bib22) 2017; 46
Menezes (10.1016/j.jallcom.2019.153346_bib109) 2018; 57
Markovic (10.1016/j.jallcom.2019.153346_bib27) 1997; 101
Huang (10.1016/j.jallcom.2019.153346_bib62) 2019; 245
Wang (10.1016/j.jallcom.2019.153346_bib123) 2016; 7
Si (10.1016/j.jallcom.2019.153346_bib96) 2019; 794
Gong (10.1016/j.jallcom.2019.153346_bib6) 2019; 48
Kumatani (10.1016/j.jallcom.2019.153346_bib120) 2019; 6
Hui (10.1016/j.jallcom.2019.153346_bib110) 2018; 9
Xu (10.1016/j.jallcom.2019.153346_bib40) 2016; 4
Wang (10.1016/j.jallcom.2019.153346_bib48) 2019; 326
Pan (10.1016/j.jallcom.2019.153346_bib111) 2018; 140
Patil (10.1016/j.jallcom.2019.153346_bib107) 2019; 12
Sun (10.1016/j.jallcom.2019.153346_bib114) 2019; 307
Zhu (10.1016/j.jallcom.2019.153346_bib54) 2019; 56
Zhang (10.1016/j.jallcom.2019.153346_bib81) 2019; 36
Sun (10.1016/j.jallcom.2019.153346_bib13) 2019; 12
Wei (10.1016/j.jallcom.2019.153346_bib45) 2019; 796
Seh (10.1016/j.jallcom.2019.153346_bib33) 2017; 355
Hu (10.1016/j.jallcom.2019.153346_bib102) 2019; 9
Wu (10.1016/j.jallcom.2019.153346_bib105) 2018; 51
Yu (10.1016/j.jallcom.2019.153346_bib39) 2016; 8
Dutta (10.1016/j.jallcom.2019.153346_bib95) 2019; 241
Green (10.1016/j.jallcom.2019.153346_bib43) 2002; 106
Zong (10.1016/j.jallcom.2019.153346_bib7) 2019; 784
Matsumoto (10.1016/j.jallcom.2019.153346_bib35) 1986; 14
Man (10.1016/j.jallcom.2019.153346_bib23) 2011; 3
Zhang (10.1016/j.jallcom.2019.153346_bib112) 2019; 254
Deng (10.1016/j.jallcom.2019.153346_bib121) 2016; 6
Wang (10.1016/j.jallcom.2019.153346_bib87) 2016; 28
Shi (10.1016/j.jallcom.2019.153346_bib10) 2016; 45
Fang (10.1016/j.jallcom.2019.153346_bib74) 2019; 59
Sheng (10.1016/j.jallcom.2019.153346_bib28) 2010; 157
Jiao (10.1016/j.jallcom.2019.153346_bib38) 2015; 44
Li (10.1016/j.jallcom.2019.153346_bib29) 2011; 133
Liang (10.1016/j.jallcom.2019.153346_bib70) 2019; 25
Morales-Guio (10.1016/j.jallcom.2019.153346_bib19) 2014; 43
Cook (10.1016/j.jallcom.2019.153346_bib21) 2010; 110
Jiao (10.1016/j.jallcom.2019.153346_bib52) 2018; 764
Wu (10.1016/j.jallcom.2019.153346_bib75) 2018; 44
Gasteiger (10.1016/j.jallcom.2019.153346_bib41) 1994; 98
Li (10.1016/j.jallcom.2019.153346_bib53) 2019; 9
Zhao (10.1016/j.jallcom.2019.153346_bib26) 2018; 28
Chunduri (10.1016/j.jallcom.2019.153346_bib77) 2019; 259
Wu (10.1016/j.jallcom.2019.153346_bib104) 2015; 54
Xu (10.1016/j.jallcom.2019.153346_bib51) 2019; 242
Rossmeisl (10.1016/j.jallcom.2019.153346_bib31) 2007; 607
Odedairo (10.1016/j.jallcom.2019.153346_bib72) 2017; 29
Zheng (10.1016/j.jallcom.2019.153346_bib89) 2018; 9
Zhao (10.1016/j.jallcom.2019.153346_bib84) 2018; 8
Anantharaj (10.1016/j.jallcom.2019.153346_bib25) 2016; 6
Yan (10.1016/j.jallcom.2019.153346_bib18) 2016; 4
Zhang (10.1016/j.jallcom.2019.153346_bib59) 2019; 797
Hu (10.1016/j.jallcom.2019.153346_bib16) 2019; 58
Qu (10.1016/j.jallcom.2019.153346_bib101) 2017; 11
Doyle (10.1016/j.jallcom.2019.153346_bib32) 2016
Moni (10.1016/j.jallcom.2019.153346_bib55) 2017; 53
Li (10.1016/j.jallcom.2019.153346_bib68) 2019; 319
Gao (10.1016/j.jallcom.2019.153346_bib85) 2015; 6
Li (10.1016/j.jallcom.2019.153346_bib1) 2019; 148
Hu (10.1016/j.jallcom.2019.153346_bib76) 2019; 9
Yang (10.1016/j.jallcom.2019.153346_bib88) 2017; 7
Zhu (10.1016/j.jallcom.2019.153346_bib97) 2016; 4
Li (10.1016/j.jallcom.2019.153346_bib119) 2019; 15
Spanos (10.1016/j.jallcom.2019.153346_bib12) 2019; 9
Jamesh (10.1016/j.jallcom.2019.153346_bib17) 2016; 333
Nellist (10.1016/j.jallcom.2019.153346_bib124) 2018; 3
Wu (10.1016/j.jallcom.2019.153346_bib69) 2019; 31
Xu (10.1016/j.jallcom.2019.153346_bib61) 2019; 145
Hu (10.1016/j.jallcom.2019.153346_bib80) 2019; 7
Elakkiya (10.1016/j.jallcom.2019.153346_bib58) 2019; 116
Sung (10.1016/j.jallcom.2019.153346_bib15) 2019; 800
Shinagawa (10.1016/j.jallcom.2019.153346_bib30) 2015; 5
Kaneti (10.1016/j.jallcom.2019.153346_bib66) 2017; 29
Gao (10.1016/j.jallcom.2019.153346_bib60) 2019; 58
Menezes (10.1016/j.jallcom.2019.153346_bib49) 2019; 12
Guo (10.1016/j.jallcom.2019.153346_bib86) 2017; 5
Li (10.1016/j.jallcom.2019.153346_bib50) 2019; 145
Lin (10.1016/j.jallcom.2019.153346_bib63) 2019; 11
Gao (10.1016/j.jallcom.2019.153346_bib99) 2014; 8
Liu (10.1016/j.jallcom.2019.153346_bib36) 2017; 1
Zhu (10.1016/j.jallcom.2019.153346_bib57) 2018; 512
Liang (10.1016/j.jallcom.2019.153346_bib103) 2015; 6
Luo (10.1016/j.jallcom.2019.153346_bib83) 2017; 2
Shan (10.1016/j.jallcom.2019.153346_bib79) 2019
Roger (10.1016/j.jallcom.2019.153346_bib37) 2017; 1
Lv (10.1016/j.jallcom.2019.153346_bib82) 2018; 4
Cao (10.1016/j.jallcom.2019.153346_bib91) 2018; 10
Zou (10.1016/j.jallcom.2019.153346_bib20) 2015; 44
Faber (10.1016/j.jallcom.2019.153346_bib11) 2014; 7
Casalongue (10.1016/j.jallcom.2019.153346_bib122) 2014; 118
Guo (10.1016/j.jallcom.2019.153346_bib67) 2018; 765
Peng (10.1016/j.jallcom.2019.153346_bib115) 2019; 144
Xing (10.1016/j.jallcom.2019.153346_bib117) 2019; 298
Wang (10.1016/j.jallcom.2019.153346_bib4) 2019; 58
Tang (10.1016/j.jallcom.2019.153346_bib8) 2019; 245
Li (10.1016/j.jallcom.2019.153346_bib5) 2016; 4
Zequine (10.1016/j.jallcom.2019.153346_bib44) 2019; 784
Bockris (10.1016/j.jallcom.2019.153346_bib34) 1956; 24
Ham (10.1016/j.jallcom.2019.153346_bib71) 2009; 2
Raja (10.1016/j.jallcom.2019.153346_bib113) 2019; 57
Zhang (10.1016/j.jallcom.2019.153346_bib73) 2019; 254
Menezes (10.1016/j.jallcom.2019.153346_bib108) 2019; 12
Li (10.1016/j.jallcom.2019.153346_bib78) 2019; 15
Peng (10.1016/j.jallcom.2019.153346_bib46) 2019; 369
Stern (10.1016/j.jallcom.2019.153346_bib64) 2015; 8
Li (10.1016/j.jallcom.2019.153346_bib94) 2018; 6
Kou (10.1016/j.jallcom.2019.153346_bib90) 2018; 8
Guo (10.1016/j.jallcom.2019.153346_bib24) 2019; 31
Read (10.1016/j.jallcom.2019.153346_bib65) 2016; 8
Song (10.1016/j.jallcom.2019.153346_bib98) 2019; 142
Duan (10.1016/j.jallcom.2019.153346_bib100) 2015; 11
Anjum (10.1016/j.jallcom.2019.153346_bib106) 2018; 8
Jia (10.1016/j.jallcom.2019.153346_bib118) 2015; 9
Li (10.1016/j.jallcom.2019.153346_bib14) 2019; 148
Park (10.1016/j.jallcom.2019.153346_bib116) 2019; 4
Pozio (10.1016/j.jallcom.2019.153346_bib42) 2002; 105
References_xml – volume: 11
  start-page: 7293
  year: 2017
  end-page: 7300
  ident: bib101
  article-title: Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms
  publication-title: ACS Nano
– volume: 12
  start-page: 988
  year: 2019
  end-page: 999
  ident: bib108
  article-title: Helical cobalt borophosphates to master durable overall water-splitting
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 8179
  year: 2015
  end-page: 8183
  ident: bib104
  article-title: Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 2357
  year: 2017
  end-page: 2366
  ident: bib88
  article-title: MoS
  publication-title: ACS Catal.
– volume: 254
  start-page: 471
  year: 2019
  end-page: 478
  ident: bib112
  article-title: A novel strategy for 2D/2D NiS/Graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Appl. Catal. B Environ.
– volume: 355
  year: 2017
  ident: bib33
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 7
  start-page: 2156
  year: 2019
  end-page: 2164
  ident: bib80
  article-title: Boosting electrochemical water splitting via ternary NiMoCo hybrid nanowire arrays
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 621
  year: 2019
  end-page: 626
  ident: bib70
  article-title: Hollow bimetallic zinc cobalt phosphosulfides for efficient overall water splitting
  publication-title: Chemistry
– volume: 148
  start-page: 496
  year: 2019
  end-page: 503
  ident: bib14
  article-title: Ni
  publication-title: Carbon
– volume: 51
  start-page: 286
  year: 2018
  end-page: 293
  ident: bib105
  article-title: Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting
  publication-title: Nano Energy
– volume: 148
  start-page: 540
  year: 2019
  end-page: 549
  ident: bib1
  article-title: Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting
  publication-title: Carbon
– volume: 797
  start-page: 341
  year: 2019
  end-page: 347
  ident: bib9
  article-title: Hierarchical Co-N microballs with heterostructure exhibiting superior electrochemical properties for water splitting and reduction of I
  publication-title: J. Alloy. Comp.
– volume: 319
  start-page: 561
  year: 2019
  end-page: 568
  ident: bib68
  article-title: Self-supported ternary (Ni
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 215
  year: 2016
  end-page: 230
  ident: bib87
  article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting
  publication-title: Adv. Mater.
– volume: 1
  year: 2017
  ident: bib37
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
– volume: 142
  start-page: 40
  year: 2019
  end-page: 50
  ident: bib98
  article-title: In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction
  publication-title: Carbon
– volume: 53
  start-page: 8711
  year: 2017
  end-page: 8714
  ident: bib56
  article-title: 3D free-standing hierarchical CuCo
  publication-title: Chem. Commun.
– volume: 5
  start-page: 13801
  year: 2015
  ident: bib30
  article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
  publication-title: Sci. Rep.
– volume: 259
  start-page: 118051
  year: 2019
  ident: bib77
  article-title: A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting
  publication-title: Appl. Catal. B Environ.
– volume: 797
  start-page: 1216
  year: 2019
  end-page: 1223
  ident: bib59
  article-title: General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Alloy. Comp.
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: bib10
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 817
  year: 1956
  end-page: 827
  ident: bib34
  article-title: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 18470
  year: 2016
  end-page: 18477
  ident: bib97
  article-title: Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 1902427
  year: 2019
  ident: bib119
  article-title: High-yield electrochemical production of large-sized and thinly layered NiPS
  publication-title: Small
– volume: 58
  start-page: 4318
  year: 2019
  end-page: 4322
  ident: bib16
  article-title: Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation
  publication-title: Angew. Chem. Int. Ed.
– volume: 140
  start-page: 2610
  year: 2018
  end-page: 2618
  ident: bib111
  article-title: Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 247
  start-page: 107
  year: 2019
  end-page: 114
  ident: bib47
  article-title: Interface engineering of (Ni, Fe)S
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 4847
  year: 2016
  end-page: 4853
  ident: bib123
  article-title: In situ spectroscopic identification of μ-OO bridging on spinel Co
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 5621
  year: 2018
  end-page: 5629
  ident: bib84
  article-title: Tuning electronic push/pull of ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting
  publication-title: ACS Catal.
– volume: 9
  start-page: 12496
  year: 2015
  end-page: 12505
  ident: bib118
  article-title: Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity
  publication-title: ACS Nano
– volume: 9
  start-page: 1803867
  year: 2019
  ident: bib102
  article-title: Trifunctional electrocatalysis on dual-doped graphene nanorings–integrated boxes for efficient water splitting and Zn–air batteries
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 27850
  year: 2016
  end-page: 27858
  ident: bib39
  article-title: Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1901130
  year: 2019
  ident: bib76
  article-title: General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  ident: bib24
  article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting
  publication-title: Adv. Mater.
– volume: 784
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib44
  article-title: Effect of solvent for tailoring the nanomorphology of multinary CuCo
  publication-title: J. Alloy. Comp.
– volume: 53
  start-page: 7836
  year: 2017
  end-page: 7839
  ident: bib55
  article-title: Chrysanthemum flower-like NiCo
  publication-title: Chem. Commun.
– volume: 4
  start-page: 17587
  year: 2016
  end-page: 17603
  ident: bib18
  article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 8165
  year: 2019
  end-page: 8170
  ident: bib12
  article-title: Facile protocol for alkaline electrolyte purification and its influence on a Ni–Co oxide catalyst for the oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 6
  start-page: 19221
  year: 2018
  end-page: 19230
  ident: bib94
  article-title: Bifunctional CoNi/CoFe
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 5309
  year: 2018
  ident: bib110
  article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays
  publication-title: Nat. Commun.
– volume: 2
  start-page: 17059
  year: 2017
  ident: bib83
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat. Rev. Mater.
– volume: 7
  start-page: 2518
  year: 2019
  end-page: 2523
  ident: bib3
  article-title: Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 2155
  year: 2017
  end-page: 2173
  ident: bib36
  article-title: Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting
  publication-title: Mater. Chem. Front.
– volume: 9
  start-page: 1803185
  year: 2019
  ident: bib53
  article-title: Ni strongly coupled with Mo
  publication-title: Adv. Energy Mater.
– volume: 116
  start-page: 98
  year: 2019
  end-page: 105
  ident: bib58
  article-title: Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting
  publication-title: Mater. Res. Bull.
– volume: 11
  start-page: 3036
  year: 2015
  end-page: 3044
  ident: bib100
  article-title: Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions
  publication-title: Small
– volume: 144
  start-page: 464
  year: 2019
  end-page: 471
  ident: bib115
  article-title: N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting
  publication-title: Carbon
– volume: 36
  start-page: 1800252
  year: 2019
  ident: bib81
  article-title: Ultrathin Fe-N-C nanosheets coordinated Fe-doped CoNi alloy nanoparticles for electrochemical water splitting
  publication-title: Part. Part. Syst. Charact.
– volume: 56
  start-page: 330
  year: 2019
  end-page: 337
  ident: bib54
  article-title: Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes
  publication-title: Nano Energy
– volume: 8
  start-page: 3970
  year: 2014
  end-page: 3978
  ident: bib99
  article-title: Nitrogen-doped graphene supported CoSe
  publication-title: ACS Nano
– volume: 58
  start-page: 2
  year: 2019
  end-page: 19
  ident: bib4
  article-title: Perovskite oxide-based electrodes for high-performance photoelectrochemical water splitting: a review
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 215
  year: 2019
  end-page: 238
  ident: bib13
  article-title: Defect chemistry in 2D materials for electrocatalysis
  publication-title: Mater. Today Energy
– volume: 98
  start-page: 617
  year: 1994
  end-page: 625
  ident: bib41
  article-title: Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys
  publication-title: J. Phys. Chem.
– volume: 12
  start-page: 1469
  year: 2019
  end-page: 1477
  ident: bib107
  article-title: Atomic layer deposition of NiOOH/Ni(OH)
  publication-title: ChemSusChem
– volume: 298
  start-page: 305
  year: 2019
  end-page: 312
  ident: bib117
  article-title: Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Electrochim. Acta
– volume: 326
  start-page: 134983
  year: 2019
  ident: bib48
  article-title: NiS
  publication-title: Electrochim. Acta
– volume: 110
  start-page: 6474
  year: 2010
  end-page: 6502
  ident: bib21
  article-title: Solar energy supply and storage for the legacy and nonlegacy worlds
  publication-title: Chem. Rev.
– volume: 9
  start-page: 1822
  year: 2018
  end-page: 1830
  ident: bib89
  article-title: Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction
  publication-title: Chem. Sci.
– volume: 29
  start-page: 1604898
  year: 2017
  ident: bib66
  article-title: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks
  publication-title: Adv. Mater.
– volume: 764
  start-page: 88
  year: 2018
  end-page: 95
  ident: bib52
  article-title: Co
  publication-title: J. Alloy. Comp.
– volume: 765
  start-page: 835
  year: 2018
  end-page: 840
  ident: bib67
  article-title: Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting
  publication-title: J. Alloy. Comp.
– volume: 4
  start-page: 727
  year: 2019
  end-page: 734
  ident: bib116
  article-title: Hemi-core@ frame AuCu@ IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media
  publication-title: Nanoscale Horiz
– volume: 118
  start-page: 29252
  year: 2014
  end-page: 29259
  ident: bib122
  article-title: Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction
  publication-title: J.Phys. Chem. C
– volume: 800
  start-page: 450
  year: 2019
  end-page: 455
  ident: bib15
  article-title: CeO
  publication-title: J. Alloy. Comp.
– volume: 8
  start-page: 2347
  year: 2015
  end-page: 2351
  ident: bib64
  article-title: Ni
  publication-title: Energy Environ. Sci.
– start-page: 41
  year: 2016
  end-page: 104
  ident: bib32
  article-title: The oxygen evolution reaction: mechanistic concepts and catalyst design
  publication-title: Photoelectrochemical Solar Fuel Production
– volume: 241
  start-page: 521
  year: 2019
  end-page: 527
  ident: bib95
  article-title: Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride
  publication-title: Appl. Catal. B Environ.
– volume: 13
  start-page: 6222
  year: 2013
  end-page: 6227
  ident: bib92
  article-title: Conducting MoS
  publication-title: Nano Lett.
– volume: 3
  start-page: 46
  year: 2018
  ident: bib124
  article-title: Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces
  publication-title: Nat. Energy
– volume: 794
  start-page: 261
  year: 2019
  end-page: 267
  ident: bib96
  article-title: Hierarchical Graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting
  publication-title: J. Alloy. Comp.
– volume: 15
  year: 2019
  ident: bib78
  article-title: Multimetal borides nanochains as efficient electrocatalysts for overall water splitting
  publication-title: Small
– volume: 307
  start-page: 206
  year: 2019
  end-page: 213
  ident: bib114
  article-title: Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium
  publication-title: Electrochim. Acta
– volume: 133
  start-page: 7296
  year: 2011
  end-page: 7299
  ident: bib29
  article-title: MoS
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 521
  year: 2019
  end-page: 528
  ident: bib50
  article-title: N-doped carbon coated NiCo
  publication-title: Carbon
– volume: 2
  start-page: 873
  year: 2009
  end-page: 899
  ident: bib71
  article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells
  publication-title: Energies
– volume: 6
  start-page: 7790
  year: 2016
  end-page: 7798
  ident: bib121
  article-title: Operando Raman spectroscopy of amorphous molybdenum sulfide (MoS
  publication-title: ACS Catal.
– volume: 29
  start-page: 1703792
  year: 2017
  ident: bib72
  article-title: Hexagonal sphericon hematite with high performance for water oxidation
  publication-title: Adv. Mater.
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: bib38
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 1703538
  year: 2018
  ident: bib90
  article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni
  publication-title: Adv. Energy Mater.
– volume: 48
  start-page: 6718
  year: 2019
  end-page: 6729
  ident: bib6
  article-title: Controlled synthesis of bifunctional particle-like Mo/Mn-Ni
  publication-title: Dalton Trans.
– volume: 28
  start-page: 1803291
  year: 2018
  ident: bib26
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 15237
  year: 2018
  end-page: 15242
  ident: bib109
  article-title: Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting
  publication-title: Angew. Chem.
– volume: 12
  start-page: 988
  year: 2019
  end-page: 999
  ident: bib49
  article-title: Helical cobalt borophosphates to master durable overall water-splitting
  publication-title: Energy Environ. Sci.
– volume: 105
  start-page: 13
  year: 2002
  end-page: 19
  ident: bib42
  article-title: Comparison of high surface Pt/C catalysts by cyclic voltammetry
  publication-title: J. Power Sources
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: bib20
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 4644
  year: 2019
  end-page: 4648
  ident: bib60
  article-title: Modular design of noble-metal-free mixed metal oxide electrocatalysts for complete water splitting
  publication-title: Angew. Chem. Int. Ed.
– volume: 106
  start-page: 1036
  year: 2002
  end-page: 1047
  ident: bib43
  article-title: Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts
  publication-title: J. Phys. Chem. B
– volume: 10
  start-page: 1752
  year: 2018
  end-page: 1760
  ident: bib91
  article-title: Dominating role of aligned MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 5982
  year: 2015
  ident: bib85
  article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
  publication-title: Nat. Commun.
– volume: 242
  start-page: 60
  year: 2019
  end-page: 66
  ident: bib51
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)
  publication-title: Appl. Catal. B Environ.
– volume: 8
  start-page: 8296
  year: 2018
  end-page: 8305
  ident: bib106
  article-title: Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: ACS Catal.
– volume: 31
  year: 2019
  ident: bib69
  article-title: Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting
  publication-title: Adv. Mater.
– start-page: 1900510
  year: 2019
  ident: bib79
  article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments
  publication-title: Adv. Mater.
– volume: 44
  start-page: 353
  year: 2018
  end-page: 363
  ident: bib75
  article-title: Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting
  publication-title: Nano Energy
– volume: 6
  start-page: 1900119
  year: 2019
  ident: bib120
  article-title: Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction
  publication-title: Adv. Sci.
– volume: 245
  start-page: 656
  year: 2019
  end-page: 661
  ident: bib62
  article-title: Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis
  publication-title: Appl. Catal. B Environ.
– volume: 4
  start-page: 1244
  year: 2018
  end-page: 1252
  ident: bib82
  article-title: Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts
  publication-title: ACS Cent. Sci.
– volume: 4
  start-page: 11973
  year: 2016
  end-page: 12000
  ident: bib5
  article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects
  publication-title: J. Mater. Chem. A
– volume: 796
  start-page: 86
  year: 2019
  end-page: 92
  ident: bib45
  article-title: MoS
  publication-title: J. Alloy. Comp.
– volume: 6
  start-page: 7992
  year: 2015
  ident: bib103
  article-title: Molecular metal–N
  publication-title: Nat. Commun.
– volume: 7
  start-page: 3519
  year: 2014
  end-page: 3542
  ident: bib11
  article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: bib22
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 101
  start-page: 5405
  year: 1997
  end-page: 5413
  ident: bib27
  article-title: Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions
  publication-title: J. Phys. Chem. B
– volume: 791
  start-page: 328
  year: 2019
  end-page: 335
  ident: bib93
  article-title: In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co
  publication-title: J. Alloy. Comp.
– volume: 512
  start-page: 419
  year: 2018
  end-page: 427
  ident: bib57
  article-title: Construction of hierarchical FeCo
  publication-title: J. Colloid Interface Sci.
– volume: 369
  start-page: 345
  year: 2019
  end-page: 351
  ident: bib46
  article-title: Rationally design of monometallic NiO-Ni
  publication-title: J. Catal.
– volume: 5
  start-page: 11577
  year: 2017
  end-page: 11583
  ident: bib86
  article-title: Loading Pt nanoparticles on metal–organic frameworks for improved oxygen evolution
  publication-title: ACS Sustain. Chem. Eng.
– volume: 31
  year: 2019
  ident: bib2
  article-title: Morphology-controlled metal sulfides and phosphides for electrochemical water splitting
  publication-title: Adv. Mater.
– volume: 8
  start-page: 12798
  year: 2016
  end-page: 12803
  ident: bib65
  article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 397
  year: 1986
  end-page: 426
  ident: bib35
  article-title: Electrocatalytic properties of transition metal oxides for oxygen evolution reaction
  publication-title: Mater. Chem. Phys.
– volume: 145
  start-page: 201
  year: 2019
  end-page: 208
  ident: bib61
  article-title: Supercritical CO
  publication-title: Carbon
– volume: 57
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib113
  article-title: Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities
  publication-title: Nano Energy
– volume: 11
  start-page: 55
  year: 2019
  ident: bib63
  article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting
  publication-title: Nano-Micro Lett.
– volume: 43
  start-page: 6555
  year: 2014
  end-page: 6569
  ident: bib19
  article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
  publication-title: Chem. Soc. Rev.
– volume: 254
  start-page: 414
  year: 2019
  end-page: 423
  ident: bib73
  article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting
  publication-title: Appl. Catal. B Environ.
– volume: 59
  start-page: 591
  year: 2019
  end-page: 597
  ident: bib74
  article-title: In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting
  publication-title: Nano Energy
– volume: 6
  start-page: 8069
  year: 2016
  end-page: 8097
  ident: bib25
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review
  publication-title: ACS Catal.
– volume: 333
  start-page: 213
  year: 2016
  end-page: 236
  ident: bib17
  article-title: Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media
  publication-title: J. Power Sources
– volume: 3
  start-page: 1159
  year: 2011
  end-page: 1165
  ident: bib23
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: bib31
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
– volume: 157
  start-page: B1529
  year: 2010
  end-page: B1536
  ident: bib28
  article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes
  publication-title: J. Electrochem. Soc.
– volume: 784
  start-page: 447
  year: 2019
  end-page: 455
  ident: bib7
  article-title: Hydrogen evolution and oxygen reduction reactions catalyzed by core-shelled Fe@Ru nanoparticles embedded in porous dodecahedron carbon
  publication-title: J. Alloy. Comp.
– volume: 4
  start-page: 16524
  year: 2016
  end-page: 16530
  ident: bib40
  article-title: Monolayer MoS
  publication-title: J. Mater. Chem. A
– volume: 245
  start-page: 528
  year: 2019
  end-page: 535
  ident: bib8
  article-title: Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting
  publication-title: Appl. Catal. B Environ.
– start-page: 41
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib32
  article-title: The oxygen evolution reaction: mechanistic concepts and catalyst design
– volume: 13
  start-page: 6222
  year: 2013
  ident: 10.1016/j.jallcom.2019.153346_bib92
  article-title: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction
  publication-title: Nano Lett.
  doi: 10.1021/nl403661s
– volume: 31
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib24
  article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807134
– volume: 133
  start-page: 7296
  year: 2011
  ident: 10.1016/j.jallcom.2019.153346_bib29
  article-title: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 784
  start-page: 1
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib44
  article-title: Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.01.012
– volume: 148
  start-page: 496
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib14
  article-title: Ni3ZnC0.7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.002
– volume: 7
  start-page: 2357
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib88
  article-title: MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03192
– volume: 58
  start-page: 4644
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib60
  article-title: Modular design of noble-metal-free mixed metal oxide electrocatalysts for complete water splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201900428
– volume: 4
  start-page: 11973
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib5
  article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02334G
– volume: 12
  start-page: 988
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib49
  article-title: Helical cobalt borophosphates to master durable overall water-splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01669K
– volume: 784
  start-page: 447
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib7
  article-title: Hydrogen evolution and oxygen reduction reactions catalyzed by core-shelled Fe@Ru nanoparticles embedded in porous dodecahedron carbon
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.01.088
– volume: 11
  start-page: 3036
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib100
  article-title: Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions
  publication-title: Small
  doi: 10.1002/smll.201403715
– volume: 106
  start-page: 1036
  year: 2002
  ident: 10.1016/j.jallcom.2019.153346_bib43
  article-title: Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0131931
– volume: 8
  start-page: 2347
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib64
  article-title: Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01155H
– volume: 607
  start-page: 83
  year: 2007
  ident: 10.1016/j.jallcom.2019.153346_bib31
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 4
  start-page: 1244
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib82
  article-title: Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00426
– volume: 245
  start-page: 656
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib62
  article-title: Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.034
– volume: 58
  start-page: 4318
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib16
  article-title: Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201900109
– volume: 12
  start-page: 1469
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib107
  article-title: Atomic layer deposition of NiOOH/Ni(OH)2 on PIM-1-based N-doped carbon nanofibers for electrochemical water splitting in alkaline medium
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802500
– volume: 25
  start-page: 621
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib70
  article-title: Hollow bimetallic zinc cobalt phosphosulfides for efficient overall water splitting
  publication-title: Chemistry
  doi: 10.1002/chem.201804492
– start-page: 1900510
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib79
  article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900510
– volume: 14
  start-page: 397
  year: 1986
  ident: 10.1016/j.jallcom.2019.153346_bib35
  article-title: Electrocatalytic properties of transition metal oxides for oxygen evolution reaction
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/0254-0584(86)90045-3
– volume: 245
  start-page: 528
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib8
  article-title: Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.007
– volume: 7
  start-page: 3519
  year: 2014
  ident: 10.1016/j.jallcom.2019.153346_bib11
  article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01760A
– volume: 11
  start-page: 7293
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib101
  article-title: Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03290
– volume: 8
  start-page: 27850
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib39
  article-title: Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10552
– volume: 29
  start-page: 1703792
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib72
  article-title: Hexagonal sphericon hematite with high performance for water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703792
– volume: 6
  start-page: 5982
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib85
  article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6982
– volume: 110
  start-page: 6474
  year: 2010
  ident: 10.1016/j.jallcom.2019.153346_bib21
  article-title: Solar energy supply and storage for the legacy and nonlegacy worlds
  publication-title: Chem. Rev.
  doi: 10.1021/cr100246c
– volume: 5
  start-page: 13801
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib30
  article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
  publication-title: Sci. Rep.
  doi: 10.1038/srep13801
– volume: 326
  start-page: 134983
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib48
  article-title: NiS2/MoS2 on carbon cloth as a bifunctional electrocatalyst for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134983
– volume: 11
  start-page: 55
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib63
  article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0289-6
– volume: 48
  start-page: 6718
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib6
  article-title: Controlled synthesis of bifunctional particle-like Mo/Mn-NixSy/NF electrocatalyst for highly efficient overall water splitting
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT00957D
– volume: 24
  start-page: 817
  year: 1956
  ident: 10.1016/j.jallcom.2019.153346_bib34
  article-title: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1742616
– volume: 5
  start-page: 11577
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib86
  article-title: Loading Pt nanoparticles on metal–organic frameworks for improved oxygen evolution
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02926
– volume: 3
  start-page: 1159
  year: 2011
  ident: 10.1016/j.jallcom.2019.153346_bib23
  article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 15
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib78
  article-title: Multimetal borides nanochains as efficient electrocatalysts for overall water splitting
  publication-title: Small
– volume: 298
  start-page: 305
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib117
  article-title: Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.091
– volume: 797
  start-page: 1216
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib59
  article-title: General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.05.036
– volume: 8
  start-page: 5621
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib84
  article-title: Tuning electronic push/pull of ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01567
– volume: 796
  start-page: 86
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib45
  article-title: MoS2 nanosheets decorated Ni(OH)2 nanorod array for active overall water splitting
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.05.071
– volume: 6
  start-page: 7790
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib121
  article-title: Operando Raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01848
– volume: 7
  start-page: 2518
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib3
  article-title: Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10856K
– volume: 259
  start-page: 118051
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib77
  article-title: A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118051
– volume: 29
  start-page: 1604898
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib66
  article-title: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604898
– volume: 1
  start-page: 2155
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib36
  article-title: Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00119C
– volume: 105
  start-page: 13
  year: 2002
  ident: 10.1016/j.jallcom.2019.153346_bib42
  article-title: Comparison of high surface Pt/C catalysts by cyclic voltammetry
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00921-1
– volume: 4
  start-page: 727
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib116
  article-title: Hemi-core@ frame AuCu@ IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media
  publication-title: Nanoscale Horiz
  doi: 10.1039/C8NH00520F
– volume: 3
  start-page: 46
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib124
  article-title: Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0048-1
– volume: 116
  start-page: 98
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib58
  article-title: Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2019.04.016
– volume: 254
  start-page: 414
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib73
  article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.089
– volume: 4
  start-page: 18470
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib97
  article-title: Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08335H
– volume: 44
  start-page: 5148
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib20
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 101
  start-page: 5405
  year: 1997
  ident: 10.1016/j.jallcom.2019.153346_bib27
  article-title: Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970930d
– volume: 98
  start-page: 617
  year: 1994
  ident: 10.1016/j.jallcom.2019.153346_bib41
  article-title: Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100053a042
– volume: 765
  start-page: 835
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib67
  article-title: Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.06.321
– volume: 6
  start-page: 8069
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib25
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02479
– volume: 57
  start-page: 15237
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib109
  article-title: Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201809787
– volume: 45
  start-page: 1529
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib10
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 242
  start-page: 60
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib51
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.064
– volume: 57
  start-page: 1
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib113
  article-title: Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.018
– volume: 53
  start-page: 8711
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib56
  article-title: 3D free-standing hierarchical CuCo2O4 nanowire cathodes for rechargeable lithium–oxygen batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02621H
– volume: 307
  start-page: 206
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib114
  article-title: Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.179
– volume: 59
  start-page: 591
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib74
  article-title: In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.022
– volume: 241
  start-page: 521
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib95
  article-title: Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.061
– volume: 142
  start-page: 40
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib98
  article-title: In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.088
– volume: 15
  start-page: 1902427
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib119
  article-title: High-yield electrochemical production of large-sized and thinly layered NiPS3 flakes for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201902427
– volume: 9
  start-page: 12496
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib118
  article-title: Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05984
– volume: 6
  start-page: 1900119
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib120
  article-title: Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900119
– volume: 1
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib37
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 7
  start-page: 4847
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib123
  article-title: In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02147
– volume: 28
  start-page: 1803291
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib26
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803291
– volume: 58
  start-page: 2
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib4
  article-title: Perovskite oxide-based electrodes for high-performance photoelectrochemical water splitting: a review
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 8165
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib12
  article-title: Facile protocol for alkaline electrolyte purification and its influence on a Ni–Co oxide catalyst for the oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01940
– volume: 46
  start-page: 337
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib22
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 7
  start-page: 2156
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib80
  article-title: Boosting electrochemical water splitting via ternary NiMoCo hybrid nanowire arrays
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11250A
– volume: 355
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib33
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 12
  start-page: 988
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib108
  article-title: Helical cobalt borophosphates to master durable overall water-splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01669K
– volume: 512
  start-page: 419
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib57
  article-title: Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.09.093
– volume: 764
  start-page: 88
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib52
  article-title: Co0.5Ni0.5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.06.008
– volume: 6
  start-page: 7992
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib103
  article-title: Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8992
– volume: 54
  start-page: 8179
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib104
  article-title: Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502173
– volume: 10
  start-page: 1752
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib91
  article-title: Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16407
– volume: 8
  start-page: 12798
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib65
  article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02352
– volume: 145
  start-page: 521
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib50
  article-title: N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.065
– volume: 319
  start-page: 561
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib68
  article-title: Self-supported ternary (NixFey)2P nanoplates arrays as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.07.022
– volume: 9
  start-page: 1803867
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib102
  article-title: Trifunctional electrocatalysis on dual-doped graphene nanorings–integrated boxes for efficient water splitting and Zn–air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803867
– volume: 157
  start-page: B1529
  year: 2010
  ident: 10.1016/j.jallcom.2019.153346_bib28
  article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3483106
– volume: 2
  start-page: 17059
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib83
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.59
– volume: 6
  start-page: 19221
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib94
  article-title: Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08223E
– volume: 145
  start-page: 201
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib61
  article-title: Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.011
– volume: 9
  start-page: 1901130
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib76
  article-title: General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901130
– volume: 51
  start-page: 286
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib105
  article-title: Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.071
– volume: 44
  start-page: 353
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib75
  article-title: Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.045
– volume: 247
  start-page: 107
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib47
  article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.094
– volume: 8
  start-page: 1703538
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib90
  article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703538
– volume: 28
  start-page: 215
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib87
  article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 800
  start-page: 450
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib15
  article-title: CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.06.047
– volume: 333
  start-page: 213
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib17
  article-title: Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.161
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.jallcom.2019.153346_bib38
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 791
  start-page: 328
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib93
  article-title: In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co3O4 nanoarrays as an advanced overall water splitting electrocatalyst in alkaline solution
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.03.313
– volume: 36
  start-page: 1800252
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib81
  article-title: Ultrathin Fe-N-C nanosheets coordinated Fe-doped CoNi alloy nanoparticles for electrochemical water splitting
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201800252
– volume: 4
  start-page: 17587
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib18
  article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08075H
– volume: 43
  start-page: 6555
  year: 2014
  ident: 10.1016/j.jallcom.2019.153346_bib19
  article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60468C
– volume: 9
  start-page: 1803185
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib53
  article-title: Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803185
– volume: 53
  start-page: 7836
  year: 2017
  ident: 10.1016/j.jallcom.2019.153346_bib55
  article-title: Chrysanthemum flower-like NiCo2O4–nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC03826G
– volume: 31
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib69
  article-title: Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting
  publication-title: Adv. Mater.
– volume: 794
  start-page: 261
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib96
  article-title: Hierarchical Graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.04.150
– volume: 56
  start-page: 330
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib54
  article-title: Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.023
– volume: 9
  start-page: 5309
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib110
  article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07790-x
– volume: 4
  start-page: 16524
  year: 2016
  ident: 10.1016/j.jallcom.2019.153346_bib40
  article-title: Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06534A
– volume: 118
  start-page: 29252
  year: 2014
  ident: 10.1016/j.jallcom.2019.153346_bib122
  article-title: Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction
  publication-title: J.Phys. Chem. C
  doi: 10.1021/jp505394e
– volume: 31
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib2
  article-title: Morphology-controlled metal sulfides and phosphides for electrochemical water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806682
– volume: 144
  start-page: 464
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib115
  article-title: N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.12.085
– volume: 148
  start-page: 540
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib1
  article-title: Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.021
– volume: 140
  start-page: 2610
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib111
  article-title: Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12420
– volume: 9
  start-page: 1822
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib89
  article-title: Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04851C
– volume: 254
  start-page: 471
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib112
  article-title: A novel strategy for 2D/2D NiS/Graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.05.029
– volume: 797
  start-page: 341
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib9
  article-title: Hierarchical Co-N microballs with heterostructure exhibiting superior electrochemical properties for water splitting and reduction of I3-
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.05.103
– volume: 369
  start-page: 345
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib46
  article-title: Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.11.023
– volume: 8
  start-page: 3970
  year: 2014
  ident: 10.1016/j.jallcom.2019.153346_bib99
  article-title: Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation
  publication-title: ACS Nano
  doi: 10.1021/nn500880v
– volume: 2
  start-page: 873
  year: 2009
  ident: 10.1016/j.jallcom.2019.153346_bib71
  article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells
  publication-title: Energies
  doi: 10.3390/en20400873
– volume: 12
  start-page: 215
  year: 2019
  ident: 10.1016/j.jallcom.2019.153346_bib13
  article-title: Defect chemistry in 2D materials for electrocatalysis
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2019.01.004
– volume: 8
  start-page: 8296
  year: 2018
  ident: 10.1016/j.jallcom.2019.153346_bib106
  article-title: Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01794
SSID ssj0001931
ssib000187809
ssib006546037
ssib000754189
ssib006546038
Score 2.68112
SecondaryResourceType review_article
Snippet Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 153346
SubjectTerms Bifunctional electrocatalysts
Catalyst design
Earth
Electrocatalysts
Electrochemical water splitting
Electrode
Electrolysis
Energy storage
Hydrogen production
Hydrogen storage
Hydrogen-based energy
Noble metals
Oxygen evolution reactions
Performance evaluation
Transition metals
Transition-metal-based compounds
Water splitting
Title Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review
URI https://dx.doi.org/10.1016/j.jallcom.2019.153346
https://cir.nii.ac.jp/crid/1872272493134788224
https://www.proquest.com/docview/2354826360
Volume 819
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgg4oLKAWPqQD1y9m7WdJu5ttWq1ULUXqLQ3y_Y6IqttqDZBiAu_vTOJ04eoVKkXHxJbsT1jz2fnmxmAL7lGzO8mBfcTX3AlXOC5D4qntLp8YQsR6Grg_OJofqm-LdLFFsx6XxiiVca9v9vT2906PhnH2Rxfl-X4e6IF_fNDkyZVqsWCPNhVRlo--ndH88C3bdY8rMyp9p0Xz3g1Wtn1mkgjaAX1iJAP4eDH7dOLqiz_269bI3S6C28jemTTroPvYCtUA3g165O2DeDNvfiCA3jZ8jt9_R42Jzion9w6cvyoGtaQiWrZWvwqIP7mZM2WzJVk57rrQdbe7Pytm5ohsGVE9cRxsJg3x8dAA-wPgtUNqxHLtgzqYzZlnTvMB7g8Pfkxm_OYboF7JUXDhcXVnAWfJ9qGZEmh2mVQSymcK7S3QefOZsJr5QOe0VLhC52lReKSkNilQxj0EbarX1X4BAznMbNaamtRF4I9sqnDwluJYFOGoIag-kk2PsYip5QYa9OTzlYmysaQbEwnmyGMbptdd8E4nmqQ9xI0D7TKoMF4qukBShx7R-Ukz4TI8KQqyfM2J-btEPZ7XTBx2ddGSDwACgrB9vn5X96D14IO9UQPSvdhu9n8DgeIfBp32Kr2IexMv57NL24A404DCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21RahwQLCAWGjBBzh6N2s7TYzEoSqttvTjQivtzdheR2S1hGoTVPXCn-IPMpM4FARSJaRecojkjTMz8Xv2vpkBeJ1r5PxuUnA_8QVXwgWe-6B4Sl-XL2whAh0NnJzuTM_Vh1k6W4MffS4MySrj2t-t6e1qHe-MozXHF2U5_phoQf_5IaRJlWoxi8rKo3B1ifu2-t3he3TyGyEO9s_2pjy2FuBeSdFwYTFys-DzRNuQzKksuQxqLoVzhfY26NzZTHitfMD9SCp8obO0SFwSEjt3CPn4u-twR-ELUduE0fdrXQlOp23Th7PjNL3rtKHxYrSwyyWpVBB29YioFhHvfwPielWWfwFEi3oHD-FBpKtst7PII1gL1QA29_oucQO4_1tBwwHcbQWlvn4Mq3204mduHWWaVA1rCBNbeRj_EpDwc4LPOXMlAWt3Hsnao6SruqkZMmlG2lJ8DxYb9fhY2YBdIjtesRrJcyvZfst2WZd_8wTOb8UJT2Gj-lqFZ8DQjpnVUluLwRfsjk0dXryVyG5lCGoIqjey8bH4OfXgWJpe5bYw0TeGfGM63wxh9GvYRVf946YBee9B80cYG0Som4Zuo8dxdnSd5JkQGW6NJaX65iT1HcJWHwsmrjO1ERJ3nIJqvj3__ye_gs3p2cmxOT48PXoB9wSdKJA2Kd2CjWb1LWwj7WrcyzbMGXy67e_qJ-rcP5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Earth-abundant+transition-metal-based+bifunctional+catalysts+for+overall+electrochemical+water+splitting%3A+A+review&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wang%2C+Jiajia&rft.au=Yue%2C+Xiyan&rft.au=Yang%2C+Yanyan&rft.au=Sirisomboonchai%2C+Suchada&rft.date=2020-04-05&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=819&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2019.153346&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon