Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review
Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts...
Saved in:
Published in | Journal of Alloys and Compounds Vol. 819; p. 153346 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Lausanne
Elsevier B.V
05.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts with low-cost to replace the noble-metal-based ones. To date, a series of transition-metal-based bifunctional electrocatalysts for both anode and cathode have been already developed for the overall water splitting. Herein, the characteristics of hydrogen and oxygen evolution reactions on the electrodes of water electrolysis cell and the basic methods for the evaluation of the performance of electrocatalysts are introduced at first and then, the prospects of various earth-abundant transition-metal-based bifunctional electrocatalysts are critically reviewed. Finally, the challenges in the development of earth-abundant transition-metal-based bifunctional electrocatalysts are discussed. It is expected to provide a guidance for the design and fabrication of the novel bifunctional electrocatalysts with high performance in a practical water splitting process.
[Display omitted]
•Mechanisms on HER and OER on the cathode and anode of water electrolysis cell are summarized.•Evaluation parameters for electrochemical water splitting are systematically reviewed.•Various transition-metal-based bifunctional electrocatalysts are analyzed and discussed.•Challenges for the development of transition-metal-based bifunctional electrocatalysts are presented.•Outlook on design and construction of bifunctional electrocatalysts in a practical water splitting process is given. |
---|---|
AbstractList | Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts with low-cost to replace the noble-metal-based ones. To date, a series of transition-metal-based bifunctional electrocatalysts for both anode and cathode have been already developed for the overall water splitting. Herein, the characteristics of hydrogen and oxygen evolution reactions on the electrodes of water electrolysis cell and the basic methods for the evaluation of the performance of electrocatalysts are introduced at first and then, the prospects of various earth-abundant transition-metal-based bifunctional electrocatalysts are critically reviewed. Finally, the challenges in the development of earth-abundant transition-metal-based bifunctional electrocatalysts are discussed. It is expected to provide a guidance for the design and fabrication of the novel bifunctional electrocatalysts with high performance in a practical water splitting process. Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society realization in the future. However, the key for the large-scale application of this technique is to develop highly efficient electrocatalysts with low-cost to replace the noble-metal-based ones. To date, a series of transition-metal-based bifunctional electrocatalysts for both anode and cathode have been already developed for the overall water splitting. Herein, the characteristics of hydrogen and oxygen evolution reactions on the electrodes of water electrolysis cell and the basic methods for the evaluation of the performance of electrocatalysts are introduced at first and then, the prospects of various earth-abundant transition-metal-based bifunctional electrocatalysts are critically reviewed. Finally, the challenges in the development of earth-abundant transition-metal-based bifunctional electrocatalysts are discussed. It is expected to provide a guidance for the design and fabrication of the novel bifunctional electrocatalysts with high performance in a practical water splitting process. [Display omitted] •Mechanisms on HER and OER on the cathode and anode of water electrolysis cell are summarized.•Evaluation parameters for electrochemical water splitting are systematically reviewed.•Various transition-metal-based bifunctional electrocatalysts are analyzed and discussed.•Challenges for the development of transition-metal-based bifunctional electrocatalysts are presented.•Outlook on design and construction of bifunctional electrocatalysts in a practical water splitting process is given. |
ArticleNumber | 153346 |
Author | Wang, Jiajia Yang, Yanyan Yue, Xiyan Sirisomboonchai, Suchada Abudula, Abuliti Ma, Xuli Guan, Guoqing Wang, Peifen |
Author_xml | – sequence: 1 givenname: Jiajia surname: Wang fullname: Wang, Jiajia organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 2 givenname: Xiyan surname: Yue fullname: Yue, Xiyan organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 3 givenname: Yanyan surname: Yang fullname: Yang, Yanyan organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People’s Republic of China – sequence: 4 givenname: Suchada surname: Sirisomboonchai fullname: Sirisomboonchai, Suchada organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 5 givenname: Peifen surname: Wang fullname: Wang, Peifen organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 6 givenname: Xuli surname: Ma fullname: Ma, Xuli organization: College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People’s Republic of China – sequence: 7 givenname: Abuliti surname: Abudula fullname: Abudula, Abuliti organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 8 givenname: Guoqing orcidid: 0000-0002-5875-3596 surname: Guan fullname: Guan, Guoqing email: guan@hirosaki-u.ac.jp organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan |
BackLink | https://cir.nii.ac.jp/crid/1872272493134788224$$DView record in CiNii |
BookMark | eNqFkU1r3DAQhkVJoZu0P6EgSK_e6su2lB5KCOkHBHppz2IsjxsZr7SVtAn595FxTr3kIoHmeTXMM-fkLMSAhHzkbM8Z7z7P-xmWxcXDXjBu9ryVUnVvyI7rXjaq68wZ2TEj2kZLrd-R85xnxiop-Y6kW0jlvoHhFEYIhZYEIfviY2gOWGBpBsg40sFPp-DWZ1iog1p4yiXTKSYaHzDV9hQXdCVFd48H7yr1CAUTzcfFl-LD3yt6TRM-eHx8T95OsGT88HJfkD_fbn_f_Gjufn3_eXN91zglRWkEMKV7dJoZQDaKjvcS1SjFMEzGARo9QC-cUQ6N0a1wk-nbiQ0MGYyD6OUFudz-Pab474S52DmeUh0gWyFbpUUnO1apdqNcijknnOwx-QOkJ8uZXfXa2b7otateu-mtuS__5ZwvsBqqCv3yavrTlg7e1-B61m0J0QtV1yJVr7UQqmJfNwyrp-ou2ew8BoejT9W2HaN_pdEzFSyotQ |
CitedBy_id | crossref_primary_10_1039_D1DT04086C crossref_primary_10_3390_en17071591 crossref_primary_10_1016_j_jallcom_2022_164603 crossref_primary_10_1021_acssuschemeng_0c07700 crossref_primary_10_1039_D3QM00586K crossref_primary_10_1039_D4CP00672K crossref_primary_10_1039_D4GC00719K crossref_primary_10_3390_en18061515 crossref_primary_10_1016_j_cej_2021_129333 crossref_primary_10_1016_j_jcis_2022_04_127 crossref_primary_10_1016_j_ijhydene_2024_10_184 crossref_primary_10_1016_j_jallcom_2020_156422 crossref_primary_10_1016_j_jallcom_2020_157511 crossref_primary_10_1039_D2SE01196D crossref_primary_10_1039_D4SE00552J crossref_primary_10_1016_j_ijhydene_2021_03_037 crossref_primary_10_1016_j_jallcom_2022_164852 crossref_primary_10_1016_j_ijhydene_2024_10_194 crossref_primary_10_1021_acs_chemmater_4c01684 crossref_primary_10_1016_j_inoche_2024_113672 crossref_primary_10_1016_j_fuel_2021_120558 crossref_primary_10_1016_j_jcis_2024_10_061 crossref_primary_10_1016_j_apsusc_2024_159651 crossref_primary_10_1016_j_rser_2025_115385 crossref_primary_10_3390_nano11123379 crossref_primary_10_1016_j_ijhydene_2024_09_189 crossref_primary_10_1002_cssc_202002002 crossref_primary_10_1007_s42247_020_00123_z crossref_primary_10_1016_j_jssc_2021_122799 crossref_primary_10_1016_j_jallcom_2024_176946 crossref_primary_10_1016_j_susmat_2024_e01036 crossref_primary_10_1039_D1SE01535D crossref_primary_10_1021_acs_langmuir_3c00695 crossref_primary_10_1021_acsmaterialslett_4c00587 crossref_primary_10_1016_j_gce_2022_11_001 crossref_primary_10_1016_j_jece_2021_105776 crossref_primary_10_1016_j_vacuum_2020_109661 crossref_primary_10_1039_D2QI02548E crossref_primary_10_1016_j_mtchem_2020_100399 crossref_primary_10_1016_j_ijhydene_2024_12_103 crossref_primary_10_1016_j_jallcom_2020_154374 crossref_primary_10_1016_j_diamond_2024_111379 crossref_primary_10_1016_j_apcatb_2021_120658 crossref_primary_10_1016_j_ijhydene_2023_05_333 crossref_primary_10_1016_j_jpowsour_2021_229688 crossref_primary_10_1002_adfm_202107597 crossref_primary_10_1016_j_jallcom_2023_171516 crossref_primary_10_1016_j_ijhydene_2022_09_070 crossref_primary_10_1007_s10853_022_07779_4 crossref_primary_10_1002_adfm_202106149 crossref_primary_10_1016_j_jallcom_2022_164023 crossref_primary_10_1016_j_jallcom_2022_164264 crossref_primary_10_1007_s13204_021_02134_6 crossref_primary_10_1039_D3RA03394E crossref_primary_10_1016_j_ijhydene_2022_01_165 crossref_primary_10_1016_j_susmat_2024_e00991 crossref_primary_10_1002_eem2_12873 crossref_primary_10_1021_acsami_3c17540 crossref_primary_10_1039_D3NJ01457F crossref_primary_10_1021_acsanm_0c01624 crossref_primary_10_1016_j_ijhydene_2023_10_121 crossref_primary_10_1021_acsomega_1c01251 crossref_primary_10_1016_j_ijhydene_2023_05_209 crossref_primary_10_1016_j_electacta_2024_145114 crossref_primary_10_1016_j_jcis_2023_03_004 crossref_primary_10_1002_smll_202200586 crossref_primary_10_1016_j_jcis_2022_03_103 crossref_primary_10_1002_er_7849 crossref_primary_10_1016_j_ceramint_2022_09_329 crossref_primary_10_1016_j_jallcom_2022_165243 crossref_primary_10_1002_smtd_202101308 crossref_primary_10_1016_j_jmrt_2022_08_042 crossref_primary_10_1002_chem_202003473 crossref_primary_10_1016_j_ccr_2021_214243 crossref_primary_10_3389_fchem_2024_1469804 crossref_primary_10_1016_j_apsusc_2020_145944 crossref_primary_10_1016_j_mtphys_2023_101169 crossref_primary_10_1007_s43207_024_00378_w crossref_primary_10_1039_D4TA06599A crossref_primary_10_1039_D3TA01629C crossref_primary_10_1016_j_jphotochem_2024_116160 crossref_primary_10_1016_j_cej_2024_149213 crossref_primary_10_1039_D0CY01115K crossref_primary_10_1002_ente_202201416 crossref_primary_10_1016_j_fuel_2024_134100 crossref_primary_10_1002_slct_202403155 crossref_primary_10_3390_catal12111417 crossref_primary_10_1016_j_ijhydene_2022_03_065 crossref_primary_10_1016_j_ijhydene_2023_03_221 crossref_primary_10_1002_smll_202403415 crossref_primary_10_1016_j_matre_2024_100283 crossref_primary_10_1016_j_jallcom_2022_165059 crossref_primary_10_1016_j_jallcom_2020_156625 crossref_primary_10_1016_j_jallcom_2023_169251 crossref_primary_10_3390_catal13050798 crossref_primary_10_1016_j_jcis_2021_05_003 crossref_primary_10_1021_acs_inorgchem_1c00734 crossref_primary_10_1021_acs_inorgchem_1c03323 crossref_primary_10_1007_s11581_024_05376_w crossref_primary_10_1016_j_jelechem_2023_117478 crossref_primary_10_1016_j_ijhydene_2020_10_026 crossref_primary_10_1016_j_mtener_2021_100911 crossref_primary_10_1016_j_carbpol_2024_122351 crossref_primary_10_1039_D2NJ03654A crossref_primary_10_1016_j_ijhydene_2023_11_054 crossref_primary_10_1016_j_jelechem_2021_115950 crossref_primary_10_1039_D3RA03117A crossref_primary_10_1016_j_cej_2021_130137 crossref_primary_10_1016_j_nexus_2025_100399 crossref_primary_10_1039_D4SE00180J crossref_primary_10_3390_nano11030657 crossref_primary_10_1016_j_ijhydene_2024_11_474 crossref_primary_10_1016_j_ccr_2021_214144 crossref_primary_10_1016_j_electacta_2023_143335 crossref_primary_10_1021_acsami_4c04157 crossref_primary_10_1002_ijch_202100110 crossref_primary_10_1016_j_micromeso_2020_110760 crossref_primary_10_1016_j_apsusc_2021_151900 crossref_primary_10_1002_chem_202404684 crossref_primary_10_1016_j_jiec_2022_11_054 crossref_primary_10_1007_s12598_021_01735_y crossref_primary_10_2139_ssrn_4127613 crossref_primary_10_1016_j_colsurfa_2021_126265 crossref_primary_10_1002_aesr_202400258 crossref_primary_10_1088_1361_6528_ac8060 crossref_primary_10_22201_fesz_23958723e_2020_0_211 crossref_primary_10_1002_er_7380 crossref_primary_10_1016_j_ijhydene_2025_02_246 crossref_primary_10_1021_acsaem_3c01338 crossref_primary_10_1016_j_jallcom_2020_157729 crossref_primary_10_3390_s24030756 crossref_primary_10_1039_D0TA09495A crossref_primary_10_1007_s00894_021_04864_4 crossref_primary_10_1002_cey2_575 crossref_primary_10_1021_acsomega_1c03115 crossref_primary_10_1038_s41598_025_87423_8 crossref_primary_10_1016_j_ijhydene_2021_12_055 crossref_primary_10_1016_j_inoche_2024_112798 crossref_primary_10_1016_j_ijhydene_2022_01_108 crossref_primary_10_1016_j_surfin_2024_105536 crossref_primary_10_1016_j_jallcom_2021_161180 crossref_primary_10_1002_aenm_202201913 crossref_primary_10_1007_s11814_023_1421_3 crossref_primary_10_1016_j_ccr_2021_214289 crossref_primary_10_1016_j_electacta_2021_139745 crossref_primary_10_1002_er_7800 crossref_primary_10_1002_adsu_202200076 crossref_primary_10_1016_j_ijhydene_2025_01_219 crossref_primary_10_26599_NRE_2023_9120086 crossref_primary_10_1016_j_jallcom_2020_155685 crossref_primary_10_1039_D2EE01094A crossref_primary_10_1007_s41918_022_00136_8 crossref_primary_10_1016_j_ccr_2023_215029 crossref_primary_10_1016_j_mtsust_2024_100761 crossref_primary_10_1007_s11705_024_2420_6 crossref_primary_10_1021_acsanm_4c01126 crossref_primary_10_1039_D3MA00289F crossref_primary_10_1016_j_pecs_2023_101101 crossref_primary_10_1016_j_ijhydene_2023_11_307 crossref_primary_10_1039_D5DT00005J crossref_primary_10_1002_cctc_202400259 crossref_primary_10_1016_j_ijhydene_2022_02_223 crossref_primary_10_20517_cs_2024_37 crossref_primary_10_1002_advs_202304120 crossref_primary_10_1016_j_cej_2021_129972 crossref_primary_10_1016_j_jclepro_2021_127909 crossref_primary_10_1039_D0TA12152E crossref_primary_10_1021_acsaenm_4c00034 crossref_primary_10_1021_acsanm_2c04580 crossref_primary_10_1016_j_colsurfa_2021_127007 crossref_primary_10_1016_j_dyepig_2022_110606 crossref_primary_10_1039_D2RA07901A crossref_primary_10_1039_D0TA05865C crossref_primary_10_1039_D2TA02685F crossref_primary_10_3390_catal10101182 crossref_primary_10_1016_j_cclet_2024_109588 crossref_primary_10_1021_acs_energyfuels_1c01790 crossref_primary_10_1016_j_ijhydene_2022_12_066 crossref_primary_10_1016_j_est_2023_109133 crossref_primary_10_1016_j_jallcom_2020_154535 crossref_primary_10_1021_acsami_4c10870 crossref_primary_10_3389_fchem_2024_1394191 crossref_primary_10_1039_D2NR06824A crossref_primary_10_1007_s12598_021_01791_4 crossref_primary_10_1039_D2QM00964A crossref_primary_10_1016_j_jcis_2024_11_025 crossref_primary_10_1039_D2RA07642J crossref_primary_10_1039_D1SE01563J crossref_primary_10_1039_D1DT01855H crossref_primary_10_1016_j_apsusc_2023_158558 crossref_primary_10_1021_acscatal_4c03700 crossref_primary_10_1016_j_apcatb_2025_125270 crossref_primary_10_1021_acscatal_2c05942 crossref_primary_10_1002_tcr_202200149 crossref_primary_10_1016_j_ijhydene_2024_11_283 crossref_primary_10_1039_D3MH00788J crossref_primary_10_1016_j_apsusc_2023_159083 crossref_primary_10_3390_catal10121461 crossref_primary_10_1016_j_apsusc_2022_153814 crossref_primary_10_1016_j_jallcom_2022_168340 crossref_primary_10_1016_j_jallcom_2023_171124 crossref_primary_10_1007_s12274_021_3660_0 crossref_primary_10_1016_j_ijhydene_2022_12_291 crossref_primary_10_1021_acsanm_0c02431 crossref_primary_10_1039_D0MA00192A crossref_primary_10_1007_s00339_024_07429_3 crossref_primary_10_1021_acscatal_4c01091 crossref_primary_10_1149_1945_7111_ac8d2f crossref_primary_10_1016_j_fuel_2023_130653 crossref_primary_10_1016_j_jpowsour_2022_232417 crossref_primary_10_1039_D1SE01112J crossref_primary_10_1039_D1TA10850F crossref_primary_10_1021_acs_energyfuels_3c01398 crossref_primary_10_1002_slct_202202700 crossref_primary_10_1016_j_ijhydene_2025_02_173 crossref_primary_10_1007_s12598_021_01914_x crossref_primary_10_1016_j_ijhydene_2023_08_333 crossref_primary_10_1021_acs_energyfuels_0c03084 crossref_primary_10_1016_j_ijhydene_2023_08_215 crossref_primary_10_1016_j_jallcom_2022_166613 crossref_primary_10_1016_j_ceramint_2024_03_306 crossref_primary_10_1021_acs_energyfuels_0c02313 crossref_primary_10_1039_D4SE01073F crossref_primary_10_1016_j_electacta_2023_141816 crossref_primary_10_1039_D4NA00930D crossref_primary_10_1002_smll_202302738 crossref_primary_10_1016_j_ijhydene_2024_03_065 crossref_primary_10_1039_D1TA05239J crossref_primary_10_1016_j_mtnano_2021_100156 crossref_primary_10_3390_catal12121576 crossref_primary_10_1039_D1MA00814E crossref_primary_10_1016_j_mtener_2024_101737 crossref_primary_10_1039_D3TA05396B crossref_primary_10_1016_j_apsusc_2021_151847 crossref_primary_10_3389_fenrg_2022_901395 crossref_primary_10_1088_2053_1583_ac9c15 crossref_primary_10_1007_s11581_023_05248_9 crossref_primary_10_1016_j_ijhydene_2020_12_029 crossref_primary_10_1016_j_nxmate_2025_100560 crossref_primary_10_1021_acs_inorgchem_3c02537 crossref_primary_10_1021_acs_jpclett_1c01497 crossref_primary_10_2139_ssrn_4166801 crossref_primary_10_1016_j_ijhydene_2020_09_242 crossref_primary_10_1016_j_poly_2020_114871 crossref_primary_10_1002_cctc_202300040 crossref_primary_10_1021_acsmaterialslett_4c00831 crossref_primary_10_1039_D4TA02891K crossref_primary_10_1016_j_mtcomm_2024_109745 crossref_primary_10_1039_D4CC06469K crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1016_j_ijhydene_2021_02_140 crossref_primary_10_1016_j_jallcom_2020_155131 crossref_primary_10_35234_fumbd_783922 crossref_primary_10_1016_j_ijhydene_2022_04_151 crossref_primary_10_1016_j_ijhydene_2023_12_278 crossref_primary_10_1007_s43207_023_00319_z crossref_primary_10_1016_j_jtice_2022_104591 crossref_primary_10_1021_acsaem_3c01146 crossref_primary_10_1016_j_ijhydene_2023_11_218 crossref_primary_10_1021_acsami_1c14234 crossref_primary_10_1021_acs_energyfuels_1c00388 crossref_primary_10_1016_j_apsusc_2023_156361 crossref_primary_10_1021_acsaem_3c01944 crossref_primary_10_1016_j_xcrp_2024_102369 crossref_primary_10_1039_D3SE00685A crossref_primary_10_1007_s11244_023_01794_8 crossref_primary_10_1021_acsami_2c16873 crossref_primary_10_1007_s10562_021_03816_0 crossref_primary_10_1002_asia_202301107 crossref_primary_10_3389_fenve_2023_1228992 crossref_primary_10_1016_j_ijhydene_2023_06_059 crossref_primary_10_1016_j_apsusc_2025_162352 crossref_primary_10_1007_s13204_020_01550_4 crossref_primary_10_3390_molecules28237727 crossref_primary_10_1016_j_ijhydene_2023_01_119 crossref_primary_10_1016_j_jece_2022_108429 crossref_primary_10_1002_smsc_202100104 crossref_primary_10_1002_advs_202308063 crossref_primary_10_1021_acsanm_4c03641 crossref_primary_10_1016_j_gce_2024_09_009 crossref_primary_10_3389_fenrg_2024_1465349 crossref_primary_10_1002_adsu_202400645 crossref_primary_10_1039_D0CC04236F crossref_primary_10_1002_slct_202301980 crossref_primary_10_1039_D2SE01780F crossref_primary_10_1039_D2TA07677B crossref_primary_10_1016_j_jelechem_2024_118109 crossref_primary_10_1002_celc_202200093 crossref_primary_10_1016_j_energy_2021_122129 crossref_primary_10_1016_j_est_2023_109127 crossref_primary_10_1039_D4TA06710J crossref_primary_10_1021_acsaem_3c02392 crossref_primary_10_12677_AAC_2023_134052 crossref_primary_10_1007_s40843_020_1452_9 crossref_primary_10_1016_j_apsusc_2022_156049 crossref_primary_10_1039_D1TA09424F crossref_primary_10_1016_j_ccr_2022_214864 crossref_primary_10_1016_j_est_2023_110348 crossref_primary_10_1016_j_ccr_2024_216288 crossref_primary_10_20964_2022_12_37 crossref_primary_10_1016_j_jelechem_2024_118455 crossref_primary_10_1016_j_ijhydene_2020_05_139 crossref_primary_10_1016_j_heliyon_2023_e23450 crossref_primary_10_1021_acsmaterialsau_2c00073 crossref_primary_10_1021_acsmaterialslett_3c00022 crossref_primary_10_1002_smll_202408727 crossref_primary_10_1039_D3NR05957J crossref_primary_10_1039_D3DT00307H crossref_primary_10_1016_j_jelechem_2022_116235 crossref_primary_10_1016_j_apmt_2023_101841 crossref_primary_10_1016_j_cej_2022_141056 crossref_primary_10_1016_j_nanoen_2022_108008 crossref_primary_10_1149_1945_7111_adba15 crossref_primary_10_1039_D4NR01404A crossref_primary_10_3390_catal14090570 crossref_primary_10_1021_acs_energyfuels_3c00373 |
Cites_doi | 10.1021/nl403661s 10.1002/adma.201807134 10.1021/ja201269b 10.1016/j.jallcom.2019.01.012 10.1016/j.carbon.2019.04.002 10.1021/acscatal.6b03192 10.1002/anie.201900428 10.1039/C6TA02334G 10.1039/C8EE01669K 10.1016/j.jallcom.2019.01.088 10.1002/smll.201403715 10.1021/jp0131931 10.1039/C5EE01155H 10.1016/j.jelechem.2006.11.008 10.1021/acscentsci.8b00426 10.1016/j.apcatb.2019.01.034 10.1002/anie.201900109 10.1002/cssc.201802500 10.1002/chem.201804492 10.1002/adma.201900510 10.1016/0254-0584(86)90045-3 10.1016/j.apcatb.2019.01.007 10.1039/C4EE01760A 10.1021/acsnano.7b03290 10.1021/acsami.6b10552 10.1002/adma.201703792 10.1038/ncomms6982 10.1021/cr100246c 10.1038/srep13801 10.1016/j.electacta.2019.134983 10.1007/s40820-019-0289-6 10.1039/C9DT00957D 10.1063/1.1742616 10.1021/acssuschemeng.7b02926 10.1002/cctc.201000397 10.1016/j.electacta.2018.12.091 10.1016/j.jallcom.2019.05.036 10.1021/acscatal.8b01567 10.1016/j.jallcom.2019.05.071 10.1021/acscatal.6b01848 10.1039/C8TA10856K 10.1016/j.apcatb.2019.118051 10.1002/adma.201604898 10.1039/C7QM00119C 10.1016/S0378-7753(01)00921-1 10.1039/C8NH00520F 10.1038/s41560-017-0048-1 10.1016/j.materresbull.2019.04.016 10.1016/j.apcatb.2019.04.089 10.1039/C6TA08335H 10.1039/C4CS00448E 10.1021/jp970930d 10.1021/j100053a042 10.1016/j.jallcom.2018.06.321 10.1021/acscatal.6b02479 10.1002/anie.201809787 10.1039/C5CS00434A 10.1016/j.apcatb.2018.09.064 10.1016/j.nanoen.2018.12.018 10.1039/C7CC02621H 10.1016/j.electacta.2019.03.179 10.1016/j.nanoen.2019.03.022 10.1016/j.apcatb.2018.09.061 10.1016/j.carbon.2018.09.088 10.1002/smll.201902427 10.1021/acsnano.5b05984 10.1002/advs.201900119 10.1038/s41570-016-0003 10.1021/acs.jpclett.6b02147 10.1002/adfm.201803291 10.1021/acscatal.9b01940 10.1039/C6CS00328A 10.1039/C8TA11250A 10.1126/science.aad4998 10.1016/j.jcis.2017.09.093 10.1016/j.jallcom.2018.06.008 10.1038/ncomms8992 10.1002/anie.201502173 10.1021/acsami.7b16407 10.1021/acsami.6b02352 10.1016/j.carbon.2019.01.065 10.1016/j.electacta.2019.07.022 10.1002/aenm.201803867 10.1149/1.3483106 10.1038/natrevmats.2017.59 10.1039/C8TA08223E 10.1016/j.carbon.2019.01.011 10.1002/aenm.201901130 10.1016/j.nanoen.2018.06.071 10.1016/j.nanoen.2017.11.045 10.1016/j.apcatb.2019.01.094 10.1002/aenm.201703538 10.1002/adma.201502696 10.1016/j.jallcom.2019.06.047 10.1016/j.jpowsour.2016.09.161 10.1039/C4CS00470A 10.1016/j.jallcom.2019.03.313 10.1002/ppsc.201800252 10.1039/C6TA08075H 10.1039/C3CS60468C 10.1002/aenm.201803185 10.1039/C7CC03826G 10.1016/j.jallcom.2019.04.150 10.1016/j.nanoen.2018.11.023 10.1038/s41467-018-07790-x 10.1039/C6TA06534A 10.1021/jp505394e 10.1002/adma.201806682 10.1016/j.carbon.2018.12.085 10.1016/j.carbon.2019.04.021 10.1021/jacs.7b12420 10.1039/C7SC04851C 10.1016/j.apcatb.2019.05.029 10.1016/j.jallcom.2019.05.103 10.1016/j.jcat.2018.11.023 10.1021/nn500880v 10.3390/en20400873 10.1016/j.mtener.2019.01.004 10.1021/acscatal.8b01794 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Apr 5, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Apr 5, 2020 |
DBID | RYH AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2019.153346 |
DatabaseName | CiNii Complete CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2019_153346 S092583881934592X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH 29J AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AIGII ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c432t-2a0487ec809ae0d26173e4d32bbf9cae98ba72c94ce99852cf975f0b0e0adb273 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Sun Jul 13 05:34:04 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Tue Jul 01 03:58:23 EDT 2025 Thu Jun 26 22:49:06 EDT 2025 Fri Feb 23 02:48:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrochemical water splitting Electrode Catalyst design Transition-metal-based compounds Bifunctional electrocatalysts Hydrogen production |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-2a0487ec809ae0d26173e4d32bbf9cae98ba72c94ce99852cf975f0b0e0adb273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5875-3596 0000-0002-5565-6977 0000-0002-7209-1031 |
PQID | 2354826360 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2354826360 crossref_primary_10_1016_j_jallcom_2019_153346 crossref_citationtrail_10_1016_j_jallcom_2019_153346 nii_cinii_1872272493134788224 elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_153346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-05 |
PublicationDateYYYYMMDD | 2020-04-05 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of Alloys and Compounds |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhu, Cao, Jiang, Yang, Hu, Song, Wan (bib97) 2016; 4 Li, Hao, Abudula, Guan (bib5) 2016; 4 Faber, Jin (bib11) 2014; 7 Xu, Yan, He, Zhan, Yang, Zhao, Qi, Xia (bib61) 2019; 145 Lv, Feng, Wang, Dou, Zhang, Zhou, Yang, Luo, Yang, Li (bib82) 2018; 4 Pan, Sun, Liu, Cao, Wu, Cheong, Chen, Wang, Li, Liu, Wang, Peng, Chen, Li (bib111) 2018; 140 Cao, Gong, Liu, Xiao, Lv, Zhou, Gai (bib9) 2019; 797 Li, Xu, Li, Liang, Zhang, Fu, Lv (bib50) 2019; 145 Sheng, Gasteiger, Shao-Horn (bib28) 2010; 157 Zhang, Webster, Cheong, Tilley, Lu, Amal (bib81) 2019; 36 Man, Su, Calle-Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (bib23) 2011; 3 Luo, Guo (bib83) 2017; 2 Zhang, Zhang, Wei, Xia, Pi, Song, Zheng, Gao, Fu, Chu (bib59) 2019; 797 Yan, Xia, Zhao, Wang (bib18) 2016; 4 Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib33) 2017; 355 Li, Li, Yu, Li, Yang, Zhang, Ramakrishna, Xie, Peng (bib14) 2019; 148 Wu, Ji, Hu, Liang, Xu, Yu, Li, Yu (bib105) 2018; 51 Wang, Xu, Xu, Zhou, Shao (bib4) 2019; 58 Yu, Li, Chen, Xu, Zhen, Wu, Dravid (bib39) 2016; 8 Li, Duan, Han, Fan, Li, Zhang, Zhang, Peng, Wang (bib1) 2019; 148 Shan, Ling, Davey, Zheng, Qiao (bib79) 2019 Huang, Song, Deng, Zha, Huang, Wu, Li (bib62) 2019; 245 Hu, Li, Li, Liu, Zhu, Chai, Zhang, Liu, He (bib102) 2019; 9 Wei, Liu, Gao, Sun, Liu, Zhang, Guo (bib45) 2019; 796 Sun, Wang, Wu, Wang, Rooney, Sun (bib56) 2017; 53 Voiry, Salehi, Silva, Fujita, Chen, Asefa, Shenoy, Eda, Chhowalla (bib92) 2013; 13 Xu, Jiang, Zhang, Hu, Li (bib51) 2019; 242 Menezes, Indra, Zaharieva, Walter, Loos, Hoffmann, Schlögl, Dau, Driess (bib49) 2019; 12 Casalongue, Benck, Tsai, Karlsson, Kaya, Ng, Pettersson, Abild-Pedersen, Nørskov, Ogasawara (bib122) 2014; 118 Hu, Li, Han, Wang, Huang, Chai, Zhang, Liu, He (bib76) 2019; 9 Kumatani, Miura, Kuramochi, Ohto, Wakisaka, Nagata, Ida, Takahashi, Hu, Jeong (bib120) 2019; 6 Li, Sirisomboonchai, Yoshida, An, Hao, Abudula, Guan (bib94) 2018; 6 Chunduri, Gupta, Bapat, Bhide, Fernandes, Patel, Bambole, Miotello, Patel (bib77) 2019; 259 Fang, Xue, Hui, Yu, Liu, Xing, Lu, He, Liu, Li (bib74) 2019; 59 Patil, Satilmis, Khalily, Uyar (bib107) 2019; 12 Doyle, Lyons (bib32) 2016 Song, Cao, Yang, Yang, Wang, Ma, Shao (bib98) 2019; 142 Sun, Liu, Chen, Li, Yu, Pan (bib114) 2019; 307 Xing, Li, Guo, Jin, Li, Wang, Jiao (bib117) 2019; 298 Wu, Xie, Ma, Tian, Gu, Yan, Zhang, Yang, Fu (bib75) 2018; 44 Gao, Cao, Gao, Xu, Zheng, Jiang, Yu (bib99) 2014; 8 Guo, Park, Yi, Henzie, Kim, Wang, Jiang, Bando, Sugahara, Tang, Yamauchi (bib24) 2019; 31 Li, Fang, Wang, Wei, Qi, Hoh, Hao, Sun, Wang, Yin (bib119) 2019; 15 Zhang, Huang, Chen, Chen, Song, Li, Ostrikov (bib73) 2019; 254 Park, Choi, Oh, Jin, Joo, Baik, Lee (bib116) 2019; 4 Markovic, Grgur, Ross (bib27) 1997; 101 Pozio, De Francesco, Cemmi, Cardellini, Giorgi (bib42) 2002; 105 Odedairo, Yan, Yao, Ostrikov, Zhu (bib72) 2017; 29 Liang, Brüller, Dong, Zhang, Feng, Müllen (bib103) 2015; 6 Gao, Liu, Biskupek, Kaiser, Song, Streb (bib60) 2019; 58 Zheng, Peng, Li, Yang, Yang, Li, Wang, Wei (bib89) 2018; 9 Jia, Ramaswamy, Hafiz, Tylus, Strickland, Wu, Barbiellini, Bansil, Holby, Zelenay (bib118) 2015; 9 Morales-Guio, Stern, Hu (bib19) 2014; 43 Wang, Hung, Hsu, Zhang, Miao, Chan, Xiong, Liu (bib123) 2016; 7 Zhao, Yang, Liu, Wang, Zhang, Wang, Tang, Liu, Mei, Chen (bib84) 2018; 8 Kou, Smart, Yao, Chen, Thota, Ping, Li (bib90) 2018; 8 Cao, Zhou, Zhang, Wang, Liu (bib91) 2018; 10 Rossmeisl, Qu, Zhu, Kroes, Nørskov (bib31) 2007; 607 Hu, Wu, Hinokuma, Ohto, Wakisaka, Fujita, Ito (bib80) 2019; 7 Read, Callejas, Holder, Schaak (bib65) 2016; 8 Tang, Zhu, Dong, Zhang, Li, Liu, Lan (bib8) 2019; 245 Wu, Tao, Qing, Xu, Yang, Luo, Tian, Liu, Lu (bib69) 2019; 31 Guo, Qian, Zhang, Qian, Xu, Qian, Yang, Yuan, Fan (bib67) 2018; 765 Bockris (bib34) 1956; 24 Nellist, Laskowski, Qiu, Hajibabaei, Sivula, Hamann, Boettcher (bib124) 2018; 3 Liang, Yang, Dang, Qi, Yuan, Gao, Zhang, Zheng, Cao (bib70) 2019; 25 Jiao, Zheng, Jaroniec, Qiao (bib38) 2015; 44 Spanos, Tesch, Yu, Tüysüz, Zhang, Feng, Müllen, Schlögl, Mechler (bib12) 2019; 9 Zhu, Shao, Qian, Huang (bib54) 2019; 56 Anjum, Lee, Lee (bib106) 2018; 8 Dutta, Indra, Feng, Han, Song (bib95) 2019; 241 Hu, Li, Liu, Zhu, Chai, Zhang, Liu, He (bib16) 2019; 58 Roger, Shipman, Symes (bib37) 2017; 1 Lin, Yan, Li, Si, Wang, Qi, Cao, Zhong, Fei, Feng (bib63) 2019; 11 Sun, Zhang, Xu, Lian, Li, Chen, Su (bib13) 2019; 12 Menezes, Indra, Zaharieva, Walter, Loos, Hoffmann, Schlögl, Dau, Driess (bib108) 2019; 12 Deng, Ting, Neo, Zhang, Peterson, Yeo (bib121) 2016; 6 Peng, Shen, Zheng, Xiang, Deng, Mao, Feng, Zhang, Li, Wei (bib46) 2019; 369 Shinagawa, Garcia-Esparza, Takanabe (bib30) 2015; 5 Gasteiger, Markovic, Ross, Cairns (bib41) 1994; 98 Xiong, Li, Young, Tan, Yin, Mi, Hu (bib93) 2019; 791 Kaneti, Tang, Salunkhe, Jiang, Yu, Wu, Yamauchi (bib66) 2017; 29 Stern, Feng, Song, Hu (bib64) 2015; 8 Zhu, Liu, Yan, Shi (bib57) 2018; 512 Guo, Zhang, Sun, Tang, Liu, Zhang (bib86) 2017; 5 Li, Wang, Li, Liu, Li, Wu, Guo, Ye, Wang, Cheng (bib68) 2019; 319 Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (bib25) 2016; 6 Zhao, Rui, Dou, Sun (bib26) 2018; 28 Green, Kucernak (bib43) 2002; 106 Duan, O’Donnell, Sun, Wang, Wang (bib100) 2015; 11 Qu, Zheng, Zhang, Davey, Dai, Qiao (bib101) 2017; 11 Wu, Xu, Hu, Liang, Lin, Chen, Yu (bib104) 2015; 54 Peng, Yu, Jiang, Wu, Xia, Dong (bib115) 2019; 144 Si, Deng, Chen, Wang, Liu, Wu, Zhang, Zhou, Zhang (bib96) 2019; 794 Yang, Zhang, Lin, Li, Chan, Yang, Gao (bib88) 2017; 7 Raja, Lin, Lu (bib113) 2019; 57 Elakkiya, Ramkumar, Maduraiveeran (bib58) 2019; 116 Wang, Sun, Yu, Liu, Wang, Jiang, Xie (bib3) 2019; 7 Zequine, Bhoyate, Wang, Li, Siam, Kahol, Gupta (bib44) 2019; 784 Wang, Cui, Liu, Xing, Asiri, Sun (bib87) 2016; 28 Matsumoto, Sato (bib35) 1986; 14 Gao, Liang, Zheng, Xu, Jiang, Gao, Li, Yu (bib85) 2015; 6 Jamesh (bib17) 2016; 333 Moni, Hyun, Vignesh, Shanmugam (bib55) 2017; 53 Hui, Xue, Huang, Yu, Zhang, Zhang, Jia, Zhao, Li, Liu, Li (bib110) 2018; 9 Shi, Zhang (bib10) 2016; 45 Joo, Kim, Lee, Choi, Lee (bib2) 2019; 31 Ham, Lee (bib71) 2009; 2 Suen, Hung, Quan, Zhang, Xu, Chen (bib22) 2017; 46 Jiao, Hassan, Bo, Zhou (bib52) 2018; 764 Gong, Zhi, Yu, Zhou, Li, Jiao, Wang (bib6) 2019; 48 Wang, Li, Wang, Tan, Wu, Liu, Gai, Yang (bib48) 2019; 326 Li, Zhu, Wang, Wang, Pinna, Lu (bib53) 2019; 9 Zong, Qian, Tang, Liu, Tian, Wang (bib7) 2019; 784 Zou, Zhang (bib20) 2015; 44 Liu, Zhong, Meng, Zhang, Yan, Jiang (bib36) 2017; 1 Xu, Wang, Liu, Zhang, Liu, Yan, Zeng, Pei, Liu, Luo (bib40) 2016; 4 Li, Wang, Xie, Liang, Hong, Dai (bib29) 2011; 133 Menezes, Panda, Garai, Walter, Guiet, Driess (bib109) 2018; 57 Cook, Dogutan, Reece, Surendranath, Teets, Nocera (bib21) 2010; 110 Zhang, Mou, Lu, Song, Wang (bib112) 2019; 254 Li, Huang, Sun, Luo, Yang, Qin, Wang, Li, Lv, Zhang, Guo (bib78) 2019; 15 Sung, Lee, Kim (bib15) 2019; 800 Liu, Jiang, Li, Zhou, Li, Li, Shao (bib47) 2019; 247 Joo (10.1016/j.jallcom.2019.153346_bib2) 2019; 31 Liu (10.1016/j.jallcom.2019.153346_bib47) 2019; 247 Wang (10.1016/j.jallcom.2019.153346_bib3) 2019; 7 Cao (10.1016/j.jallcom.2019.153346_bib9) 2019; 797 Sun (10.1016/j.jallcom.2019.153346_bib56) 2017; 53 Xiong (10.1016/j.jallcom.2019.153346_bib93) 2019; 791 Voiry (10.1016/j.jallcom.2019.153346_bib92) 2013; 13 Suen (10.1016/j.jallcom.2019.153346_bib22) 2017; 46 Menezes (10.1016/j.jallcom.2019.153346_bib109) 2018; 57 Markovic (10.1016/j.jallcom.2019.153346_bib27) 1997; 101 Huang (10.1016/j.jallcom.2019.153346_bib62) 2019; 245 Wang (10.1016/j.jallcom.2019.153346_bib123) 2016; 7 Si (10.1016/j.jallcom.2019.153346_bib96) 2019; 794 Gong (10.1016/j.jallcom.2019.153346_bib6) 2019; 48 Kumatani (10.1016/j.jallcom.2019.153346_bib120) 2019; 6 Hui (10.1016/j.jallcom.2019.153346_bib110) 2018; 9 Xu (10.1016/j.jallcom.2019.153346_bib40) 2016; 4 Wang (10.1016/j.jallcom.2019.153346_bib48) 2019; 326 Pan (10.1016/j.jallcom.2019.153346_bib111) 2018; 140 Patil (10.1016/j.jallcom.2019.153346_bib107) 2019; 12 Sun (10.1016/j.jallcom.2019.153346_bib114) 2019; 307 Zhu (10.1016/j.jallcom.2019.153346_bib54) 2019; 56 Zhang (10.1016/j.jallcom.2019.153346_bib81) 2019; 36 Sun (10.1016/j.jallcom.2019.153346_bib13) 2019; 12 Wei (10.1016/j.jallcom.2019.153346_bib45) 2019; 796 Seh (10.1016/j.jallcom.2019.153346_bib33) 2017; 355 Hu (10.1016/j.jallcom.2019.153346_bib102) 2019; 9 Wu (10.1016/j.jallcom.2019.153346_bib105) 2018; 51 Yu (10.1016/j.jallcom.2019.153346_bib39) 2016; 8 Dutta (10.1016/j.jallcom.2019.153346_bib95) 2019; 241 Green (10.1016/j.jallcom.2019.153346_bib43) 2002; 106 Zong (10.1016/j.jallcom.2019.153346_bib7) 2019; 784 Matsumoto (10.1016/j.jallcom.2019.153346_bib35) 1986; 14 Man (10.1016/j.jallcom.2019.153346_bib23) 2011; 3 Zhang (10.1016/j.jallcom.2019.153346_bib112) 2019; 254 Deng (10.1016/j.jallcom.2019.153346_bib121) 2016; 6 Wang (10.1016/j.jallcom.2019.153346_bib87) 2016; 28 Shi (10.1016/j.jallcom.2019.153346_bib10) 2016; 45 Fang (10.1016/j.jallcom.2019.153346_bib74) 2019; 59 Sheng (10.1016/j.jallcom.2019.153346_bib28) 2010; 157 Jiao (10.1016/j.jallcom.2019.153346_bib38) 2015; 44 Li (10.1016/j.jallcom.2019.153346_bib29) 2011; 133 Liang (10.1016/j.jallcom.2019.153346_bib70) 2019; 25 Morales-Guio (10.1016/j.jallcom.2019.153346_bib19) 2014; 43 Cook (10.1016/j.jallcom.2019.153346_bib21) 2010; 110 Jiao (10.1016/j.jallcom.2019.153346_bib52) 2018; 764 Wu (10.1016/j.jallcom.2019.153346_bib75) 2018; 44 Gasteiger (10.1016/j.jallcom.2019.153346_bib41) 1994; 98 Li (10.1016/j.jallcom.2019.153346_bib53) 2019; 9 Zhao (10.1016/j.jallcom.2019.153346_bib26) 2018; 28 Chunduri (10.1016/j.jallcom.2019.153346_bib77) 2019; 259 Wu (10.1016/j.jallcom.2019.153346_bib104) 2015; 54 Xu (10.1016/j.jallcom.2019.153346_bib51) 2019; 242 Rossmeisl (10.1016/j.jallcom.2019.153346_bib31) 2007; 607 Odedairo (10.1016/j.jallcom.2019.153346_bib72) 2017; 29 Zheng (10.1016/j.jallcom.2019.153346_bib89) 2018; 9 Zhao (10.1016/j.jallcom.2019.153346_bib84) 2018; 8 Anantharaj (10.1016/j.jallcom.2019.153346_bib25) 2016; 6 Yan (10.1016/j.jallcom.2019.153346_bib18) 2016; 4 Zhang (10.1016/j.jallcom.2019.153346_bib59) 2019; 797 Hu (10.1016/j.jallcom.2019.153346_bib16) 2019; 58 Qu (10.1016/j.jallcom.2019.153346_bib101) 2017; 11 Doyle (10.1016/j.jallcom.2019.153346_bib32) 2016 Moni (10.1016/j.jallcom.2019.153346_bib55) 2017; 53 Li (10.1016/j.jallcom.2019.153346_bib68) 2019; 319 Gao (10.1016/j.jallcom.2019.153346_bib85) 2015; 6 Li (10.1016/j.jallcom.2019.153346_bib1) 2019; 148 Hu (10.1016/j.jallcom.2019.153346_bib76) 2019; 9 Yang (10.1016/j.jallcom.2019.153346_bib88) 2017; 7 Zhu (10.1016/j.jallcom.2019.153346_bib97) 2016; 4 Li (10.1016/j.jallcom.2019.153346_bib119) 2019; 15 Spanos (10.1016/j.jallcom.2019.153346_bib12) 2019; 9 Jamesh (10.1016/j.jallcom.2019.153346_bib17) 2016; 333 Nellist (10.1016/j.jallcom.2019.153346_bib124) 2018; 3 Wu (10.1016/j.jallcom.2019.153346_bib69) 2019; 31 Xu (10.1016/j.jallcom.2019.153346_bib61) 2019; 145 Hu (10.1016/j.jallcom.2019.153346_bib80) 2019; 7 Elakkiya (10.1016/j.jallcom.2019.153346_bib58) 2019; 116 Sung (10.1016/j.jallcom.2019.153346_bib15) 2019; 800 Shinagawa (10.1016/j.jallcom.2019.153346_bib30) 2015; 5 Kaneti (10.1016/j.jallcom.2019.153346_bib66) 2017; 29 Gao (10.1016/j.jallcom.2019.153346_bib60) 2019; 58 Menezes (10.1016/j.jallcom.2019.153346_bib49) 2019; 12 Guo (10.1016/j.jallcom.2019.153346_bib86) 2017; 5 Li (10.1016/j.jallcom.2019.153346_bib50) 2019; 145 Lin (10.1016/j.jallcom.2019.153346_bib63) 2019; 11 Gao (10.1016/j.jallcom.2019.153346_bib99) 2014; 8 Liu (10.1016/j.jallcom.2019.153346_bib36) 2017; 1 Zhu (10.1016/j.jallcom.2019.153346_bib57) 2018; 512 Liang (10.1016/j.jallcom.2019.153346_bib103) 2015; 6 Luo (10.1016/j.jallcom.2019.153346_bib83) 2017; 2 Shan (10.1016/j.jallcom.2019.153346_bib79) 2019 Roger (10.1016/j.jallcom.2019.153346_bib37) 2017; 1 Lv (10.1016/j.jallcom.2019.153346_bib82) 2018; 4 Cao (10.1016/j.jallcom.2019.153346_bib91) 2018; 10 Zou (10.1016/j.jallcom.2019.153346_bib20) 2015; 44 Faber (10.1016/j.jallcom.2019.153346_bib11) 2014; 7 Casalongue (10.1016/j.jallcom.2019.153346_bib122) 2014; 118 Guo (10.1016/j.jallcom.2019.153346_bib67) 2018; 765 Peng (10.1016/j.jallcom.2019.153346_bib115) 2019; 144 Xing (10.1016/j.jallcom.2019.153346_bib117) 2019; 298 Wang (10.1016/j.jallcom.2019.153346_bib4) 2019; 58 Tang (10.1016/j.jallcom.2019.153346_bib8) 2019; 245 Li (10.1016/j.jallcom.2019.153346_bib5) 2016; 4 Zequine (10.1016/j.jallcom.2019.153346_bib44) 2019; 784 Bockris (10.1016/j.jallcom.2019.153346_bib34) 1956; 24 Ham (10.1016/j.jallcom.2019.153346_bib71) 2009; 2 Raja (10.1016/j.jallcom.2019.153346_bib113) 2019; 57 Zhang (10.1016/j.jallcom.2019.153346_bib73) 2019; 254 Menezes (10.1016/j.jallcom.2019.153346_bib108) 2019; 12 Li (10.1016/j.jallcom.2019.153346_bib78) 2019; 15 Peng (10.1016/j.jallcom.2019.153346_bib46) 2019; 369 Stern (10.1016/j.jallcom.2019.153346_bib64) 2015; 8 Li (10.1016/j.jallcom.2019.153346_bib94) 2018; 6 Kou (10.1016/j.jallcom.2019.153346_bib90) 2018; 8 Guo (10.1016/j.jallcom.2019.153346_bib24) 2019; 31 Read (10.1016/j.jallcom.2019.153346_bib65) 2016; 8 Song (10.1016/j.jallcom.2019.153346_bib98) 2019; 142 Duan (10.1016/j.jallcom.2019.153346_bib100) 2015; 11 Anjum (10.1016/j.jallcom.2019.153346_bib106) 2018; 8 Jia (10.1016/j.jallcom.2019.153346_bib118) 2015; 9 Li (10.1016/j.jallcom.2019.153346_bib14) 2019; 148 Park (10.1016/j.jallcom.2019.153346_bib116) 2019; 4 Pozio (10.1016/j.jallcom.2019.153346_bib42) 2002; 105 |
References_xml | – volume: 11 start-page: 7293 year: 2017 end-page: 7300 ident: bib101 article-title: Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms publication-title: ACS Nano – volume: 12 start-page: 988 year: 2019 end-page: 999 ident: bib108 article-title: Helical cobalt borophosphates to master durable overall water-splitting publication-title: Energy Environ. Sci. – volume: 54 start-page: 8179 year: 2015 end-page: 8183 ident: bib104 article-title: Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 2357 year: 2017 end-page: 2366 ident: bib88 article-title: MoS publication-title: ACS Catal. – volume: 254 start-page: 471 year: 2019 end-page: 478 ident: bib112 article-title: A novel strategy for 2D/2D NiS/Graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting publication-title: Appl. Catal. B Environ. – volume: 355 year: 2017 ident: bib33 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 7 start-page: 2156 year: 2019 end-page: 2164 ident: bib80 article-title: Boosting electrochemical water splitting via ternary NiMoCo hybrid nanowire arrays publication-title: J. Mater. Chem. A – volume: 25 start-page: 621 year: 2019 end-page: 626 ident: bib70 article-title: Hollow bimetallic zinc cobalt phosphosulfides for efficient overall water splitting publication-title: Chemistry – volume: 148 start-page: 496 year: 2019 end-page: 503 ident: bib14 article-title: Ni publication-title: Carbon – volume: 51 start-page: 286 year: 2018 end-page: 293 ident: bib105 article-title: Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting publication-title: Nano Energy – volume: 148 start-page: 540 year: 2019 end-page: 549 ident: bib1 article-title: Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting publication-title: Carbon – volume: 797 start-page: 341 year: 2019 end-page: 347 ident: bib9 article-title: Hierarchical Co-N microballs with heterostructure exhibiting superior electrochemical properties for water splitting and reduction of I publication-title: J. Alloy. Comp. – volume: 319 start-page: 561 year: 2019 end-page: 568 ident: bib68 article-title: Self-supported ternary (Ni publication-title: Electrochim. Acta – volume: 28 start-page: 215 year: 2016 end-page: 230 ident: bib87 article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting publication-title: Adv. Mater. – volume: 1 year: 2017 ident: bib37 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. – volume: 142 start-page: 40 year: 2019 end-page: 50 ident: bib98 article-title: In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction publication-title: Carbon – volume: 53 start-page: 8711 year: 2017 end-page: 8714 ident: bib56 article-title: 3D free-standing hierarchical CuCo publication-title: Chem. Commun. – volume: 5 start-page: 13801 year: 2015 ident: bib30 article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion publication-title: Sci. Rep. – volume: 259 start-page: 118051 year: 2019 ident: bib77 article-title: A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting publication-title: Appl. Catal. B Environ. – volume: 797 start-page: 1216 year: 2019 end-page: 1223 ident: bib59 article-title: General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Alloy. Comp. – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: bib10 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. – volume: 24 start-page: 817 year: 1956 end-page: 827 ident: bib34 article-title: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen publication-title: J. Chem. Phys. – volume: 4 start-page: 18470 year: 2016 end-page: 18477 ident: bib97 article-title: Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction publication-title: J. Mater. Chem. A – volume: 15 start-page: 1902427 year: 2019 ident: bib119 article-title: High-yield electrochemical production of large-sized and thinly layered NiPS publication-title: Small – volume: 58 start-page: 4318 year: 2019 end-page: 4322 ident: bib16 article-title: Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 2610 year: 2018 end-page: 2618 ident: bib111 article-title: Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting publication-title: J. Am. Chem. Soc. – volume: 247 start-page: 107 year: 2019 end-page: 114 ident: bib47 article-title: Interface engineering of (Ni, Fe)S publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 4847 year: 2016 end-page: 4853 ident: bib123 article-title: In situ spectroscopic identification of μ-OO bridging on spinel Co publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 5621 year: 2018 end-page: 5629 ident: bib84 article-title: Tuning electronic push/pull of ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting publication-title: ACS Catal. – volume: 9 start-page: 12496 year: 2015 end-page: 12505 ident: bib118 article-title: Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity publication-title: ACS Nano – volume: 9 start-page: 1803867 year: 2019 ident: bib102 article-title: Trifunctional electrocatalysis on dual-doped graphene nanorings–integrated boxes for efficient water splitting and Zn–air batteries publication-title: Adv. Energy Mater. – volume: 8 start-page: 27850 year: 2016 end-page: 27858 ident: bib39 article-title: Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1901130 year: 2019 ident: bib76 article-title: General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis publication-title: Adv. Energy Mater. – volume: 31 year: 2019 ident: bib24 article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting publication-title: Adv. Mater. – volume: 784 start-page: 1 year: 2019 end-page: 7 ident: bib44 article-title: Effect of solvent for tailoring the nanomorphology of multinary CuCo publication-title: J. Alloy. Comp. – volume: 53 start-page: 7836 year: 2017 end-page: 7839 ident: bib55 article-title: Chrysanthemum flower-like NiCo publication-title: Chem. Commun. – volume: 4 start-page: 17587 year: 2016 end-page: 17603 ident: bib18 article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting publication-title: J. Mater. Chem. A – volume: 9 start-page: 8165 year: 2019 end-page: 8170 ident: bib12 article-title: Facile protocol for alkaline electrolyte purification and its influence on a Ni–Co oxide catalyst for the oxygen evolution reaction publication-title: ACS Catal. – volume: 6 start-page: 19221 year: 2018 end-page: 19230 ident: bib94 article-title: Bifunctional CoNi/CoFe publication-title: J. Mater. Chem. A – volume: 9 start-page: 5309 year: 2018 ident: bib110 article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays publication-title: Nat. Commun. – volume: 2 start-page: 17059 year: 2017 ident: bib83 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat. Rev. Mater. – volume: 7 start-page: 2518 year: 2019 end-page: 2523 ident: bib3 article-title: Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting publication-title: J. Mater. Chem. A – volume: 1 start-page: 2155 year: 2017 end-page: 2173 ident: bib36 article-title: Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting publication-title: Mater. Chem. Front. – volume: 9 start-page: 1803185 year: 2019 ident: bib53 article-title: Ni strongly coupled with Mo publication-title: Adv. Energy Mater. – volume: 116 start-page: 98 year: 2019 end-page: 105 ident: bib58 article-title: Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting publication-title: Mater. Res. Bull. – volume: 11 start-page: 3036 year: 2015 end-page: 3044 ident: bib100 article-title: Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions publication-title: Small – volume: 144 start-page: 464 year: 2019 end-page: 471 ident: bib115 article-title: N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting publication-title: Carbon – volume: 36 start-page: 1800252 year: 2019 ident: bib81 article-title: Ultrathin Fe-N-C nanosheets coordinated Fe-doped CoNi alloy nanoparticles for electrochemical water splitting publication-title: Part. Part. Syst. Charact. – volume: 56 start-page: 330 year: 2019 end-page: 337 ident: bib54 article-title: Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes publication-title: Nano Energy – volume: 8 start-page: 3970 year: 2014 end-page: 3978 ident: bib99 article-title: Nitrogen-doped graphene supported CoSe publication-title: ACS Nano – volume: 58 start-page: 2 year: 2019 end-page: 19 ident: bib4 article-title: Perovskite oxide-based electrodes for high-performance photoelectrochemical water splitting: a review publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 215 year: 2019 end-page: 238 ident: bib13 article-title: Defect chemistry in 2D materials for electrocatalysis publication-title: Mater. Today Energy – volume: 98 start-page: 617 year: 1994 end-page: 625 ident: bib41 article-title: Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys publication-title: J. Phys. Chem. – volume: 12 start-page: 1469 year: 2019 end-page: 1477 ident: bib107 article-title: Atomic layer deposition of NiOOH/Ni(OH) publication-title: ChemSusChem – volume: 298 start-page: 305 year: 2019 end-page: 312 ident: bib117 article-title: Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting publication-title: Electrochim. Acta – volume: 326 start-page: 134983 year: 2019 ident: bib48 article-title: NiS publication-title: Electrochim. Acta – volume: 110 start-page: 6474 year: 2010 end-page: 6502 ident: bib21 article-title: Solar energy supply and storage for the legacy and nonlegacy worlds publication-title: Chem. Rev. – volume: 9 start-page: 1822 year: 2018 end-page: 1830 ident: bib89 article-title: Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction publication-title: Chem. Sci. – volume: 29 start-page: 1604898 year: 2017 ident: bib66 article-title: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks publication-title: Adv. Mater. – volume: 764 start-page: 88 year: 2018 end-page: 95 ident: bib52 article-title: Co publication-title: J. Alloy. Comp. – volume: 765 start-page: 835 year: 2018 end-page: 840 ident: bib67 article-title: Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting publication-title: J. Alloy. Comp. – volume: 4 start-page: 727 year: 2019 end-page: 734 ident: bib116 article-title: Hemi-core@ frame AuCu@ IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media publication-title: Nanoscale Horiz – volume: 118 start-page: 29252 year: 2014 end-page: 29259 ident: bib122 article-title: Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction publication-title: J.Phys. Chem. C – volume: 800 start-page: 450 year: 2019 end-page: 455 ident: bib15 article-title: CeO publication-title: J. Alloy. Comp. – volume: 8 start-page: 2347 year: 2015 end-page: 2351 ident: bib64 article-title: Ni publication-title: Energy Environ. Sci. – start-page: 41 year: 2016 end-page: 104 ident: bib32 article-title: The oxygen evolution reaction: mechanistic concepts and catalyst design publication-title: Photoelectrochemical Solar Fuel Production – volume: 241 start-page: 521 year: 2019 end-page: 527 ident: bib95 article-title: Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 6222 year: 2013 end-page: 6227 ident: bib92 article-title: Conducting MoS publication-title: Nano Lett. – volume: 3 start-page: 46 year: 2018 ident: bib124 article-title: Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces publication-title: Nat. Energy – volume: 794 start-page: 261 year: 2019 end-page: 267 ident: bib96 article-title: Hierarchical Graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting publication-title: J. Alloy. Comp. – volume: 15 year: 2019 ident: bib78 article-title: Multimetal borides nanochains as efficient electrocatalysts for overall water splitting publication-title: Small – volume: 307 start-page: 206 year: 2019 end-page: 213 ident: bib114 article-title: Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium publication-title: Electrochim. Acta – volume: 133 start-page: 7296 year: 2011 end-page: 7299 ident: bib29 article-title: MoS publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 521 year: 2019 end-page: 528 ident: bib50 article-title: N-doped carbon coated NiCo publication-title: Carbon – volume: 2 start-page: 873 year: 2009 end-page: 899 ident: bib71 article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells publication-title: Energies – volume: 6 start-page: 7790 year: 2016 end-page: 7798 ident: bib121 article-title: Operando Raman spectroscopy of amorphous molybdenum sulfide (MoS publication-title: ACS Catal. – volume: 29 start-page: 1703792 year: 2017 ident: bib72 article-title: Hexagonal sphericon hematite with high performance for water oxidation publication-title: Adv. Mater. – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: bib38 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 8 start-page: 1703538 year: 2018 ident: bib90 article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni publication-title: Adv. Energy Mater. – volume: 48 start-page: 6718 year: 2019 end-page: 6729 ident: bib6 article-title: Controlled synthesis of bifunctional particle-like Mo/Mn-Ni publication-title: Dalton Trans. – volume: 28 start-page: 1803291 year: 2018 ident: bib26 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. – volume: 57 start-page: 15237 year: 2018 end-page: 15242 ident: bib109 article-title: Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting publication-title: Angew. Chem. – volume: 12 start-page: 988 year: 2019 end-page: 999 ident: bib49 article-title: Helical cobalt borophosphates to master durable overall water-splitting publication-title: Energy Environ. Sci. – volume: 105 start-page: 13 year: 2002 end-page: 19 ident: bib42 article-title: Comparison of high surface Pt/C catalysts by cyclic voltammetry publication-title: J. Power Sources – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: bib20 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 58 start-page: 4644 year: 2019 end-page: 4648 ident: bib60 article-title: Modular design of noble-metal-free mixed metal oxide electrocatalysts for complete water splitting publication-title: Angew. Chem. Int. Ed. – volume: 106 start-page: 1036 year: 2002 end-page: 1047 ident: bib43 article-title: Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts publication-title: J. Phys. Chem. B – volume: 10 start-page: 1752 year: 2018 end-page: 1760 ident: bib91 article-title: Dominating role of aligned MoS publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 5982 year: 2015 ident: bib85 article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation publication-title: Nat. Commun. – volume: 242 start-page: 60 year: 2019 end-page: 66 ident: bib51 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH) publication-title: Appl. Catal. B Environ. – volume: 8 start-page: 8296 year: 2018 end-page: 8305 ident: bib106 article-title: Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: ACS Catal. – volume: 31 year: 2019 ident: bib69 article-title: Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting publication-title: Adv. Mater. – start-page: 1900510 year: 2019 ident: bib79 article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments publication-title: Adv. Mater. – volume: 44 start-page: 353 year: 2018 end-page: 363 ident: bib75 article-title: Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting publication-title: Nano Energy – volume: 6 start-page: 1900119 year: 2019 ident: bib120 article-title: Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction publication-title: Adv. Sci. – volume: 245 start-page: 656 year: 2019 end-page: 661 ident: bib62 article-title: Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 1244 year: 2018 end-page: 1252 ident: bib82 article-title: Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts publication-title: ACS Cent. Sci. – volume: 4 start-page: 11973 year: 2016 end-page: 12000 ident: bib5 article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects publication-title: J. Mater. Chem. A – volume: 796 start-page: 86 year: 2019 end-page: 92 ident: bib45 article-title: MoS publication-title: J. Alloy. Comp. – volume: 6 start-page: 7992 year: 2015 ident: bib103 article-title: Molecular metal–N publication-title: Nat. Commun. – volume: 7 start-page: 3519 year: 2014 end-page: 3542 ident: bib11 article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications publication-title: Energy Environ. Sci. – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: bib22 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 101 start-page: 5405 year: 1997 end-page: 5413 ident: bib27 article-title: Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions publication-title: J. Phys. Chem. B – volume: 791 start-page: 328 year: 2019 end-page: 335 ident: bib93 article-title: In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co publication-title: J. Alloy. Comp. – volume: 512 start-page: 419 year: 2018 end-page: 427 ident: bib57 article-title: Construction of hierarchical FeCo publication-title: J. Colloid Interface Sci. – volume: 369 start-page: 345 year: 2019 end-page: 351 ident: bib46 article-title: Rationally design of monometallic NiO-Ni publication-title: J. Catal. – volume: 5 start-page: 11577 year: 2017 end-page: 11583 ident: bib86 article-title: Loading Pt nanoparticles on metal–organic frameworks for improved oxygen evolution publication-title: ACS Sustain. Chem. Eng. – volume: 31 year: 2019 ident: bib2 article-title: Morphology-controlled metal sulfides and phosphides for electrochemical water splitting publication-title: Adv. Mater. – volume: 8 start-page: 12798 year: 2016 end-page: 12803 ident: bib65 article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 397 year: 1986 end-page: 426 ident: bib35 article-title: Electrocatalytic properties of transition metal oxides for oxygen evolution reaction publication-title: Mater. Chem. Phys. – volume: 145 start-page: 201 year: 2019 end-page: 208 ident: bib61 article-title: Supercritical CO publication-title: Carbon – volume: 57 start-page: 1 year: 2019 end-page: 13 ident: bib113 article-title: Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities publication-title: Nano Energy – volume: 11 start-page: 55 year: 2019 ident: bib63 article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting publication-title: Nano-Micro Lett. – volume: 43 start-page: 6555 year: 2014 end-page: 6569 ident: bib19 article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution publication-title: Chem. Soc. Rev. – volume: 254 start-page: 414 year: 2019 end-page: 423 ident: bib73 article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting publication-title: Appl. Catal. B Environ. – volume: 59 start-page: 591 year: 2019 end-page: 597 ident: bib74 article-title: In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting publication-title: Nano Energy – volume: 6 start-page: 8069 year: 2016 end-page: 8097 ident: bib25 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review publication-title: ACS Catal. – volume: 333 start-page: 213 year: 2016 end-page: 236 ident: bib17 article-title: Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media publication-title: J. Power Sources – volume: 3 start-page: 1159 year: 2011 end-page: 1165 ident: bib23 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: bib31 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. – volume: 157 start-page: B1529 year: 2010 end-page: B1536 ident: bib28 article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes publication-title: J. Electrochem. Soc. – volume: 784 start-page: 447 year: 2019 end-page: 455 ident: bib7 article-title: Hydrogen evolution and oxygen reduction reactions catalyzed by core-shelled Fe@Ru nanoparticles embedded in porous dodecahedron carbon publication-title: J. Alloy. Comp. – volume: 4 start-page: 16524 year: 2016 end-page: 16530 ident: bib40 article-title: Monolayer MoS publication-title: J. Mater. Chem. A – volume: 245 start-page: 528 year: 2019 end-page: 535 ident: bib8 article-title: Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting publication-title: Appl. Catal. B Environ. – start-page: 41 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib32 article-title: The oxygen evolution reaction: mechanistic concepts and catalyst design – volume: 13 start-page: 6222 year: 2013 ident: 10.1016/j.jallcom.2019.153346_bib92 article-title: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction publication-title: Nano Lett. doi: 10.1021/nl403661s – volume: 31 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib24 article-title: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201807134 – volume: 133 start-page: 7296 year: 2011 ident: 10.1016/j.jallcom.2019.153346_bib29 article-title: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 784 start-page: 1 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib44 article-title: Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.01.012 – volume: 148 start-page: 496 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib14 article-title: Ni3ZnC0.7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting publication-title: Carbon doi: 10.1016/j.carbon.2019.04.002 – volume: 7 start-page: 2357 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib88 article-title: MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.6b03192 – volume: 58 start-page: 4644 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib60 article-title: Modular design of noble-metal-free mixed metal oxide electrocatalysts for complete water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201900428 – volume: 4 start-page: 11973 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib5 article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02334G – volume: 12 start-page: 988 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib49 article-title: Helical cobalt borophosphates to master durable overall water-splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01669K – volume: 784 start-page: 447 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib7 article-title: Hydrogen evolution and oxygen reduction reactions catalyzed by core-shelled Fe@Ru nanoparticles embedded in porous dodecahedron carbon publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.01.088 – volume: 11 start-page: 3036 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib100 article-title: Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions publication-title: Small doi: 10.1002/smll.201403715 – volume: 106 start-page: 1036 year: 2002 ident: 10.1016/j.jallcom.2019.153346_bib43 article-title: Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts publication-title: J. Phys. Chem. B doi: 10.1021/jp0131931 – volume: 8 start-page: 2347 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib64 article-title: Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01155H – volume: 607 start-page: 83 year: 2007 ident: 10.1016/j.jallcom.2019.153346_bib31 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 4 start-page: 1244 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib82 article-title: Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00426 – volume: 245 start-page: 656 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib62 article-title: Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.034 – volume: 58 start-page: 4318 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib16 article-title: Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201900109 – volume: 12 start-page: 1469 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib107 article-title: Atomic layer deposition of NiOOH/Ni(OH)2 on PIM-1-based N-doped carbon nanofibers for electrochemical water splitting in alkaline medium publication-title: ChemSusChem doi: 10.1002/cssc.201802500 – volume: 25 start-page: 621 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib70 article-title: Hollow bimetallic zinc cobalt phosphosulfides for efficient overall water splitting publication-title: Chemistry doi: 10.1002/chem.201804492 – start-page: 1900510 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib79 article-title: Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments publication-title: Adv. Mater. doi: 10.1002/adma.201900510 – volume: 14 start-page: 397 year: 1986 ident: 10.1016/j.jallcom.2019.153346_bib35 article-title: Electrocatalytic properties of transition metal oxides for oxygen evolution reaction publication-title: Mater. Chem. Phys. doi: 10.1016/0254-0584(86)90045-3 – volume: 245 start-page: 528 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib8 article-title: Solid-phase hot-pressing of POMs-ZIFs precursor and derived phosphide for overall water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.007 – volume: 7 start-page: 3519 year: 2014 ident: 10.1016/j.jallcom.2019.153346_bib11 article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01760A – volume: 11 start-page: 7293 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib101 article-title: Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms publication-title: ACS Nano doi: 10.1021/acsnano.7b03290 – volume: 8 start-page: 27850 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib39 article-title: Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10552 – volume: 29 start-page: 1703792 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib72 article-title: Hexagonal sphericon hematite with high performance for water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201703792 – volume: 6 start-page: 5982 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib85 article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation publication-title: Nat. Commun. doi: 10.1038/ncomms6982 – volume: 110 start-page: 6474 year: 2010 ident: 10.1016/j.jallcom.2019.153346_bib21 article-title: Solar energy supply and storage for the legacy and nonlegacy worlds publication-title: Chem. Rev. doi: 10.1021/cr100246c – volume: 5 start-page: 13801 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib30 article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion publication-title: Sci. Rep. doi: 10.1038/srep13801 – volume: 326 start-page: 134983 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib48 article-title: NiS2/MoS2 on carbon cloth as a bifunctional electrocatalyst for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134983 – volume: 11 start-page: 55 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib63 article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0289-6 – volume: 48 start-page: 6718 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib6 article-title: Controlled synthesis of bifunctional particle-like Mo/Mn-NixSy/NF electrocatalyst for highly efficient overall water splitting publication-title: Dalton Trans. doi: 10.1039/C9DT00957D – volume: 24 start-page: 817 year: 1956 ident: 10.1016/j.jallcom.2019.153346_bib34 article-title: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen publication-title: J. Chem. Phys. doi: 10.1063/1.1742616 – volume: 5 start-page: 11577 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib86 article-title: Loading Pt nanoparticles on metal–organic frameworks for improved oxygen evolution publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02926 – volume: 3 start-page: 1159 year: 2011 ident: 10.1016/j.jallcom.2019.153346_bib23 article-title: Universality in oxygen evolution electrocatalysis on oxide surfaces publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 15 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib78 article-title: Multimetal borides nanochains as efficient electrocatalysts for overall water splitting publication-title: Small – volume: 298 start-page: 305 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib117 article-title: Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.091 – volume: 797 start-page: 1216 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib59 article-title: General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.05.036 – volume: 8 start-page: 5621 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib84 article-title: Tuning electronic push/pull of ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.8b01567 – volume: 796 start-page: 86 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib45 article-title: MoS2 nanosheets decorated Ni(OH)2 nanorod array for active overall water splitting publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.05.071 – volume: 6 start-page: 7790 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib121 article-title: Operando Raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction publication-title: ACS Catal. doi: 10.1021/acscatal.6b01848 – volume: 7 start-page: 2518 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib3 article-title: Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10856K – volume: 259 start-page: 118051 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib77 article-title: A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118051 – volume: 29 start-page: 1604898 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib66 article-title: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks publication-title: Adv. Mater. doi: 10.1002/adma.201604898 – volume: 1 start-page: 2155 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib36 article-title: Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00119C – volume: 105 start-page: 13 year: 2002 ident: 10.1016/j.jallcom.2019.153346_bib42 article-title: Comparison of high surface Pt/C catalysts by cyclic voltammetry publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00921-1 – volume: 4 start-page: 727 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib116 article-title: Hemi-core@ frame AuCu@ IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media publication-title: Nanoscale Horiz doi: 10.1039/C8NH00520F – volume: 3 start-page: 46 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib124 article-title: Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces publication-title: Nat. Energy doi: 10.1038/s41560-017-0048-1 – volume: 116 start-page: 98 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib58 article-title: Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2019.04.016 – volume: 254 start-page: 414 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib73 article-title: In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.089 – volume: 4 start-page: 18470 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib97 article-title: Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08335H – volume: 44 start-page: 5148 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib20 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 101 start-page: 5405 year: 1997 ident: 10.1016/j.jallcom.2019.153346_bib27 article-title: Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions publication-title: J. Phys. Chem. B doi: 10.1021/jp970930d – volume: 98 start-page: 617 year: 1994 ident: 10.1016/j.jallcom.2019.153346_bib41 article-title: Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys publication-title: J. Phys. Chem. doi: 10.1021/j100053a042 – volume: 765 start-page: 835 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib67 article-title: Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.06.321 – volume: 6 start-page: 8069 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib25 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review publication-title: ACS Catal. doi: 10.1021/acscatal.6b02479 – volume: 57 start-page: 15237 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib109 article-title: Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting publication-title: Angew. Chem. doi: 10.1002/anie.201809787 – volume: 45 start-page: 1529 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib10 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 242 start-page: 60 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib51 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.064 – volume: 57 start-page: 1 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib113 article-title: Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.018 – volume: 53 start-page: 8711 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib56 article-title: 3D free-standing hierarchical CuCo2O4 nanowire cathodes for rechargeable lithium–oxygen batteries publication-title: Chem. Commun. doi: 10.1039/C7CC02621H – volume: 307 start-page: 206 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib114 article-title: Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.179 – volume: 59 start-page: 591 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib74 article-title: In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.022 – volume: 241 start-page: 521 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib95 article-title: Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.061 – volume: 142 start-page: 40 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib98 article-title: In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction publication-title: Carbon doi: 10.1016/j.carbon.2018.09.088 – volume: 15 start-page: 1902427 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib119 article-title: High-yield electrochemical production of large-sized and thinly layered NiPS3 flakes for overall water splitting publication-title: Small doi: 10.1002/smll.201902427 – volume: 9 start-page: 12496 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib118 article-title: Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity publication-title: ACS Nano doi: 10.1021/acsnano.5b05984 – volume: 6 start-page: 1900119 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib120 article-title: Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction publication-title: Adv. Sci. doi: 10.1002/advs.201900119 – volume: 1 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib37 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 7 start-page: 4847 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib123 article-title: In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02147 – volume: 28 start-page: 1803291 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib26 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803291 – volume: 58 start-page: 2 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib4 article-title: Perovskite oxide-based electrodes for high-performance photoelectrochemical water splitting: a review publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 8165 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib12 article-title: Facile protocol for alkaline electrolyte purification and its influence on a Ni–Co oxide catalyst for the oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.9b01940 – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib22 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 7 start-page: 2156 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib80 article-title: Boosting electrochemical water splitting via ternary NiMoCo hybrid nanowire arrays publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11250A – volume: 355 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib33 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 12 start-page: 988 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib108 article-title: Helical cobalt borophosphates to master durable overall water-splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01669K – volume: 512 start-page: 419 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib57 article-title: Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.09.093 – volume: 764 start-page: 88 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib52 article-title: Co0.5Ni0.5P nanoparticles embedded in carbon layers for efficient electrochemical water splitting publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.06.008 – volume: 6 start-page: 7992 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib103 article-title: Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/ncomms8992 – volume: 54 start-page: 8179 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib104 article-title: Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502173 – volume: 10 start-page: 1752 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib91 article-title: Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16407 – volume: 8 start-page: 12798 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib65 article-title: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02352 – volume: 145 start-page: 521 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib50 article-title: N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting publication-title: Carbon doi: 10.1016/j.carbon.2019.01.065 – volume: 319 start-page: 561 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib68 article-title: Self-supported ternary (NixFey)2P nanoplates arrays as an efficient bifunctional electrocatalyst for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.07.022 – volume: 9 start-page: 1803867 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib102 article-title: Trifunctional electrocatalysis on dual-doped graphene nanorings–integrated boxes for efficient water splitting and Zn–air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803867 – volume: 157 start-page: B1529 year: 2010 ident: 10.1016/j.jallcom.2019.153346_bib28 article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/1.3483106 – volume: 2 start-page: 17059 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib83 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.59 – volume: 6 start-page: 19221 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib94 article-title: Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08223E – volume: 145 start-page: 201 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib61 article-title: Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting publication-title: Carbon doi: 10.1016/j.carbon.2019.01.011 – volume: 9 start-page: 1901130 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib76 article-title: General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901130 – volume: 51 start-page: 286 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib105 article-title: Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.071 – volume: 44 start-page: 353 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib75 article-title: Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.045 – volume: 247 start-page: 107 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib47 article-title: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.094 – volume: 8 start-page: 1703538 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib90 article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703538 – volume: 28 start-page: 215 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib87 article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 800 start-page: 450 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib15 article-title: CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.06.047 – volume: 333 start-page: 213 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib17 article-title: Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.161 – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.jallcom.2019.153346_bib38 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 791 start-page: 328 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib93 article-title: In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co3O4 nanoarrays as an advanced overall water splitting electrocatalyst in alkaline solution publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.03.313 – volume: 36 start-page: 1800252 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib81 article-title: Ultrathin Fe-N-C nanosheets coordinated Fe-doped CoNi alloy nanoparticles for electrochemical water splitting publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201800252 – volume: 4 start-page: 17587 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib18 article-title: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08075H – volume: 43 start-page: 6555 year: 2014 ident: 10.1016/j.jallcom.2019.153346_bib19 article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60468C – volume: 9 start-page: 1803185 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib53 article-title: Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803185 – volume: 53 start-page: 7836 year: 2017 ident: 10.1016/j.jallcom.2019.153346_bib55 article-title: Chrysanthemum flower-like NiCo2O4–nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries publication-title: Chem. Commun. doi: 10.1039/C7CC03826G – volume: 31 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib69 article-title: Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting publication-title: Adv. Mater. – volume: 794 start-page: 261 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib96 article-title: Hierarchical Graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.04.150 – volume: 56 start-page: 330 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib54 article-title: Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.023 – volume: 9 start-page: 5309 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib110 article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays publication-title: Nat. Commun. doi: 10.1038/s41467-018-07790-x – volume: 4 start-page: 16524 year: 2016 ident: 10.1016/j.jallcom.2019.153346_bib40 article-title: Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06534A – volume: 118 start-page: 29252 year: 2014 ident: 10.1016/j.jallcom.2019.153346_bib122 article-title: Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction publication-title: J.Phys. Chem. C doi: 10.1021/jp505394e – volume: 31 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib2 article-title: Morphology-controlled metal sulfides and phosphides for electrochemical water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201806682 – volume: 144 start-page: 464 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib115 article-title: N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting publication-title: Carbon doi: 10.1016/j.carbon.2018.12.085 – volume: 148 start-page: 540 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib1 article-title: Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting publication-title: Carbon doi: 10.1016/j.carbon.2019.04.021 – volume: 140 start-page: 2610 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib111 article-title: Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12420 – volume: 9 start-page: 1822 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib89 article-title: Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction publication-title: Chem. Sci. doi: 10.1039/C7SC04851C – volume: 254 start-page: 471 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib112 article-title: A novel strategy for 2D/2D NiS/Graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.05.029 – volume: 797 start-page: 341 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib9 article-title: Hierarchical Co-N microballs with heterostructure exhibiting superior electrochemical properties for water splitting and reduction of I3- publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2019.05.103 – volume: 369 start-page: 345 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib46 article-title: Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting publication-title: J. Catal. doi: 10.1016/j.jcat.2018.11.023 – volume: 8 start-page: 3970 year: 2014 ident: 10.1016/j.jallcom.2019.153346_bib99 article-title: Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation publication-title: ACS Nano doi: 10.1021/nn500880v – volume: 2 start-page: 873 year: 2009 ident: 10.1016/j.jallcom.2019.153346_bib71 article-title: Transition metal carbides and nitrides as electrode materials for low temperature fuel cells publication-title: Energies doi: 10.3390/en20400873 – volume: 12 start-page: 215 year: 2019 ident: 10.1016/j.jallcom.2019.153346_bib13 article-title: Defect chemistry in 2D materials for electrocatalysis publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2019.01.004 – volume: 8 start-page: 8296 year: 2018 ident: 10.1016/j.jallcom.2019.153346_bib106 article-title: Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: ACS Catal. doi: 10.1021/acscatal.8b01794 |
SSID | ssj0001931 ssib000187809 ssib006546037 ssib000754189 ssib006546038 |
Score | 2.68112 |
SecondaryResourceType | review_article |
Snippet | Production of hydrogen by electrochemical water splitting is considered as one of the most promising ways for sustainable energy storage and hydrogen society... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 153346 |
SubjectTerms | Bifunctional electrocatalysts Catalyst design Earth Electrocatalysts Electrochemical water splitting Electrode Electrolysis Energy storage Hydrogen production Hydrogen storage Hydrogen-based energy Noble metals Oxygen evolution reactions Performance evaluation Transition metals Transition-metal-based compounds Water splitting |
Title | Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review |
URI | https://dx.doi.org/10.1016/j.jallcom.2019.153346 https://cir.nii.ac.jp/crid/1872272493134788224 https://www.proquest.com/docview/2354826360 |
Volume | 819 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgg4oLKAWPqQD1y9m7WdJu5ttWq1ULUXqLQ3y_Y6IqttqDZBiAu_vTOJ04eoVKkXHxJbsT1jz2fnmxmAL7lGzO8mBfcTX3AlXOC5D4qntLp8YQsR6Grg_OJofqm-LdLFFsx6XxiiVca9v9vT2906PhnH2Rxfl-X4e6IF_fNDkyZVqsWCPNhVRlo--ndH88C3bdY8rMyp9p0Xz3g1Wtn1mkgjaAX1iJAP4eDH7dOLqiz_269bI3S6C28jemTTroPvYCtUA3g165O2DeDNvfiCA3jZ8jt9_R42Jzion9w6cvyoGtaQiWrZWvwqIP7mZM2WzJVk57rrQdbe7Pytm5ohsGVE9cRxsJg3x8dAA-wPgtUNqxHLtgzqYzZlnTvMB7g8Pfkxm_OYboF7JUXDhcXVnAWfJ9qGZEmh2mVQSymcK7S3QefOZsJr5QOe0VLhC52lReKSkNilQxj0EbarX1X4BAznMbNaamtRF4I9sqnDwluJYFOGoIag-kk2PsYip5QYa9OTzlYmysaQbEwnmyGMbptdd8E4nmqQ9xI0D7TKoMF4qukBShx7R-Ukz4TI8KQqyfM2J-btEPZ7XTBx2ddGSDwACgrB9vn5X96D14IO9UQPSvdhu9n8DgeIfBp32Kr2IexMv57NL24A404DCg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21RahwQLCAWGjBBzh6N2s7TYzEoSqttvTjQivtzdheR2S1hGoTVPXCn-IPMpM4FARSJaRecojkjTMz8Xv2vpkBeJ1r5PxuUnA_8QVXwgWe-6B4Sl-XL2whAh0NnJzuTM_Vh1k6W4MffS4MySrj2t-t6e1qHe-MozXHF2U5_phoQf_5IaRJlWoxi8rKo3B1ifu2-t3he3TyGyEO9s_2pjy2FuBeSdFwYTFys-DzRNuQzKksuQxqLoVzhfY26NzZTHitfMD9SCp8obO0SFwSEjt3CPn4u-twR-ELUduE0fdrXQlOp23Th7PjNL3rtKHxYrSwyyWpVBB29YioFhHvfwPielWWfwFEi3oHD-FBpKtst7PII1gL1QA29_oucQO4_1tBwwHcbQWlvn4Mq3204mduHWWaVA1rCBNbeRj_EpDwc4LPOXMlAWt3Hsnao6SruqkZMmlG2lJ8DxYb9fhY2YBdIjtesRrJcyvZfst2WZd_8wTOb8UJT2Gj-lqFZ8DQjpnVUluLwRfsjk0dXryVyG5lCGoIqjey8bH4OfXgWJpe5bYw0TeGfGM63wxh9GvYRVf946YBee9B80cYG0Som4Zuo8dxdnSd5JkQGW6NJaX65iT1HcJWHwsmrjO1ERJ3nIJqvj3__ye_gs3p2cmxOT48PXoB9wSdKJA2Kd2CjWb1LWwj7WrcyzbMGXy67e_qJ-rcP5Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Earth-abundant+transition-metal-based+bifunctional+catalysts+for+overall+electrochemical+water+splitting%3A+A+review&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wang%2C+Jiajia&rft.au=Yue%2C+Xiyan&rft.au=Yang%2C+Yanyan&rft.au=Sirisomboonchai%2C+Suchada&rft.date=2020-04-05&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=819&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2019.153346&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |