HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images
Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19...
Saved in:
Published in | Applied soft computing Vol. 95; p. 106642 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur’s entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics.
•We proposes a new hybrid approach based on the thresholding technique to overcome the image segmentation problem.•We developed an integrated slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy.•ISMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms.•The experimental results demonstrate that our proposed algorithm outperforms SMA under Kapur’s entropy.•Our algorithm could outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU time and (Std). |
---|---|
AbstractList | Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 - sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics.Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 - sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics. Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur’s entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics. • We proposes a new hybrid approach based on the thresholding technique to overcome the image segmentation problem. • We developed an integrated slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. • ISMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms. • The experimental results demonstrate that our proposed algorithm outperforms SMA under Kapur’s entropy. • Our algorithm could outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU time and (Std). Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur’s entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics. •We proposes a new hybrid approach based on the thresholding technique to overcome the image segmentation problem.•We developed an integrated slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy.•ISMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms.•The experimental results demonstrate that our proposed algorithm outperforms SMA under Kapur’s entropy.•Our algorithm could outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU time and (Std). |
ArticleNumber | 106642 |
Author | Mohamed, Reda Chang, Victor Abdel-Basset, Mohamed |
Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0003-1102-1387 surname: Abdel-Basset fullname: Abdel-Basset, Mohamed email: analyst_mohamed@zu.edu.eg organization: Faculty of Computers and Informatics, Zagazig University, Sharqiyah, Egypt – sequence: 2 givenname: Victor orcidid: 0000-0002-8012-5852 surname: Chang fullname: Chang, Victor email: V.Chang@tees.ac.uk organization: School of Computing, Engineering and Digital Technologies, Teesside University, UK – sequence: 3 givenname: Reda surname: Mohamed fullname: Mohamed, Reda email: redamoh@zu.edu.eg organization: Faculty of Computers and Informatics, Zagazig University, Sharqiyah, Egypt |
BookMark | eNp9kc1u1DAUhS1URH_gBVh52U0Gx_Y4TlUhjapCkYq6KAh2luPcJJ469mBnphoegyfGo1QIWHRjW_b5ju-95xQd-eABobclWZSkFO_WC52CWVBCDxdCcPoCnZSyokUtZHmUz0shC15zcYxOU1qTDNVUvkLHjErOpKxO0K-b-88r9e1udYFXeNg30bbYhx04fO_sCHgMW9di7foQ7TSM-DGv-HHQDnDYTHa0P_Vkg_9L0YWIJ20enPU9ngbAdtQ94AT9CH6a1ZsYGgcjDh02A6QJfy-i3s_K9Bq97LRL8OZpP0NfP1x_ubopbu8-frpa3RaGMzoVZVNJIFKwsmMcpBBLILQTAhhral0LYnjTGmPKupUNr_RSyyr3TzRvRN1yYGfo_ey72TYjtCZXF7VTm5jLiHsVtFX_vng7qD7sVMVZXVcsG5w_GcTwY5vbUKNNBpzTHsI2KcpZxQmVTGYpnaUmhpQidH--KYk6hKnW6hCmOoSp5jAzJP-DjJ0HmMux7nn0ckYhD3BnIapkLHgDrY1gJtUG-xz-G-LFvko |
CitedBy_id | crossref_primary_10_3390_electronics14010126 crossref_primary_10_1038_s41598_023_30941_0 crossref_primary_10_1080_00207721_2022_2153635 crossref_primary_10_1007_s00521_022_07985_w crossref_primary_10_1111_cgf_14697 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_32604_cmc_2021_016956 crossref_primary_10_1016_j_asoc_2022_108483 crossref_primary_10_1016_j_egyr_2021_11_138 crossref_primary_10_1142_S0219467824500049 crossref_primary_10_1016_j_ttbdis_2022_101930 crossref_primary_10_1016_j_ijleo_2024_171890 crossref_primary_10_3934_mbe_2022659 crossref_primary_10_1007_s12530_024_09614_4 crossref_primary_10_1109_ACCESS_2023_3240576 crossref_primary_10_1016_j_bspc_2024_107431 crossref_primary_10_1155_2022_8011003 crossref_primary_10_3390_math9090995 crossref_primary_10_1016_j_techfore_2021_120849 crossref_primary_10_1016_j_inpa_2023_11_003 crossref_primary_10_1007_s00521_021_06273_3 crossref_primary_10_1016_j_eswa_2021_114689 crossref_primary_10_1016_j_compbiomed_2024_108038 crossref_primary_10_48175_IJARSCT_4607 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1016_j_knosys_2021_107494 crossref_primary_10_1109_ACCESS_2023_3313508 crossref_primary_10_1007_s10796_021_10132_w crossref_primary_10_1111_exsy_12694 crossref_primary_10_1016_j_compbiomed_2022_105810 crossref_primary_10_1016_j_compbiomed_2022_106227 crossref_primary_10_1016_j_compbiomed_2021_104984 crossref_primary_10_1061__ASCE_WR_1943_5452_0001602 crossref_primary_10_1007_s10489_024_06084_8 crossref_primary_10_1080_17445760_2024_2350010 crossref_primary_10_1007_s10586_024_04601_5 crossref_primary_10_4018_IJISMD_306644 crossref_primary_10_1007_s42107_023_00572_x crossref_primary_10_1007_s42107_023_00612_6 crossref_primary_10_1109_TII_2021_3059023 crossref_primary_10_1016_j_asoc_2023_111150 crossref_primary_10_1038_s41598_024_69487_0 crossref_primary_10_3390_sym14040829 crossref_primary_10_1038_s41598_022_13516_3 crossref_primary_10_3390_electronics10232975 crossref_primary_10_1002_cpe_7809 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1002_ima_22916 crossref_primary_10_1109_ACCESS_2021_3108447 crossref_primary_10_3103_S0146411622060116 crossref_primary_10_1038_s41598_023_51135_8 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_1007_s10462_023_10398_3 crossref_primary_10_1109_TII_2020_3048391 crossref_primary_10_1007_s00366_021_01591_5 crossref_primary_10_1007_s11042_024_20248_1 crossref_primary_10_1016_j_compbiomed_2021_104609 crossref_primary_10_4018_JGIM_300818 crossref_primary_10_1061_AJRUA6_0001129 crossref_primary_10_1109_TII_2021_3056386 crossref_primary_10_1007_s44196_021_00005_0 crossref_primary_10_1007_s13369_021_06513_7 crossref_primary_10_1016_j_displa_2023_102485 crossref_primary_10_1002_cpe_7195 crossref_primary_10_1007_s10796_021_10131_x crossref_primary_10_1016_j_compbiomed_2021_105015 crossref_primary_10_1016_j_compbiomed_2022_106404 crossref_primary_10_3390_biomedicines10082052 crossref_primary_10_1016_j_aei_2024_102464 crossref_primary_10_1109_EMR_2023_3281633 crossref_primary_10_3390_math9121316 crossref_primary_10_1007_s11831_023_09883_3 crossref_primary_10_1155_2022_8482022 crossref_primary_10_1007_s00366_021_01371_1 crossref_primary_10_1007_s00366_021_01409_4 crossref_primary_10_3390_biomimetics9030138 crossref_primary_10_1016_j_compbiomed_2022_106083 crossref_primary_10_1088_1742_6596_2858_1_012034 crossref_primary_10_1016_j_oceaneng_2023_116238 crossref_primary_10_1155_2023_7228896 crossref_primary_10_1016_j_eswa_2024_124624 crossref_primary_10_1007_s10796_021_10144_6 crossref_primary_10_1016_j_eswa_2022_117012 crossref_primary_10_1007_s44196_024_00704_4 crossref_primary_10_1016_j_bspc_2024_107465 crossref_primary_10_1016_j_compbiomed_2023_107408 crossref_primary_10_1016_j_socscimed_2022_114973 crossref_primary_10_1109_JIOT_2022_3176300 crossref_primary_10_1109_ACCESS_2020_3044857 crossref_primary_10_1016_j_matcom_2022_02_030 crossref_primary_10_1080_15325008_2022_2049650 crossref_primary_10_1016_j_matdes_2023_112184 crossref_primary_10_1111_ffe_13977 crossref_primary_10_1155_2021_9942873 crossref_primary_10_1016_j_compbiomed_2022_105344 crossref_primary_10_3389_fninf_2023_1126783 crossref_primary_10_1007_s00366_021_01364_0 crossref_primary_10_1007_s00500_024_09869_8 crossref_primary_10_1155_2022_4639208 crossref_primary_10_1016_j_eswa_2024_125673 crossref_primary_10_3390_biomimetics8060482 crossref_primary_10_1109_TII_2021_3056686 crossref_primary_10_32604_iasc_2023_026341 crossref_primary_10_1016_j_egyr_2021_09_077 crossref_primary_10_3390_electronics11244224 crossref_primary_10_1016_j_compbiomed_2021_104427 crossref_primary_10_1016_j_isatra_2021_04_011 crossref_primary_10_1007_s10796_021_10152_6 crossref_primary_10_1016_j_isci_2023_107736 crossref_primary_10_1016_j_compbiomed_2022_105858 crossref_primary_10_1186_s44147_023_00332_3 crossref_primary_10_32604_cmes_2022_019198 crossref_primary_10_1007_s10796_021_10123_x crossref_primary_10_1109_ACCESS_2022_3153038 crossref_primary_10_1016_j_bspc_2021_103401 crossref_primary_10_1109_ACCESS_2022_3183627 crossref_primary_10_36548_jscp_2020_4_001 crossref_primary_10_2139_ssrn_3931679 crossref_primary_10_1016_j_compbiomed_2023_107653 crossref_primary_10_1016_j_compstruc_2022_106760 crossref_primary_10_1016_j_ijhydene_2021_01_076 crossref_primary_10_1016_j_asoc_2024_111836 crossref_primary_10_3390_math10214063 crossref_primary_10_3390_math9101140 crossref_primary_10_1007_s12205_022_2013_1 crossref_primary_10_1109_TII_2021_3057524 crossref_primary_10_3934_mbe_2022105 crossref_primary_10_1089_big_2022_0261 crossref_primary_10_1007_s10462_022_10157_w crossref_primary_10_1016_j_eswa_2022_119095 crossref_primary_10_1109_TII_2021_3057683 crossref_primary_10_3390_s22103833 crossref_primary_10_1111_exsy_12700 crossref_primary_10_1016_j_compbiomed_2021_104910 crossref_primary_10_1007_s12083_023_01541_6 crossref_primary_10_1038_s41598_022_24668_7 crossref_primary_10_1007_s00202_023_02194_7 crossref_primary_10_1016_j_enganabound_2022_09_034 crossref_primary_10_1111_exsy_13079 crossref_primary_10_1007_s11517_024_03024_z crossref_primary_10_1038_s41598_024_77517_0 crossref_primary_10_1371_journal_pone_0280512 crossref_primary_10_3934_era_2024175 crossref_primary_10_1016_j_neucom_2023_126467 crossref_primary_10_1080_21642583_2022_2084650 crossref_primary_10_1093_jcde_qwac014 crossref_primary_10_1109_TII_2021_3052788 crossref_primary_10_1093_jcde_qwaf006 crossref_primary_10_1007_s00521_022_06906_1 crossref_primary_10_3390_a16100473 crossref_primary_10_1007_s42235_022_00295_w crossref_primary_10_1016_j_aej_2024_02_065 crossref_primary_10_1016_j_rineng_2024_102833 crossref_primary_10_1080_0305215X_2024_2366484 crossref_primary_10_1007_s00521_022_07034_6 crossref_primary_10_1038_s41598_022_22933_3 crossref_primary_10_1093_jcde_qwac081 crossref_primary_10_1007_s42235_024_00590_8 crossref_primary_10_1016_j_eij_2024_100442 crossref_primary_10_3390_app15062934 crossref_primary_10_1007_s11227_024_06080_2 crossref_primary_10_1109_ACCESS_2024_3510252 crossref_primary_10_1016_j_compbiomed_2022_105910 crossref_primary_10_1007_s00521_024_10327_7 crossref_primary_10_1002_ese3_1115 crossref_primary_10_3390_electronics10151846 crossref_primary_10_1016_j_cma_2022_115764 crossref_primary_10_1111_exsy_12708 crossref_primary_10_1142_S0219622022500675 crossref_primary_10_1007_s10489_023_05073_7 |
Cites_doi | 10.1016/j.asoc.2019.105577 10.1016/j.apm.2017.02.015 10.1016/j.eswa.2011.06.011 10.1016/j.patrec.2007.09.005 10.1016/j.measurement.2013.09.031 10.1007/s00521-017-2988-6 10.1016/j.eswa.2017.02.042 10.1145/3151509.3151519 10.1109/ACCESS.2019.2921545 10.1016/j.neucom.2014.02.020 10.1016/j.sigpro.2012.07.010 10.1016/j.acra.2020.03.002 10.1001/jama.2020.2565 10.1088/1755-1315/252/4/042105 10.1016/j.eswa.2014.09.049 10.1016/j.ins.2019.07.088 10.1007/s11042-019-7506-7 10.1109/ACCESS.2020.2990893 10.1016/j.cmpb.2020.105395 10.1016/j.future.2018.03.020 10.1016/j.swevo.2013.02.001 10.1016/S0301-4622(00)00108-3 10.1016/0734-189X(85)90125-2 10.1080/01431161.2019.1698071 10.1007/s00500-014-1345-2 10.1016/j.isprsjprs.2017.06.003 10.1007/s00500-019-03891-x 10.1016/j.eswa.2009.12.050 10.1016/j.eswa.2017.04.023 10.1016/j.engappai.2010.12.001 10.1109/TGRS.2013.2260552 10.3934/mbe.2020036 10.1016/j.patcog.2017.01.010 10.1007/s10044-017-0653-4 10.1016/j.engappai.2013.09.013 10.1007/s00521-018-3613-z 10.1007/s11042-019-08231-7 10.1016/j.eswa.2007.01.002 10.1108/02644401011008577 10.1016/j.advengsoft.2016.01.008 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.asoc.2020.106642 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 106642 |
ExternalDocumentID | PMC7439973 10_1016_j_asoc_2020_106642 S1568494620305809 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c432t-1b78e08631f34e8665e02f66e33b9a960c4bdccc19d8b47a5a871690a4b69d4e3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Aug 21 13:36:58 EDT 2025 Thu Jul 10 18:43:45 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Tue Jul 01 01:50:07 EDT 2025 Sun Apr 06 06:53:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kapur’s entropy COVID-19 Image segmentation problem Whale optimization algorithm Slime mould algorithm (SMA) X-ray images |
Language | English |
License | Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-1b78e08631f34e8665e02f66e33b9a960c4bdccc19d8b47a5a871690a4b69d4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8012-5852 0000-0003-1102-1387 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7439973 |
PMID | 32843887 |
PQID | 2437402838 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7439973 proquest_miscellaneous_2437402838 crossref_primary_10_1016_j_asoc_2020_106642 crossref_citationtrail_10_1016_j_asoc_2020_106642 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mittal (b5) 2020 Abdel-Basset (b22) 2018; 85 Wang, Jia, Peng (b60) 2019; 17 Maitra, Chatterjee (b47) 2008; 34 Oliva (b17) 2014; 139 Wang, Wang, Wilkes (b7) 2020 Kaveh, Talatahari (b31) 2010; 27 Mirjalili, Lewis (b57) 2016; 95 Kuruvilla (b3) 2016 Manikandan (b46) 2014; 47 Liu (b48) 2015; 19 Oliva, Elaziz, Hinojosa (b21) 2019 Rizk-Allah (b24) 2019; 31 Chouksey, Jha, Sharma (b56) 2020 Brest, Maučec, Bošković (b59) 2016 Elsayed, Sarker, Essam (b34) 2014; 27 Dirami (b19) 2013; 93 Agrawal (b36) 2013; 11 Sanyal, Chatterjee, Munshi (b52) 2011; 38 K. Egiazarian, et al. New full-reference quality metrics based on HVS, in: Proceedings of the Second International Workshop on Video Processing and Quality Metrics, 2006. Yao (b42) 2019 Hu (b4) 2016 Cuevas, Fausto, González (b26) 2020 Hore, Ziou (b61) 2010 Arora (b18) 2008; 29 Sayed, Hassanien, Azar (b23) 2019; 31 Bhandari, Kumar, Singh (b51) 2015; 42 Barman (b12) 2020 Nakagaki, Yamada, Ueda (b58) 2000; 84 Xiong (b29) 2020 M. Alberti, et al. Historical document image segmentation with LDA-initialized deep neural networks, in: Proceedings of the 4th International Workshop on Historical Document Imaging and Processing, 2017. Su, Zhang (b9) 2017; 130 Singla, Patra (b45) 2016; 11 Prathusha, Jyothi (b14) 2018 Wang (b40) 2015; 26 Bao, Jia, Lang (b38) 2019; 7 Abdel-Basset, Chang, Mohamed (b54) 2020 Abdel-Basset (b55) 2020 Karydas (b8) 2020; 41 Sathya, Kayalvizhi (b53) 2011; 24 Cuevas, Gálvez, Avalos (b25) 2020 Kandhway, Bhandari (b35) 2019; 78 Ghamisi (b49) 2013; 52 Aksac, Ozyer, Alhajj (b13) 2017; 66 Cuevas, Fausto, González (b44) 2020 Zhang (b6) 2020 Chakraborty, Nandi, Roy (b37) 2019 Naoum, Nothman, Curran (b11) 2019 Bai (b1) 2020; 323 Oliva (b41) 2017; 79 Horng (b43) 2010; 37 Han (b16) 2017; 44 El Aziz, Ewees, Hassanien (b33) 2017; 83 Chen (b50) 2016; 2016 Guan (b2) 2020 Erdmann (b39) 2015 Narayanan (b15) 2019; 22 Huo, Sun, Ren (b32) 2020; 79 Di Martino, Sessa (b30) 2020; 506 Ibrahim (b27) 2019; 23 Guo, Li (b28) 2007 Kapur, Sahoo, Wong (b20) 1985; 29 Maitra (10.1016/j.asoc.2020.106642_b47) 2008; 34 Ibrahim (10.1016/j.asoc.2020.106642_b27) 2019; 23 Mittal (10.1016/j.asoc.2020.106642_b5) 2020 Liu (10.1016/j.asoc.2020.106642_b48) 2015; 19 Zhang (10.1016/j.asoc.2020.106642_b6) 2020 Barman (10.1016/j.asoc.2020.106642_b12) 2020 El Aziz (10.1016/j.asoc.2020.106642_b33) 2017; 83 Prathusha (10.1016/j.asoc.2020.106642_b14) 2018 Bai (10.1016/j.asoc.2020.106642_b1) 2020; 323 Cuevas (10.1016/j.asoc.2020.106642_b25) 2020 Mirjalili (10.1016/j.asoc.2020.106642_b57) 2016; 95 Han (10.1016/j.asoc.2020.106642_b16) 2017; 44 Narayanan (10.1016/j.asoc.2020.106642_b15) 2019; 22 Dirami (10.1016/j.asoc.2020.106642_b19) 2013; 93 Guo (10.1016/j.asoc.2020.106642_b28) 2007 Ghamisi (10.1016/j.asoc.2020.106642_b49) 2013; 52 Sathya (10.1016/j.asoc.2020.106642_b53) 2011; 24 Hu (10.1016/j.asoc.2020.106642_b4) 2016 Oliva (10.1016/j.asoc.2020.106642_b17) 2014; 139 Abdel-Basset (10.1016/j.asoc.2020.106642_b55) 2020 Nakagaki (10.1016/j.asoc.2020.106642_b58) 2000; 84 Elsayed (10.1016/j.asoc.2020.106642_b34) 2014; 27 Oliva (10.1016/j.asoc.2020.106642_b41) 2017; 79 Agrawal (10.1016/j.asoc.2020.106642_b36) 2013; 11 Wang (10.1016/j.asoc.2020.106642_b40) 2015; 26 Arora (10.1016/j.asoc.2020.106642_b18) 2008; 29 Cuevas (10.1016/j.asoc.2020.106642_b44) 2020 Karydas (10.1016/j.asoc.2020.106642_b8) 2020; 41 Naoum (10.1016/j.asoc.2020.106642_b11) 2019 Bhandari (10.1016/j.asoc.2020.106642_b51) 2015; 42 Guan (10.1016/j.asoc.2020.106642_b2) 2020 Horng (10.1016/j.asoc.2020.106642_b43) 2010; 37 Bao (10.1016/j.asoc.2020.106642_b38) 2019; 7 10.1016/j.asoc.2020.106642_b62 Oliva (10.1016/j.asoc.2020.106642_b21) 2019 Rizk-Allah (10.1016/j.asoc.2020.106642_b24) 2019; 31 Wang (10.1016/j.asoc.2020.106642_b60) 2019; 17 Xiong (10.1016/j.asoc.2020.106642_b29) 2020 Erdmann (10.1016/j.asoc.2020.106642_b39) 2015 Su (10.1016/j.asoc.2020.106642_b9) 2017; 130 Kandhway (10.1016/j.asoc.2020.106642_b35) 2019; 78 Wang (10.1016/j.asoc.2020.106642_b7) 2020 Hore (10.1016/j.asoc.2020.106642_b61) 2010 Abdel-Basset (10.1016/j.asoc.2020.106642_b22) 2018; 85 Sayed (10.1016/j.asoc.2020.106642_b23) 2019; 31 Kaveh (10.1016/j.asoc.2020.106642_b31) 2010; 27 Abdel-Basset (10.1016/j.asoc.2020.106642_b54) 2020 Huo (10.1016/j.asoc.2020.106642_b32) 2020; 79 Manikandan (10.1016/j.asoc.2020.106642_b46) 2014; 47 Brest (10.1016/j.asoc.2020.106642_b59) 2016 Di Martino (10.1016/j.asoc.2020.106642_b30) 2020; 506 Kuruvilla (10.1016/j.asoc.2020.106642_b3) 2016 Kapur (10.1016/j.asoc.2020.106642_b20) 1985; 29 Singla (10.1016/j.asoc.2020.106642_b45) 2016; 11 Chouksey (10.1016/j.asoc.2020.106642_b56) 2020 Sanyal (10.1016/j.asoc.2020.106642_b52) 2011; 38 Aksac (10.1016/j.asoc.2020.106642_b13) 2017; 66 10.1016/j.asoc.2020.106642_b10 Yao (10.1016/j.asoc.2020.106642_b42) 2019 Cuevas (10.1016/j.asoc.2020.106642_b26) 2020 Chakraborty (10.1016/j.asoc.2020.106642_b37) 2019 Chen (10.1016/j.asoc.2020.106642_b50) 2016; 2016 |
References_xml | – year: 2019 ident: b37 article-title: Oppositional symbiotic organisms search optimization for multilevel thresholding of color image publication-title: Appl. Soft Comput. – volume: 323 start-page: 1406 year: 2020 end-page: 1407 ident: b1 article-title: Presumed asymptomatic carrier transmission of COVID-19 publication-title: JAMA – volume: 47 start-page: 558 year: 2014 end-page: 568 ident: b46 article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm publication-title: Measurement – start-page: 211 year: 2020 end-page: 240. ident: b44 article-title: Locust search algorithm applied to multi-threshold segmentation publication-title: New Advancements in Swarm Algorithms: Operators and Applications – start-page: 215 year: 2020 end-page: 234 ident: b7 article-title: An efficient image segmentation algorithm for object recognition using spectral clustering publication-title: Machine Learning-Based Natural Scene Recognition for Mobile Robot Localization in an Unknown Environment – volume: 29 start-page: 119 year: 2008 end-page: 125 ident: b18 article-title: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm publication-title: Pattern Recognit. Lett. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b57 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 66 start-page: 268 year: 2017 end-page: 279 ident: b13 article-title: Complex networks driven salient region detection based on superpixel segmentation publication-title: Pattern Recognit. – year: 2020 ident: b6 article-title: DENSE-INception U-net for medical image segmentation publication-title: Comput. Methods Programs Biomed. – volume: 78 start-page: 22613 year: 2019 end-page: 22641 ident: b35 article-title: Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer publication-title: Multimedia Tools Appl. – start-page: 279 year: 2015 end-page: 295 ident: b39 article-title: A study of a firefly meta-heuristics for multithreshold image segmentation publication-title: Developments in Medical Image Processing and Computational Vision – volume: 79 start-page: 164 year: 2017 end-page: 180 ident: b41 article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm publication-title: Expert Syst. Appl. – year: 2016 ident: b4 article-title: Utilizing large scale vision and text datasets for image segmentation from referring expressions – year: 2020 ident: b12 article-title: Combining visual and textual features for semantic segmentation of historical newspapers – volume: 26 start-page: S1345 year: 2015 end-page: S1351 ident: b40 article-title: A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation publication-title: Biomed. Mater. Eng. – volume: 24 start-page: 595 year: 2011 end-page: 615 ident: b53 article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2020 end-page: 34 ident: b54 article-title: A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems publication-title: Neural Comput. Appl. – volume: 37 start-page: 4580 year: 2010 end-page: 4592 ident: b43 article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization publication-title: Expert Syst. Appl. – start-page: 1 year: 2020 end-page: 15 ident: b29 article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM publication-title: J. Supercomput. – year: 2019 ident: b42 article-title: Multi-threshold image segmentation based on improved grey wolf optimization algorithm publication-title: IOP Conference Series: Earth and Environmental Science – volume: 506 start-page: 308 year: 2020 end-page: 324 ident: b30 article-title: PSO Image thresholding on images compressed via fuzzy transforms publication-title: Inform. Sci. – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: b20 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput Vis. Graph. Image Process. – volume: 11 start-page: 16 year: 2013 end-page: 30 ident: b36 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm Evol. Comput. – volume: 2016 year: 2016 ident: b50 article-title: Multilevel image segmentation based on an improved firefly algorithm publication-title: Math. Probl. Eng. – year: 2020 ident: b55 article-title: A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy publication-title: IEEE Access – volume: 79 start-page: 2447 year: 2020 end-page: 2471 ident: b32 article-title: Multilevel image threshold segmentation using an improved bloch quantum artificial bee colony algorithm publication-title: Multimedia Tools Appl. – volume: 27 start-page: 155 year: 2010 end-page: 182 ident: b31 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Eng. Comput. – volume: 52 start-page: 2382 year: 2013 end-page: 2394 ident: b49 article-title: Multilevel image segmentation based on fractional-order darwinian particle swarm optimization publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 31 start-page: 1641 year: 2019 end-page: 1663 ident: b24 article-title: A new binary salp swarm algorithm: development and application for optimization tasks publication-title: Neural Comput. Appl. – volume: 42 start-page: 1573 year: 2015 end-page: 1601 ident: b51 article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions publication-title: Expert Syst. Appl. – start-page: 41 year: 2020 end-page: 63. ident: b5 article-title: Image segmentation using deep learning techniques in medical images publication-title: Advancement of Machine Intelligence in Interactive Medical Image Analysis – year: 2016 ident: b59 article-title: Il-SHADE: Improved l-SHADE algorithm for single objective real-parameter optimization publication-title: 2016 IEEE Congress on Evolutionary Computation, CEC – year: 2020 ident: b2 article-title: Imaging features of coronavirus disease 2019 (COVID-19): Evaluation on thin-section CT publication-title: Acad. Radiol. – reference: K. Egiazarian, et al. New full-reference quality metrics based on HVS, in: Proceedings of the Second International Workshop on Video Processing and Quality Metrics, 2006. – year: 2010 ident: b61 article-title: Image quality metrics: PSNR vs. SSIM publication-title: 2010 20th International Conference on Pattern Recognition – volume: 41 start-page: 2905 year: 2020 end-page: 2933 ident: b8 article-title: Optimization of multi-scale segmentation of satellite imagery using fractal geometry publication-title: Int. J. Remote Sens. – volume: 23 start-page: 13547 year: 2019 end-page: 13567 ident: b27 article-title: An opposition-based social spider optimization for feature selection publication-title: Soft Comput. – volume: 38 start-page: 15489 year: 2011 end-page: 15498 ident: b52 article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation publication-title: Expert Syst. Appl. – year: 2007 ident: b28 article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm publication-title: Australasian Joint Conference on Artificial Intelligence – start-page: 1 year: 2020 end-page: 53 ident: b56 article-title: A fast technique for image segmentation based on two meta-heuristic algorithms publication-title: Multimedia Tools Appl. – volume: 22 start-page: 559 year: 2019 end-page: 571 ident: b15 article-title: Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities publication-title: Pattern Anal. Appl. – volume: 7 start-page: 76529 year: 2019 end-page: 76546 ident: b38 article-title: A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation publication-title: IEEE Access – year: 2016 ident: b3 article-title: A review on image processing and image segmentation publication-title: 2016 International Conference on Data Mining and Advanced Computing, SAPIENCE – volume: 139 start-page: 357 year: 2014 end-page: 381 ident: b17 article-title: A multilevel thresholding algorithm using electromagnetism optimization publication-title: Neurocomputing – volume: 19 start-page: 1311 year: 2015 end-page: 1327 ident: b48 article-title: Modified particle swarm optimization-based multilevel thresholding for image segmentation publication-title: Soft Comput. – volume: 31 start-page: 171 year: 2019 end-page: 188 ident: b23 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput. Appl. – start-page: 141 year: 2019 end-page: 147 ident: b21 article-title: Fuzzy entropy approaches for image segmentation publication-title: Metaheuristic Algorithms for Image Segmentation: Theory and Applications – volume: 93 start-page: 139 year: 2013 end-page: 153 ident: b19 article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method publication-title: Signal Process. – volume: 83 start-page: 242 year: 2017 end-page: 256 ident: b33 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. – volume: 34 start-page: 1341 year: 2008 end-page: 1350 ident: b47 article-title: A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding publication-title: Expert Syst. Appl. – year: 2019 ident: b11 article-title: Article segmentation in digitised newspapers with a 2D Markov model publication-title: 2019 International Conference on Document Analysis and RecognitionI, ICDAR – volume: 27 start-page: 57 year: 2014 end-page: 69 ident: b34 article-title: A new genetic algorithm for solving optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 130 start-page: 256 year: 2017 end-page: 276 ident: b9 article-title: Local and global evaluation for remote sensing image segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 85 start-page: 129 year: 2018 end-page: 145 ident: b22 article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem publication-title: Future Gener. Comput. Syst. – reference: M. Alberti, et al. Historical document image segmentation with LDA-initialized deep neural networks, in: Proceedings of the 4th International Workshop on Historical Document Imaging and Processing, 2017. – volume: 17 start-page: 700 year: 2019 end-page: 724 ident: b60 article-title: Modified salp swarm algorithm based multilevel thresholding for color image segmentation publication-title: Math. Biosci. Eng.: MBE – volume: 44 start-page: 588 year: 2017 end-page: 601 ident: b16 article-title: A new multi-threshold image segmentation approach using state transition algorithm publication-title: Appl. Math. Model. – start-page: 27 year: 2020 end-page: 49 ident: b25 article-title: An enhanced crow search algorithm applied to energy approaches publication-title: Recent Metaheuristics Algorithms for Parameter Identification – volume: 11 start-page: 1 year: 2016 end-page: 8 ident: b45 article-title: A fast automatic optimal threshold selection technique for image segmentation publication-title: Signal Image Video Process. – start-page: 283 year: 2018 end-page: 291 ident: b14 article-title: A novel edge detection algorithm for fast and efficient image segmentation publication-title: Data Engineering and Intelligent Computing – volume: 84 start-page: 195 year: 2000 end-page: 204 ident: b58 article-title: Interaction between cell shape and contraction pattern in the physarum plasmodium publication-title: Biophys. Chem. – start-page: 139 year: 2020 end-page: 159 ident: b26 article-title: The locust swarm optimization algorithm publication-title: New Advancements in Swarm Algorithms: Operators and Applications – year: 2019 ident: 10.1016/j.asoc.2020.106642_b37 article-title: Oppositional symbiotic organisms search optimization for multilevel thresholding of color image publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105577 – year: 2016 ident: 10.1016/j.asoc.2020.106642_b3 article-title: A review on image processing and image segmentation – volume: 44 start-page: 588 year: 2017 ident: 10.1016/j.asoc.2020.106642_b16 article-title: A new multi-threshold image segmentation approach using state transition algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.02.015 – start-page: 215 year: 2020 ident: 10.1016/j.asoc.2020.106642_b7 article-title: An efficient image segmentation algorithm for object recognition using spectral clustering – volume: 38 start-page: 15489 issue: 12 year: 2011 ident: 10.1016/j.asoc.2020.106642_b52 article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.011 – volume: 29 start-page: 119 issue: 2 year: 2008 ident: 10.1016/j.asoc.2020.106642_b18 article-title: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.09.005 – start-page: 283 year: 2018 ident: 10.1016/j.asoc.2020.106642_b14 article-title: A novel edge detection algorithm for fast and efficient image segmentation – volume: 47 start-page: 558 year: 2014 ident: 10.1016/j.asoc.2020.106642_b46 article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm publication-title: Measurement doi: 10.1016/j.measurement.2013.09.031 – volume: 31 start-page: 171 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.106642_b23 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2988-6 – volume: 79 start-page: 164 year: 2017 ident: 10.1016/j.asoc.2020.106642_b41 article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.042 – start-page: 41 year: 2020 ident: 10.1016/j.asoc.2020.106642_b5 article-title: Image segmentation using deep learning techniques in medical images – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106642_b56 article-title: A fast technique for image segmentation based on two meta-heuristic algorithms publication-title: Multimedia Tools Appl. – ident: 10.1016/j.asoc.2020.106642_b10 doi: 10.1145/3151509.3151519 – volume: 7 start-page: 76529 year: 2019 ident: 10.1016/j.asoc.2020.106642_b38 article-title: A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921545 – year: 2016 ident: 10.1016/j.asoc.2020.106642_b59 article-title: Il-SHADE: Improved l-SHADE algorithm for single objective real-parameter optimization – volume: 139 start-page: 357 year: 2014 ident: 10.1016/j.asoc.2020.106642_b17 article-title: A multilevel thresholding algorithm using electromagnetism optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.020 – volume: 93 start-page: 139 issue: 1 year: 2013 ident: 10.1016/j.asoc.2020.106642_b19 article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.07.010 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106642_b29 article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM publication-title: J. Supercomput. – year: 2020 ident: 10.1016/j.asoc.2020.106642_b2 article-title: Imaging features of coronavirus disease 2019 (COVID-19): Evaluation on thin-section CT publication-title: Acad. Radiol. doi: 10.1016/j.acra.2020.03.002 – volume: 323 start-page: 1406 issue: 14 year: 2020 ident: 10.1016/j.asoc.2020.106642_b1 article-title: Presumed asymptomatic carrier transmission of COVID-19 publication-title: JAMA doi: 10.1001/jama.2020.2565 – year: 2019 ident: 10.1016/j.asoc.2020.106642_b11 article-title: Article segmentation in digitised newspapers with a 2D Markov model – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2020.106642_b45 article-title: A fast automatic optimal threshold selection technique for image segmentation publication-title: Signal Image Video Process. – year: 2019 ident: 10.1016/j.asoc.2020.106642_b42 article-title: Multi-threshold image segmentation based on improved grey wolf optimization algorithm doi: 10.1088/1755-1315/252/4/042105 – volume: 42 start-page: 1573 issue: 3 year: 2015 ident: 10.1016/j.asoc.2020.106642_b51 article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.09.049 – volume: 506 start-page: 308 year: 2020 ident: 10.1016/j.asoc.2020.106642_b30 article-title: PSO Image thresholding on images compressed via fuzzy transforms publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.07.088 – volume: 2016 year: 2016 ident: 10.1016/j.asoc.2020.106642_b50 article-title: Multilevel image segmentation based on an improved firefly algorithm publication-title: Math. Probl. Eng. – start-page: 141 year: 2019 ident: 10.1016/j.asoc.2020.106642_b21 article-title: Fuzzy entropy approaches for image segmentation – volume: 78 start-page: 22613 issue: 16 year: 2019 ident: 10.1016/j.asoc.2020.106642_b35 article-title: Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-7506-7 – year: 2020 ident: 10.1016/j.asoc.2020.106642_b55 article-title: A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990893 – start-page: 279 year: 2015 ident: 10.1016/j.asoc.2020.106642_b39 article-title: A study of a firefly meta-heuristics for multithreshold image segmentation – year: 2020 ident: 10.1016/j.asoc.2020.106642_b6 article-title: DENSE-INception U-net for medical image segmentation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105395 – volume: 85 start-page: 129 year: 2018 ident: 10.1016/j.asoc.2020.106642_b22 article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.020 – volume: 11 start-page: 16 year: 2013 ident: 10.1016/j.asoc.2020.106642_b36 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.02.001 – volume: 84 start-page: 195 issue: 3 year: 2000 ident: 10.1016/j.asoc.2020.106642_b58 article-title: Interaction between cell shape and contraction pattern in the physarum plasmodium publication-title: Biophys. Chem. doi: 10.1016/S0301-4622(00)00108-3 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 10.1016/j.asoc.2020.106642_b20 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput Vis. Graph. Image Process. doi: 10.1016/0734-189X(85)90125-2 – volume: 41 start-page: 2905 issue: 8 year: 2020 ident: 10.1016/j.asoc.2020.106642_b8 article-title: Optimization of multi-scale segmentation of satellite imagery using fractal geometry publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1698071 – volume: 19 start-page: 1311 issue: 5 year: 2015 ident: 10.1016/j.asoc.2020.106642_b48 article-title: Modified particle swarm optimization-based multilevel thresholding for image segmentation publication-title: Soft Comput. doi: 10.1007/s00500-014-1345-2 – volume: 130 start-page: 256 year: 2017 ident: 10.1016/j.asoc.2020.106642_b9 article-title: Local and global evaluation for remote sensing image segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.003 – volume: 23 start-page: 13547 issue: 24 year: 2019 ident: 10.1016/j.asoc.2020.106642_b27 article-title: An opposition-based social spider optimization for feature selection publication-title: Soft Comput. doi: 10.1007/s00500-019-03891-x – year: 2016 ident: 10.1016/j.asoc.2020.106642_b4 – volume: 37 start-page: 4580 issue: 6 year: 2010 ident: 10.1016/j.asoc.2020.106642_b43 article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.050 – year: 2007 ident: 10.1016/j.asoc.2020.106642_b28 article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm – volume: 83 start-page: 242 year: 2017 ident: 10.1016/j.asoc.2020.106642_b33 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.023 – start-page: 211 year: 2020 ident: 10.1016/j.asoc.2020.106642_b44 article-title: Locust search algorithm applied to multi-threshold segmentation – start-page: 139 year: 2020 ident: 10.1016/j.asoc.2020.106642_b26 article-title: The locust swarm optimization algorithm – volume: 24 start-page: 595 issue: 4 year: 2011 ident: 10.1016/j.asoc.2020.106642_b53 article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.12.001 – volume: 26 start-page: S1345 issue: s1 year: 2015 ident: 10.1016/j.asoc.2020.106642_b40 article-title: A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation publication-title: Biomed. Mater. Eng. – volume: 52 start-page: 2382 issue: 5 year: 2013 ident: 10.1016/j.asoc.2020.106642_b49 article-title: Multilevel image segmentation based on fractional-order darwinian particle swarm optimization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2260552 – volume: 17 start-page: 700 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.106642_b60 article-title: Modified salp swarm algorithm based multilevel thresholding for color image segmentation publication-title: Math. Biosci. Eng.: MBE doi: 10.3934/mbe.2020036 – volume: 66 start-page: 268 year: 2017 ident: 10.1016/j.asoc.2020.106642_b13 article-title: Complex networks driven salient region detection based on superpixel segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.010 – volume: 22 start-page: 559 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106642_b15 article-title: Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-017-0653-4 – volume: 27 start-page: 57 year: 2014 ident: 10.1016/j.asoc.2020.106642_b34 article-title: A new genetic algorithm for solving optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.09.013 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106642_b54 article-title: A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems publication-title: Neural Comput. Appl. – volume: 31 start-page: 1641 issue: 5 year: 2019 ident: 10.1016/j.asoc.2020.106642_b24 article-title: A new binary salp swarm algorithm: development and application for optimization tasks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3613-z – ident: 10.1016/j.asoc.2020.106642_b62 – volume: 79 start-page: 2447 issue: 3 year: 2020 ident: 10.1016/j.asoc.2020.106642_b32 article-title: Multilevel image threshold segmentation using an improved bloch quantum artificial bee colony algorithm publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-08231-7 – volume: 34 start-page: 1341 issue: 2 year: 2008 ident: 10.1016/j.asoc.2020.106642_b47 article-title: A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.002 – start-page: 27 year: 2020 ident: 10.1016/j.asoc.2020.106642_b25 article-title: An enhanced crow search algorithm applied to energy approaches – volume: 27 start-page: 155 issue: 1 year: 2010 ident: 10.1016/j.asoc.2020.106642_b31 article-title: An improved ant colony optimization for constrained engineering design problems publication-title: Eng. Comput. doi: 10.1108/02644401011008577 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2020.106642_b57 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – year: 2020 ident: 10.1016/j.asoc.2020.106642_b12 – year: 2010 ident: 10.1016/j.asoc.2020.106642_b61 article-title: Image quality metrics: PSNR vs. SSIM |
SSID | ssj0016928 |
Score | 2.6393673 |
Snippet | Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106642 |
SubjectTerms | COVID-19 Image segmentation problem Kapur’s entropy Slime mould algorithm (SMA) Whale optimization algorithm X-ray images |
Title | HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106642 https://www.proquest.com/docview/2437402838 https://pubmed.ncbi.nlm.nih.gov/PMC7439973 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWy4ULb0QXWA0SNxSaOI6dcIsqVuW1IMqK3izbcdqgJlm1XdBe-BH8YjyJU7UH9sApijOWLM94Hs7MfIS8zEQoqOZRkFLDA0ZVGegsSoIitJkqSuvioq7b5zmfXrD382R-RCZDLQymVXrd3-v0Tlv7kbHfzfFlVY1nLvJIWcY4RZlNuyI-xgRK-evfuzSPiGcdvioSB0jtC2f6HC_ldsDFiBQHOGf0X8Zpz_k8TJ3cs0Vn98gd70RC3q_zPjmyzQNydwBoAH9eH5I_09mnXH7_nL-BHJbXWJwFTfvTrmC2qmoLNeJbg1ot2nW1XdaAl7Lwa-lsBrROldS-RnOPwrm4sFUGYd4X4HxHqGqnkGBjF7UvYmrAY9RAW0KHxgXzYK2ue8rNI3Jx9vbbZBp4EIbAsJhug0iL1Lq4J47KmFnsjmdDWnJu41hnysU_hunCGBNlRaqZUInCECwLFdM8K5iNH5Pjpm3sEwKx81aY0To2RrMktIqxxBjBFY2UEIqOSDTsvjS-QzkCZazkkIr2QyLHJHJM9hwbkVe7OZd9f44bqZOBqfJAyqQzIDfOezFIgHTHD_-pqMa2VxuJ_RwZ-mjpiIgD0dgtBxt4H35pqmXXyLsLBkV88p-rekpu41ufWviMHG_XV_a5c5G2-rQ7A6fkVj75-vELPt99mJ7_BecFFXI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2iXvou6zyvQrRAsURQldROCBkqTuIMT1BtBUrStwpICW2mRv9FfXJ5EGfbQDF1FEiB4x3uId99HyKc09mOqeOAlVHOPUbnwVBpEXuGbVBYLY_OiDu1zyvNr9m0ezY_IydALg2WVzvb3Nr2z1u7LxJ3m5KYsJzObeSQsZZyizibYxHeM6FTRiBxnZ-f5dPeYwNOOYhXne7jA9c70ZV7SHoJNEyl-4JzRf_mnvfjzsHpyzx2dPiGPXBwJWb_Vp-TI1M_I44GjAdyVfU7-5LPLTPz4nn2BDFZ32J8FdfPLrGG2LisDFVJcg1wvm03ZrirA_7Lwe2XdBjTWmlSuTXNvho1yoZUamd6XYMNHKCtrk2BrlpXrY6rB0dRAs4COkAvm3kbe9TO3L8j16derk9xzPAyeZiFtvUDFibGpTxgsQmYQIM_4dMG5CUOVSpsCaaYKrXWQFolisYwkZmGpL5niacFM-JKM6qY2rwiENmBhWqlQa8Ui30jGIq1jLmkg41jSMQmG0xfagZQjV8ZaDNVoPwVKTKDERC-xMfm8W3PTQ3TcOzsahCoOFE1YH3Lvuo-DBgh7A_FZRdamud0KhHRkGKYlYxIfqMZuO4jhfThSl6sOy7vLB-Pw9X_u6gN5kF9dXoiLs-n5G_IQR_pKw7dk1G5uzTsbMbXqvbsRfwGgNhaO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSMA_WOA%3A+A+hybrid+novel+Slime+mould+algorithm+with+whale+optimization+algorithm+for+tackling+the+image+segmentation+problem+of+chest+X-ray+images&rft.jtitle=Applied+soft+computing&rft.au=Abdel-Basset%2C+Mohamed&rft.au=Chang%2C+Victor&rft.au=Mohamed%2C+Reda&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=95&rft.spage=106642&rft.epage=106642&rft_id=info:doi/10.1016%2Fj.asoc.2020.106642&rft_id=info%3Apmid%2F32843887&rft.externalDocID=PMC7439973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |