HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 95; p. 106642
Main Authors Abdel-Basset, Mohamed, Chang, Victor, Mohamed, Reda
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur’s entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics. •We proposes a new hybrid approach based on the thresholding technique to overcome the image segmentation problem.•We developed an integrated slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy.•ISMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms.•The experimental results demonstrate that our proposed algorithm outperforms SMA under Kapur’s entropy.•Our algorithm could outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU time and (Std).
AbstractList Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 - sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics.Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 - sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics.
Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur’s entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics. • We proposes a new hybrid approach based on the thresholding technique to overcome the image segmentation problem. • We developed an integrated slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. • ISMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms. • The experimental results demonstrate that our proposed algorithm outperforms SMA under Kapur’s entropy. • Our algorithm could outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU time and (Std).
Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur’s entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics. •We proposes a new hybrid approach based on the thresholding technique to overcome the image segmentation problem.•We developed an integrated slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy.•ISMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms.•The experimental results demonstrate that our proposed algorithm outperforms SMA under Kapur’s entropy.•Our algorithm could outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU time and (Std).
ArticleNumber 106642
Author Mohamed, Reda
Chang, Victor
Abdel-Basset, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0003-1102-1387
  surname: Abdel-Basset
  fullname: Abdel-Basset, Mohamed
  email: analyst_mohamed@zu.edu.eg
  organization: Faculty of Computers and Informatics, Zagazig University, Sharqiyah, Egypt
– sequence: 2
  givenname: Victor
  orcidid: 0000-0002-8012-5852
  surname: Chang
  fullname: Chang, Victor
  email: V.Chang@tees.ac.uk
  organization: School of Computing, Engineering and Digital Technologies, Teesside University, UK
– sequence: 3
  givenname: Reda
  surname: Mohamed
  fullname: Mohamed, Reda
  email: redamoh@zu.edu.eg
  organization: Faculty of Computers and Informatics, Zagazig University, Sharqiyah, Egypt
BookMark eNp9kc1u1DAUhS1URH_gBVh52U0Gx_Y4TlUhjapCkYq6KAh2luPcJJ469mBnphoegyfGo1QIWHRjW_b5ju-95xQd-eABobclWZSkFO_WC52CWVBCDxdCcPoCnZSyokUtZHmUz0shC15zcYxOU1qTDNVUvkLHjErOpKxO0K-b-88r9e1udYFXeNg30bbYhx04fO_sCHgMW9di7foQ7TSM-DGv-HHQDnDYTHa0P_Vkg_9L0YWIJ20enPU9ngbAdtQ94AT9CH6a1ZsYGgcjDh02A6QJfy-i3s_K9Bq97LRL8OZpP0NfP1x_ubopbu8-frpa3RaGMzoVZVNJIFKwsmMcpBBLILQTAhhral0LYnjTGmPKupUNr_RSyyr3TzRvRN1yYGfo_ey72TYjtCZXF7VTm5jLiHsVtFX_vng7qD7sVMVZXVcsG5w_GcTwY5vbUKNNBpzTHsI2KcpZxQmVTGYpnaUmhpQidH--KYk6hKnW6hCmOoSp5jAzJP-DjJ0HmMux7nn0ckYhD3BnIapkLHgDrY1gJtUG-xz-G-LFvko
CitedBy_id crossref_primary_10_3390_electronics14010126
crossref_primary_10_1038_s41598_023_30941_0
crossref_primary_10_1080_00207721_2022_2153635
crossref_primary_10_1007_s00521_022_07985_w
crossref_primary_10_1111_cgf_14697
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_32604_cmc_2021_016956
crossref_primary_10_1016_j_asoc_2022_108483
crossref_primary_10_1016_j_egyr_2021_11_138
crossref_primary_10_1142_S0219467824500049
crossref_primary_10_1016_j_ttbdis_2022_101930
crossref_primary_10_1016_j_ijleo_2024_171890
crossref_primary_10_3934_mbe_2022659
crossref_primary_10_1007_s12530_024_09614_4
crossref_primary_10_1109_ACCESS_2023_3240576
crossref_primary_10_1016_j_bspc_2024_107431
crossref_primary_10_1155_2022_8011003
crossref_primary_10_3390_math9090995
crossref_primary_10_1016_j_techfore_2021_120849
crossref_primary_10_1016_j_inpa_2023_11_003
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_1016_j_eswa_2021_114689
crossref_primary_10_1016_j_compbiomed_2024_108038
crossref_primary_10_48175_IJARSCT_4607
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_knosys_2021_107494
crossref_primary_10_1109_ACCESS_2023_3313508
crossref_primary_10_1007_s10796_021_10132_w
crossref_primary_10_1111_exsy_12694
crossref_primary_10_1016_j_compbiomed_2022_105810
crossref_primary_10_1016_j_compbiomed_2022_106227
crossref_primary_10_1016_j_compbiomed_2021_104984
crossref_primary_10_1061__ASCE_WR_1943_5452_0001602
crossref_primary_10_1007_s10489_024_06084_8
crossref_primary_10_1080_17445760_2024_2350010
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_4018_IJISMD_306644
crossref_primary_10_1007_s42107_023_00572_x
crossref_primary_10_1007_s42107_023_00612_6
crossref_primary_10_1109_TII_2021_3059023
crossref_primary_10_1016_j_asoc_2023_111150
crossref_primary_10_1038_s41598_024_69487_0
crossref_primary_10_3390_sym14040829
crossref_primary_10_1038_s41598_022_13516_3
crossref_primary_10_3390_electronics10232975
crossref_primary_10_1002_cpe_7809
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1002_ima_22916
crossref_primary_10_1109_ACCESS_2021_3108447
crossref_primary_10_3103_S0146411622060116
crossref_primary_10_1038_s41598_023_51135_8
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_1007_s10462_023_10398_3
crossref_primary_10_1109_TII_2020_3048391
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1007_s11042_024_20248_1
crossref_primary_10_1016_j_compbiomed_2021_104609
crossref_primary_10_4018_JGIM_300818
crossref_primary_10_1061_AJRUA6_0001129
crossref_primary_10_1109_TII_2021_3056386
crossref_primary_10_1007_s44196_021_00005_0
crossref_primary_10_1007_s13369_021_06513_7
crossref_primary_10_1016_j_displa_2023_102485
crossref_primary_10_1002_cpe_7195
crossref_primary_10_1007_s10796_021_10131_x
crossref_primary_10_1016_j_compbiomed_2021_105015
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_3390_biomedicines10082052
crossref_primary_10_1016_j_aei_2024_102464
crossref_primary_10_1109_EMR_2023_3281633
crossref_primary_10_3390_math9121316
crossref_primary_10_1007_s11831_023_09883_3
crossref_primary_10_1155_2022_8482022
crossref_primary_10_1007_s00366_021_01371_1
crossref_primary_10_1007_s00366_021_01409_4
crossref_primary_10_3390_biomimetics9030138
crossref_primary_10_1016_j_compbiomed_2022_106083
crossref_primary_10_1088_1742_6596_2858_1_012034
crossref_primary_10_1016_j_oceaneng_2023_116238
crossref_primary_10_1155_2023_7228896
crossref_primary_10_1016_j_eswa_2024_124624
crossref_primary_10_1007_s10796_021_10144_6
crossref_primary_10_1016_j_eswa_2022_117012
crossref_primary_10_1007_s44196_024_00704_4
crossref_primary_10_1016_j_bspc_2024_107465
crossref_primary_10_1016_j_compbiomed_2023_107408
crossref_primary_10_1016_j_socscimed_2022_114973
crossref_primary_10_1109_JIOT_2022_3176300
crossref_primary_10_1109_ACCESS_2020_3044857
crossref_primary_10_1016_j_matcom_2022_02_030
crossref_primary_10_1080_15325008_2022_2049650
crossref_primary_10_1016_j_matdes_2023_112184
crossref_primary_10_1111_ffe_13977
crossref_primary_10_1155_2021_9942873
crossref_primary_10_1016_j_compbiomed_2022_105344
crossref_primary_10_3389_fninf_2023_1126783
crossref_primary_10_1007_s00366_021_01364_0
crossref_primary_10_1007_s00500_024_09869_8
crossref_primary_10_1155_2022_4639208
crossref_primary_10_1016_j_eswa_2024_125673
crossref_primary_10_3390_biomimetics8060482
crossref_primary_10_1109_TII_2021_3056686
crossref_primary_10_32604_iasc_2023_026341
crossref_primary_10_1016_j_egyr_2021_09_077
crossref_primary_10_3390_electronics11244224
crossref_primary_10_1016_j_compbiomed_2021_104427
crossref_primary_10_1016_j_isatra_2021_04_011
crossref_primary_10_1007_s10796_021_10152_6
crossref_primary_10_1016_j_isci_2023_107736
crossref_primary_10_1016_j_compbiomed_2022_105858
crossref_primary_10_1186_s44147_023_00332_3
crossref_primary_10_32604_cmes_2022_019198
crossref_primary_10_1007_s10796_021_10123_x
crossref_primary_10_1109_ACCESS_2022_3153038
crossref_primary_10_1016_j_bspc_2021_103401
crossref_primary_10_1109_ACCESS_2022_3183627
crossref_primary_10_36548_jscp_2020_4_001
crossref_primary_10_2139_ssrn_3931679
crossref_primary_10_1016_j_compbiomed_2023_107653
crossref_primary_10_1016_j_compstruc_2022_106760
crossref_primary_10_1016_j_ijhydene_2021_01_076
crossref_primary_10_1016_j_asoc_2024_111836
crossref_primary_10_3390_math10214063
crossref_primary_10_3390_math9101140
crossref_primary_10_1007_s12205_022_2013_1
crossref_primary_10_1109_TII_2021_3057524
crossref_primary_10_3934_mbe_2022105
crossref_primary_10_1089_big_2022_0261
crossref_primary_10_1007_s10462_022_10157_w
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1109_TII_2021_3057683
crossref_primary_10_3390_s22103833
crossref_primary_10_1111_exsy_12700
crossref_primary_10_1016_j_compbiomed_2021_104910
crossref_primary_10_1007_s12083_023_01541_6
crossref_primary_10_1038_s41598_022_24668_7
crossref_primary_10_1007_s00202_023_02194_7
crossref_primary_10_1016_j_enganabound_2022_09_034
crossref_primary_10_1111_exsy_13079
crossref_primary_10_1007_s11517_024_03024_z
crossref_primary_10_1038_s41598_024_77517_0
crossref_primary_10_1371_journal_pone_0280512
crossref_primary_10_3934_era_2024175
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_1080_21642583_2022_2084650
crossref_primary_10_1093_jcde_qwac014
crossref_primary_10_1109_TII_2021_3052788
crossref_primary_10_1093_jcde_qwaf006
crossref_primary_10_1007_s00521_022_06906_1
crossref_primary_10_3390_a16100473
crossref_primary_10_1007_s42235_022_00295_w
crossref_primary_10_1016_j_aej_2024_02_065
crossref_primary_10_1016_j_rineng_2024_102833
crossref_primary_10_1080_0305215X_2024_2366484
crossref_primary_10_1007_s00521_022_07034_6
crossref_primary_10_1038_s41598_022_22933_3
crossref_primary_10_1093_jcde_qwac081
crossref_primary_10_1007_s42235_024_00590_8
crossref_primary_10_1016_j_eij_2024_100442
crossref_primary_10_3390_app15062934
crossref_primary_10_1007_s11227_024_06080_2
crossref_primary_10_1109_ACCESS_2024_3510252
crossref_primary_10_1016_j_compbiomed_2022_105910
crossref_primary_10_1007_s00521_024_10327_7
crossref_primary_10_1002_ese3_1115
crossref_primary_10_3390_electronics10151846
crossref_primary_10_1016_j_cma_2022_115764
crossref_primary_10_1111_exsy_12708
crossref_primary_10_1142_S0219622022500675
crossref_primary_10_1007_s10489_023_05073_7
Cites_doi 10.1016/j.asoc.2019.105577
10.1016/j.apm.2017.02.015
10.1016/j.eswa.2011.06.011
10.1016/j.patrec.2007.09.005
10.1016/j.measurement.2013.09.031
10.1007/s00521-017-2988-6
10.1016/j.eswa.2017.02.042
10.1145/3151509.3151519
10.1109/ACCESS.2019.2921545
10.1016/j.neucom.2014.02.020
10.1016/j.sigpro.2012.07.010
10.1016/j.acra.2020.03.002
10.1001/jama.2020.2565
10.1088/1755-1315/252/4/042105
10.1016/j.eswa.2014.09.049
10.1016/j.ins.2019.07.088
10.1007/s11042-019-7506-7
10.1109/ACCESS.2020.2990893
10.1016/j.cmpb.2020.105395
10.1016/j.future.2018.03.020
10.1016/j.swevo.2013.02.001
10.1016/S0301-4622(00)00108-3
10.1016/0734-189X(85)90125-2
10.1080/01431161.2019.1698071
10.1007/s00500-014-1345-2
10.1016/j.isprsjprs.2017.06.003
10.1007/s00500-019-03891-x
10.1016/j.eswa.2009.12.050
10.1016/j.eswa.2017.04.023
10.1016/j.engappai.2010.12.001
10.1109/TGRS.2013.2260552
10.3934/mbe.2020036
10.1016/j.patcog.2017.01.010
10.1007/s10044-017-0653-4
10.1016/j.engappai.2013.09.013
10.1007/s00521-018-3613-z
10.1007/s11042-019-08231-7
10.1016/j.eswa.2007.01.002
10.1108/02644401011008577
10.1016/j.advengsoft.2016.01.008
ContentType Journal Article
Copyright 2020 Elsevier B.V.
2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.asoc.2020.106642
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 106642
ExternalDocumentID PMC7439973
10_1016_j_asoc_2020_106642
S1568494620305809
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c432t-1b78e08631f34e8665e02f66e33b9a960c4bdccc19d8b47a5a871690a4b69d4e3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Aug 21 13:36:58 EDT 2025
Thu Jul 10 18:43:45 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Tue Jul 01 01:50:07 EDT 2025
Sun Apr 06 06:53:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Kapur’s entropy
COVID-19
Image segmentation problem
Whale optimization algorithm
Slime mould algorithm (SMA)
X-ray images
Language English
License Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-1b78e08631f34e8665e02f66e33b9a960c4bdccc19d8b47a5a871690a4b69d4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8012-5852
0000-0003-1102-1387
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7439973
PMID 32843887
PQID 2437402838
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7439973
proquest_miscellaneous_2437402838
crossref_primary_10_1016_j_asoc_2020_106642
crossref_citationtrail_10_1016_j_asoc_2020_106642
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mittal (b5) 2020
Abdel-Basset (b22) 2018; 85
Wang, Jia, Peng (b60) 2019; 17
Maitra, Chatterjee (b47) 2008; 34
Oliva (b17) 2014; 139
Wang, Wang, Wilkes (b7) 2020
Kaveh, Talatahari (b31) 2010; 27
Mirjalili, Lewis (b57) 2016; 95
Kuruvilla (b3) 2016
Manikandan (b46) 2014; 47
Liu (b48) 2015; 19
Oliva, Elaziz, Hinojosa (b21) 2019
Rizk-Allah (b24) 2019; 31
Chouksey, Jha, Sharma (b56) 2020
Brest, Maučec, Bošković (b59) 2016
Elsayed, Sarker, Essam (b34) 2014; 27
Dirami (b19) 2013; 93
Agrawal (b36) 2013; 11
Sanyal, Chatterjee, Munshi (b52) 2011; 38
K. Egiazarian, et al. New full-reference quality metrics based on HVS, in: Proceedings of the Second International Workshop on Video Processing and Quality Metrics, 2006.
Yao (b42) 2019
Hu (b4) 2016
Cuevas, Fausto, González (b26) 2020
Hore, Ziou (b61) 2010
Arora (b18) 2008; 29
Sayed, Hassanien, Azar (b23) 2019; 31
Bhandari, Kumar, Singh (b51) 2015; 42
Barman (b12) 2020
Nakagaki, Yamada, Ueda (b58) 2000; 84
Xiong (b29) 2020
M. Alberti, et al. Historical document image segmentation with LDA-initialized deep neural networks, in: Proceedings of the 4th International Workshop on Historical Document Imaging and Processing, 2017.
Su, Zhang (b9) 2017; 130
Singla, Patra (b45) 2016; 11
Prathusha, Jyothi (b14) 2018
Wang (b40) 2015; 26
Bao, Jia, Lang (b38) 2019; 7
Abdel-Basset, Chang, Mohamed (b54) 2020
Abdel-Basset (b55) 2020
Karydas (b8) 2020; 41
Sathya, Kayalvizhi (b53) 2011; 24
Cuevas, Gálvez, Avalos (b25) 2020
Kandhway, Bhandari (b35) 2019; 78
Ghamisi (b49) 2013; 52
Aksac, Ozyer, Alhajj (b13) 2017; 66
Cuevas, Fausto, González (b44) 2020
Zhang (b6) 2020
Chakraborty, Nandi, Roy (b37) 2019
Naoum, Nothman, Curran (b11) 2019
Bai (b1) 2020; 323
Oliva (b41) 2017; 79
Horng (b43) 2010; 37
Han (b16) 2017; 44
El Aziz, Ewees, Hassanien (b33) 2017; 83
Chen (b50) 2016; 2016
Guan (b2) 2020
Erdmann (b39) 2015
Narayanan (b15) 2019; 22
Huo, Sun, Ren (b32) 2020; 79
Di Martino, Sessa (b30) 2020; 506
Ibrahim (b27) 2019; 23
Guo, Li (b28) 2007
Kapur, Sahoo, Wong (b20) 1985; 29
Maitra (10.1016/j.asoc.2020.106642_b47) 2008; 34
Ibrahim (10.1016/j.asoc.2020.106642_b27) 2019; 23
Mittal (10.1016/j.asoc.2020.106642_b5) 2020
Liu (10.1016/j.asoc.2020.106642_b48) 2015; 19
Zhang (10.1016/j.asoc.2020.106642_b6) 2020
Barman (10.1016/j.asoc.2020.106642_b12) 2020
El Aziz (10.1016/j.asoc.2020.106642_b33) 2017; 83
Prathusha (10.1016/j.asoc.2020.106642_b14) 2018
Bai (10.1016/j.asoc.2020.106642_b1) 2020; 323
Cuevas (10.1016/j.asoc.2020.106642_b25) 2020
Mirjalili (10.1016/j.asoc.2020.106642_b57) 2016; 95
Han (10.1016/j.asoc.2020.106642_b16) 2017; 44
Narayanan (10.1016/j.asoc.2020.106642_b15) 2019; 22
Dirami (10.1016/j.asoc.2020.106642_b19) 2013; 93
Guo (10.1016/j.asoc.2020.106642_b28) 2007
Ghamisi (10.1016/j.asoc.2020.106642_b49) 2013; 52
Sathya (10.1016/j.asoc.2020.106642_b53) 2011; 24
Hu (10.1016/j.asoc.2020.106642_b4) 2016
Oliva (10.1016/j.asoc.2020.106642_b17) 2014; 139
Abdel-Basset (10.1016/j.asoc.2020.106642_b55) 2020
Nakagaki (10.1016/j.asoc.2020.106642_b58) 2000; 84
Elsayed (10.1016/j.asoc.2020.106642_b34) 2014; 27
Oliva (10.1016/j.asoc.2020.106642_b41) 2017; 79
Agrawal (10.1016/j.asoc.2020.106642_b36) 2013; 11
Wang (10.1016/j.asoc.2020.106642_b40) 2015; 26
Arora (10.1016/j.asoc.2020.106642_b18) 2008; 29
Cuevas (10.1016/j.asoc.2020.106642_b44) 2020
Karydas (10.1016/j.asoc.2020.106642_b8) 2020; 41
Naoum (10.1016/j.asoc.2020.106642_b11) 2019
Bhandari (10.1016/j.asoc.2020.106642_b51) 2015; 42
Guan (10.1016/j.asoc.2020.106642_b2) 2020
Horng (10.1016/j.asoc.2020.106642_b43) 2010; 37
Bao (10.1016/j.asoc.2020.106642_b38) 2019; 7
10.1016/j.asoc.2020.106642_b62
Oliva (10.1016/j.asoc.2020.106642_b21) 2019
Rizk-Allah (10.1016/j.asoc.2020.106642_b24) 2019; 31
Wang (10.1016/j.asoc.2020.106642_b60) 2019; 17
Xiong (10.1016/j.asoc.2020.106642_b29) 2020
Erdmann (10.1016/j.asoc.2020.106642_b39) 2015
Su (10.1016/j.asoc.2020.106642_b9) 2017; 130
Kandhway (10.1016/j.asoc.2020.106642_b35) 2019; 78
Wang (10.1016/j.asoc.2020.106642_b7) 2020
Hore (10.1016/j.asoc.2020.106642_b61) 2010
Abdel-Basset (10.1016/j.asoc.2020.106642_b22) 2018; 85
Sayed (10.1016/j.asoc.2020.106642_b23) 2019; 31
Kaveh (10.1016/j.asoc.2020.106642_b31) 2010; 27
Abdel-Basset (10.1016/j.asoc.2020.106642_b54) 2020
Huo (10.1016/j.asoc.2020.106642_b32) 2020; 79
Manikandan (10.1016/j.asoc.2020.106642_b46) 2014; 47
Brest (10.1016/j.asoc.2020.106642_b59) 2016
Di Martino (10.1016/j.asoc.2020.106642_b30) 2020; 506
Kuruvilla (10.1016/j.asoc.2020.106642_b3) 2016
Kapur (10.1016/j.asoc.2020.106642_b20) 1985; 29
Singla (10.1016/j.asoc.2020.106642_b45) 2016; 11
Chouksey (10.1016/j.asoc.2020.106642_b56) 2020
Sanyal (10.1016/j.asoc.2020.106642_b52) 2011; 38
Aksac (10.1016/j.asoc.2020.106642_b13) 2017; 66
10.1016/j.asoc.2020.106642_b10
Yao (10.1016/j.asoc.2020.106642_b42) 2019
Cuevas (10.1016/j.asoc.2020.106642_b26) 2020
Chakraborty (10.1016/j.asoc.2020.106642_b37) 2019
Chen (10.1016/j.asoc.2020.106642_b50) 2016; 2016
References_xml – year: 2019
  ident: b37
  article-title: Oppositional symbiotic organisms search optimization for multilevel thresholding of color image
  publication-title: Appl. Soft Comput.
– volume: 323
  start-page: 1406
  year: 2020
  end-page: 1407
  ident: b1
  article-title: Presumed asymptomatic carrier transmission of COVID-19
  publication-title: JAMA
– volume: 47
  start-page: 558
  year: 2014
  end-page: 568
  ident: b46
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
– start-page: 211
  year: 2020
  end-page: 240.
  ident: b44
  article-title: Locust search algorithm applied to multi-threshold segmentation
  publication-title: New Advancements in Swarm Algorithms: Operators and Applications
– start-page: 215
  year: 2020
  end-page: 234
  ident: b7
  article-title: An efficient image segmentation algorithm for object recognition using spectral clustering
  publication-title: Machine Learning-Based Natural Scene Recognition for Mobile Robot Localization in an Unknown Environment
– volume: 29
  start-page: 119
  year: 2008
  end-page: 125
  ident: b18
  article-title: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm
  publication-title: Pattern Recognit. Lett.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b57
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 66
  start-page: 268
  year: 2017
  end-page: 279
  ident: b13
  article-title: Complex networks driven salient region detection based on superpixel segmentation
  publication-title: Pattern Recognit.
– year: 2020
  ident: b6
  article-title: DENSE-INception U-net for medical image segmentation
  publication-title: Comput. Methods Programs Biomed.
– volume: 78
  start-page: 22613
  year: 2019
  end-page: 22641
  ident: b35
  article-title: Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer
  publication-title: Multimedia Tools Appl.
– start-page: 279
  year: 2015
  end-page: 295
  ident: b39
  article-title: A study of a firefly meta-heuristics for multithreshold image segmentation
  publication-title: Developments in Medical Image Processing and Computational Vision
– volume: 79
  start-page: 164
  year: 2017
  end-page: 180
  ident: b41
  article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm
  publication-title: Expert Syst. Appl.
– year: 2016
  ident: b4
  article-title: Utilizing large scale vision and text datasets for image segmentation from referring expressions
– year: 2020
  ident: b12
  article-title: Combining visual and textual features for semantic segmentation of historical newspapers
– volume: 26
  start-page: S1345
  year: 2015
  end-page: S1351
  ident: b40
  article-title: A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation
  publication-title: Biomed. Mater. Eng.
– volume: 24
  start-page: 595
  year: 2011
  end-page: 615
  ident: b53
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2020
  end-page: 34
  ident: b54
  article-title: A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems
  publication-title: Neural Comput. Appl.
– volume: 37
  start-page: 4580
  year: 2010
  end-page: 4592
  ident: b43
  article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2020
  end-page: 15
  ident: b29
  article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM
  publication-title: J. Supercomput.
– year: 2019
  ident: b42
  article-title: Multi-threshold image segmentation based on improved grey wolf optimization algorithm
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 506
  start-page: 308
  year: 2020
  end-page: 324
  ident: b30
  article-title: PSO Image thresholding on images compressed via fuzzy transforms
  publication-title: Inform. Sci.
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: b20
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput Vis. Graph. Image Process.
– volume: 11
  start-page: 16
  year: 2013
  end-page: 30
  ident: b36
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm Evol. Comput.
– volume: 2016
  year: 2016
  ident: b50
  article-title: Multilevel image segmentation based on an improved firefly algorithm
  publication-title: Math. Probl. Eng.
– year: 2020
  ident: b55
  article-title: A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy
  publication-title: IEEE Access
– volume: 79
  start-page: 2447
  year: 2020
  end-page: 2471
  ident: b32
  article-title: Multilevel image threshold segmentation using an improved bloch quantum artificial bee colony algorithm
  publication-title: Multimedia Tools Appl.
– volume: 27
  start-page: 155
  year: 2010
  end-page: 182
  ident: b31
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Eng. Comput.
– volume: 52
  start-page: 2382
  year: 2013
  end-page: 2394
  ident: b49
  article-title: Multilevel image segmentation based on fractional-order darwinian particle swarm optimization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 31
  start-page: 1641
  year: 2019
  end-page: 1663
  ident: b24
  article-title: A new binary salp swarm algorithm: development and application for optimization tasks
  publication-title: Neural Comput. Appl.
– volume: 42
  start-page: 1573
  year: 2015
  end-page: 1601
  ident: b51
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions
  publication-title: Expert Syst. Appl.
– start-page: 41
  year: 2020
  end-page: 63.
  ident: b5
  article-title: Image segmentation using deep learning techniques in medical images
  publication-title: Advancement of Machine Intelligence in Interactive Medical Image Analysis
– year: 2016
  ident: b59
  article-title: Il-SHADE: Improved l-SHADE algorithm for single objective real-parameter optimization
  publication-title: 2016 IEEE Congress on Evolutionary Computation, CEC
– year: 2020
  ident: b2
  article-title: Imaging features of coronavirus disease 2019 (COVID-19): Evaluation on thin-section CT
  publication-title: Acad. Radiol.
– reference: K. Egiazarian, et al. New full-reference quality metrics based on HVS, in: Proceedings of the Second International Workshop on Video Processing and Quality Metrics, 2006.
– year: 2010
  ident: b61
  article-title: Image quality metrics: PSNR vs. SSIM
  publication-title: 2010 20th International Conference on Pattern Recognition
– volume: 41
  start-page: 2905
  year: 2020
  end-page: 2933
  ident: b8
  article-title: Optimization of multi-scale segmentation of satellite imagery using fractal geometry
  publication-title: Int. J. Remote Sens.
– volume: 23
  start-page: 13547
  year: 2019
  end-page: 13567
  ident: b27
  article-title: An opposition-based social spider optimization for feature selection
  publication-title: Soft Comput.
– volume: 38
  start-page: 15489
  year: 2011
  end-page: 15498
  ident: b52
  article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation
  publication-title: Expert Syst. Appl.
– year: 2007
  ident: b28
  article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm
  publication-title: Australasian Joint Conference on Artificial Intelligence
– start-page: 1
  year: 2020
  end-page: 53
  ident: b56
  article-title: A fast technique for image segmentation based on two meta-heuristic algorithms
  publication-title: Multimedia Tools Appl.
– volume: 22
  start-page: 559
  year: 2019
  end-page: 571
  ident: b15
  article-title: Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities
  publication-title: Pattern Anal. Appl.
– volume: 7
  start-page: 76529
  year: 2019
  end-page: 76546
  ident: b38
  article-title: A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation
  publication-title: IEEE Access
– year: 2016
  ident: b3
  article-title: A review on image processing and image segmentation
  publication-title: 2016 International Conference on Data Mining and Advanced Computing, SAPIENCE
– volume: 139
  start-page: 357
  year: 2014
  end-page: 381
  ident: b17
  article-title: A multilevel thresholding algorithm using electromagnetism optimization
  publication-title: Neurocomputing
– volume: 19
  start-page: 1311
  year: 2015
  end-page: 1327
  ident: b48
  article-title: Modified particle swarm optimization-based multilevel thresholding for image segmentation
  publication-title: Soft Comput.
– volume: 31
  start-page: 171
  year: 2019
  end-page: 188
  ident: b23
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput. Appl.
– start-page: 141
  year: 2019
  end-page: 147
  ident: b21
  article-title: Fuzzy entropy approaches for image segmentation
  publication-title: Metaheuristic Algorithms for Image Segmentation: Theory and Applications
– volume: 93
  start-page: 139
  year: 2013
  end-page: 153
  ident: b19
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Process.
– volume: 83
  start-page: 242
  year: 2017
  end-page: 256
  ident: b33
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– volume: 34
  start-page: 1341
  year: 2008
  end-page: 1350
  ident: b47
  article-title: A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
  publication-title: Expert Syst. Appl.
– year: 2019
  ident: b11
  article-title: Article segmentation in digitised newspapers with a 2D Markov model
  publication-title: 2019 International Conference on Document Analysis and RecognitionI, ICDAR
– volume: 27
  start-page: 57
  year: 2014
  end-page: 69
  ident: b34
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 130
  start-page: 256
  year: 2017
  end-page: 276
  ident: b9
  article-title: Local and global evaluation for remote sensing image segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 85
  start-page: 129
  year: 2018
  end-page: 145
  ident: b22
  article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem
  publication-title: Future Gener. Comput. Syst.
– reference: M. Alberti, et al. Historical document image segmentation with LDA-initialized deep neural networks, in: Proceedings of the 4th International Workshop on Historical Document Imaging and Processing, 2017.
– volume: 17
  start-page: 700
  year: 2019
  end-page: 724
  ident: b60
  article-title: Modified salp swarm algorithm based multilevel thresholding for color image segmentation
  publication-title: Math. Biosci. Eng.: MBE
– volume: 44
  start-page: 588
  year: 2017
  end-page: 601
  ident: b16
  article-title: A new multi-threshold image segmentation approach using state transition algorithm
  publication-title: Appl. Math. Model.
– start-page: 27
  year: 2020
  end-page: 49
  ident: b25
  article-title: An enhanced crow search algorithm applied to energy approaches
  publication-title: Recent Metaheuristics Algorithms for Parameter Identification
– volume: 11
  start-page: 1
  year: 2016
  end-page: 8
  ident: b45
  article-title: A fast automatic optimal threshold selection technique for image segmentation
  publication-title: Signal Image Video Process.
– start-page: 283
  year: 2018
  end-page: 291
  ident: b14
  article-title: A novel edge detection algorithm for fast and efficient image segmentation
  publication-title: Data Engineering and Intelligent Computing
– volume: 84
  start-page: 195
  year: 2000
  end-page: 204
  ident: b58
  article-title: Interaction between cell shape and contraction pattern in the physarum plasmodium
  publication-title: Biophys. Chem.
– start-page: 139
  year: 2020
  end-page: 159
  ident: b26
  article-title: The locust swarm optimization algorithm
  publication-title: New Advancements in Swarm Algorithms: Operators and Applications
– year: 2019
  ident: 10.1016/j.asoc.2020.106642_b37
  article-title: Oppositional symbiotic organisms search optimization for multilevel thresholding of color image
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105577
– year: 2016
  ident: 10.1016/j.asoc.2020.106642_b3
  article-title: A review on image processing and image segmentation
– volume: 44
  start-page: 588
  year: 2017
  ident: 10.1016/j.asoc.2020.106642_b16
  article-title: A new multi-threshold image segmentation approach using state transition algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.02.015
– start-page: 215
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b7
  article-title: An efficient image segmentation algorithm for object recognition using spectral clustering
– volume: 38
  start-page: 15489
  issue: 12
  year: 2011
  ident: 10.1016/j.asoc.2020.106642_b52
  article-title: An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.011
– volume: 29
  start-page: 119
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2020.106642_b18
  article-title: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.09.005
– start-page: 283
  year: 2018
  ident: 10.1016/j.asoc.2020.106642_b14
  article-title: A novel edge detection algorithm for fast and efficient image segmentation
– volume: 47
  start-page: 558
  year: 2014
  ident: 10.1016/j.asoc.2020.106642_b46
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.031
– volume: 31
  start-page: 171
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b23
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2988-6
– volume: 79
  start-page: 164
  year: 2017
  ident: 10.1016/j.asoc.2020.106642_b41
  article-title: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.042
– start-page: 41
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b5
  article-title: Image segmentation using deep learning techniques in medical images
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b56
  article-title: A fast technique for image segmentation based on two meta-heuristic algorithms
  publication-title: Multimedia Tools Appl.
– ident: 10.1016/j.asoc.2020.106642_b10
  doi: 10.1145/3151509.3151519
– volume: 7
  start-page: 76529
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b38
  article-title: A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921545
– year: 2016
  ident: 10.1016/j.asoc.2020.106642_b59
  article-title: Il-SHADE: Improved l-SHADE algorithm for single objective real-parameter optimization
– volume: 139
  start-page: 357
  year: 2014
  ident: 10.1016/j.asoc.2020.106642_b17
  article-title: A multilevel thresholding algorithm using electromagnetism optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.020
– volume: 93
  start-page: 139
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2020.106642_b19
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.07.010
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b29
  article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM
  publication-title: J. Supercomput.
– year: 2020
  ident: 10.1016/j.asoc.2020.106642_b2
  article-title: Imaging features of coronavirus disease 2019 (COVID-19): Evaluation on thin-section CT
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2020.03.002
– volume: 323
  start-page: 1406
  issue: 14
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b1
  article-title: Presumed asymptomatic carrier transmission of COVID-19
  publication-title: JAMA
  doi: 10.1001/jama.2020.2565
– year: 2019
  ident: 10.1016/j.asoc.2020.106642_b11
  article-title: Article segmentation in digitised newspapers with a 2D Markov model
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106642_b45
  article-title: A fast automatic optimal threshold selection technique for image segmentation
  publication-title: Signal Image Video Process.
– year: 2019
  ident: 10.1016/j.asoc.2020.106642_b42
  article-title: Multi-threshold image segmentation based on improved grey wolf optimization algorithm
  doi: 10.1088/1755-1315/252/4/042105
– volume: 42
  start-page: 1573
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2020.106642_b51
  article-title: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.09.049
– volume: 506
  start-page: 308
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b30
  article-title: PSO Image thresholding on images compressed via fuzzy transforms
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.07.088
– volume: 2016
  year: 2016
  ident: 10.1016/j.asoc.2020.106642_b50
  article-title: Multilevel image segmentation based on an improved firefly algorithm
  publication-title: Math. Probl. Eng.
– start-page: 141
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b21
  article-title: Fuzzy entropy approaches for image segmentation
– volume: 78
  start-page: 22613
  issue: 16
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b35
  article-title: Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-7506-7
– year: 2020
  ident: 10.1016/j.asoc.2020.106642_b55
  article-title: A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990893
– start-page: 279
  year: 2015
  ident: 10.1016/j.asoc.2020.106642_b39
  article-title: A study of a firefly meta-heuristics for multithreshold image segmentation
– year: 2020
  ident: 10.1016/j.asoc.2020.106642_b6
  article-title: DENSE-INception U-net for medical image segmentation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105395
– volume: 85
  start-page: 129
  year: 2018
  ident: 10.1016/j.asoc.2020.106642_b22
  article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.020
– volume: 11
  start-page: 16
  year: 2013
  ident: 10.1016/j.asoc.2020.106642_b36
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.02.001
– volume: 84
  start-page: 195
  issue: 3
  year: 2000
  ident: 10.1016/j.asoc.2020.106642_b58
  article-title: Interaction between cell shape and contraction pattern in the physarum plasmodium
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(00)00108-3
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10.1016/j.asoc.2020.106642_b20
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(85)90125-2
– volume: 41
  start-page: 2905
  issue: 8
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b8
  article-title: Optimization of multi-scale segmentation of satellite imagery using fractal geometry
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1698071
– volume: 19
  start-page: 1311
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2020.106642_b48
  article-title: Modified particle swarm optimization-based multilevel thresholding for image segmentation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1345-2
– volume: 130
  start-page: 256
  year: 2017
  ident: 10.1016/j.asoc.2020.106642_b9
  article-title: Local and global evaluation for remote sensing image segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.003
– volume: 23
  start-page: 13547
  issue: 24
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b27
  article-title: An opposition-based social spider optimization for feature selection
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03891-x
– year: 2016
  ident: 10.1016/j.asoc.2020.106642_b4
– volume: 37
  start-page: 4580
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2020.106642_b43
  article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.050
– year: 2007
  ident: 10.1016/j.asoc.2020.106642_b28
  article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm
– volume: 83
  start-page: 242
  year: 2017
  ident: 10.1016/j.asoc.2020.106642_b33
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.023
– start-page: 211
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b44
  article-title: Locust search algorithm applied to multi-threshold segmentation
– start-page: 139
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b26
  article-title: The locust swarm optimization algorithm
– volume: 24
  start-page: 595
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106642_b53
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.12.001
– volume: 26
  start-page: S1345
  issue: s1
  year: 2015
  ident: 10.1016/j.asoc.2020.106642_b40
  article-title: A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation
  publication-title: Biomed. Mater. Eng.
– volume: 52
  start-page: 2382
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2020.106642_b49
  article-title: Multilevel image segmentation based on fractional-order darwinian particle swarm optimization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2260552
– volume: 17
  start-page: 700
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b60
  article-title: Modified salp swarm algorithm based multilevel thresholding for color image segmentation
  publication-title: Math. Biosci. Eng.: MBE
  doi: 10.3934/mbe.2020036
– volume: 66
  start-page: 268
  year: 2017
  ident: 10.1016/j.asoc.2020.106642_b13
  article-title: Complex networks driven salient region detection based on superpixel segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.01.010
– volume: 22
  start-page: 559
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b15
  article-title: Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-017-0653-4
– volume: 27
  start-page: 57
  year: 2014
  ident: 10.1016/j.asoc.2020.106642_b34
  article-title: A new genetic algorithm for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.09.013
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b54
  article-title: A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems
  publication-title: Neural Comput. Appl.
– volume: 31
  start-page: 1641
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2020.106642_b24
  article-title: A new binary salp swarm algorithm: development and application for optimization tasks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3613-z
– ident: 10.1016/j.asoc.2020.106642_b62
– volume: 79
  start-page: 2447
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b32
  article-title: Multilevel image threshold segmentation using an improved bloch quantum artificial bee colony algorithm
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-08231-7
– volume: 34
  start-page: 1341
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2020.106642_b47
  article-title: A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.002
– start-page: 27
  year: 2020
  ident: 10.1016/j.asoc.2020.106642_b25
  article-title: An enhanced crow search algorithm applied to energy approaches
– volume: 27
  start-page: 155
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2020.106642_b31
  article-title: An improved ant colony optimization for constrained engineering design problems
  publication-title: Eng. Comput.
  doi: 10.1108/02644401011008577
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2020.106642_b57
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2020
  ident: 10.1016/j.asoc.2020.106642_b12
– year: 2010
  ident: 10.1016/j.asoc.2020.106642_b61
  article-title: Image quality metrics: PSNR vs. SSIM
SSID ssj0016928
Score 2.6393673
Snippet Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106642
SubjectTerms COVID-19
Image segmentation problem
Kapur’s entropy
Slime mould algorithm (SMA)
Whale optimization algorithm
X-ray images
Title HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images
URI https://dx.doi.org/10.1016/j.asoc.2020.106642
https://www.proquest.com/docview/2437402838
https://pubmed.ncbi.nlm.nih.gov/PMC7439973
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWy4ULb0QXWA0SNxSaOI6dcIsqVuW1IMqK3izbcdqgJlm1XdBe-BH8YjyJU7UH9sApijOWLM94Hs7MfIS8zEQoqOZRkFLDA0ZVGegsSoIitJkqSuvioq7b5zmfXrD382R-RCZDLQymVXrd3-v0Tlv7kbHfzfFlVY1nLvJIWcY4RZlNuyI-xgRK-evfuzSPiGcdvioSB0jtC2f6HC_ldsDFiBQHOGf0X8Zpz_k8TJ3cs0Vn98gd70RC3q_zPjmyzQNydwBoAH9eH5I_09mnXH7_nL-BHJbXWJwFTfvTrmC2qmoLNeJbg1ot2nW1XdaAl7Lwa-lsBrROldS-RnOPwrm4sFUGYd4X4HxHqGqnkGBjF7UvYmrAY9RAW0KHxgXzYK2ue8rNI3Jx9vbbZBp4EIbAsJhug0iL1Lq4J47KmFnsjmdDWnJu41hnysU_hunCGBNlRaqZUInCECwLFdM8K5iNH5Pjpm3sEwKx81aY0To2RrMktIqxxBjBFY2UEIqOSDTsvjS-QzkCZazkkIr2QyLHJHJM9hwbkVe7OZd9f44bqZOBqfJAyqQzIDfOezFIgHTHD_-pqMa2VxuJ_RwZ-mjpiIgD0dgtBxt4H35pqmXXyLsLBkV88p-rekpu41ufWviMHG_XV_a5c5G2-rQ7A6fkVj75-vELPt99mJ7_BecFFXI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCZ2iXvou6zyvQrRAsURQldROCBkqTuIMT1BtBUrStwpICW2mRv9FfXJ5EGfbQDF1FEiB4x3uId99HyKc09mOqeOAlVHOPUbnwVBpEXuGbVBYLY_OiDu1zyvNr9m0ezY_IydALg2WVzvb3Nr2z1u7LxJ3m5KYsJzObeSQsZZyizibYxHeM6FTRiBxnZ-f5dPeYwNOOYhXne7jA9c70ZV7SHoJNEyl-4JzRf_mnvfjzsHpyzx2dPiGPXBwJWb_Vp-TI1M_I44GjAdyVfU7-5LPLTPz4nn2BDFZ32J8FdfPLrGG2LisDFVJcg1wvm03ZrirA_7Lwe2XdBjTWmlSuTXNvho1yoZUamd6XYMNHKCtrk2BrlpXrY6rB0dRAs4COkAvm3kbe9TO3L8j16derk9xzPAyeZiFtvUDFibGpTxgsQmYQIM_4dMG5CUOVSpsCaaYKrXWQFolisYwkZmGpL5niacFM-JKM6qY2rwiENmBhWqlQa8Ui30jGIq1jLmkg41jSMQmG0xfagZQjV8ZaDNVoPwVKTKDERC-xMfm8W3PTQ3TcOzsahCoOFE1YH3Lvuo-DBgh7A_FZRdamud0KhHRkGKYlYxIfqMZuO4jhfThSl6sOy7vLB-Pw9X_u6gN5kF9dXoiLs-n5G_IQR_pKw7dk1G5uzTsbMbXqvbsRfwGgNhaO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSMA_WOA%3A+A+hybrid+novel+Slime+mould+algorithm+with+whale+optimization+algorithm+for+tackling+the+image+segmentation+problem+of+chest+X-ray+images&rft.jtitle=Applied+soft+computing&rft.au=Abdel-Basset%2C+Mohamed&rft.au=Chang%2C+Victor&rft.au=Mohamed%2C+Reda&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=95&rft.spage=106642&rft.epage=106642&rft_id=info:doi/10.1016%2Fj.asoc.2020.106642&rft_id=info%3Apmid%2F32843887&rft.externalDocID=PMC7439973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon