An Efficient Lightweight Network Based on Magnetic Resonance Images for Predicting Alzheimer's Disease

Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of the sliced image features are lost, which results in conflicting network size and classification performance. This article uses key com...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on semantic web and information systems Vol. 18; no. 1; pp. 1 - 18
Main Authors Ji, Boan, Wang, Huabin, Zhang, Mengxin, Mao, Borun, Li, Xuejun
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.01.2022
Subjects
Online AccessGet full text
ISSN1552-6283
1552-6291
DOI10.4018/IJSWIS.313715

Cover

Abstract Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of the sliced image features are lost, which results in conflicting network size and classification performance. This article uses key components in the transformer model to propose a new lightweight method, ensuring the lightness of the network and achieving highly accurate classification. First, the transformer model is imitated by using image patch input to enhance feature perception. Second, the Gaussian error linear unit (GELU), commonly used in transformer models, is used to enhance the generalization ability of the network. Finally, the network uses MRI slices as learning data. The depthwise separable convolution makes the network more lightweight. Experiments are carried out on the ADNI public database. The accuracy rate of AD vs. normal control (NC) experiments reaches 98.54%. The amount of network parameters is 1.3% of existing similar networks.
AbstractList Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of the sliced image features are lost, which results in conflicting network size and classification performance. This article uses key components in the transformer model to propose a new lightweight method, ensuring the lightness of the network and achieving highly accurate classification. First, the transformer model is imitated by using image patch input to enhance feature perception. Second, the Gaussian error linear unit (GELU), commonly used in transformer models, is used to enhance the generalization ability of the network. Finally, the network uses MRI slices as learning data. The depthwise separable convolution makes the network more lightweight. Experiments are carried out on the ADNI public database. The accuracy rate of AD vs. normal control (NC) experiments reaches 98.54%. The amount of network parameters is 1.3% of existing similar networks.
Audience Academic
Author Ji, Boan
Li, Xuejun
Zhang, Mengxin
Mao, Borun
Wang, Huabin
AuthorAffiliation Anhui University, China
AuthorAffiliation_xml – name: Anhui University, China
Author_xml – sequence: 1
  givenname: Boan
  surname: Ji
  fullname: Ji, Boan
  organization: Anhui University, China
– sequence: 2
  givenname: Huabin
  surname: Wang
  fullname: Wang, Huabin
  organization: Anhui University, China
– sequence: 3
  givenname: Mengxin
  surname: Zhang
  fullname: Zhang, Mengxin
  organization: Anhui University, China
– sequence: 4
  givenname: Borun
  surname: Mao
  fullname: Mao, Borun
  organization: Anhui University, China
– sequence: 5
  givenname: Xuejun
  surname: Li
  fullname: Li, Xuejun
  organization: Anhui University, China
BookMark eNp1kc9vFCEYhompiW316J3Eg6dZB75hhj2uba1r1h-xGo-EMh_Tr-5ABZqm_vXOZtSqqSEBQp73JfAcsL0QAzL2VNSLphb6xfrN2Zf12QIEdEI9YPtCKVm1cin2fu81PGIHOV_WNSgAsc_8KvAT78kRhsI3NFyUG9zN_B2Wm5i-8pc2Y89j4G_tELCQ4x8xx2CDQ74e7YCZ-5j4h4Q9uUJh4Kvt9wukEdPzzI8p41TwmD30dpvxyc_1kH1-dfLp6HW1eX-6PlptKteALJWAHqRulXOqE7bBpQfdaNRWg9d9i53vesBGSNkp3bTWLjXAubK9aOvu3Fs4ZM_m3qsUv11jLuYyXqcwXWmkVqJuhZDtHTXYLRoKPpZk3UjZmVWnliAbrXfU4h5qGj2O5Kav9zSd_xWAOeBSzDmhN46KLRTDFKStEbXZeTKzJzN7mlLVP6mrRKNNt__lj2eeBrp73S-F5g-FZqfw3hKh4QdfIawD
CitedBy_id crossref_primary_10_4018_IJSWIS_339000
crossref_primary_10_1109_ACCESS_2024_3434714
crossref_primary_10_1016_j_stae_2023_100064
crossref_primary_10_4018_IJSWIS_352853
Cites_doi 10.3390/diagnostics11061071
10.1212/01.wnl.0000280575.77437.a2
10.3233/JAD-142880
10.1109/IST.2017.8261566
10.1109/ICCV48922.2021.00986
10.1016/j.jalz.2019.01.010
10.48550/arXiv.2012.12556
10.1016/j.neuroscience.2021.01.002
10.1109/CVPR.2017.195
10.1056/NEJMcp0910236
10.1109/ACCESS.2021.3090474
10.3103/S0146411622030063
10.1109/M2VIP.2017.8211486
10.1007/s12021-019-09419-w
10.1109/JBHI.2021.3066832
10.1016/j.neucom.2019.04.093
10.1142/S012906572050032X
10.1016/j.bspc.2022.103565
ContentType Journal Article
Copyright COPYRIGHT 2022 IGI Global
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 IGI Global
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/IJSWIS.313715
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-6291
EndPage 18
ExternalDocumentID A759324886
10_4018_IJSWIS_313715
fficient_Lightweight_Netw10_4018_IJSWIS_31371518
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
29J
4.4
5GY
AAYVP
ABBKS
ABEPT
ABGRR
ADEKF
AENEX
ALMA_UNASSIGNED_HOLDINGS
AXMGO
BAWSF
BDBYZ
BLRFH
BTFVE
BYHXH
CBWLS
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
CTSEY
EBS
F5P
H13
HZ~
IAO
ICD
IGYUU
JRD
MV1
NEEBM
O9-
P2P
RIF
XH6
AAYXX
ABJCF
ABPHS
ADMLS
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
ITC
K7-
M7S
PHGZM
PHGZT
PTHSS
PMFND
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c432t-13d32865cc571a4e9f3848e8a83f8d6e7f7d3e412275846aa9833b5ad1607bfa3
IEDL.DBID BENPR
ISSN 1552-6283
IngestDate Sun Jul 13 04:39:54 EDT 2025
Tue Jun 17 21:26:09 EDT 2025
Tue Jun 10 21:20:38 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Tue Jul 01 02:29:14 EDT 2025
Wed Aug 23 04:21:53 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/3.0/deed.en_US
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-13d32865cc571a4e9f3848e8a83f8d6e7f7d3e412275846aa9833b5ad1607bfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.igi-global.com/ViewTitle.aspx?TitleId=313715&isxn=9781799893967
PQID 2851061126
PQPubID 2045800
PageCount 18
ParticipantIDs crossref_citationtrail_10_4018_IJSWIS_313715
gale_infotracacademiconefile_A759324886
crossref_primary_10_4018_IJSWIS_313715
proquest_journals_2851061126
gale_infotracmisc_A759324886
igi_journals_fficient_Lightweight_Netw10_4018_IJSWIS_31371518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal on semantic web and information systems
PublicationYear 2022
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJSWIS.313715-5
IJSWIS.313715-4
IJSWIS.313715-7
IJSWIS.313715-6
IJSWIS.313715-1
IJSWIS.313715-19
K.He (IJSWIS.313715-10) 2016
IJSWIS.313715-2
S.d’Ascoli (IJSWIS.313715-3) 2021
A.Pradhan (IJSWIS.313715-22) 2021; 10
S.Albawi (IJSWIS.313715-0) 2017
IJSWIS.313715-15
IJSWIS.313715-16
IJSWIS.313715-17
IJSWIS.313715-18
IJSWIS.313715-9
IJSWIS.313715-11
IJSWIS.313715-8
IJSWIS.313715-12
IJSWIS.313715-13
IJSWIS.313715-14
I. O.Tolstikhin (IJSWIS.313715-23) 2021; 34
IJSWIS.313715-20
IJSWIS.313715-21
IJSWIS.313715-27
IJSWIS.313715-28
IJSWIS.313715-24
S.Yu (IJSWIS.313715-26) 2020; 42
IJSWIS.313715-25
References_xml – ident: IJSWIS.313715-11
– volume: 10
  start-page: 580
  year: 2021
  ident: IJSWIS.313715-22
  article-title: Detection of Alzheimer’s disease (AD) in MRI images using deep learning.
  publication-title: IJERT
– ident: IJSWIS.313715-20
  doi: 10.3390/diagnostics11061071
– ident: IJSWIS.313715-25
  doi: 10.1212/01.wnl.0000280575.77437.a2
– ident: IJSWIS.313715-14
  doi: 10.3233/JAD-142880
– ident: IJSWIS.313715-15
  doi: 10.1109/IST.2017.8261566
– ident: IJSWIS.313715-16
  doi: 10.1109/ICCV48922.2021.00986
– start-page: 770
  year: 2016
  ident: IJSWIS.313715-10
  article-title: Deep residual learning for image recognition.
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– ident: IJSWIS.313715-1
  doi: 10.1016/j.jalz.2019.01.010
– ident: IJSWIS.313715-4
– ident: IJSWIS.313715-9
  doi: 10.48550/arXiv.2012.12556
– ident: IJSWIS.313715-18
  doi: 10.1016/j.neuroscience.2021.01.002
– ident: IJSWIS.313715-2
  doi: 10.1109/CVPR.2017.195
– start-page: 2286
  year: 2021
  ident: IJSWIS.313715-3
  article-title: Convit: Improving vision transformers with soft convolutional inductive biases.
  publication-title: International Conference on Machine Learning
– ident: IJSWIS.313715-17
  doi: 10.1056/NEJMcp0910236
– ident: IJSWIS.313715-12
– ident: IJSWIS.313715-19
  doi: 10.1109/ACCESS.2021.3090474
– ident: IJSWIS.313715-21
  doi: 10.3103/S0146411622030063
– volume: 42
  start-page: 1068
  issue: 6
  year: 2020
  ident: IJSWIS.313715-26
  article-title: An Alzheimer’s disease classification algorithm based on 3D-ResNet.
  publication-title: Computer Engineering & Science
– ident: IJSWIS.313715-8
  doi: 10.1109/M2VIP.2017.8211486
– start-page: 1
  year: 2017
  ident: IJSWIS.313715-0
  article-title: Understanding of a convolutional neural network.
  publication-title: 2017 International Conference on Engineering and Technology (ICET)
– ident: IJSWIS.313715-24
– ident: IJSWIS.313715-6
  doi: 10.1007/s12021-019-09419-w
– volume: 34
  start-page: 24261
  year: 2021
  ident: IJSWIS.313715-23
  article-title: Mlp-mixer: An all-mlp architecture for vision.
  publication-title: Advances in Neural Information Processing Systems
– ident: IJSWIS.313715-28
  doi: 10.1109/JBHI.2021.3066832
– ident: IJSWIS.313715-27
  doi: 10.1016/j.neucom.2019.04.093
– ident: IJSWIS.313715-5
– ident: IJSWIS.313715-7
  doi: 10.1142/S012906572050032X
– ident: IJSWIS.313715-13
  doi: 10.1016/j.bspc.2022.103565
SSID ssj0035331
Score 2.2737303
Snippet Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Advertising executives
Alzheimer's disease
Computational linguistics
Language processing
Magnetic resonance imaging
Medical research
Medicine, Experimental
Natural language interfaces
Title An Efficient Lightweight Network Based on Magnetic Resonance Images for Predicting Alzheimer's Disease
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.313715
https://www.proquest.com/docview/2851061126
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYauLSHCvpQ01LkQ1UuXcHa3rX3gKoASQkqESpF5Wb5CZFgQxOqSv31ndn1QlAfZ1uW5Rl_87DnG0LeCWNDAHTMuPAxE5WwWWWZzbyv_I51geUWq5GPJ-XhmTg6L85Twm2RvlV2mNgAtZ85zJFvM3ANwPbkrPx48z3DrlH4uppaaPTIKkCwAj1f3RtOTr50WMyLtiMh8oxlJUxoWTYhplDb46PTb-NTiFm5xJ64S1YpYXNvejH9A6EbszNaI0-Tv0gHrYDXyaNQPyNPllgEn5M4qOmwYYIAA0I_Y7T9s0l40kn7x5vuganydFbTY3NRY9Uixaw9Um0EOr4GRFlQ8F3pyRxfbfAfNB1c_boM0-sw31rQg_YN5wU5Gw2_7h9mqX1C5gRn2GTec6w7da6QuRGhilwJFZRRPCpfBhml50HkjEn0QoypFOe2MB4552w0_CVZqWd1eEVoCMzIWDrmfCUKKQ0TMRTVjuV5EUvO-uRDd3zaJW5xbHFxpSHGwNPW7Wnr9rT75P3d9JuWVONfE7dQFhovG6znTKoZgF0hbZUeyAL8T8Cgsk82HsyES-IeDO-CNHW6nwvdCUUvCUWjUP66jVzB8p0e3C9yr5Kv_z_8hjxmWDXRZG42yMrt_Ed4C77Mrd0kPTX6tJnU9jfOt_Kr
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELaAHloOqE81LaU-tOXSFaztXXsPqAqFNAtJVAlQubl-LUSCDSRUqP1R_Y2d2UcJ6uPG2ZZlzXjmm7E93xDyRhgbAnjHiAtfRCITNsoss5H3md-0LrDYYjXycJT2j8TecXK8QH62tTD4rbL1iZWj9hOHd-QbDEIDwJ6YpR8uLiPsGoWvq20LjfpY7Ifv15CyzbbyHdDvW8Z6u4cf-1HTVSBygjPsve45lmM6l8jYiJAVXAkVlFG8UD4NspCeBxEzJhGcjckU5zYxHqnYbGE4rLtI7gnOM2wVoXqfWs_Pk7r_IbKaRSngds3pCRmM2sj3Dr7kB5Ahc4kdeOcwsEGCxfHJ-A88qECu95CsNNEp7dbH6RFZCOVjsjzHWfiEFN2S7la8EwBXdIC5_XV1vUpH9Y9yug3A6OmkpENzUmKNJMU3AiT2CDQ_B_81oxAp089TfCPCX9e0e_bjNIzPw3R9RnfqF6On5OhOxPqMLJWTMjwnNARmZJE65nwmEikNE0VIsk3L46RIOeuQ9634tGuYzLGhxpmGjAalrWtp61raHfLu9_SLmsLjXxPXURcaTRvWc6apUIBdIUmW7soEol3weGmHrN6aCSbpbg1vgTZ14w1mulWKnlOKRqX8dRuxguXbc3CzyI0BvPj_8Gtyv384HOhBPtp_SR4wrNeo7oxWydLV9Ft4BVHUlV2rji4lX-_aVn4BBt0sgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Lightweight+Network+Based+on+Magnetic+Resonance+Images+for+Predicting+Alzheimer%27s+Disease&rft.jtitle=International+journal+on+semantic+web+and+information+systems&rft.au=Ji%2C+Boan&rft.au=Wang%2C+Huabin&rft.au=Zhang%2C+Mengxin&rft.au=Mao%2C+Borun&rft.date=2022-01-01&rft.pub=IGI+Global&rft.issn=1552-6283&rft.volume=18&rft.issue=1&rft_id=info:doi/10.4018%2FIJSWIS.313715&rft.externalDocID=A759324886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-6283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-6283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-6283&client=summon