An Efficient Lightweight Network Based on Magnetic Resonance Images for Predicting Alzheimer's Disease
Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of the sliced image features are lost, which results in conflicting network size and classification performance. This article uses key com...
Saved in:
Published in | International journal on semantic web and information systems Vol. 18; no. 1; pp. 1 - 18 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hershey
IGI Global
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1552-6283 1552-6291 |
DOI | 10.4018/IJSWIS.313715 |
Cover
Abstract | Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of the sliced image features are lost, which results in conflicting network size and classification performance. This article uses key components in the transformer model to propose a new lightweight method, ensuring the lightness of the network and achieving highly accurate classification. First, the transformer model is imitated by using image patch input to enhance feature perception. Second, the Gaussian error linear unit (GELU), commonly used in transformer models, is used to enhance the generalization ability of the network. Finally, the network uses MRI slices as learning data. The depthwise separable convolution makes the network more lightweight. Experiments are carried out on the ADNI public database. The accuracy rate of AD vs. normal control (NC) experiments reaches 98.54%. The amount of network parameters is 1.3% of existing similar networks. |
---|---|
AbstractList | Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of the sliced image features are lost, which results in conflicting network size and classification performance. This article uses key components in the transformer model to propose a new lightweight method, ensuring the lightness of the network and achieving highly accurate classification. First, the transformer model is imitated by using image patch input to enhance feature perception. Second, the Gaussian error linear unit (GELU), commonly used in transformer models, is used to enhance the generalization ability of the network. Finally, the network uses MRI slices as learning data. The depthwise separable convolution makes the network more lightweight. Experiments are carried out on the ADNI public database. The accuracy rate of AD vs. normal control (NC) experiments reaches 98.54%. The amount of network parameters is 1.3% of existing similar networks. |
Audience | Academic |
Author | Ji, Boan Li, Xuejun Zhang, Mengxin Mao, Borun Wang, Huabin |
AuthorAffiliation | Anhui University, China |
AuthorAffiliation_xml | – name: Anhui University, China |
Author_xml | – sequence: 1 givenname: Boan surname: Ji fullname: Ji, Boan organization: Anhui University, China – sequence: 2 givenname: Huabin surname: Wang fullname: Wang, Huabin organization: Anhui University, China – sequence: 3 givenname: Mengxin surname: Zhang fullname: Zhang, Mengxin organization: Anhui University, China – sequence: 4 givenname: Borun surname: Mao fullname: Mao, Borun organization: Anhui University, China – sequence: 5 givenname: Xuejun surname: Li fullname: Li, Xuejun organization: Anhui University, China |
BookMark | eNp1kc9vFCEYhompiW316J3Eg6dZB75hhj2uba1r1h-xGo-EMh_Tr-5ABZqm_vXOZtSqqSEBQp73JfAcsL0QAzL2VNSLphb6xfrN2Zf12QIEdEI9YPtCKVm1cin2fu81PGIHOV_WNSgAsc_8KvAT78kRhsI3NFyUG9zN_B2Wm5i-8pc2Y89j4G_tELCQ4x8xx2CDQ74e7YCZ-5j4h4Q9uUJh4Kvt9wukEdPzzI8p41TwmD30dpvxyc_1kH1-dfLp6HW1eX-6PlptKteALJWAHqRulXOqE7bBpQfdaNRWg9d9i53vesBGSNkp3bTWLjXAubK9aOvu3Fs4ZM_m3qsUv11jLuYyXqcwXWmkVqJuhZDtHTXYLRoKPpZk3UjZmVWnliAbrXfU4h5qGj2O5Kav9zSd_xWAOeBSzDmhN46KLRTDFKStEbXZeTKzJzN7mlLVP6mrRKNNt__lj2eeBrp73S-F5g-FZqfw3hKh4QdfIawD |
CitedBy_id | crossref_primary_10_4018_IJSWIS_339000 crossref_primary_10_1109_ACCESS_2024_3434714 crossref_primary_10_1016_j_stae_2023_100064 crossref_primary_10_4018_IJSWIS_352853 |
Cites_doi | 10.3390/diagnostics11061071 10.1212/01.wnl.0000280575.77437.a2 10.3233/JAD-142880 10.1109/IST.2017.8261566 10.1109/ICCV48922.2021.00986 10.1016/j.jalz.2019.01.010 10.48550/arXiv.2012.12556 10.1016/j.neuroscience.2021.01.002 10.1109/CVPR.2017.195 10.1056/NEJMcp0910236 10.1109/ACCESS.2021.3090474 10.3103/S0146411622030063 10.1109/M2VIP.2017.8211486 10.1007/s12021-019-09419-w 10.1109/JBHI.2021.3066832 10.1016/j.neucom.2019.04.093 10.1142/S012906572050032X 10.1016/j.bspc.2022.103565 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 IGI Global 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 IGI Global – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.4018/IJSWIS.313715 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-6291 |
EndPage | 18 |
ExternalDocumentID | A759324886 10_4018_IJSWIS_313715 fficient_Lightweight_Netw10_4018_IJSWIS_31371518 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0R~ 29J 4.4 5GY AAYVP ABBKS ABEPT ABGRR ADEKF AENEX ALMA_UNASSIGNED_HOLDINGS AXMGO BAWSF BDBYZ BLRFH BTFVE BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG CTSEY EBS F5P H13 HZ~ IAO ICD IGYUU JRD MV1 NEEBM O9- P2P RIF XH6 AAYXX ABJCF ABPHS ADMLS AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ ITC K7- M7S PHGZM PHGZT PTHSS PMFND 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c432t-13d32865cc571a4e9f3848e8a83f8d6e7f7d3e412275846aa9833b5ad1607bfa3 |
IEDL.DBID | BENPR |
ISSN | 1552-6283 |
IngestDate | Sun Jul 13 04:39:54 EDT 2025 Tue Jun 17 21:26:09 EDT 2025 Tue Jun 10 21:20:38 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Tue Jul 01 02:29:14 EDT 2025 Wed Aug 23 04:21:53 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0/deed.en_US |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-13d32865cc571a4e9f3848e8a83f8d6e7f7d3e412275846aa9833b5ad1607bfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.igi-global.com/ViewTitle.aspx?TitleId=313715&isxn=9781799893967 |
PQID | 2851061126 |
PQPubID | 2045800 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_4018_IJSWIS_313715 gale_infotracacademiconefile_A759324886 crossref_primary_10_4018_IJSWIS_313715 proquest_journals_2851061126 gale_infotracmisc_A759324886 igi_journals_fficient_Lightweight_Netw10_4018_IJSWIS_31371518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hershey |
PublicationPlace_xml | – name: Hershey |
PublicationTitle | International journal on semantic web and information systems |
PublicationYear | 2022 |
Publisher | IGI Global |
Publisher_xml | – name: IGI Global |
References | IJSWIS.313715-5 IJSWIS.313715-4 IJSWIS.313715-7 IJSWIS.313715-6 IJSWIS.313715-1 IJSWIS.313715-19 K.He (IJSWIS.313715-10) 2016 IJSWIS.313715-2 S.d’Ascoli (IJSWIS.313715-3) 2021 A.Pradhan (IJSWIS.313715-22) 2021; 10 S.Albawi (IJSWIS.313715-0) 2017 IJSWIS.313715-15 IJSWIS.313715-16 IJSWIS.313715-17 IJSWIS.313715-18 IJSWIS.313715-9 IJSWIS.313715-11 IJSWIS.313715-8 IJSWIS.313715-12 IJSWIS.313715-13 IJSWIS.313715-14 I. O.Tolstikhin (IJSWIS.313715-23) 2021; 34 IJSWIS.313715-20 IJSWIS.313715-21 IJSWIS.313715-27 IJSWIS.313715-28 IJSWIS.313715-24 S.Yu (IJSWIS.313715-26) 2020; 42 IJSWIS.313715-25 |
References_xml | – ident: IJSWIS.313715-11 – volume: 10 start-page: 580 year: 2021 ident: IJSWIS.313715-22 article-title: Detection of Alzheimer’s disease (AD) in MRI images using deep learning. publication-title: IJERT – ident: IJSWIS.313715-20 doi: 10.3390/diagnostics11061071 – ident: IJSWIS.313715-25 doi: 10.1212/01.wnl.0000280575.77437.a2 – ident: IJSWIS.313715-14 doi: 10.3233/JAD-142880 – ident: IJSWIS.313715-15 doi: 10.1109/IST.2017.8261566 – ident: IJSWIS.313715-16 doi: 10.1109/ICCV48922.2021.00986 – start-page: 770 year: 2016 ident: IJSWIS.313715-10 article-title: Deep residual learning for image recognition. publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – ident: IJSWIS.313715-1 doi: 10.1016/j.jalz.2019.01.010 – ident: IJSWIS.313715-4 – ident: IJSWIS.313715-9 doi: 10.48550/arXiv.2012.12556 – ident: IJSWIS.313715-18 doi: 10.1016/j.neuroscience.2021.01.002 – ident: IJSWIS.313715-2 doi: 10.1109/CVPR.2017.195 – start-page: 2286 year: 2021 ident: IJSWIS.313715-3 article-title: Convit: Improving vision transformers with soft convolutional inductive biases. publication-title: International Conference on Machine Learning – ident: IJSWIS.313715-17 doi: 10.1056/NEJMcp0910236 – ident: IJSWIS.313715-12 – ident: IJSWIS.313715-19 doi: 10.1109/ACCESS.2021.3090474 – ident: IJSWIS.313715-21 doi: 10.3103/S0146411622030063 – volume: 42 start-page: 1068 issue: 6 year: 2020 ident: IJSWIS.313715-26 article-title: An Alzheimer’s disease classification algorithm based on 3D-ResNet. publication-title: Computer Engineering & Science – ident: IJSWIS.313715-8 doi: 10.1109/M2VIP.2017.8211486 – start-page: 1 year: 2017 ident: IJSWIS.313715-0 article-title: Understanding of a convolutional neural network. publication-title: 2017 International Conference on Engineering and Technology (ICET) – ident: IJSWIS.313715-24 – ident: IJSWIS.313715-6 doi: 10.1007/s12021-019-09419-w – volume: 34 start-page: 24261 year: 2021 ident: IJSWIS.313715-23 article-title: Mlp-mixer: An all-mlp architecture for vision. publication-title: Advances in Neural Information Processing Systems – ident: IJSWIS.313715-28 doi: 10.1109/JBHI.2021.3066832 – ident: IJSWIS.313715-27 doi: 10.1016/j.neucom.2019.04.093 – ident: IJSWIS.313715-5 – ident: IJSWIS.313715-7 doi: 10.1142/S012906572050032X – ident: IJSWIS.313715-13 doi: 10.1016/j.bspc.2022.103565 |
SSID | ssj0035331 |
Score | 2.2737303 |
Snippet | Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of... |
SourceID | proquest gale crossref igi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Advertising executives Alzheimer's disease Computational linguistics Language processing Magnetic resonance imaging Medical research Medicine, Experimental Natural language interfaces |
Title | An Efficient Lightweight Network Based on Magnetic Resonance Images for Predicting Alzheimer's Disease |
URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.313715 https://www.proquest.com/docview/2851061126 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYauLSHCvpQ01LkQ1UuXcHa3rX3gKoASQkqESpF5Wb5CZFgQxOqSv31ndn1QlAfZ1uW5Rl_87DnG0LeCWNDAHTMuPAxE5WwWWWZzbyv_I51geUWq5GPJ-XhmTg6L85Twm2RvlV2mNgAtZ85zJFvM3ANwPbkrPx48z3DrlH4uppaaPTIKkCwAj1f3RtOTr50WMyLtiMh8oxlJUxoWTYhplDb46PTb-NTiFm5xJ64S1YpYXNvejH9A6EbszNaI0-Tv0gHrYDXyaNQPyNPllgEn5M4qOmwYYIAA0I_Y7T9s0l40kn7x5vuganydFbTY3NRY9Uixaw9Um0EOr4GRFlQ8F3pyRxfbfAfNB1c_boM0-sw31rQg_YN5wU5Gw2_7h9mqX1C5gRn2GTec6w7da6QuRGhilwJFZRRPCpfBhml50HkjEn0QoypFOe2MB4552w0_CVZqWd1eEVoCMzIWDrmfCUKKQ0TMRTVjuV5EUvO-uRDd3zaJW5xbHFxpSHGwNPW7Wnr9rT75P3d9JuWVONfE7dQFhovG6znTKoZgF0hbZUeyAL8T8Cgsk82HsyES-IeDO-CNHW6nwvdCUUvCUWjUP66jVzB8p0e3C9yr5Kv_z_8hjxmWDXRZG42yMrt_Ed4C77Mrd0kPTX6tJnU9jfOt_Kr |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELaAHloOqE81LaU-tOXSFaztXXsPqAqFNAtJVAlQubl-LUSCDSRUqP1R_Y2d2UcJ6uPG2ZZlzXjmm7E93xDyRhgbAnjHiAtfRCITNsoss5H3md-0LrDYYjXycJT2j8TecXK8QH62tTD4rbL1iZWj9hOHd-QbDEIDwJ6YpR8uLiPsGoWvq20LjfpY7Ifv15CyzbbyHdDvW8Z6u4cf-1HTVSBygjPsve45lmM6l8jYiJAVXAkVlFG8UD4NspCeBxEzJhGcjckU5zYxHqnYbGE4rLtI7gnOM2wVoXqfWs_Pk7r_IbKaRSngds3pCRmM2sj3Dr7kB5Ahc4kdeOcwsEGCxfHJ-A88qECu95CsNNEp7dbH6RFZCOVjsjzHWfiEFN2S7la8EwBXdIC5_XV1vUpH9Y9yug3A6OmkpENzUmKNJMU3AiT2CDQ_B_81oxAp089TfCPCX9e0e_bjNIzPw3R9RnfqF6On5OhOxPqMLJWTMjwnNARmZJE65nwmEikNE0VIsk3L46RIOeuQ9634tGuYzLGhxpmGjAalrWtp61raHfLu9_SLmsLjXxPXURcaTRvWc6apUIBdIUmW7soEol3weGmHrN6aCSbpbg1vgTZ14w1mulWKnlOKRqX8dRuxguXbc3CzyI0BvPj_8Gtyv384HOhBPtp_SR4wrNeo7oxWydLV9Ft4BVHUlV2rji4lX-_aVn4BBt0sgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Lightweight+Network+Based+on+Magnetic+Resonance+Images+for+Predicting+Alzheimer%27s+Disease&rft.jtitle=International+journal+on+semantic+web+and+information+systems&rft.au=Ji%2C+Boan&rft.au=Wang%2C+Huabin&rft.au=Zhang%2C+Mengxin&rft.au=Mao%2C+Borun&rft.date=2022-01-01&rft.pub=IGI+Global&rft.issn=1552-6283&rft.volume=18&rft.issue=1&rft_id=info:doi/10.4018%2FIJSWIS.313715&rft.externalDocID=A759324886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-6283&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-6283&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-6283&client=summon |