Lyapunov stability analysis of a mass–spring system subject to friction

This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick–slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions...

Full description

Saved in:
Bibliographic Details
Published inSystems & control letters Vol. 150; p. 104910
Main Authors Barreau, Matthieu, Tarbouriech, Sophie, Gouaisbaut, Frédéric
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Elsevier
Subjects
Online AccessGet full text
ISSN0167-6911
1872-7956
1872-7956
DOI10.1016/j.sysconle.2021.104910

Cover

Loading…
Abstract This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick–slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The proposed approach merges two intermediate results: The first one relies on the characterization of an attractor around the origin, to which converges the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed from the second result. An illustrative example draws the interest of the approach. •The stability analysis of mass–spring system subject to a nonlinear friction force is conducted using quadratic Lyapunov functions, leading to stability tests expressed by LMIs.•We give a precise estimation of a global attractor with emphasis on the practical consequences.•If there exists a basin of attraction, we provide an algorithm to give an inner-estimation of the latter.•We mix the two previous results to state the global exponential stability of the system. This work proves then rigorously what was experimentally already noted: for a reference speed large enough, the unique equilibrium point is globally exponentially stable.
AbstractList This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick–slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The proposed approach merges two intermediate results: The first one relies on the characterization of an attractor around the origin, to which converges the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed from the second result. An illustrative example draws the interest of the approach. •The stability analysis of mass–spring system subject to a nonlinear friction force is conducted using quadratic Lyapunov functions, leading to stability tests expressed by LMIs.•We give a precise estimation of a global attractor with emphasis on the practical consequences.•If there exists a basin of attraction, we provide an algorithm to give an inner-estimation of the latter.•We mix the two previous results to state the global exponential stability of the system. This work proves then rigorously what was experimentally already noted: for a reference speed large enough, the unique equilibrium point is globally exponentially stable.
This paper deals with the stability analysis of a mass-spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick-slip phenomenon, the mass may then periodically stick to the ground. The objective consists in developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The approach proposed merges two intermediate results: The first one relies on the characterization of an attractor around the origin, in which converge the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed form the second result. An illustrative example draws the interest of the approach.
This paper deals with the stability analysis of a mass-spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick-slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The proposed approach merges two intermediate results: The first one relies on the characterization of an attractor around the origin, to which converges the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed from the second result. An illustrative example draws the interest of the approach.
ArticleNumber 104910
Author Tarbouriech, Sophie
Gouaisbaut, Frédéric
Barreau, Matthieu
Author_xml – sequence: 1
  givenname: Matthieu
  orcidid: 0000-0002-9432-254X
  surname: Barreau
  fullname: Barreau, Matthieu
  email: barreau@kth.se
  organization: Division of Decision and Control Systems, KTH Royal Institute of Technology Stockholm, Sweden
– sequence: 2
  givenname: Sophie
  surname: Tarbouriech
  fullname: Tarbouriech, Sophie
  email: tarbour@laas.fr
  organization: LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 3
  givenname: Frédéric
  surname: Gouaisbaut
  fullname: Gouaisbaut, Frédéric
  email: fgouaisb@laas.fr
  organization: LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
BackLink https://laas.hal.science/hal-02883529$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295272$$DView record from Swedish Publication Index
BookMark eNqFkMtOAjEUhhuDiYi-gunWxWDbuZRJXEjwAgmJG3XbtJ0WisOUtAUzO9_BN_RJLBlZ6IbVSU6-_1y-c9BrbKMAuMJoiBEublZD33ppm1oNCSI4NrMSoxPQxyNKElrmRQ_0I0iTosT4DJx7v0IIEZSmfTCbt3yzbewO-sCFqU1oIW943XrjodWQwzX3_vvzy2-caRYwrgpqDf1WrJQMMFionZHB2OYCnGpee3X5Wwfg9fHhZTJN5s9Ps8l4nsgsJSHBqSSCZEVVCkmVyLCSNJUIZTRDXMTLSY4qqYksaCV0xtNK41FFdZUrJXih0wFIurn-Q222gsW71ty1zHLD7s3bmFm3YO9hyUiZE0oif93xS17_gafjOdv3EBmN0pyUOxzZ246VznrvlGbSBL7_LjhuaoYR2ytnK3ZQzvbKWac8xot_8cO-o8G7LqiiuJ1RjnlpVCNVZVzUzCprjo34AU1NpHQ
CitedBy_id crossref_primary_10_1007_s11071_022_08024_y
crossref_primary_10_3390_app13021136
crossref_primary_10_3390_automation3010003
Cites_doi 10.1109/MCS.2008.929425
10.1109/TCST.2008.917873
10.1016/j.automatica.2019.06.017
10.1115/1.3140698
10.1023/B:NODY.0000017482.61599.86
10.1109/9.376053
10.1109/TAC.2017.2774443
10.1016/j.automatica.2015.05.015
10.1016/j.automatica.2007.01.021
10.1016/0005-1098(94)90209-7
10.1109/TAC.2015.2506993
10.1137/18M1234795
10.1109/9.847103
10.5194/ms-6-15-2015
10.1109/TCST.2006.886434
10.1109/TAC.2013.2273279
10.1016/j.arcontrol.2020.04.010
10.1016/S0020-7462(01)00073-7
10.1006/jsvi.1997.1053
ContentType Journal Article
Copyright 2021 The Authors
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 The Authors
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1016/j.sysconle.2021.104910
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-7956
ExternalDocumentID oai_DiVA_org_kth_295272
oai_HAL_hal_02883529v1
10_1016_j_sysconle_2021_104910
S0167691121000402
GrantInformation_xml – fundername: ANR
  grantid: 18-CE40-0010
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ADTPV
AFDQA
AOWAS
D8T
D8V
EFKBS
ZZAVC
ID FETCH-LOGICAL-c432t-13c2b246d9bc7eb41ec73c004740ab491250dcf2c67dbf4a3df18d7fd5eeba6f3
IEDL.DBID .~1
ISSN 0167-6911
1872-7956
IngestDate Thu Aug 21 06:43:12 EDT 2025
Fri May 09 12:13:26 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 03:29:10 EDT 2025
Fri Feb 23 02:46:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Global asymptotic stability
LMI
Friction
Regional asymptotic stability
Attractor
Lyapunov methods
Language English
License This is an open access article under the CC BY license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-13c2b246d9bc7eb41ec73c004740ab491250dcf2c67dbf4a3df18d7fd5eeba6f3
ORCID 0000-0002-9432-254X
0000-0002-4263-7195
0000-0002-0816-5614
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167691121000402
ParticipantIDs swepub_primary_oai_DiVA_org_kth_295272
hal_primary_oai_HAL_hal_02883529v1
crossref_citationtrail_10_1016_j_sysconle_2021_104910
crossref_primary_10_1016_j_sysconle_2021_104910
elsevier_sciencedirect_doi_10_1016_j_sysconle_2021_104910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Systems & control letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bauschke, Combettes (b36) 2011
Brogliato, Tanwani (b33) 2020; 62
Boyd, El Ghaoui, Feron, Balakrishnan (b37) 1994
Khalil (b28) 1996
Ebihara, Peaucelle, Arzelier (b31) 2015; vol. 17
Karnopp (b22) 1985; 107
Tarbouriech, Queinnec, Prieur (b30) 2014; 59
Van de Wouw, Leine (b24) 2004; 35
Beerens, Bisoffi, Zaccarian, Heemels, Nijmeijer, van de Wouw (b5) 2019; 107
Löfberg (b39) 2005
ApS (b38) 2019
Ferrante, Gouaisbaut, Tarbouriech (b29) 2015; 58
Swevers, Al-Bender, Ganseman, Projogo (b10) 2000; 45
Coulomb (b6) 1821
Madeira, Adamy (b35) 2016; 61
Canudas De Wit, Olsson, Astrom, Lischinsky (b9) 1995; 40
Armstrong-Hélouvry (b15) 1990
Bisoffi, Beerens, Heemels, Nijmeijer, van de Wouw, Zaccarian (b19) 2020; 49
Liu, Li, Zhang, Hu, Zhang (b11) 2015; 6
McMillan (b16) 1997; 205
Bisoffi, Da Lio, Teel, Zaccarian (b12) 2018; 63
Abdo, Abouelsoud (b18) 2011; 49
Stribeck (b7) 1902; 46
Armstrong-Hélouvry, Dupont, Canudas De Wit (b4) 1994; 30
Johanastrom, Canudas-De-Wit (b21) 2008; 28
Barreau, Gouaisbaut, Seuret (b26) 2019
Yakubovich, Leonov, Gelig (b14) 2004
Azar, Samuel (b1) 2007
Leine, Van de Wouw (b20) 2007
Gawronski (b27) 2007; 15
Lozia, Zardecki (b3) 2002
Dahl (b8) 1968
Filippov (b25) 2013
Canudas de Wit, Rubio, Corchero (b2) 2008; 16
Putra, Nijmeijer, van de Wouw (b13) 2007; 43
Thomsen, Fidlin (b17) 2003; 38
Brogliato, Lozano, Maschke, Egeland (b34) 2000
Acary, Brogliato (b23) 2008
Tarbouriech, Garcia, da Silva, Queinnec (b32) 2011
McMillan (10.1016/j.sysconle.2021.104910_b16) 1997; 205
Canudas de Wit (10.1016/j.sysconle.2021.104910_b2) 2008; 16
Yakubovich (10.1016/j.sysconle.2021.104910_b14) 2004
Brogliato (10.1016/j.sysconle.2021.104910_b34) 2000
Karnopp (10.1016/j.sysconle.2021.104910_b22) 1985; 107
Swevers (10.1016/j.sysconle.2021.104910_b10) 2000; 45
Lozia (10.1016/j.sysconle.2021.104910_b3) 2002
Tarbouriech (10.1016/j.sysconle.2021.104910_b30) 2014; 59
Bisoffi (10.1016/j.sysconle.2021.104910_b12) 2018; 63
Filippov (10.1016/j.sysconle.2021.104910_b25) 2013
Barreau (10.1016/j.sysconle.2021.104910_b26) 2019
Armstrong-Hélouvry (10.1016/j.sysconle.2021.104910_b4) 1994; 30
Canudas De Wit (10.1016/j.sysconle.2021.104910_b9) 1995; 40
Khalil (10.1016/j.sysconle.2021.104910_b28) 1996
Azar (10.1016/j.sysconle.2021.104910_b1) 2007
Coulomb (10.1016/j.sysconle.2021.104910_b6) 1821
Putra (10.1016/j.sysconle.2021.104910_b13) 2007; 43
Thomsen (10.1016/j.sysconle.2021.104910_b17) 2003; 38
Stribeck (10.1016/j.sysconle.2021.104910_b7) 1902; 46
Beerens (10.1016/j.sysconle.2021.104910_b5) 2019; 107
Leine (10.1016/j.sysconle.2021.104910_b20) 2007
ApS (10.1016/j.sysconle.2021.104910_b38) 2019
Liu (10.1016/j.sysconle.2021.104910_b11) 2015; 6
Armstrong-Hélouvry (10.1016/j.sysconle.2021.104910_b15) 1990
Tarbouriech (10.1016/j.sysconle.2021.104910_b32) 2011
Acary (10.1016/j.sysconle.2021.104910_b23) 2008
Ferrante (10.1016/j.sysconle.2021.104910_b29) 2015; 58
Dahl (10.1016/j.sysconle.2021.104910_b8) 1968
Abdo (10.1016/j.sysconle.2021.104910_b18) 2011; 49
Boyd (10.1016/j.sysconle.2021.104910_b37) 1994
Gawronski (10.1016/j.sysconle.2021.104910_b27) 2007; 15
Löfberg (10.1016/j.sysconle.2021.104910_b39) 2005
Madeira (10.1016/j.sysconle.2021.104910_b35) 2016; 61
Bisoffi (10.1016/j.sysconle.2021.104910_b19) 2020; 49
Johanastrom (10.1016/j.sysconle.2021.104910_b21) 2008; 28
Van de Wouw (10.1016/j.sysconle.2021.104910_b24) 2004; 35
Ebihara (10.1016/j.sysconle.2021.104910_b31) 2015; vol. 17
Bauschke (10.1016/j.sysconle.2021.104910_b36) 2011
Brogliato (10.1016/j.sysconle.2021.104910_b33) 2020; 62
References_xml – year: 2013
  ident: b25
  article-title: Differential Equations with Discontinuous Righthand Sides: Control Systems. Vol. 18
– volume: 6
  start-page: 15
  year: 2015
  end-page: 28
  ident: b11
  article-title: Experimental comparison of five friction models on the same test-bed of the micro stick–slip motion system
  publication-title: Mech. Sci.
– volume: 61
  start-page: 3091
  year: 2016
  end-page: 3095
  ident: b35
  article-title: On the equivalence between strict positive realnessand strict passivity of linear systems
  publication-title: IEEE Trans. Automat. Control
– volume: 205
  start-page: 323
  year: 1997
  end-page: 335
  ident: b16
  article-title: A non-linear friction model for self-excited vibrations
  publication-title: J. Sound Vib.
– start-page: 284
  year: 2005
  end-page: 289
  ident: b39
  article-title: YALMIP: A toolbox for modeling and optimization in MATLAB
  publication-title: IEEE International Symposium on Computer Aided Control Systems Design
– year: 2007
  ident: b1
  article-title: Drilling Engineering
– volume: 16
  start-page: 1177
  year: 2008
  end-page: 1191
  ident: b2
  article-title: DOSKIL: A new mechanism for controlling stick-slip oscillations in oil well drillstrings
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2019
  ident: b26
  article-title: Practical stability analysis of a drilling pipe under friction with a PI-controller
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 40
  start-page: 419
  year: 1995
  end-page: 425
  ident: b9
  article-title: A new model for control of systems with friction
  publication-title: IEEE Trans. Automat. control
– volume: 35
  start-page: 19
  year: 2004
  end-page: 39
  ident: b24
  article-title: Attractivity of equilibrium sets of systems with dry friction
  publication-title: Nonlinear Dynam.
– volume: 107
  start-page: 483
  year: 2019
  end-page: 492
  ident: b5
  article-title: Reset integral control for improved settling of PID-based motion systems with friction
  publication-title: Automatica
– volume: 63
  start-page: 2654
  year: 2018
  end-page: 2661
  ident: b12
  article-title: Global asymptotic stability of a PID control system with Coulomb friction
  publication-title: IEEE Trans. Automat. Control
– volume: vol. 17
  year: 2015
  ident: b31
  publication-title: S-Variable Approach to LMI-Based Robust Control
– volume: 59
  start-page: 488
  year: 2014
  end-page: 494
  ident: b30
  article-title: Stability analysis and stabilization of systems with input backlash
  publication-title: IEEE Trans. Automat. Control
– volume: 28
  start-page: 101
  year: 2008
  end-page: 114
  ident: b21
  article-title: Revisiting the LuGre friction model
  publication-title: IEEE Control syst. Mag.
– volume: 43
  start-page: 1387
  year: 2007
  end-page: 1394
  ident: b13
  article-title: Analysis of undercompensation and overcompensation of friction in 1dof mechanical systems
  publication-title: Automatica
– volume: 49
  start-page: 37
  year: 2020
  end-page: 63
  ident: b19
  article-title: To stick or to slip: a reset pid control perspective on positioning systems with friction
  publication-title: Annu. Rev. Control
– year: 2008
  ident: b23
  article-title: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics
– volume: 15
  start-page: 276
  year: 2007
  end-page: 289
  ident: b27
  article-title: Control and pointing challenges of large antennas and telescopes
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2011
  ident: b36
  article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Vol. 408
– volume: 46
  start-page: 1341
  year: 1902
  end-page: 1348
  ident: b7
  article-title: Die wesentlichen eigenschaften der gleit-und rollenlager
  publication-title: Z. Ver. Dtsch. Ing.
– year: 1968
  ident: b8
  article-title: A Solid Friction Model
– volume: 45
  start-page: 675
  year: 2000
  end-page: 686
  ident: b10
  article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation
  publication-title: IEEE Trans. Automat. Control
– year: 2004
  ident: b14
  article-title: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. Vol. 14
– year: 1821
  ident: b6
  article-title: Théorie des Machines Simples en Ayant Égard au Frottement de Leurs Parties et à la Roideur des Cordages
– year: 1994
  ident: b37
  publication-title: Linear Matrix Inequalities in System and Control Theory
– year: 2007
  ident: b20
  article-title: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Vol. 36
– volume: 62
  start-page: 3
  year: 2020
  end-page: 129
  ident: b33
  article-title: Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability
  publication-title: SIAM Rev.
– volume: 30
  start-page: 1083
  year: 1994
  end-page: 1138
  ident: b4
  article-title: A survey of models, analysis tools and compensation methods for the control of machines with friction
  publication-title: Automatica
– volume: 38
  start-page: 389
  year: 2003
  end-page: 403
  ident: b17
  article-title: Analytical approximations for stick–slip vibration amplitudes
  publication-title: Int. J. Non-Linear Mech.
– start-page: 907
  year: 2002
  end-page: 923
  ident: b3
  article-title: Vehicle dynamics simulation with inclusion of freeplay and dry friction in steering system
  publication-title: SAE Trans.
– year: 2000
  ident: b34
  article-title: Dissipative Systems Analysis and Control: Theory and Applications
– year: 1996
  ident: b28
  article-title: Nonlinear Systems
– volume: 49
  start-page: 971
  year: 2011
  end-page: 986
  ident: b18
  article-title: Analytical approach to estimate amplitude of stick–slip oscillations
  publication-title: J. Theoret. Appl. Mech.
– start-page: 1377
  year: 1990
  end-page: 1382
  ident: b15
  article-title: Stick–slip arising from Stribeck friction
  publication-title: Proceedings., IEEE International Conference on Robotics and Automation
– volume: 58
  start-page: 167
  year: 2015
  end-page: 172
  ident: b29
  article-title: Stabilization of continuous-time linear systems subject to input quantization
  publication-title: Automatica
– year: 2011
  ident: b32
  article-title: Stability and Stabilization of Linear Systems with Saturating Actuators
– year: 2019
  ident: b38
  article-title: The MOSEK optimization toolbox for MATLAB manual. Version 9.0
– volume: 107
  start-page: 100
  year: 1985
  end-page: 103
  ident: b22
  article-title: Computer simulation of stick–slip friction in mechanical dynamic systems
  publication-title: J. Dyn. Syst. Meas. Control
– volume: 28
  start-page: 101
  year: 2008
  ident: 10.1016/j.sysconle.2021.104910_b21
  article-title: Revisiting the LuGre friction model
  publication-title: IEEE Control syst. Mag.
  doi: 10.1109/MCS.2008.929425
– year: 2000
  ident: 10.1016/j.sysconle.2021.104910_b34
– volume: 16
  start-page: 1177
  year: 2008
  ident: 10.1016/j.sysconle.2021.104910_b2
  article-title: DOSKIL: A new mechanism for controlling stick-slip oscillations in oil well drillstrings
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2008.917873
– volume: 107
  start-page: 483
  year: 2019
  ident: 10.1016/j.sysconle.2021.104910_b5
  article-title: Reset integral control for improved settling of PID-based motion systems with friction
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.06.017
– volume: 107
  start-page: 100
  year: 1985
  ident: 10.1016/j.sysconle.2021.104910_b22
  article-title: Computer simulation of stick–slip friction in mechanical dynamic systems
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.3140698
– year: 1994
  ident: 10.1016/j.sysconle.2021.104910_b37
– volume: 35
  start-page: 19
  year: 2004
  ident: 10.1016/j.sysconle.2021.104910_b24
  article-title: Attractivity of equilibrium sets of systems with dry friction
  publication-title: Nonlinear Dynam.
  doi: 10.1023/B:NODY.0000017482.61599.86
– volume: 40
  start-page: 419
  year: 1995
  ident: 10.1016/j.sysconle.2021.104910_b9
  article-title: A new model for control of systems with friction
  publication-title: IEEE Trans. Automat. control
  doi: 10.1109/9.376053
– volume: 63
  start-page: 2654
  year: 2018
  ident: 10.1016/j.sysconle.2021.104910_b12
  article-title: Global asymptotic stability of a PID control system with Coulomb friction
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2017.2774443
– volume: 58
  start-page: 167
  year: 2015
  ident: 10.1016/j.sysconle.2021.104910_b29
  article-title: Stabilization of continuous-time linear systems subject to input quantization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.05.015
– year: 1821
  ident: 10.1016/j.sysconle.2021.104910_b6
– volume: 43
  start-page: 1387
  year: 2007
  ident: 10.1016/j.sysconle.2021.104910_b13
  article-title: Analysis of undercompensation and overcompensation of friction in 1dof mechanical systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.01.021
– volume: 30
  start-page: 1083
  year: 1994
  ident: 10.1016/j.sysconle.2021.104910_b4
  article-title: A survey of models, analysis tools and compensation methods for the control of machines with friction
  publication-title: Automatica
  doi: 10.1016/0005-1098(94)90209-7
– year: 1968
  ident: 10.1016/j.sysconle.2021.104910_b8
– year: 2007
  ident: 10.1016/j.sysconle.2021.104910_b1
– volume: 61
  start-page: 3091
  year: 2016
  ident: 10.1016/j.sysconle.2021.104910_b35
  article-title: On the equivalence between strict positive realnessand strict passivity of linear systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2015.2506993
– year: 2007
  ident: 10.1016/j.sysconle.2021.104910_b20
– year: 2004
  ident: 10.1016/j.sysconle.2021.104910_b14
– year: 2013
  ident: 10.1016/j.sysconle.2021.104910_b25
– volume: 62
  start-page: 3
  year: 2020
  ident: 10.1016/j.sysconle.2021.104910_b33
  article-title: Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability
  publication-title: SIAM Rev.
  doi: 10.1137/18M1234795
– year: 2019
  ident: 10.1016/j.sysconle.2021.104910_b38
– volume: 49
  start-page: 971
  year: 2011
  ident: 10.1016/j.sysconle.2021.104910_b18
  article-title: Analytical approach to estimate amplitude of stick–slip oscillations
  publication-title: J. Theoret. Appl. Mech.
– volume: 45
  start-page: 675
  year: 2000
  ident: 10.1016/j.sysconle.2021.104910_b10
  article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.847103
– volume: 46
  start-page: 1341
  year: 1902
  ident: 10.1016/j.sysconle.2021.104910_b7
  article-title: Die wesentlichen eigenschaften der gleit-und rollenlager
  publication-title: Z. Ver. Dtsch. Ing.
– start-page: 907
  year: 2002
  ident: 10.1016/j.sysconle.2021.104910_b3
  article-title: Vehicle dynamics simulation with inclusion of freeplay and dry friction in steering system
  publication-title: SAE Trans.
– year: 2011
  ident: 10.1016/j.sysconle.2021.104910_b36
– volume: 6
  start-page: 15
  year: 2015
  ident: 10.1016/j.sysconle.2021.104910_b11
  article-title: Experimental comparison of five friction models on the same test-bed of the micro stick–slip motion system
  publication-title: Mech. Sci.
  doi: 10.5194/ms-6-15-2015
– volume: 15
  start-page: 276
  year: 2007
  ident: 10.1016/j.sysconle.2021.104910_b27
  article-title: Control and pointing challenges of large antennas and telescopes
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2006.886434
– volume: 59
  start-page: 488
  year: 2014
  ident: 10.1016/j.sysconle.2021.104910_b30
  article-title: Stability analysis and stabilization of systems with input backlash
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2013.2273279
– volume: 49
  start-page: 37
  issn: 1367-5788
  year: 2020
  ident: 10.1016/j.sysconle.2021.104910_b19
  article-title: To stick or to slip: a reset pid control perspective on positioning systems with friction
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2020.04.010
– start-page: 1377
  year: 1990
  ident: 10.1016/j.sysconle.2021.104910_b15
  article-title: Stick–slip arising from Stribeck friction
– volume: 38
  start-page: 389
  year: 2003
  ident: 10.1016/j.sysconle.2021.104910_b17
  article-title: Analytical approximations for stick–slip vibration amplitudes
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(01)00073-7
– year: 2008
  ident: 10.1016/j.sysconle.2021.104910_b23
– year: 2011
  ident: 10.1016/j.sysconle.2021.104910_b32
– year: 2019
  ident: 10.1016/j.sysconle.2021.104910_b26
  article-title: Practical stability analysis of a drilling pipe under friction with a PI-controller
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: vol. 17
  year: 2015
  ident: 10.1016/j.sysconle.2021.104910_b31
– year: 1996
  ident: 10.1016/j.sysconle.2021.104910_b28
– volume: 205
  start-page: 323
  year: 1997
  ident: 10.1016/j.sysconle.2021.104910_b16
  article-title: A non-linear friction model for self-excited vibrations
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1997.1053
– start-page: 284
  year: 2005
  ident: 10.1016/j.sysconle.2021.104910_b39
  article-title: YALMIP: A toolbox for modeling and optimization in MATLAB
SSID ssj0002033
Score 2.3432884
Snippet This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a...
This paper deals with the stability analysis of a mass-spring system subject to friction using Lyapunov-based arguments. As the described system presents a...
SourceID swepub
hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104910
SubjectTerms Analysis of PDEs
Attractor
Friction
Global asymptotic stability
LMI
Lyapunov methods
Mathematics
Optimization and Control
Regional asymptotic stability
Title Lyapunov stability analysis of a mass–spring system subject to friction
URI https://dx.doi.org/10.1016/j.sysconle.2021.104910
https://laas.hal.science/hal-02883529
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295272
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUKXOCAWEXZZCHErbRxnbg5ViwqFDiw3yxvoS0lqbog9YL4B_6QL8ETJ9BKSBw4RbFsxZnxjMf28xuE9iMqDWFGlRSrhSUq7AJFMGnNXQWe0iw0RsE-5OVV0Lij54_-YwEd5XdhAFaZ-X7n01NvnZWUM2mWe-12-QYA9IG1VQJb1DQllKSUwSg_fPuBeZCKSycP_N5Qe-KWcOdwMB7YVWcX6DKJB8edIdyk_X2CmmkBUnKKTzSdg06X0GIWPOK6698yKph4BS1MUAquorOLseiN4uQV27AvBb6OsciIR3ASYYFfbLj8-f7hDmSxY3LGg5GEDRk8TDAkDgJtraG705Pbo0YpS5dQUrRKIKm8IpLQQIdSMSOpZxSrKqCDpBUh7a_ZaEeriKiAaRlRUdWRV9Ms0r4xUgRRdR3NxklsNhDWkbILKWv9gW-VKa2N14hmwP1HpDSCFZGfy4irjEscUlp0eQ4a6_Bcthxky51si6j83a7n2DT-bBHmKuBT44Jbl_9n2z2rs-8PAZF2o37BoawCSZZ9Er56RXTgVDpV77h9X-dJ_4k_D1uchD5hZPMfPdlC8_DmED_baHbYH5kdG8wM5W46WnfRXP2s2biCZ_P6ofkF-wH4jQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOQAHtLxEgQULIW6ljevEzbFiQSmUXniIm-VXoGy3qfpA6m3_w_5Dfsl66qSiEhIHrk5GcWY84_F45huA05QpS7nVFc0bcYVJd0CRXDl111GgDY-t1RiHvO1EyQO7fgqfluCiqIXBtMrc9nubPrPW-Ug152Z10O1W7zCBPnK6SjFEzRBQcgXRqcISrDRbN0lnbpBpzXeUR4hvJPhQKPx6PpqO3MGzh4iZNMAbzxiLaT_fo5ZfMFlyAVJ0tg1d_YCN3H8kTT_FTViy_S1Y_4AquA2t9lQOJv3sjTjPb5b7OiUyxx4hWUok-eM85ve___ydLPFgzmQ0URiTIeOMYO8gFNgOPFxd3l8klbxjQkWzOsW-8poqyiITK82tYoHVvK4REZLVpHK_5hweo1OqI25UymTdpEHD8NSE1ioZpfVdKPWzvt0DYlLtzlLOAEShk6dyat6ghiP8H1XKSl6GsOCR0DmcOHa16Ikib-xVFLwVyFvheVuG6pxu4AE1vqSICxGIhaUhnNX_kvbEyWz-IcTSTpptgWM17LMc0vgtKMOZF-nCe7-6j02RDZ_F7_GLoHFIOd3_xkyOYTW5v22LdqtzcwBr-MQnAB1CaTyc2J_Otxmro3zt_getgPmb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lyapunov+stability+analysis+of+a+mass%E2%80%93spring+system+subject+to+friction&rft.jtitle=Systems+%26+control+letters&rft.au=Barreau%2C+Matthieu&rft.au=Tarbouriech%2C+Sophie&rft.au=Gouaisbaut%2C+Fr%C3%A9d%C3%A9ric&rft.date=2021-04-01&rft.issn=0167-6911&rft.volume=150&rft.spage=104910&rft_id=info:doi/10.1016%2Fj.sysconle.2021.104910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysconle_2021_104910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon