Lyapunov stability analysis of a mass–spring system subject to friction
This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick–slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions...
Saved in:
Published in | Systems & control letters Vol. 150; p. 104910 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0167-6911 1872-7956 1872-7956 |
DOI | 10.1016/j.sysconle.2021.104910 |
Cover
Loading…
Abstract | This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick–slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The proposed approach merges two intermediate results: The first one relies on the characterization of an attractor around the origin, to which converges the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed from the second result. An illustrative example draws the interest of the approach.
•The stability analysis of mass–spring system subject to a nonlinear friction force is conducted using quadratic Lyapunov functions, leading to stability tests expressed by LMIs.•We give a precise estimation of a global attractor with emphasis on the practical consequences.•If there exists a basin of attraction, we provide an algorithm to give an inner-estimation of the latter.•We mix the two previous results to state the global exponential stability of the system. This work proves then rigorously what was experimentally already noted: for a reference speed large enough, the unique equilibrium point is globally exponentially stable. |
---|---|
AbstractList | This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick–slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The proposed approach merges two intermediate results: The first one relies on the characterization of an attractor around the origin, to which converges the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed from the second result. An illustrative example draws the interest of the approach.
•The stability analysis of mass–spring system subject to a nonlinear friction force is conducted using quadratic Lyapunov functions, leading to stability tests expressed by LMIs.•We give a precise estimation of a global attractor with emphasis on the practical consequences.•If there exists a basin of attraction, we provide an algorithm to give an inner-estimation of the latter.•We mix the two previous results to state the global exponential stability of the system. This work proves then rigorously what was experimentally already noted: for a reference speed large enough, the unique equilibrium point is globally exponentially stable. This paper deals with the stability analysis of a mass-spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick-slip phenomenon, the mass may then periodically stick to the ground. The objective consists in developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The approach proposed merges two intermediate results: The first one relies on the characterization of an attractor around the origin, in which converge the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed form the second result. An illustrative example draws the interest of the approach. This paper deals with the stability analysis of a mass-spring system subject to friction using Lyapunov-based arguments. As the described system presents a stick-slip phenomenon, the mass may then periodically stick to the ground. The objective consists of developing numerically tractable conditions ensuring the global asymptotic stability of the unique equilibrium point. The proposed approach merges two intermediate results: The first one relies on the characterization of an attractor around the origin, to which converges the closed-loop trajectories. The second result assesses the regional asymptotic stability of the equilibrium point by estimating its basin of attraction. The main result relies on conditions allowing to ensure that the attractor issued from the first result is included in the basin of attraction of the origin computed from the second result. An illustrative example draws the interest of the approach. |
ArticleNumber | 104910 |
Author | Tarbouriech, Sophie Gouaisbaut, Frédéric Barreau, Matthieu |
Author_xml | – sequence: 1 givenname: Matthieu orcidid: 0000-0002-9432-254X surname: Barreau fullname: Barreau, Matthieu email: barreau@kth.se organization: Division of Decision and Control Systems, KTH Royal Institute of Technology Stockholm, Sweden – sequence: 2 givenname: Sophie surname: Tarbouriech fullname: Tarbouriech, Sophie email: tarbour@laas.fr organization: LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 3 givenname: Frédéric surname: Gouaisbaut fullname: Gouaisbaut, Frédéric email: fgouaisb@laas.fr organization: LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France |
BackLink | https://laas.hal.science/hal-02883529$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295272$$DView record from Swedish Publication Index |
BookMark | eNqFkMtOAjEUhhuDiYi-gunWxWDbuZRJXEjwAgmJG3XbtJ0WisOUtAUzO9_BN_RJLBlZ6IbVSU6-_1y-c9BrbKMAuMJoiBEublZD33ppm1oNCSI4NrMSoxPQxyNKElrmRQ_0I0iTosT4DJx7v0IIEZSmfTCbt3yzbewO-sCFqU1oIW943XrjodWQwzX3_vvzy2-caRYwrgpqDf1WrJQMMFionZHB2OYCnGpee3X5Wwfg9fHhZTJN5s9Ps8l4nsgsJSHBqSSCZEVVCkmVyLCSNJUIZTRDXMTLSY4qqYksaCV0xtNK41FFdZUrJXih0wFIurn-Q222gsW71ty1zHLD7s3bmFm3YO9hyUiZE0oif93xS17_gafjOdv3EBmN0pyUOxzZ246VznrvlGbSBL7_LjhuaoYR2ytnK3ZQzvbKWac8xot_8cO-o8G7LqiiuJ1RjnlpVCNVZVzUzCprjo34AU1NpHQ |
CitedBy_id | crossref_primary_10_1007_s11071_022_08024_y crossref_primary_10_3390_app13021136 crossref_primary_10_3390_automation3010003 |
Cites_doi | 10.1109/MCS.2008.929425 10.1109/TCST.2008.917873 10.1016/j.automatica.2019.06.017 10.1115/1.3140698 10.1023/B:NODY.0000017482.61599.86 10.1109/9.376053 10.1109/TAC.2017.2774443 10.1016/j.automatica.2015.05.015 10.1016/j.automatica.2007.01.021 10.1016/0005-1098(94)90209-7 10.1109/TAC.2015.2506993 10.1137/18M1234795 10.1109/9.847103 10.5194/ms-6-15-2015 10.1109/TCST.2006.886434 10.1109/TAC.2013.2273279 10.1016/j.arcontrol.2020.04.010 10.1016/S0020-7462(01)00073-7 10.1006/jsvi.1997.1053 |
ContentType | Journal Article |
Copyright | 2021 The Authors Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Authors – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1016/j.sysconle.2021.104910 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1872-7956 |
ExternalDocumentID | oai_DiVA_org_kth_295272 oai_HAL_hal_02883529v1 10_1016_j_sysconle_2021_104910 S0167691121000402 |
GrantInformation_xml | – fundername: ANR grantid: 18-CE40-0010 funderid: http://dx.doi.org/10.13039/501100001665 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE J1W JJJVA KOM LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K TN5 WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES ADTPV AFDQA AOWAS D8T D8V EFKBS ZZAVC |
ID | FETCH-LOGICAL-c432t-13c2b246d9bc7eb41ec73c004740ab491250dcf2c67dbf4a3df18d7fd5eeba6f3 |
IEDL.DBID | .~1 |
ISSN | 0167-6911 1872-7956 |
IngestDate | Thu Aug 21 06:43:12 EDT 2025 Fri May 09 12:13:26 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 03:29:10 EDT 2025 Fri Feb 23 02:46:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Global asymptotic stability LMI Friction Regional asymptotic stability Attractor Lyapunov methods |
Language | English |
License | This is an open access article under the CC BY license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-13c2b246d9bc7eb41ec73c004740ab491250dcf2c67dbf4a3df18d7fd5eeba6f3 |
ORCID | 0000-0002-9432-254X 0000-0002-4263-7195 0000-0002-0816-5614 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167691121000402 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_295272 hal_primary_oai_HAL_hal_02883529v1 crossref_citationtrail_10_1016_j_sysconle_2021_104910 crossref_primary_10_1016_j_sysconle_2021_104910 elsevier_sciencedirect_doi_10_1016_j_sysconle_2021_104910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Systems & control letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bauschke, Combettes (b36) 2011 Brogliato, Tanwani (b33) 2020; 62 Boyd, El Ghaoui, Feron, Balakrishnan (b37) 1994 Khalil (b28) 1996 Ebihara, Peaucelle, Arzelier (b31) 2015; vol. 17 Karnopp (b22) 1985; 107 Tarbouriech, Queinnec, Prieur (b30) 2014; 59 Van de Wouw, Leine (b24) 2004; 35 Beerens, Bisoffi, Zaccarian, Heemels, Nijmeijer, van de Wouw (b5) 2019; 107 Löfberg (b39) 2005 ApS (b38) 2019 Ferrante, Gouaisbaut, Tarbouriech (b29) 2015; 58 Swevers, Al-Bender, Ganseman, Projogo (b10) 2000; 45 Coulomb (b6) 1821 Madeira, Adamy (b35) 2016; 61 Canudas De Wit, Olsson, Astrom, Lischinsky (b9) 1995; 40 Armstrong-Hélouvry (b15) 1990 Bisoffi, Beerens, Heemels, Nijmeijer, van de Wouw, Zaccarian (b19) 2020; 49 Liu, Li, Zhang, Hu, Zhang (b11) 2015; 6 McMillan (b16) 1997; 205 Bisoffi, Da Lio, Teel, Zaccarian (b12) 2018; 63 Abdo, Abouelsoud (b18) 2011; 49 Stribeck (b7) 1902; 46 Armstrong-Hélouvry, Dupont, Canudas De Wit (b4) 1994; 30 Johanastrom, Canudas-De-Wit (b21) 2008; 28 Barreau, Gouaisbaut, Seuret (b26) 2019 Yakubovich, Leonov, Gelig (b14) 2004 Azar, Samuel (b1) 2007 Leine, Van de Wouw (b20) 2007 Gawronski (b27) 2007; 15 Lozia, Zardecki (b3) 2002 Dahl (b8) 1968 Filippov (b25) 2013 Canudas de Wit, Rubio, Corchero (b2) 2008; 16 Putra, Nijmeijer, van de Wouw (b13) 2007; 43 Thomsen, Fidlin (b17) 2003; 38 Brogliato, Lozano, Maschke, Egeland (b34) 2000 Acary, Brogliato (b23) 2008 Tarbouriech, Garcia, da Silva, Queinnec (b32) 2011 McMillan (10.1016/j.sysconle.2021.104910_b16) 1997; 205 Canudas de Wit (10.1016/j.sysconle.2021.104910_b2) 2008; 16 Yakubovich (10.1016/j.sysconle.2021.104910_b14) 2004 Brogliato (10.1016/j.sysconle.2021.104910_b34) 2000 Karnopp (10.1016/j.sysconle.2021.104910_b22) 1985; 107 Swevers (10.1016/j.sysconle.2021.104910_b10) 2000; 45 Lozia (10.1016/j.sysconle.2021.104910_b3) 2002 Tarbouriech (10.1016/j.sysconle.2021.104910_b30) 2014; 59 Bisoffi (10.1016/j.sysconle.2021.104910_b12) 2018; 63 Filippov (10.1016/j.sysconle.2021.104910_b25) 2013 Barreau (10.1016/j.sysconle.2021.104910_b26) 2019 Armstrong-Hélouvry (10.1016/j.sysconle.2021.104910_b4) 1994; 30 Canudas De Wit (10.1016/j.sysconle.2021.104910_b9) 1995; 40 Khalil (10.1016/j.sysconle.2021.104910_b28) 1996 Azar (10.1016/j.sysconle.2021.104910_b1) 2007 Coulomb (10.1016/j.sysconle.2021.104910_b6) 1821 Putra (10.1016/j.sysconle.2021.104910_b13) 2007; 43 Thomsen (10.1016/j.sysconle.2021.104910_b17) 2003; 38 Stribeck (10.1016/j.sysconle.2021.104910_b7) 1902; 46 Beerens (10.1016/j.sysconle.2021.104910_b5) 2019; 107 Leine (10.1016/j.sysconle.2021.104910_b20) 2007 ApS (10.1016/j.sysconle.2021.104910_b38) 2019 Liu (10.1016/j.sysconle.2021.104910_b11) 2015; 6 Armstrong-Hélouvry (10.1016/j.sysconle.2021.104910_b15) 1990 Tarbouriech (10.1016/j.sysconle.2021.104910_b32) 2011 Acary (10.1016/j.sysconle.2021.104910_b23) 2008 Ferrante (10.1016/j.sysconle.2021.104910_b29) 2015; 58 Dahl (10.1016/j.sysconle.2021.104910_b8) 1968 Abdo (10.1016/j.sysconle.2021.104910_b18) 2011; 49 Boyd (10.1016/j.sysconle.2021.104910_b37) 1994 Gawronski (10.1016/j.sysconle.2021.104910_b27) 2007; 15 Löfberg (10.1016/j.sysconle.2021.104910_b39) 2005 Madeira (10.1016/j.sysconle.2021.104910_b35) 2016; 61 Bisoffi (10.1016/j.sysconle.2021.104910_b19) 2020; 49 Johanastrom (10.1016/j.sysconle.2021.104910_b21) 2008; 28 Van de Wouw (10.1016/j.sysconle.2021.104910_b24) 2004; 35 Ebihara (10.1016/j.sysconle.2021.104910_b31) 2015; vol. 17 Bauschke (10.1016/j.sysconle.2021.104910_b36) 2011 Brogliato (10.1016/j.sysconle.2021.104910_b33) 2020; 62 |
References_xml | – year: 2013 ident: b25 article-title: Differential Equations with Discontinuous Righthand Sides: Control Systems. Vol. 18 – volume: 6 start-page: 15 year: 2015 end-page: 28 ident: b11 article-title: Experimental comparison of five friction models on the same test-bed of the micro stick–slip motion system publication-title: Mech. Sci. – volume: 61 start-page: 3091 year: 2016 end-page: 3095 ident: b35 article-title: On the equivalence between strict positive realnessand strict passivity of linear systems publication-title: IEEE Trans. Automat. Control – volume: 205 start-page: 323 year: 1997 end-page: 335 ident: b16 article-title: A non-linear friction model for self-excited vibrations publication-title: J. Sound Vib. – start-page: 284 year: 2005 end-page: 289 ident: b39 article-title: YALMIP: A toolbox for modeling and optimization in MATLAB publication-title: IEEE International Symposium on Computer Aided Control Systems Design – year: 2007 ident: b1 article-title: Drilling Engineering – volume: 16 start-page: 1177 year: 2008 end-page: 1191 ident: b2 article-title: DOSKIL: A new mechanism for controlling stick-slip oscillations in oil well drillstrings publication-title: IEEE Trans. Control Syst. Technol. – year: 2019 ident: b26 article-title: Practical stability analysis of a drilling pipe under friction with a PI-controller publication-title: IEEE Trans. Control Syst. Technol. – volume: 40 start-page: 419 year: 1995 end-page: 425 ident: b9 article-title: A new model for control of systems with friction publication-title: IEEE Trans. Automat. control – volume: 35 start-page: 19 year: 2004 end-page: 39 ident: b24 article-title: Attractivity of equilibrium sets of systems with dry friction publication-title: Nonlinear Dynam. – volume: 107 start-page: 483 year: 2019 end-page: 492 ident: b5 article-title: Reset integral control for improved settling of PID-based motion systems with friction publication-title: Automatica – volume: 63 start-page: 2654 year: 2018 end-page: 2661 ident: b12 article-title: Global asymptotic stability of a PID control system with Coulomb friction publication-title: IEEE Trans. Automat. Control – volume: vol. 17 year: 2015 ident: b31 publication-title: S-Variable Approach to LMI-Based Robust Control – volume: 59 start-page: 488 year: 2014 end-page: 494 ident: b30 article-title: Stability analysis and stabilization of systems with input backlash publication-title: IEEE Trans. Automat. Control – volume: 28 start-page: 101 year: 2008 end-page: 114 ident: b21 article-title: Revisiting the LuGre friction model publication-title: IEEE Control syst. Mag. – volume: 43 start-page: 1387 year: 2007 end-page: 1394 ident: b13 article-title: Analysis of undercompensation and overcompensation of friction in 1dof mechanical systems publication-title: Automatica – volume: 49 start-page: 37 year: 2020 end-page: 63 ident: b19 article-title: To stick or to slip: a reset pid control perspective on positioning systems with friction publication-title: Annu. Rev. Control – year: 2008 ident: b23 article-title: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics – volume: 15 start-page: 276 year: 2007 end-page: 289 ident: b27 article-title: Control and pointing challenges of large antennas and telescopes publication-title: IEEE Trans. Control Syst. Technol. – year: 2011 ident: b36 article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Vol. 408 – volume: 46 start-page: 1341 year: 1902 end-page: 1348 ident: b7 article-title: Die wesentlichen eigenschaften der gleit-und rollenlager publication-title: Z. Ver. Dtsch. Ing. – year: 1968 ident: b8 article-title: A Solid Friction Model – volume: 45 start-page: 675 year: 2000 end-page: 686 ident: b10 article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation publication-title: IEEE Trans. Automat. Control – year: 2004 ident: b14 article-title: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. Vol. 14 – year: 1821 ident: b6 article-title: Théorie des Machines Simples en Ayant Égard au Frottement de Leurs Parties et à la Roideur des Cordages – year: 1994 ident: b37 publication-title: Linear Matrix Inequalities in System and Control Theory – year: 2007 ident: b20 article-title: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Vol. 36 – volume: 62 start-page: 3 year: 2020 end-page: 129 ident: b33 article-title: Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability publication-title: SIAM Rev. – volume: 30 start-page: 1083 year: 1994 end-page: 1138 ident: b4 article-title: A survey of models, analysis tools and compensation methods for the control of machines with friction publication-title: Automatica – volume: 38 start-page: 389 year: 2003 end-page: 403 ident: b17 article-title: Analytical approximations for stick–slip vibration amplitudes publication-title: Int. J. Non-Linear Mech. – start-page: 907 year: 2002 end-page: 923 ident: b3 article-title: Vehicle dynamics simulation with inclusion of freeplay and dry friction in steering system publication-title: SAE Trans. – year: 2000 ident: b34 article-title: Dissipative Systems Analysis and Control: Theory and Applications – year: 1996 ident: b28 article-title: Nonlinear Systems – volume: 49 start-page: 971 year: 2011 end-page: 986 ident: b18 article-title: Analytical approach to estimate amplitude of stick–slip oscillations publication-title: J. Theoret. Appl. Mech. – start-page: 1377 year: 1990 end-page: 1382 ident: b15 article-title: Stick–slip arising from Stribeck friction publication-title: Proceedings., IEEE International Conference on Robotics and Automation – volume: 58 start-page: 167 year: 2015 end-page: 172 ident: b29 article-title: Stabilization of continuous-time linear systems subject to input quantization publication-title: Automatica – year: 2011 ident: b32 article-title: Stability and Stabilization of Linear Systems with Saturating Actuators – year: 2019 ident: b38 article-title: The MOSEK optimization toolbox for MATLAB manual. Version 9.0 – volume: 107 start-page: 100 year: 1985 end-page: 103 ident: b22 article-title: Computer simulation of stick–slip friction in mechanical dynamic systems publication-title: J. Dyn. Syst. Meas. Control – volume: 28 start-page: 101 year: 2008 ident: 10.1016/j.sysconle.2021.104910_b21 article-title: Revisiting the LuGre friction model publication-title: IEEE Control syst. Mag. doi: 10.1109/MCS.2008.929425 – year: 2000 ident: 10.1016/j.sysconle.2021.104910_b34 – volume: 16 start-page: 1177 year: 2008 ident: 10.1016/j.sysconle.2021.104910_b2 article-title: DOSKIL: A new mechanism for controlling stick-slip oscillations in oil well drillstrings publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2008.917873 – volume: 107 start-page: 483 year: 2019 ident: 10.1016/j.sysconle.2021.104910_b5 article-title: Reset integral control for improved settling of PID-based motion systems with friction publication-title: Automatica doi: 10.1016/j.automatica.2019.06.017 – volume: 107 start-page: 100 year: 1985 ident: 10.1016/j.sysconle.2021.104910_b22 article-title: Computer simulation of stick–slip friction in mechanical dynamic systems publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.3140698 – year: 1994 ident: 10.1016/j.sysconle.2021.104910_b37 – volume: 35 start-page: 19 year: 2004 ident: 10.1016/j.sysconle.2021.104910_b24 article-title: Attractivity of equilibrium sets of systems with dry friction publication-title: Nonlinear Dynam. doi: 10.1023/B:NODY.0000017482.61599.86 – volume: 40 start-page: 419 year: 1995 ident: 10.1016/j.sysconle.2021.104910_b9 article-title: A new model for control of systems with friction publication-title: IEEE Trans. Automat. control doi: 10.1109/9.376053 – volume: 63 start-page: 2654 year: 2018 ident: 10.1016/j.sysconle.2021.104910_b12 article-title: Global asymptotic stability of a PID control system with Coulomb friction publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2017.2774443 – volume: 58 start-page: 167 year: 2015 ident: 10.1016/j.sysconle.2021.104910_b29 article-title: Stabilization of continuous-time linear systems subject to input quantization publication-title: Automatica doi: 10.1016/j.automatica.2015.05.015 – year: 1821 ident: 10.1016/j.sysconle.2021.104910_b6 – volume: 43 start-page: 1387 year: 2007 ident: 10.1016/j.sysconle.2021.104910_b13 article-title: Analysis of undercompensation and overcompensation of friction in 1dof mechanical systems publication-title: Automatica doi: 10.1016/j.automatica.2007.01.021 – volume: 30 start-page: 1083 year: 1994 ident: 10.1016/j.sysconle.2021.104910_b4 article-title: A survey of models, analysis tools and compensation methods for the control of machines with friction publication-title: Automatica doi: 10.1016/0005-1098(94)90209-7 – year: 1968 ident: 10.1016/j.sysconle.2021.104910_b8 – year: 2007 ident: 10.1016/j.sysconle.2021.104910_b1 – volume: 61 start-page: 3091 year: 2016 ident: 10.1016/j.sysconle.2021.104910_b35 article-title: On the equivalence between strict positive realnessand strict passivity of linear systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2015.2506993 – year: 2007 ident: 10.1016/j.sysconle.2021.104910_b20 – year: 2004 ident: 10.1016/j.sysconle.2021.104910_b14 – year: 2013 ident: 10.1016/j.sysconle.2021.104910_b25 – volume: 62 start-page: 3 year: 2020 ident: 10.1016/j.sysconle.2021.104910_b33 article-title: Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability publication-title: SIAM Rev. doi: 10.1137/18M1234795 – year: 2019 ident: 10.1016/j.sysconle.2021.104910_b38 – volume: 49 start-page: 971 year: 2011 ident: 10.1016/j.sysconle.2021.104910_b18 article-title: Analytical approach to estimate amplitude of stick–slip oscillations publication-title: J. Theoret. Appl. Mech. – volume: 45 start-page: 675 year: 2000 ident: 10.1016/j.sysconle.2021.104910_b10 article-title: An integrated friction model structure with improved presliding behavior for accurate friction compensation publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.847103 – volume: 46 start-page: 1341 year: 1902 ident: 10.1016/j.sysconle.2021.104910_b7 article-title: Die wesentlichen eigenschaften der gleit-und rollenlager publication-title: Z. Ver. Dtsch. Ing. – start-page: 907 year: 2002 ident: 10.1016/j.sysconle.2021.104910_b3 article-title: Vehicle dynamics simulation with inclusion of freeplay and dry friction in steering system publication-title: SAE Trans. – year: 2011 ident: 10.1016/j.sysconle.2021.104910_b36 – volume: 6 start-page: 15 year: 2015 ident: 10.1016/j.sysconle.2021.104910_b11 article-title: Experimental comparison of five friction models on the same test-bed of the micro stick–slip motion system publication-title: Mech. Sci. doi: 10.5194/ms-6-15-2015 – volume: 15 start-page: 276 year: 2007 ident: 10.1016/j.sysconle.2021.104910_b27 article-title: Control and pointing challenges of large antennas and telescopes publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2006.886434 – volume: 59 start-page: 488 year: 2014 ident: 10.1016/j.sysconle.2021.104910_b30 article-title: Stability analysis and stabilization of systems with input backlash publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2013.2273279 – volume: 49 start-page: 37 issn: 1367-5788 year: 2020 ident: 10.1016/j.sysconle.2021.104910_b19 article-title: To stick or to slip: a reset pid control perspective on positioning systems with friction publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2020.04.010 – start-page: 1377 year: 1990 ident: 10.1016/j.sysconle.2021.104910_b15 article-title: Stick–slip arising from Stribeck friction – volume: 38 start-page: 389 year: 2003 ident: 10.1016/j.sysconle.2021.104910_b17 article-title: Analytical approximations for stick–slip vibration amplitudes publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(01)00073-7 – year: 2008 ident: 10.1016/j.sysconle.2021.104910_b23 – year: 2011 ident: 10.1016/j.sysconle.2021.104910_b32 – year: 2019 ident: 10.1016/j.sysconle.2021.104910_b26 article-title: Practical stability analysis of a drilling pipe under friction with a PI-controller publication-title: IEEE Trans. Control Syst. Technol. – volume: vol. 17 year: 2015 ident: 10.1016/j.sysconle.2021.104910_b31 – year: 1996 ident: 10.1016/j.sysconle.2021.104910_b28 – volume: 205 start-page: 323 year: 1997 ident: 10.1016/j.sysconle.2021.104910_b16 article-title: A non-linear friction model for self-excited vibrations publication-title: J. Sound Vib. doi: 10.1006/jsvi.1997.1053 – start-page: 284 year: 2005 ident: 10.1016/j.sysconle.2021.104910_b39 article-title: YALMIP: A toolbox for modeling and optimization in MATLAB |
SSID | ssj0002033 |
Score | 2.3432884 |
Snippet | This paper deals with the stability analysis of a mass–spring system subject to friction using Lyapunov-based arguments. As the described system presents a... This paper deals with the stability analysis of a mass-spring system subject to friction using Lyapunov-based arguments. As the described system presents a... |
SourceID | swepub hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 104910 |
SubjectTerms | Analysis of PDEs Attractor Friction Global asymptotic stability LMI Lyapunov methods Mathematics Optimization and Control Regional asymptotic stability |
Title | Lyapunov stability analysis of a mass–spring system subject to friction |
URI | https://dx.doi.org/10.1016/j.sysconle.2021.104910 https://laas.hal.science/hal-02883529 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295272 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUKXOCAWEXZZCHErbRxnbg5ViwqFDiw3yxvoS0lqbog9YL4B_6QL8ETJ9BKSBw4RbFsxZnxjMf28xuE9iMqDWFGlRSrhSUq7AJFMGnNXQWe0iw0RsE-5OVV0Lij54_-YwEd5XdhAFaZ-X7n01NvnZWUM2mWe-12-QYA9IG1VQJb1DQllKSUwSg_fPuBeZCKSycP_N5Qe-KWcOdwMB7YVWcX6DKJB8edIdyk_X2CmmkBUnKKTzSdg06X0GIWPOK6698yKph4BS1MUAquorOLseiN4uQV27AvBb6OsciIR3ASYYFfbLj8-f7hDmSxY3LGg5GEDRk8TDAkDgJtraG705Pbo0YpS5dQUrRKIKm8IpLQQIdSMSOpZxSrKqCDpBUh7a_ZaEeriKiAaRlRUdWRV9Ms0r4xUgRRdR3NxklsNhDWkbILKWv9gW-VKa2N14hmwP1HpDSCFZGfy4irjEscUlp0eQ4a6_Bcthxky51si6j83a7n2DT-bBHmKuBT44Jbl_9n2z2rs-8PAZF2o37BoawCSZZ9Er56RXTgVDpV77h9X-dJ_4k_D1uchD5hZPMfPdlC8_DmED_baHbYH5kdG8wM5W46WnfRXP2s2biCZ_P6ofkF-wH4jQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOQAHtLxEgQULIW6ljevEzbFiQSmUXniIm-VXoGy3qfpA6m3_w_5Dfsl66qSiEhIHrk5GcWY84_F45huA05QpS7nVFc0bcYVJd0CRXDl111GgDY-t1RiHvO1EyQO7fgqfluCiqIXBtMrc9nubPrPW-Ug152Z10O1W7zCBPnK6SjFEzRBQcgXRqcISrDRbN0lnbpBpzXeUR4hvJPhQKPx6PpqO3MGzh4iZNMAbzxiLaT_fo5ZfMFlyAVJ0tg1d_YCN3H8kTT_FTViy_S1Y_4AquA2t9lQOJv3sjTjPb5b7OiUyxx4hWUok-eM85ve___ydLPFgzmQ0URiTIeOMYO8gFNgOPFxd3l8klbxjQkWzOsW-8poqyiITK82tYoHVvK4REZLVpHK_5hweo1OqI25UymTdpEHD8NSE1ioZpfVdKPWzvt0DYlLtzlLOAEShk6dyat6ghiP8H1XKSl6GsOCR0DmcOHa16Ikib-xVFLwVyFvheVuG6pxu4AE1vqSICxGIhaUhnNX_kvbEyWz-IcTSTpptgWM17LMc0vgtKMOZF-nCe7-6j02RDZ_F7_GLoHFIOd3_xkyOYTW5v22LdqtzcwBr-MQnAB1CaTyc2J_Otxmro3zt_getgPmb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lyapunov+stability+analysis+of+a+mass%E2%80%93spring+system+subject+to+friction&rft.jtitle=Systems+%26+control+letters&rft.au=Barreau%2C+Matthieu&rft.au=Tarbouriech%2C+Sophie&rft.au=Gouaisbaut%2C+Fr%C3%A9d%C3%A9ric&rft.date=2021-04-01&rft.issn=0167-6911&rft.volume=150&rft.spage=104910&rft_id=info:doi/10.1016%2Fj.sysconle.2021.104910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysconle_2021_104910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon |