Forest structure and composition alleviate human thermal stress
Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest...
Saved in:
Published in | Global change biology Vol. 28; no. 24; pp. 7340 - 7352 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.12.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open‐field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade‐casting, small‐leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights.
Young forest plantations but especially mature stands have a cooling capacity that strongly increases the hotter it becomes, with forest microclimates getting well over 10°C cooler when temperatures become a potential health hazard for humans. Yet, targeted forest management can even further enhance this heat stress mitigation by adapting stand structure in the first place, and tweaking the species composition in the second place. The tree diversity seems of little direct importance, although it likely has beneficial long‐term effects that were not studied here. |
---|---|
AbstractList | Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open‐field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade‐casting, small‐leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights. Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open‐field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade‐casting, small‐leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights. Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open-field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35 degrees C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5 degrees C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10 degrees C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade-casting, small-leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights. Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open‐field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade‐casting, small‐leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights. Young forest plantations but especially mature stands have a cooling capacity that strongly increases the hotter it becomes, with forest microclimates getting well over 10°C cooler when temperatures become a potential health hazard for humans. Yet, targeted forest management can even further enhance this heat stress mitigation by adapting stand structure in the first place, and tweaking the species composition in the second place. The tree diversity seems of little direct importance, although it likely has beneficial long‐term effects that were not studied here. Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open-field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade-casting, small-leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights.Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open-field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade-casting, small-leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights. |
Author | Chow, Winston Bruelheide, Helge De Frenne, Pieter Muys, Bart Landuyt, Dries Oh, Rachel Gillerot, Loïc Verheyen, Kris Ponette, Quentin Jaroszewicz, Bogdan Scherer‐Lorenzen, Michael Haluza, Daniela Jactel, Hervé |
Author_xml | – sequence: 1 givenname: Loïc orcidid: 0000-0002-0699-4478 surname: Gillerot fullname: Gillerot, Loïc email: loic.gillerot@ugent.be organization: KU Leuven – sequence: 2 givenname: Dries orcidid: 0000-0001-8107-5546 surname: Landuyt fullname: Landuyt, Dries organization: Ghent University – sequence: 3 givenname: Rachel orcidid: 0000-0003-2716-7727 surname: Oh fullname: Oh, Rachel organization: Helmholtz Centre for Environmental Research (UFZ) – sequence: 4 givenname: Winston orcidid: 0000-0003-1819-597X surname: Chow fullname: Chow, Winston organization: Singapore Management University – sequence: 5 givenname: Daniela orcidid: 0000-0001-5619-2863 surname: Haluza fullname: Haluza, Daniela organization: Medical University of Vienna – sequence: 6 givenname: Quentin orcidid: 0000-0002-2726-7392 surname: Ponette fullname: Ponette, Quentin organization: Université catholique de Louvain – sequence: 7 givenname: Hervé orcidid: 0000-0002-8106-5310 surname: Jactel fullname: Jactel, Hervé organization: INRAE, University of Bordeaux – sequence: 8 givenname: Helge orcidid: 0000-0003-3135-0356 surname: Bruelheide fullname: Bruelheide, Helge organization: Martin Luther University Halle‐Wittenberg – sequence: 9 givenname: Bogdan orcidid: 0000-0002-2042-8245 surname: Jaroszewicz fullname: Jaroszewicz, Bogdan organization: University of Warsaw – sequence: 10 givenname: Michael orcidid: 0000-0001-9566-590X surname: Scherer‐Lorenzen fullname: Scherer‐Lorenzen, Michael organization: University of Freiburg – sequence: 11 givenname: Pieter orcidid: 0000-0002-8613-0943 surname: De Frenne fullname: De Frenne, Pieter organization: Ghent University – sequence: 12 givenname: Bart orcidid: 0000-0001-9421-527X surname: Muys fullname: Muys, Bart organization: KU Leuven – sequence: 13 givenname: Kris orcidid: 0000-0002-2067-9108 surname: Verheyen fullname: Verheyen, Kris organization: Ghent University |
BackLink | https://hal.inrae.fr/hal-03789567$$DView record in HAL |
BookMark | eNqFkUtr3DAUhUVJaR7tIv_AkE26cKKrp7UKyZBHYaCbdi1kWeooyNZEshPy72tn0hZKSoVAF_GdA-eeQ7Q3pMEhdAz4DOZz_sO2ZyAYqHfoAKjgNWGN2FtmzmrAQPfRYSn3GGNKsPiA9qnAglAFB-jiJmVXxqqMebLjlF1lhq6yqd-mEsaQhsrE6B6DGV21mXozVOPG5d7EReFK-YjeexOL-_T6HqHvN9ffVnf1-uvtl9XluraMElVT0hHjOQEJljDvpJGM2UYC5174tiMMS94y4U3buM5jQQmXnbdCmBY3RNEj9HnnuzFRb3PoTX7WyQR9d7nWyx-mslFcyEeY2dMdu83pYZrT6T4U62I0g0tT0aQBUI0CQv6PSqwUSKaaGT35C71PUx7m0DNF-XIln6nzHWVzKiU7r20YzbLIMZsQNWC9VKbnyvRLZX-S_Vb8ivcW--r-FKJ7_jeob1dXO8VPmcajMw |
CitedBy_id | crossref_primary_10_1111_geb_13834 crossref_primary_10_1016_j_foreco_2023_121081 crossref_primary_10_1016_j_agrformet_2023_109632 crossref_primary_10_1016_j_biocon_2022_109887 crossref_primary_10_3390_su15097333 crossref_primary_10_1111_jvs_13236 crossref_primary_10_1016_j_foreco_2024_121979 crossref_primary_10_1007_s00267_023_01934_6 crossref_primary_10_1016_j_agrformet_2023_109684 crossref_primary_10_1016_j_agrformet_2025_110481 crossref_primary_10_1016_j_scs_2024_106012 crossref_primary_10_3390_su16010446 crossref_primary_10_3390_f14122463 crossref_primary_10_1038_s41467_024_51355_0 crossref_primary_10_1016_j_rse_2023_113820 crossref_primary_10_1016_j_foreco_2025_122582 crossref_primary_10_1038_s41467_023_43755_5 crossref_primary_10_1016_j_cub_2023_04_019 crossref_primary_10_1029_2024WR037294 crossref_primary_10_1016_j_scitotenv_2024_171215 crossref_primary_10_1111_ele_14338 crossref_primary_10_1002_pan3_10564 crossref_primary_10_1038_s41561_023_01338_5 crossref_primary_10_1177_1420326X241244724 crossref_primary_10_1038_s41598_025_91616_6 crossref_primary_10_20396_parc_v15i00_8675281 crossref_primary_10_1016_j_scs_2025_106294 crossref_primary_10_1111_1365_2745_14345 crossref_primary_10_1016_j_ufug_2023_128192 crossref_primary_10_1016_j_scs_2024_106101 crossref_primary_10_1016_j_landurbplan_2023_104933 crossref_primary_10_1111_ele_70096 crossref_primary_10_1111_2041_210X_14476 crossref_primary_10_1016_j_ecolmodel_2024_110731 crossref_primary_10_3390_f15111850 crossref_primary_10_3390_su15032532 crossref_primary_10_3389_fevo_2024_1392882 crossref_primary_10_1016_j_landurbplan_2024_105144 |
Cites_doi | 10.1016/j.socscimed.2006.07.030 10.1016/j.rser.2017.06.010 10.5091/plecevo.2017.1331 10.1111/2041‐210X.13627 10.1007/978-3-030-02318-8 10.1126/sciadv.1501392 10.1016/j.scs.2017.01.018 10.1111/geb.12991 10.1890/ES12‐00048.1 10.1016/j.ufug.2016.09.011 10.1016/j.agrformet.2017.04.012 10.1002/joc.1537 10.1007/s00484‐011‐0513‐7 10.1038/s41559‐018‐0544‐0 10.1016/j.ppees.2013.07.002 10.1111/1365‐2435.12428 10.1016/S0140‐6736(21)01787‐6 10.1111/j.1365‐2745.2011.01928.x 10.1111/1365‐2745.12121 10.1038/nclimate3322 10.1016/j.landurbplan.2010.05.008 10.1111/gcb.15569 10.1073/pnas.1910114117 10.1016/j.agrformet.2017.12.252 10.1007/s11252‐019‐0823‐9 10.1007/s00704‐017‐2158‐x 10.1016/j.landurbplan.2014.10.018 10.1016/j.agrformet.2016.11.268 10.1016/j.buildenv.2005.05.031 10.1016/j.landurbplan.2015.02.008 10.1016/j.buildenv.2014.03.014 10.1016/j.amepre.2008.08.021 10.1016/j.agrformet.2012.07.018 10.1016/j.landurbplan.2016.08.010 10.1007/s10342‐013‐0746‐6 10.1007/s00704‐010‐0361‐0 10.1016/j.enbuild.2020.110002 10.1016/j.uclim.2019.100574 10.1007/s00704‐013‐1000‐3 10.1097/EDE.0b013e318190ee08 10.1016/j.agrformet.2008.11.006 10.1371/journal.pone.0249715 10.1007/s13280‐015‐0685‐1 10.1016/j.envres.2017.05.040 10.1289/ehp.1003198 10.2134/jeq2015.02.0069 10.1111/2041‐210X.12512 10.1038/s41559‐019‐0842‐1 10.3390/ijerph17124371 10.1007/s004840050119 10.3390/ijerph121215006 10.1016/0004-6981(73)90140-6 10.1016/j.scitotenv.2021.145211 10.1111/nph.15667 10.1017/CBO9781107323506.011 10.1111/gcb.14904 10.1097/EDE.0b013e318176bfcd 10.1007/BF00866252 10.1016/j.foreco.2016.04.043 10.1136/bmjopen‐2012‐001396 10.3390/atmos11121276 10.1111/j.2041‐210x.2012.00261.x 10.1016/j.landurbplan.2010.05.006 10.1016/j.scitotenv.2018.02.276 10.1111/gcb.14415 10.1007/s004840050118 10.1016/j.ufug.2014.09.010 10.1126/science.aba6880 10.1111/1365‐2664.14158 10.1016/j.uclim.2013.12.002 10.1016/j.buildenv.2019.106606 10.2307/1313612 10.1002/joc.2177 10.1016/S2542‐5196(17)30082‐7 10.1007/s12199‐008‐0069‐2 10.1111/nph.15263 10.1016/j.agrformet.2014.11.010 10.1016/j.foreco.2014.04.027 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. Copyright © 2022 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: Copyright © 2022 John Wiley & Sons Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 1XC |
DOI | 10.1111/gcb.16419 |
DatabaseName | CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 7352 |
ExternalDocumentID | oai_HAL_hal_03789567v1 10_1111_gcb_16419 GCB16419 |
Genre | article |
GrantInformation_xml | – fundername: H2020 European Research Council funderid: FORMICA 757833 – fundername: Austrian Science Fund – fundername: German Research Foundation (DFG) – fundername: French National Research Agency – fundername: BiodivERsA – fundername: National Science Center (NCN, Poland) – fundername: Fonds Wetenschappelijk Onderzoek |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c4329-32d2af52171c24fe7a744c87155f6fbd24075b46fab8edf063257dfc66ab08293 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri May 09 12:23:37 EDT 2025 Fri Jul 11 18:32:07 EDT 2025 Fri Jul 11 12:38:15 EDT 2025 Fri Jul 25 19:46:00 EDT 2025 Tue Jul 01 03:53:09 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Wed Jan 22 16:25:56 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | heat stress heat mitigation nature-based solution Forest physiologically equivalent temperature forest microclimate thermal comfort Dr |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4329-32d2af52171c24fe7a744c87155f6fbd24075b46fab8edf063257dfc66ab08293 |
Notes | Pieter De Frenne, Bart Muys and Kris Verheyen should be considered joint senior authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2067-9108 0000-0001-5619-2863 0000-0002-2726-7392 0000-0003-3135-0356 0000-0001-9566-590X 0000-0001-9421-527X 0000-0003-2716-7727 0000-0002-8106-5310 0000-0001-8107-5546 0000-0002-8613-0943 0000-0002-2042-8245 0000-0002-0699-4478 0000-0003-1819-597X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.16419 |
PMID | 36062391 |
PQID | 2735735775 |
PQPubID | 30327 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_03789567v1 proquest_miscellaneous_2811989122 proquest_miscellaneous_2709917498 proquest_journals_2735735775 crossref_citationtrail_10_1111_gcb_16419 crossref_primary_10_1111_gcb_16419 wiley_primary_10_1111_gcb_16419_GCB16419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global change biology |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | 2021; 27 2017; 7 2010; 97 2012; 120 2017; 1 2010; 15 2013; 4 2018; 631–632 1999; 49 2018; 81 2020; 17 2020; 368 2017; 150 1999; 43 2008; 35 2020; 11 2014; 133 2012; 56 2017; 157 2017; 158 1987; 38 2014; 327 2017; 31 2018; 132 2013; 15 2006; 63 2017; 234–235 2018; 2 2015; 138 2021; 398 2019; 22 2015; 83 2015; 134 2020; 170 2019; 28 2020; 217 2018; 250–251 2017; 242 2012; 166–167 2014; 10 2016; 45 2007; 27 2015; 12 2014; 117 2015; 14 2019; 3 2021; 4 2012; 100 2009; 20 2000; 24 2015; 201 2008; 19 1998 2011; 31 2013; 101 2020; 228 2019; 221 2018; 24 2011; 105 2021; 16 2016; 7 2006; 41 2012; 2 2012; 3 2016; 2 2021; 12 2015; 29 2020; 31 2021 2019 2016; 20 2020; 26 2020; 117 2022; 59 2016 2014 2013 2021; 770 1973; 7 2016; 373 2018; 58 2009; 149 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_33_1 e_1_2_9_54_1 Konijnendijk C. (e_1_2_9_39_1) 2021; 4 e_1_2_9_71_1 United Nations, Department of Economic and Social Affairs, Population Division (e_1_2_9_74_1) 2019 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 R Core Team (e_1_2_9_59_1) 2013 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 ISO (e_1_2_9_30_1) 1998 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 Bramer I. (e_1_2_9_9_1) 2018 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 Davies‐Colley R. J. (e_1_2_9_12_1) 2000; 24 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 201 start-page: 187 year: 2015 end-page: 195 article-title: The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate publication-title: Agricultural and Forest Meteorology – volume: 45 start-page: 175 issue: 1 year: 2016 end-page: 187 article-title: Branch area index of solitary trees: Understanding its significance in regulating ecosystem services publication-title: Journal of Environmental Quality – volume: 3 start-page: 744 issue: 5 year: 2019 end-page: 749 article-title: Global buffering of temperatures under forest canopies publication-title: Nature Ecology & Evolution – volume: 56 start-page: 421 issue: 3 year: 2012 end-page: 428 article-title: UTCI—Why another thermal index? publication-title: International Journal of Biometeorology – volume: 170 year: 2020 article-title: Traits of trees for cooling urban heat islands: A meta‐analysis publication-title: Building and Environment – volume: 217 year: 2020 article-title: Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat‐related mortality and morbidity in cities publication-title: Energy and Buildings – start-page: 195 year: 2014 end-page: 237 – volume: 15 start-page: 1 issue: 1 year: 2010 end-page: 8 article-title: Promoting human health through forests: Overview and major challenges publication-title: Environmental Health and Preventive Medicine – volume: 63 start-page: 2847 issue: 11 year: 2006 end-page: 2863 article-title: Neighborhood microclimates and vulnerability to heat stress publication-title: Social Science & Medicine – volume: 4 start-page: 2 issue: 2 year: 2021 article-title: The 3‐30‐300 rule for urban forestry and greener cities publication-title: Biophilic Cities Journal – volume: 631–632 start-page: 390 year: 2018 end-page: 406 article-title: Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification publication-title: Science of the Total Environment – volume: 31 start-page: 100574 year: 2020 article-title: The impact of green space structure on physiological equivalent temperature index in open space publication-title: Urban Climate – volume: 26 start-page: 119 issue: 1 year: 2020 end-page: 188 article-title: TRY plant trait database – Enhanced coverage and open access publication-title: Global Change Biology – volume: 97 start-page: 147 issue: 3 year: 2010 end-page: 155 article-title: Urban greening to cool towns and cities: A systematic review of the empirical evidence publication-title: Landscape and Urban Planning – volume: 150 start-page: 229 year: 2017 end-page: 239 article-title: Tree species identity outweighs the effects of tree species diversity and forest fragmentation on understorey diversity and composition publication-title: Plant Ecology and Evolution – year: 2021 – volume: 43 start-page: 71 issue: 2 year: 1999 end-page: 75 article-title: The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment publication-title: International Journal of Biometeorology – volume: 27 start-page: 2279 issue: 11 year: 2021 end-page: 2297 article-title: Forest microclimates and climate change: Importance, drivers and future research agenda publication-title: Global Change Biology – volume: 117 start-page: 363 issue: 3 year: 2014 end-page: 376 article-title: Transmissivity of solar radiation through crowns of single urban trees—Application for outdoor thermal comfort modelling publication-title: Theoretical and Applied Climatology – volume: 7 start-page: 769 issue: 8 year: 1973 end-page: 779 article-title: City size and the urban Heat Island publication-title: Atmospheric Environment – volume: 41 start-page: 1455 issue: 11 year: 2006 end-page: 1470 article-title: Thermal comfort in outdoor urban spaces: Analysis across different European countries publication-title: Building and Environment – volume: 24 start-page: 5243 issue: 11 year: 2018 end-page: 5258 article-title: Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes publication-title: Global Change Biology – volume: 12 start-page: 1397 issue: 8 year: 2021 end-page: 1410 article-title: On the measurement of microclimate publication-title: Methods in Ecology and Evolution – volume: 31 start-page: 1498 issue: 10 year: 2011 end-page: 1506 article-title: The influence of trees and grass on outdoor thermal comfort in a hot‐arid environment publication-title: International Journal of Climatology – year: 1998 – volume: 221 start-page: 50 issue: 1 year: 2019 end-page: 66 article-title: Diversity and forest productivity in a changing climate publication-title: New Phytologist – volume: 368 start-page: 772 issue: 6492 year: 2020 end-page: 775 article-title: Forest microclimate dynamics drive plant responses to warming publication-title: Science – volume: 242 start-page: 1 year: 2017 end-page: 9 article-title: Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate publication-title: Agricultural and Forest Meteorology – volume: 11 start-page: 1276 issue: 12 year: 2020 article-title: Review of biometeorology of heatwaves and warm extremes in Europe publication-title: Atmosphere – volume: 770 year: 2021 article-title: Tree species richness and diversity predicts the magnitude of urban heat Island mitigation effects of greenspaces publication-title: Science of the Total Environment – volume: 7 start-page: 573 issue: 5 year: 2016 end-page: 579 article-title: piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics publication-title: Methods in Ecology and Evolution – volume: 20 start-page: 205 issue: 2 year: 2009 end-page: 213 article-title: Weather‐related mortality publication-title: Epidemiology – volume: 14 start-page: 178 issue: 1 year: 2015 end-page: 186 article-title: Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods publication-title: Urban Forestry & Urban Greening – volume: 28 start-page: 1774 issue: 12 year: 2019 end-page: 1786 article-title: Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe publication-title: Global Ecology and Biogeography – year: 2019 – volume: 12 start-page: 15567 issue: 12 year: 2015 end-page: 15583 article-title: Changes in the effect of heat on mortality in the last 20 years in nine European cities. Results from the PHASE project publication-title: International Journal of Environmental Research and Public Health – volume: 81 start-page: 2011 year: 2018 end-page: 2018 article-title: Outdoor thermal comfort by different heat mitigation strategies—A review publication-title: Renewable and Sustainable Energy Reviews – volume: 22 start-page: 367 issue: 2 year: 2019 end-page: 384 article-title: The effect of urbanization gradients and forest types on microclimatic regulation by trees, in association with climate, tree sizes and species compositions in Harbin city, northeastern China publication-title: Urban Ecosystem – volume: 58 start-page: 101 year: 2018 end-page: 161 – volume: 105 start-page: 119 issue: 1–2 year: 2011 end-page: 127 article-title: Comparison between open‐site and below‐canopy climatic conditions in Switzerland for different types of forests over 10 years (1998−2007) publication-title: Theoretical and Applied Climatology – volume: 49 start-page: 288 year: 1999 end-page: 297 article-title: Microclimate in forest ecosystem and landscape ecology publication-title: BioScience – volume: 43 start-page: 76 issue: 2 year: 1999 end-page: 84 article-title: Applications of a universal thermal index: Physiological equivalent temperature publication-title: International Journal of Biometeorology – volume: 373 start-page: 149 year: 2016 end-page: 166 article-title: Mixing of scots pine ( L.) and European beech ( L.) enhances structural heterogeneity, and the effect increases with water availability publication-title: Forest Ecology and Management – volume: 250–251 start-page: 147 year: 2018 end-page: 158 article-title: Monthly microclimate models in a managed boreal forest landscape publication-title: Agricultural and Forest Meteorology – volume: 97 start-page: 168 issue: 3 year: 2010 end-page: 181 article-title: A comparison of L. and L. for shade creation and radiation modification in improving thermal comfort publication-title: Landscape and Urban Planning – volume: 29 start-page: 1078 issue: 8 year: 2015 end-page: 1086 article-title: Crown plasticity enables trees to optimize canopy packing in mixed‐species forests publication-title: Functional Ecology – volume: 19 start-page: 711 issue: 5 year: 2008 end-page: 719 article-title: Heat effects on mortality in 15 European cities publication-title: Epidemiology – volume: 3 issue: 8 year: 2012 article-title: Guidelines for a graph‐theoretic implementation of structural equation modeling publication-title: Ecosphere – volume: 17 start-page: 4371 issue: 12 year: 2020 article-title: Urban trees and human health: A scoping review publication-title: International Journal of Environmental Research and Public Health – volume: 134 start-page: 127 year: 2015 end-page: 138 article-title: Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes publication-title: Landscape and Urban Planning – volume: 2 start-page: 763 issue: 5 year: 2018 end-page: 766 article-title: A million and more trees for science publication-title: Nature Ecology & Evolution – volume: 59 start-page: 1428 year: 2022 end-page: 1439 article-title: Tree species mixing can amplify microclimate offsets in young forest plantations publication-title: Journal of Applied Ecology – volume: 38 start-page: 43 issue: 1 year: 1987 end-page: 49 article-title: Thermal comfort of man in different urban environments publication-title: Theoretical and Applied Climatology – volume: 83 start-page: 65 year: 2015 end-page: 78 article-title: Outdoor thermal comfort within five different urban forms in the Netherlands publication-title: Building and Environment – volume: 166–167 start-page: 144 year: 2012 end-page: 155 article-title: Spatio‐temporal effects of forest canopy on understory microclimate in a long‐term experiment in Switzerland publication-title: Agricultural and Forest Meteorology – volume: 398 start-page: 1619 issue: 10311 year: 2021 end-page: 1662 article-title: The 2021 report of the lancet countdown on health and climate change: Code red for a healthy future publication-title: The Lancet – volume: 35 start-page: 429 issue: 5 year: 2008 end-page: 435 article-title: Climate change and extreme heat events publication-title: American Journal of Preventive Medicine – volume: 157 start-page: 502 year: 2017 end-page: 511 article-title: Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in plant area index publication-title: Landscape and Urban Planning – year: 2016 – volume: 2 issue: 4 year: 2016 article-title: Spatial models reveal the microclimatic buffering capacity of old‐growth forests publication-title: Science Advances – volume: 4 start-page: 133 issue: 2 year: 2013 end-page: 142 article-title: A general and simple method for obtaining R2 from generalized linear mixed‐effects models publication-title: Methods in Ecology and Evolution – volume: 10 start-page: 346 year: 2014 end-page: 366 article-title: Instruments and methods in outdoor thermal comfort studies—The need for standardization publication-title: Urban Climate – volume: 117 start-page: 11350 year: 2020 end-page: 11355 article-title: Future of the human climate niche publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 24 start-page: 11 issue: 2 year: 2000 article-title: Microclimate gradients across a forest edge publication-title: New Zealand Journal of Ecology – volume: 2 issue: 6 year: 2012 article-title: Heat stress, health and well‐being: Findings from a large national cohort of Thai adults publication-title: BMJ Open – volume: 1 start-page: e200 issue: 5 year: 2017 end-page: e208 article-title: Increasing risk over time of weather‐related hazards to the European population: A data‐driven prognostic study publication-title: The Lancet Planetary Health – volume: 31 start-page: 12 year: 2017 end-page: 25 article-title: Regulation of outdoor thermal comfort by trees in Hong Kong publication-title: Sustainable Cities and Society – volume: 45 start-page: 29 issue: 1 year: 2016 end-page: 41 article-title: Contributions of a global network of tree diversity experiments to sustainable forest plantations publication-title: Ambio – volume: 234–235 start-page: 11 year: 2017 end-page: 21 article-title: Stand structural drivers of microclimate in mature temperate mixed forests publication-title: Agricultural and Forest Meteorology – volume: 7 start-page: 501 issue: 7 year: 2017 end-page: 506 article-title: Global risk of deadly heat publication-title: Nature Climate Change – volume: 16 issue: 4 year: 2021 article-title: The tree cover and temperature disparity in US urbanized areas: Quantifying the association with income across 5,723 communities publication-title: PLoS One – volume: 15 start-page: 281 issue: 5 year: 2013 end-page: 291 article-title: A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 158 start-page: 373 year: 2017 end-page: 384 article-title: Urban natural environments as nature‐based solutions for improved public health—A systematic review of reviews publication-title: Environmental Research – volume: 20 start-page: 305 year: 2016 end-page: 316 article-title: Using green infrastructure for urban climate‐proofing: An evaluation of heat mitigation measures at the micro‐scale publication-title: Urban Forestry & Urban Greening – volume: 27 start-page: 1983 issue: 14 year: 2007 end-page: 1993 article-title: Different methods for estimating the mean radiant temperature in an outdoor urban setting publication-title: International Journal of Climatology – volume: 133 start-page: 101 issue: 1 year: 2014 end-page: 110 article-title: Estimating light climate in forest with the convex densiometer: Operator effect, geometry and relation to diffuse light publication-title: European Journal of Forest Research – volume: 138 start-page: 99 year: 2015 end-page: 109 article-title: Effect of tree planting design and tree species on human thermal comfort in the tropics publication-title: Landscape and Urban Planning – volume: 100 start-page: 352 issue: 2 year: 2012 end-page: 365 article-title: Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests publication-title: Journal of Ecology – volume: 149 start-page: 873 issue: 5 year: 2009 end-page: 880 article-title: Comparison between open‐site and below‐canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003 publication-title: Agricultural and Forest Meteorology – volume: 327 start-page: 251 year: 2014 end-page: 264 article-title: Canopy space filling and tree crown morphology in mixed‐species stands compared with monocultures publication-title: Forest Ecology and Management – volume: 228 start-page: 42 issue: 1 year: 2020 end-page: 49 article-title: Having the right neighbors: How tree species diversity modulates drought impacts on forests publication-title: New Phytologist – volume: 120 start-page: 19 issue: 1 year: 2012 end-page: 28 article-title: Ambient temperature and morbidity: A review of epidemiological evidence publication-title: Environmental Health Perspectives – volume: 101 start-page: 1201 issue: 5 year: 2013 end-page: 1213 article-title: Microclimate in forests with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate publication-title: Journal of Ecology – volume: 132 start-page: 1275 issue: 3 year: 2018 end-page: 1289 article-title: Modified physiologically equivalent temperature—Basics and applications for western European climate publication-title: Theoretical and Applied Climatology – year: 2013 – ident: e_1_2_9_27_1 doi: 10.1016/j.socscimed.2006.07.030 – ident: e_1_2_9_70_1 doi: 10.1016/j.rser.2017.06.010 – ident: e_1_2_9_17_1 doi: 10.5091/plecevo.2017.1331 – ident: e_1_2_9_43_1 doi: 10.1111/2041‐210X.13627 – ident: e_1_2_9_44_1 doi: 10.1007/978-3-030-02318-8 – ident: e_1_2_9_22_1 doi: 10.1126/sciadv.1501392 – ident: e_1_2_9_38_1 doi: 10.1016/j.scs.2017.01.018 – ident: e_1_2_9_85_1 doi: 10.1111/geb.12991 – ident: e_1_2_9_23_1 doi: 10.1890/ES12‐00048.1 – ident: e_1_2_9_20_1 – ident: e_1_2_9_88_1 doi: 10.1016/j.ufug.2016.09.011 – ident: e_1_2_9_19_1 doi: 10.1016/j.agrformet.2017.04.012 – ident: e_1_2_9_73_1 doi: 10.1002/joc.1537 – ident: e_1_2_9_51_1 – ident: e_1_2_9_31_1 doi: 10.1007/s00484‐011‐0513‐7 – ident: e_1_2_9_55_1 doi: 10.1038/s41559‐018‐0544‐0 – ident: e_1_2_9_5_1 doi: 10.1016/j.ppees.2013.07.002 – ident: e_1_2_9_33_1 doi: 10.1111/1365‐2435.12428 – ident: e_1_2_9_63_1 doi: 10.1016/S0140‐6736(21)01787‐6 – ident: e_1_2_9_76_1 doi: 10.1111/j.1365‐2745.2011.01928.x – ident: e_1_2_9_79_1 doi: 10.1111/1365‐2745.12121 – ident: e_1_2_9_49_1 doi: 10.1038/nclimate3322 – ident: e_1_2_9_67_1 doi: 10.1016/j.landurbplan.2010.05.008 – ident: e_1_2_9_15_1 doi: 10.1111/gcb.15569 – ident: e_1_2_9_83_1 doi: 10.1073/pnas.1910114117 – ident: e_1_2_9_24_1 doi: 10.1016/j.agrformet.2017.12.252 – ident: e_1_2_9_80_1 doi: 10.1007/s11252‐019‐0823‐9 – ident: e_1_2_9_11_1 doi: 10.1007/s00704‐017‐2158‐x – ident: e_1_2_9_53_1 doi: 10.1016/j.landurbplan.2014.10.018 – ident: e_1_2_9_40_1 doi: 10.1016/j.agrformet.2016.11.268 – ident: e_1_2_9_52_1 doi: 10.1016/j.buildenv.2005.05.031 – ident: e_1_2_9_14_1 doi: 10.1016/j.landurbplan.2015.02.008 – ident: e_1_2_9_71_1 doi: 10.1016/j.buildenv.2014.03.014 – ident: e_1_2_9_42_1 doi: 10.1016/j.amepre.2008.08.021 – ident: e_1_2_9_78_1 doi: 10.1016/j.agrformet.2012.07.018 – ident: e_1_2_9_65_1 doi: 10.1016/j.landurbplan.2016.08.010 – ident: e_1_2_9_7_1 doi: 10.1007/s10342‐013‐0746‐6 – ident: e_1_2_9_61_1 doi: 10.1007/s00704‐010‐0361‐0 – ident: e_1_2_9_64_1 doi: 10.1016/j.enbuild.2020.110002 – ident: e_1_2_9_13_1 doi: 10.1016/j.uclim.2019.100574 – ident: e_1_2_9_37_1 doi: 10.1007/s00704‐013‐1000‐3 – ident: e_1_2_9_3_1 doi: 10.1097/EDE.0b013e318190ee08 – ident: e_1_2_9_62_1 doi: 10.1016/j.agrformet.2008.11.006 – ident: e_1_2_9_47_1 doi: 10.1371/journal.pone.0249715 – ident: e_1_2_9_77_1 doi: 10.1007/s13280‐015‐0685‐1 – ident: e_1_2_9_75_1 doi: 10.1016/j.envres.2017.05.040 – ident: e_1_2_9_84_1 doi: 10.1289/ehp.1003198 – ident: e_1_2_9_69_1 doi: 10.2134/jeq2015.02.0069 – ident: e_1_2_9_41_1 doi: 10.1111/2041‐210X.12512 – ident: e_1_2_9_16_1 doi: 10.1038/s41559‐019‐0842‐1 – ident: e_1_2_9_82_1 doi: 10.3390/ijerph17124371 – ident: e_1_2_9_45_1 doi: 10.1007/s004840050119 – ident: e_1_2_9_18_1 doi: 10.3390/ijerph121215006 – ident: e_1_2_9_54_1 doi: 10.1016/0004-6981(73)90140-6 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_9_59_1 – ident: e_1_2_9_81_1 doi: 10.1016/j.scitotenv.2021.145211 – ident: e_1_2_9_25_1 doi: 10.1111/nph.15667 – ident: e_1_2_9_66_1 doi: 10.1017/CBO9781107323506.011 – ident: e_1_2_9_36_1 doi: 10.1111/gcb.14904 – ident: e_1_2_9_4_1 doi: 10.1097/EDE.0b013e318176bfcd – ident: e_1_2_9_46_1 doi: 10.1007/BF00866252 – ident: e_1_2_9_58_1 doi: 10.1016/j.foreco.2016.04.043 – volume-title: World urbanization prospects: The 2018 revision (ST/ESA/SER.A/420) year: 2019 ident: e_1_2_9_74_1 – ident: e_1_2_9_72_1 doi: 10.1136/bmjopen‐2012‐001396 – start-page: 101 volume-title: Advances in ecological research year: 2018 ident: e_1_2_9_9_1 – ident: e_1_2_9_6_1 doi: 10.3390/atmos11121276 – ident: e_1_2_9_50_1 doi: 10.1111/j.2041‐210x.2012.00261.x – ident: e_1_2_9_8_1 doi: 10.1016/j.landurbplan.2010.05.006 – ident: e_1_2_9_56_1 doi: 10.1016/j.scitotenv.2018.02.276 – volume: 24 start-page: 11 issue: 2 year: 2000 ident: e_1_2_9_12_1 article-title: Microclimate gradients across a forest edge publication-title: New Zealand Journal of Ecology – ident: e_1_2_9_34_1 doi: 10.1111/gcb.14415 – ident: e_1_2_9_28_1 doi: 10.1007/s004840050118 – volume-title: ISO 7726:1998 ergonomics of the thermal environment‐instruments for measuring physical quantities year: 1998 ident: e_1_2_9_30_1 – ident: e_1_2_9_48_1 doi: 10.1016/j.ufug.2014.09.010 – ident: e_1_2_9_86_1 doi: 10.1126/science.aba6880 – ident: e_1_2_9_87_1 doi: 10.1111/1365‐2664.14158 – ident: e_1_2_9_32_1 doi: 10.1016/j.uclim.2013.12.002 – ident: e_1_2_9_60_1 doi: 10.1016/j.buildenv.2019.106606 – ident: e_1_2_9_10_1 doi: 10.2307/1313612 – ident: e_1_2_9_68_1 doi: 10.1002/joc.2177 – ident: e_1_2_9_21_1 doi: 10.1016/S2542‐5196(17)30082‐7 – ident: e_1_2_9_35_1 doi: 10.1007/s12199‐008‐0069‐2 – ident: e_1_2_9_2_1 doi: 10.1111/nph.15263 – ident: e_1_2_9_26_1 doi: 10.1016/j.agrformet.2014.11.010 – ident: e_1_2_9_29_1 – ident: e_1_2_9_57_1 doi: 10.1016/j.foreco.2014.04.027 – volume: 4 start-page: 2 issue: 2 year: 2021 ident: e_1_2_9_39_1 article-title: The 3‐30‐300 rule for urban forestry and greener cities publication-title: Biophilic Cities Journal |
SSID | ssj0003206 |
Score | 2.572547 |
Snippet | Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7340 |
SubjectTerms | Buffers Canopies Canopy canopy height Climate change cold Community composition Composition Cooling Dr. Forest Environmental Sciences evergreen trees Extreme cold Extreme heat Forest management forest microclimate Forests Hazard mitigation Health hazards Heat heat mitigation Heat stress Heat tolerance human health humans Microclimate nature‐based solution physiologically equivalent temperature Plant cover Plant diversity Plant species Species composition Species diversity stand density Stand structure temperature Temperature effects Temperature perception thermal comfort Thermal stress Urban forests |
Title | Forest structure and composition alleviate human thermal stress |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16419 https://www.proquest.com/docview/2735735775 https://www.proquest.com/docview/2709917498 https://www.proquest.com/docview/2811989122 https://hal.inrae.fr/hal-03789567 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfDF2qvF01ZWKeJLDrMf2Sw-lHq0PcT2oVjogxB2k10trbnSuyvoX-_M5qNX0SJCHvIxCfs1u7_JzvwGYAcNLmXz1CdBe55QiqvEaFQ8I4PnxhtXCgoUPjrOJqfy45k6W4H3XSxMww_R_3AjzYjzNSm4dbMlJf9auhFi_Uj5Sb5aBIhObqmjBI95NVOhJE41qWhZhciLp3_zzlr04Bt5Qi7BzGWwGlebgzX40pWzcTK5GC3mblT-_I3C8T8r8gQetyiU7TXDZh1WfD2Ah01eyh8D2Ny_DX9DsVb_ZwMYHiHGnl5HMfaGjS_PEfDGqw3YpSyfszlrGGkX157ZumLkst76hTFK23KDQ8GzmBmQEfb8jt9v4lWewunB_ufxJGnTMySlFNwkglfcBlz-dVpy7FpttZQlGmBKhSy4imxF5WQWrMt9FRAL4fRQhTLLrKOIXrEJq_W09s-AGeWy3AptjfYypLR1amyocovgx3iphvC266iibLnLKYXGZdHZMNiIRWzEIbzuRa8awo4_CmFv98-JYnuy96mge--EztFm1DfpELa6wVC0ij0rEO0pOjSW6VX_GFWS9lls7acLkkHYjZaeye-RyVPyVks5x7rF0fH30haH4w_x5Pm_i76AR5wCNaLjzRasYtf7bYRPc_cy6skvjeEUIg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RQguPBYqti1gECAuWRHHjuMDQmXbsqW7PaBW6i04id0i2izq7rYqv4m_wn9ixnl0QYC49ICUQx6jyIlnxjPJzPcBPMOES5oktIFTlgdEcRVohYanhbNcW53lETUKj3bjwb54fyAPFuBb0wtT4UO0H9zIMry_JgOnD9JzVn6YZz0M9kNdl1Tu2ItzTNgmr7c3cHafc761udcfBDWnQJCLiOsg4gU3DtcsFeYcx6OMEiLHrEFKF7usoARHZiJ2Jkts4XABR50uXB7HJqM21AjvuwjXiEGckPo3PlyCVUXcM3mGkRTo3MKoxjGiuqF2qD-tfotHVHs5F9jOh8d-fdu6Dd-bN1OVtXzuzaZZL__6C2jk__Lq7sCtOtBm65Vl3IUFW3bgekW9edGB5c3LDj8Uq13cpAPdEaYR41Mvxl6w_vEnjOn90T14Q0SmkymrQHdnp5aZsmBUlV-XvjFipjlDbbfMkx8yCq9P8P5VS8592L-SR16GpXJc2gfAtMzixETKaGWFC-nvsDauSAzGd9oK2YWXjWakeQ3PTiwhx2mTpuGkpX7SuvC0Ff1SYZL8VgjVq71OKOKD9WFK515FKsG0WJ2FXVhrtC-tfdckxYBW0qZwTE_ay-h16FeSKe14RjKYWWAyq5O_yCQhFeSFnOOzeXX882jTd_23fmfl30Ufw43B3miYDrd3d1bhJqe-FF9ntAZLqAb2IUaL0-yRN1IGH69atX8A5HtxaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RaBeeCxULC1gECAuWTWOE8cHhMpuly19CCEq9RbsxC6Ikq26u63KX-Kv8KOYcR5dECAuPSDlkMcocuKZ8fcl8wB4goQr1mloAyctD6jFVaAkGp4SznJllckjShTe3UtG--LNQXywAN-aXJiqPkT7wY0sw_trMvDjws0Z-WFueoj1Q1VHVG7b8zPka5MXWwOc3KecDzff90dB3VIgyEXEVRDxgmuHS5YMc47DkVoKkSNpiGOXOFMQv4mNSJw2qS0crt-o0oXLk0QbykKN8L6LcEUk64r6RAzeXdSqirhv5BlGsUDfFkZ1GSMKG2qH-tPit_iRQi_ncO08OvbL2_AGfG9eTBXV8rk3m5pe_vWXmpH_yZu7CddrmM02Kru4BQu27MDVqvHmeQdWNi_y-1CsdnCTDnR3kUSMT7wYe8b6R58Q0fuj2_CS2phOpqwquTs7sUyXBaOY_DrwjVFfmlPUdct860NG4PoL3r9KyLkD-5fyyCuwVI5LexeYik2S6khqJa1wIf0bVtoVqUZ0p6yIu_C8UYwsr4uzU4-Qo6whaThpmZ-0LjxuRY-riiS_FULtaq9TDfHRxk5G59YjmSIplqdhF9Ya5ctqzzXJEM7GtEkc06P2Mvoc-pGkSzuekQzyCqSyKv2LTBpSOF7IOT6b18Y_jzZ73X_ld-79u-hDuPZ2MMx2tva2V2GZU1KKDzJagyXUAnsfoeLUPPAmyuDDZWv2DwT4cBc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forest+structure+and+composition+alleviate+human+thermal+stress&rft.jtitle=Global+change+biology&rft.au=Gillerot%2C+Lo%C3%AFc&rft.au=Landuyt%2C+Dries&rft.au=Oh%2C+Rachel&rft.au=Chow%2C+Winston&rft.date=2022-12-01&rft.issn=1354-1013&rft.volume=28&rft.issue=24+p.7340-7352&rft.spage=7340&rft.epage=7352&rft_id=info:doi/10.1111%2Fgcb.16419&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |