Optimal identification of human conventional and nonconventional (CRTH2–IL7Rα–) ILC2s using additional surface markers
Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production by CRTH2–IL7Rα– innate lymphoid cells (ILCs) is unknown. We sought to identify CRTH2–IL7Rα– type 2 cytokine–producing ILCs and their disease...
Saved in:
Published in | Journal of allergy and clinical immunology Vol. 146; no. 2; pp. 390 - 405 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production by CRTH2–IL7Rα– innate lymphoid cells (ILCs) is unknown.
We sought to identify CRTH2–IL7Rα– type 2 cytokine–producing ILCs and their disease relevance.
We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent.
We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2–IL7Rα+ and CRTH2–IL7Rα– (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine–positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population.
The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine–producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface–expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.
[Display omitted] |
---|---|
AbstractList | Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production by CRTH2–IL7Rα– innate lymphoid cells (ILCs) is unknown.
We sought to identify CRTH2–IL7Rα– type 2 cytokine–producing ILCs and their disease relevance.
We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent.
We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2–IL7Rα+ and CRTH2–IL7Rα– (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine–positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population.
The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine–producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface–expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.
[Display omitted] Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production by CRTH2-IL7Rα- innate lymphoid cells (ILCs) is unknown.BACKGROUNDHuman type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production by CRTH2-IL7Rα- innate lymphoid cells (ILCs) is unknown.We sought to identify CRTH2-IL7Rα- type 2 cytokine-producing ILCs and their disease relevance.OBJECTIVEWe sought to identify CRTH2-IL7Rα- type 2 cytokine-producing ILCs and their disease relevance.We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent.METHODSWe studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent.We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2-IL7Rα+ and CRTH2-IL7Rα- (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population.RESULTSWe found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2-IL7Rα+ and CRTH2-IL7Rα- (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population.The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.CONCLUSIONSThe commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma. Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin ) cells. Type 2 cytokine production by CRTH2 IL7Rα innate lymphoid cells (ILCs) is unknown. We sought to identify CRTH2 IL7Rα type 2 cytokine-producing ILCs and their disease relevance. We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent. We found that IL-5 and IL-13 were expressed not only by CRTH2 but also by CRTH2 IL7Rα and CRTH2 IL7Rα (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population. The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma. |
Author | Gorska, Magdalena M. Rollins, Donald Liu, Sucai Michalec, Lidia Good, James Sirohi, Kapil Verma, Mukesh Sripada, Anand Danhorn, Tomas Alam, Rafeul Martin, Richard J. McKay, Jerome |
Author_xml | – sequence: 1 givenname: Sucai surname: Liu fullname: Liu, Sucai organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo – sequence: 2 givenname: Kapil surname: Sirohi fullname: Sirohi, Kapil organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo – sequence: 3 givenname: Mukesh surname: Verma fullname: Verma, Mukesh organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo – sequence: 4 givenname: Jerome surname: McKay fullname: McKay, Jerome organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo – sequence: 5 givenname: Lidia surname: Michalec fullname: Michalec, Lidia organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo – sequence: 6 givenname: Anand surname: Sripada fullname: Sripada, Anand organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo – sequence: 7 givenname: Tomas surname: Danhorn fullname: Danhorn, Tomas organization: Center for Genes and Environment, National Jewish Health, Denver, Colo – sequence: 8 givenname: Donald surname: Rollins fullname: Rollins, Donald organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo – sequence: 9 givenname: James surname: Good fullname: Good, James organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo – sequence: 10 givenname: Magdalena M. surname: Gorska fullname: Gorska, Magdalena M. organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo – sequence: 11 givenname: Richard J. surname: Martin fullname: Martin, Richard J. organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo – sequence: 12 givenname: Rafeul surname: Alam fullname: Alam, Rafeul email: alamr@njhealth.org organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32032632$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1u1DAYhi3Uik4LF2CBsiyLpJ_t_DiITTUCOtJIlaqytjz2Z_A0cQY7qVSx4Q6chItwCE5ST2e6oIuy8t_zfLLe95gc-MEjIW8oFBRofbYu1kq7ggGDAmgBXLwgMwptk9eCVQdkBtDSvG7K9ogcx7iGdOaifUmOOAPOas5m5MflZnS96jJn0I_OOq1GN_hssNm3qVc-04O_3b4MPkHKmyx94p-70_nV9QX7-_PXYtlc_fmdNu-yxXLOYjZF579myhi3R-MUrNKY9SrcYIivyKFVXcTX-_WEfPn08Xp-kS8vPy_m58tcl5yJXJUWlBbMWEBgnJcGQdBa1bXWiMKaFeUMqUCAhjVYGm3BIqxMxbFVleIn5HQ3dxOG7xPGUfYuauw65XGYomS8YnXJqgYS-naPTqsejdyEFE64k4-BJUDsAB2GGANaqd34ENkYlOskBbntRq7lthu57UYClambpLIn6uP0Z6UPOwlTQLcOg4zaoddoXEA9SjO45_X3T3TdOZ9K7m7w7n_yPeFZvtU |
CitedBy_id | crossref_primary_10_1111_sji_13357 crossref_primary_10_1186_s12943_023_01807_w crossref_primary_10_1016_j_intimp_2024_111899 crossref_primary_10_1111_sji_13156 crossref_primary_10_1084_jem_20231827 crossref_primary_10_1016_j_jaci_2020_05_042 crossref_primary_10_1126_sciimmunol_abg6356 crossref_primary_10_1111_all_14720 crossref_primary_10_1016_j_it_2020_08_009 crossref_primary_10_1097_ACI_0000000000001018 crossref_primary_10_1016_j_alit_2022_12_001 crossref_primary_10_1155_2024_2020514 crossref_primary_10_1615_CritRevImmunol_2023047301 crossref_primary_10_1038_s41598_024_70880_y crossref_primary_10_1016_j_intimp_2023_110658 crossref_primary_10_1038_s42003_023_05297_w crossref_primary_10_1016_j_jaci_2021_03_015 crossref_primary_10_1002_stem_3369 crossref_primary_10_1016_j_coi_2024_102483 crossref_primary_10_1016_j_jneuroim_2024_578489 crossref_primary_10_1111_imr_70010 crossref_primary_10_3390_ijms25136913 crossref_primary_10_1126_scitranslmed_ado6649 crossref_primary_10_1111_1346_8138_15967 crossref_primary_10_1146_annurev_immunol_110119_091711 crossref_primary_10_1172_JCI169583 crossref_primary_10_1097_ACI_0000000000000798 crossref_primary_10_3389_fimmu_2022_946905 crossref_primary_10_2147_JAA_S286695 crossref_primary_10_1016_j_anai_2020_08_001 crossref_primary_10_1038_s41577_022_00704_5 crossref_primary_10_1155_2022_8871037 |
Cites_doi | 10.1016/j.immuni.2018.04.028 10.3389/fimmu.2017.00176 10.1016/j.jaci.2013.05.012 10.3389/fimmu.2014.00214 10.1189/jlb.5TA0814-373 10.1084/jem.20140145 10.1016/j.jaci.2006.07.014 10.1084/jem.20140212 10.1126/scitranslmed.3004812 10.1038/ni.3272 10.1111/all.13679 10.1038/ncomms14601 10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-# 10.1016/j.jaci.2014.06.024 10.1038/ni.3489 10.1038/ni.3443 10.4049/jimmunol.162.3.1278 10.1016/j.jaci.2009.02.009 10.1084/jem.20130351 10.1152/ajplung.2000.279.6.L1047 10.1016/S0014-5793(99)01251-X 10.1038/ni.3447 10.1016/j.jaci.2017.10.020 10.1016/j.jaci.2014.05.038 10.4049/jimmunol.1000024 10.1111/all.12301 10.1016/j.cell.2018.07.017 10.1084/jem.20190490 10.1016/j.jaci.2017.03.032 10.1096/fj.02-0193fje 10.1038/ni.2104 10.1038/ni.3094 10.4049/jimmunol.1202354 10.1016/j.immuni.2015.02.007 10.1084/jem.20172359 10.1084/jem.20151750 10.1084/jem.20170494 10.1016/j.immuni.2008.12.009 10.4049/jimmunol.1301228 10.1016/j.jaci.2014.11.037 10.1038/ni.3444 10.1084/jem.20171934 10.1038/s41590-018-0201-4 10.3389/fimmu.2016.00304 10.1038/nature20105 10.1002/eji.201545635 10.1016/j.immuni.2011.12.020 10.1038/nature13047 10.1152/ajplung.2001.280.3.L537 10.1182/blood-2006-05-025940 10.4049/jimmunol.181.9.6316 10.1164/rccm.201406-1039OC 10.1002/eji.201141423 |
ContentType | Journal Article |
Copyright | 2020 American Academy of Allergy, Asthma & Immunology Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 American Academy of Allergy, Asthma & Immunology – notice: Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jaci.2020.01.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-6825 |
EndPage | 405 |
ExternalDocumentID | 32032632 10_1016_j_jaci_2020_01_038 S0091674920301287 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: AI102943; AI137970; HL126895 funderid: https://doi.org/10.13039/100000002 – fundername: NIAID NIH HHS grantid: R01 AI137970 – fundername: NIAID NIH HHS grantid: R01 AI102943 – fundername: NHLBI NIH HHS grantid: R01 HL122995 – fundername: NHLBI NIH HHS grantid: R01 HL126895 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .XZ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 354 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8F7 8FE 8FH 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV BPHCQ BVXVI C45 CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B LK8 LUGTX M27 M41 MO0 N4W N9A O-L O9- O9~ OAUVE OBH ODZKP OHH OHT OK0 OK1 OVD OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPCBC SSH SSI SSZ T5K TEORI TWZ UGJ UNMZH UV1 WH7 WOW WUQ X7M XFW YOC YQI YQJ Z5R ZGI ZXP ZY1 ~02 ~G- ~KM AACTN RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4328-a4f0ac82df0e02334de0816a66ccee8fdb132e18e00727e4dcf0fe0bd53e9a5a3 |
IEDL.DBID | .~1 |
ISSN | 0091-6749 1097-6825 |
IngestDate | Fri Jul 11 04:03:37 EDT 2025 Thu Apr 03 07:00:54 EDT 2025 Tue Jul 01 00:47:47 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 Sun Apr 06 06:53:17 EDT 2025 Tue Aug 26 17:44:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ILC PMA FMO DN FACS BAL NJH Asthma PCA TPM type 2 innate lymphoid cells RNA-seq novel ILC2 population CRTH2 cytokines Lin cell |
Language | English |
License | Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4328-a4f0ac82df0e02334de0816a66ccee8fdb132e18e00727e4dcf0fe0bd53e9a5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7398840 |
PMID | 32032632 |
PQID | 2352642570 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2352642570 pubmed_primary_32032632 crossref_citationtrail_10_1016_j_jaci_2020_01_038 crossref_primary_10_1016_j_jaci_2020_01_038 elsevier_sciencedirect_doi_10_1016_j_jaci_2020_01_038 elsevier_clinicalkey_doi_10_1016_j_jaci_2020_01_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of allergy and clinical immunology |
PublicationTitleAlternate | J Allergy Clin Immunol |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Robinette, Fuchs, Cortez, Lee, Wang, Durum (bib26) 2015; 16 Geiger, Abt, Gasteiger, Firth, O'Connor, Geary (bib29) 2014; 211 Quatromoni, Singhal, Bhojnagarwala, Hancock, Albelda, Eruslanov (bib19) 2015; 97 Mora-Velandia, Castro-Escamilla, Mendez, Aguilar-Flores, Velazquez-Avila, Tussie-Luna (bib16) 2017; 8 Verma, Liu, Michalec, Sripada, Gorska, Alam (bib21) 2018; 142 Wikenheiser, Stumhofer (bib48) 2016; 7 Klose, Artis (bib1) 2016; 17 Jackson, Makrinioti, Rana, Shamji, Trujillo-Torralbo, Footitt (bib13) 2014; 190 Sun, Yamada, Shibata, Muta, Tani, Podack (bib40) 2010; 185 Lei, Xiao, Liu, Shi, Yang, Li (bib30) 2018; 215 Beuraud, Lombardi, Luce, Horiot, Naline, Neukirch (bib35) 2019; 74 Vivier, Artis, Colonna, Diefenbach, Di Santo, Eberl (bib2) 2018; 174 Irvin, Zafar, Good, Rollins, Christianson, Gorska (bib18) 2014; 134 Nagata, Hirai, Tanaka, Ogawa, Aso, Sugamura (bib8) 1999; 459 Rudmann, Moore, Tepper, Aldrich, Pfeiffer, Hogenesch (bib42) 2000; 279 Schuh, Power, Proudfoot, Kunkel, Lukacs, Hogaboam (bib51) 2002; 16 Goplen, Karim, Liang, Gorska, Rozario, Guo (bib20) 2009; 123 Bjorklund, Forkel, Picelli, Konya, Theorell, Friberg (bib4) 2016; 17 Kirkham, Carlyle (bib7) 2014; 5 Cosmi, Annunziato, Galli, Maggi, Nagata, Romagnani (bib10) 2000; 30 Paclik, Stehle, Lahmann, Hutloff, Romagnani (bib50) 2015; 45 Silver, Kearley, Copenhaver, Sanden, Mori, Yu, Pritchard, Berlin, Hunter, Bowler, Erjefalt, Kolbeck, Humbles (bib53) 2016; 17 Ricardo-Gonzalez, Van Dyken, Schneider, Lee, Nussbaum, Liang (bib52) 2018; 19 Li, van Unen, Hollt, Thompson, van Bergen, Pezzotti (bib31) 2018; 215 De Fanis, Mori, Kurnat, Lee, Bova, Adkinson (bib11) 2007; 109 Constantinides, McDonald, Verhoef, Bendelac (bib28) 2014; 508 Yu, Tsang, Wang, Clare, Wang, Chen (bib34) 2016; 539 Ebihara, Song, Ryu, Plougastel-Douglas, Yang, Levanon (bib27) 2015; 16 Bartemes, Kephart, Fox, Kita (bib12) 2014; 134 Christianson, Goplen, Zafar, Irvin, Good, Rollins (bib14) 2015; 136 Mielke, Groom, Rankin, Seillet, Masson, Putoczki (bib32) 2013; 191 Faustino, da Fonseca, Takenaka, Mirotti, Florsheim, Guereschi (bib43) 2013; 190 Robinette, Bando, Song, Ulland, Gilfillan, Colonna (bib15) 2017; 8 Tang, Yamada, Shibata, Muta, Wajjwalku, Podack (bib41) 2008; 181 Bal, Bernink, Nagasawa, Groot, Shikhagaie, Golebski (bib24) 2016; 17 Nagasawa, Heesters, Kradolfer, Krabbendam, Martinez-Gonzalez, de Bruijn, Golebski, Hendriks, Stadhouders, Spits, Bal (bib54) 2019; 216 Cavagnero, Badrani, Najii, Amadeo, Shah, Gasparian, Pham, Wang, Seumois, Croft, Broide, Doherty (bib55) 2019; 144 Polte, Behrendt, Hansen (bib45) 2006; 118 Choi, Kim, Choi, Choi, Park, Lee (bib47) 2014; 69 Fang, Zhu (bib37) 2017; 214 Nagata, Tanaka, Ogawa, Kemmotsu, Imai, Yoshie (bib9) 1999; 162 Lim, Menegatti, Bustamante, Le Bourhis, Allez, Rogge (bib22) 2016; 213 Barlow, Peel, Fox, Panova, Hardman, Camelo (bib5) 2013; 132 Mjosberg, Trifari, Crellin, Peters, van Drunen, Piet (bib3) 2011; 12 Barnig, Cernadas, Dutile, Liu, Perrella, Kazani (bib39) 2013; 5 Cho, Zhang, Kleeberger (bib46) 2001; 280 Seillet, Rankin, Groom, Mielke, Tellier, Chopin (bib33) 2014; 211 Wei, Wei, Zhu, Zang, Hu-Li, Yao (bib36) 2009; 30 Ohne, Silver, Thompson-Snipes, Collet, Blanck, Cantarel (bib23) 2016; 17 Salimi, Barlow, Saunders, Xue, Gutowska-Owsiak, Wang (bib6) 2013; 210 Liu, Verma, Michalec, Liu, Sripada, Rollins (bib17) 2018; 141 Halim, Krauss, Sun, Takei (bib38) 2012; 36 Simoni, Fehlings, Kloverpris, McGovern, Koo, Loh (bib25) 2018; 48 Fuchiwaki, Sun, Fujimura, Yamada, Shibata, Muta (bib44) 2011; 41 Maazi, Patel, Sankaranarayanan, Suzuki, Rigas, Soroosh (bib49) 2015; 42 Kirkham (10.1016/j.jaci.2020.01.038_bib7) 2014; 5 Simoni (10.1016/j.jaci.2020.01.038_bib25) 2018; 48 Bjorklund (10.1016/j.jaci.2020.01.038_bib4) 2016; 17 Wikenheiser (10.1016/j.jaci.2020.01.038_bib48) 2016; 7 Geiger (10.1016/j.jaci.2020.01.038_bib29) 2014; 211 Sun (10.1016/j.jaci.2020.01.038_bib40) 2010; 185 Mielke (10.1016/j.jaci.2020.01.038_bib32) 2013; 191 Halim (10.1016/j.jaci.2020.01.038_bib38) 2012; 36 Cho (10.1016/j.jaci.2020.01.038_bib46) 2001; 280 Rudmann (10.1016/j.jaci.2020.01.038_bib42) 2000; 279 Irvin (10.1016/j.jaci.2020.01.038_bib18) 2014; 134 Constantinides (10.1016/j.jaci.2020.01.038_bib28) 2014; 508 Robinette (10.1016/j.jaci.2020.01.038_bib26) 2015; 16 Silver (10.1016/j.jaci.2020.01.038_bib53) 2016; 17 Barlow (10.1016/j.jaci.2020.01.038_bib5) 2013; 132 Paclik (10.1016/j.jaci.2020.01.038_bib50) 2015; 45 Jackson (10.1016/j.jaci.2020.01.038_bib13) 2014; 190 Faustino (10.1016/j.jaci.2020.01.038_bib43) 2013; 190 Beuraud (10.1016/j.jaci.2020.01.038_bib35) 2019; 74 Bal (10.1016/j.jaci.2020.01.038_bib24) 2016; 17 Lim (10.1016/j.jaci.2020.01.038_bib22) 2016; 213 Maazi (10.1016/j.jaci.2020.01.038_bib49) 2015; 42 Ricardo-Gonzalez (10.1016/j.jaci.2020.01.038_bib52) 2018; 19 De Fanis (10.1016/j.jaci.2020.01.038_bib11) 2007; 109 Nagata (10.1016/j.jaci.2020.01.038_bib8) 1999; 459 Choi (10.1016/j.jaci.2020.01.038_bib47) 2014; 69 Nagasawa (10.1016/j.jaci.2020.01.038_bib54) 2019; 216 Schuh (10.1016/j.jaci.2020.01.038_bib51) 2002; 16 Robinette (10.1016/j.jaci.2020.01.038_bib15) 2017; 8 Cavagnero (10.1016/j.jaci.2020.01.038_bib55) 2019; 144 Salimi (10.1016/j.jaci.2020.01.038_bib6) 2013; 210 Fang (10.1016/j.jaci.2020.01.038_bib37) 2017; 214 Tang (10.1016/j.jaci.2020.01.038_bib41) 2008; 181 Mora-Velandia (10.1016/j.jaci.2020.01.038_bib16) 2017; 8 Liu (10.1016/j.jaci.2020.01.038_bib17) 2018; 141 Verma (10.1016/j.jaci.2020.01.038_bib21) 2018; 142 Wei (10.1016/j.jaci.2020.01.038_bib36) 2009; 30 Barnig (10.1016/j.jaci.2020.01.038_bib39) 2013; 5 Christianson (10.1016/j.jaci.2020.01.038_bib14) 2015; 136 Mjosberg (10.1016/j.jaci.2020.01.038_bib3) 2011; 12 Ebihara (10.1016/j.jaci.2020.01.038_bib27) 2015; 16 Ohne (10.1016/j.jaci.2020.01.038_bib23) 2016; 17 Yu (10.1016/j.jaci.2020.01.038_bib34) 2016; 539 Nagata (10.1016/j.jaci.2020.01.038_bib9) 1999; 162 Cosmi (10.1016/j.jaci.2020.01.038_bib10) 2000; 30 Lei (10.1016/j.jaci.2020.01.038_bib30) 2018; 215 Vivier (10.1016/j.jaci.2020.01.038_bib2) 2018; 174 Fuchiwaki (10.1016/j.jaci.2020.01.038_bib44) 2011; 41 Bartemes (10.1016/j.jaci.2020.01.038_bib12) 2014; 134 Quatromoni (10.1016/j.jaci.2020.01.038_bib19) 2015; 97 Goplen (10.1016/j.jaci.2020.01.038_bib20) 2009; 123 Seillet (10.1016/j.jaci.2020.01.038_bib33) 2014; 211 Klose (10.1016/j.jaci.2020.01.038_bib1) 2016; 17 Li (10.1016/j.jaci.2020.01.038_bib31) 2018; 215 Polte (10.1016/j.jaci.2020.01.038_bib45) 2006; 118 32535133 - J Allergy Clin Immunol. 2020 Aug;146(2):280-282 |
References_xml | – volume: 45 start-page: 2766 year: 2015 end-page: 2772 ident: bib50 article-title: ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice publication-title: Eur J Immunol – volume: 69 start-page: 186 year: 2014 end-page: 198 ident: bib47 article-title: An important role of tumor necrosis factor receptor-2 on natural killer T cells on the development of dsRNA-enhanced Th2 cell response to inhaled allergens publication-title: Allergy – volume: 210 start-page: 2939 year: 2013 end-page: 2950 ident: bib6 article-title: A role for IL-25 and IL-33-driven type 2 innate lymphoid cells in atopic dermatitis publication-title: J Exp Med – volume: 174 start-page: 1054 year: 2018 end-page: 1066 ident: bib2 article-title: Innate lymphoid cells: 10 years on publication-title: Cell – volume: 97 start-page: 201 year: 2015 end-page: 209 ident: bib19 article-title: An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells publication-title: J Leukoc Biol – volume: 7 start-page: 304 year: 2016 ident: bib48 article-title: ICOS Co-stimulation: friend or foe? publication-title: Front Immunol – volume: 16 start-page: 1124 year: 2015 end-page: 1133 ident: bib27 article-title: Runx3 specifies lineage commitment of innate lymphoid cells publication-title: Nat Immunol – volume: 181 start-page: 6316 year: 2008 end-page: 6327 ident: bib41 article-title: A novel role of CD30L/CD30 signaling by T-T cell interaction in Th1 response against mycobacterial infection publication-title: J Immunol – volume: 74 start-page: 933 year: 2019 end-page: 945 ident: bib35 article-title: CCR10(+) ILC2s with ILC1-like properties exhibit a protective function in severe allergic asthma publication-title: Allergy – volume: 459 start-page: 195 year: 1999 end-page: 199 ident: bib8 article-title: CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s) publication-title: FEBS Lett – volume: 19 start-page: 1093 year: 2018 end-page: 1099 ident: bib52 article-title: Tissue signals imprint ILC2 identity with anticipatory function publication-title: Nat Immunol – volume: 191 start-page: 4383 year: 2013 end-page: 4391 ident: bib32 article-title: TCF-1 controls ILC2 and NKp46+RORgammat+ innate lymphocyte differentiation and protection in intestinal inflammation publication-title: J Immunol – volume: 36 start-page: 451 year: 2012 end-page: 463 ident: bib38 article-title: Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation publication-title: Immunity – volume: 162 start-page: 1278 year: 1999 end-page: 1286 ident: bib9 article-title: Selective expression of a novel surface molecule by human Th2 cells in vivo publication-title: J Immunol – volume: 123 start-page: 925 year: 2009 end-page: 932 e11 ident: bib20 article-title: Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma publication-title: J Allergy Clin Immunol – volume: 132 start-page: 933 year: 2013 end-page: 941 ident: bib5 article-title: IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction publication-title: J Allergy Clin Immunol – volume: 214 start-page: 1861 year: 2017 end-page: 1876 ident: bib37 article-title: Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets publication-title: J Exp Med – volume: 16 start-page: 306 year: 2015 end-page: 317 ident: bib26 article-title: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets publication-title: Nat Immunol – volume: 190 start-page: 1373 year: 2014 end-page: 1382 ident: bib13 article-title: IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo publication-title: Am J Respir Crit Care Med – volume: 48 start-page: 1060 year: 2018 ident: bib25 article-title: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency publication-title: Immunity – volume: 118 start-page: 942 year: 2006 end-page: 948 ident: bib45 article-title: Direct evidence for a critical role of CD30 in the development of allergic asthma publication-title: J Allergy Clin Immunol – volume: 213 start-page: 569 year: 2016 end-page: 583 ident: bib22 article-title: IL-12 drives functional plasticity of human group 2 innate lymphoid cells publication-title: J Exp Med – volume: 17 start-page: 626 year: 2016 end-page: 635 ident: bib53 article-title: Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs publication-title: Nat Immunol – volume: 8 start-page: 176 year: 2017 ident: bib16 article-title: A human Lin(-) CD123(+) CD127(low) population endowed with ILC features and migratory capabilities contributes to immunopathological hallmarks of psoriasis publication-title: Front Immunol – volume: 134 start-page: 1175 year: 2014 end-page: 1186 e7 ident: bib18 article-title: Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma publication-title: J Allergy Clin Immunol – volume: 17 start-page: 765 year: 2016 end-page: 774 ident: bib1 article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis publication-title: Nat Immunol – volume: 142 start-page: 793 year: 2018 end-page: 803 e8 ident: bib21 article-title: Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9(+) and IL-13(+) type 2 innate lymphoid cell subpopulations publication-title: J Allergy Clin Immunol – volume: 136 start-page: 59 year: 2015 end-page: 68 e14 ident: bib14 article-title: Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33 publication-title: J Allergy Clin Immunol – volume: 141 start-page: 257 year: 2018 end-page: 268 e6 ident: bib17 article-title: Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin publication-title: J Allergy Clin Immunol – volume: 30 start-page: 2972 year: 2000 end-page: 2979 ident: bib10 article-title: CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease publication-title: Eur J Immunol – volume: 42 start-page: 538 year: 2015 end-page: 551 ident: bib49 article-title: ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity publication-title: Immunity – volume: 508 start-page: 397 year: 2014 end-page: 401 ident: bib28 article-title: A committed precursor to innate lymphoid cells publication-title: Nature – volume: 5 start-page: 214 year: 2014 ident: bib7 article-title: Complexity and diversity of the NKR-P1:Clr (Klrb1:Clec2) recognition systems publication-title: Front Immunol – volume: 109 start-page: 4343 year: 2007 end-page: 4350 ident: bib11 article-title: GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells publication-title: Blood – volume: 12 start-page: 1055 year: 2011 end-page: 1062 ident: bib3 article-title: Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161 publication-title: Nat Immunol – volume: 144 start-page: 1432 year: 2019 end-page: 1435.e9 ident: bib55 article-title: Unconventional ST2- and CD127-negative lung ILC2 populations are induced by the fungal allergen publication-title: JACI – volume: 279 start-page: L1047 year: 2000 end-page: L1057 ident: bib42 article-title: Modulation of allergic inflammation in mice deficient in TNF receptors publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 134 start-page: 671 year: 2014 end-page: 678 e4 ident: bib12 article-title: Enhanced innate type 2 immune response in peripheral blood from patients with asthma publication-title: J Allergy Clin Immunol – volume: 17 start-page: 452 year: 2016 end-page: 460 ident: bib4 article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing publication-title: Nat Immunol – volume: 216 start-page: 1762 year: 2019 end-page: 1776 ident: bib54 article-title: KLRG1 and NKp46 discriminate subpopulations of human CD117(+)CRTH2(-) ILCs biased toward ILC2 or ILC3 publication-title: J Exp Med – volume: 190 start-page: 2614 year: 2013 end-page: 2621 ident: bib43 article-title: Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation publication-title: J Immunol – volume: 8 start-page: 14601 year: 2017 ident: bib15 article-title: IL-15 sustains IL-7R-independent ILC2 and ILC3 development publication-title: Nat Commun – volume: 17 start-page: 646 year: 2016 end-page: 655 ident: bib23 article-title: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity publication-title: Nat Immunol – volume: 17 start-page: 636 year: 2016 end-page: 645 ident: bib24 article-title: IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs publication-title: Nat Immunol – volume: 215 start-page: 2157 year: 2018 end-page: 2174 ident: bib30 article-title: ICAM-1 controls development and function of ILC2 publication-title: J Exp Med – volume: 16 start-page: 1313 year: 2002 end-page: 1315 ident: bib51 article-title: Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/- mice publication-title: FASEB J – volume: 215 start-page: 1383 year: 2018 end-page: 1396 ident: bib31 article-title: Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine publication-title: J Exp Med – volume: 211 start-page: 1733 year: 2014 end-page: 1740 ident: bib33 article-title: Nfil3 is required for the development of all innate lymphoid cell subsets publication-title: J Exp Med – volume: 539 start-page: 102 year: 2016 end-page: 106 ident: bib34 article-title: Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway publication-title: Nature – volume: 185 start-page: 2222 year: 2010 end-page: 2230 ident: bib40 article-title: CD30 ligand/CD30 plays a critical role in Th17 differentiation in mice publication-title: J Immunol – volume: 211 start-page: 1723 year: 2014 end-page: 1731 ident: bib29 article-title: Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens publication-title: J Exp Med – volume: 41 start-page: 2947 year: 2011 end-page: 2954 ident: bib44 article-title: The central role of CD30L/CD30 interactions in allergic rhinitis pathogenesis in mice publication-title: Eur J Immunol – volume: 280 start-page: L537 year: 2001 end-page: L546 ident: bib46 article-title: Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-alpha receptors publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 30 start-page: 155 year: 2009 end-page: 167 ident: bib36 article-title: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells publication-title: Immunity – volume: 5 start-page: 174ra26 year: 2013 ident: bib39 article-title: Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma publication-title: Sci Transl Med – volume: 48 start-page: 1060 year: 2018 ident: 10.1016/j.jaci.2020.01.038_bib25 article-title: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency publication-title: Immunity doi: 10.1016/j.immuni.2018.04.028 – volume: 8 start-page: 176 year: 2017 ident: 10.1016/j.jaci.2020.01.038_bib16 article-title: A human Lin(-) CD123(+) CD127(low) population endowed with ILC features and migratory capabilities contributes to immunopathological hallmarks of psoriasis publication-title: Front Immunol doi: 10.3389/fimmu.2017.00176 – volume: 132 start-page: 933 year: 2013 ident: 10.1016/j.jaci.2020.01.038_bib5 article-title: IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.05.012 – volume: 5 start-page: 214 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib7 article-title: Complexity and diversity of the NKR-P1:Clr (Klrb1:Clec2) recognition systems publication-title: Front Immunol doi: 10.3389/fimmu.2014.00214 – volume: 97 start-page: 201 year: 2015 ident: 10.1016/j.jaci.2020.01.038_bib19 article-title: An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells publication-title: J Leukoc Biol doi: 10.1189/jlb.5TA0814-373 – volume: 211 start-page: 1733 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib33 article-title: Nfil3 is required for the development of all innate lymphoid cell subsets publication-title: J Exp Med doi: 10.1084/jem.20140145 – volume: 17 start-page: 452 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib4 article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing publication-title: Nat Immunol – volume: 118 start-page: 942 year: 2006 ident: 10.1016/j.jaci.2020.01.038_bib45 article-title: Direct evidence for a critical role of CD30 in the development of allergic asthma publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2006.07.014 – volume: 211 start-page: 1723 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib29 article-title: Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens publication-title: J Exp Med doi: 10.1084/jem.20140212 – volume: 5 start-page: 174ra26 year: 2013 ident: 10.1016/j.jaci.2020.01.038_bib39 article-title: Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3004812 – volume: 16 start-page: 1124 year: 2015 ident: 10.1016/j.jaci.2020.01.038_bib27 article-title: Runx3 specifies lineage commitment of innate lymphoid cells publication-title: Nat Immunol doi: 10.1038/ni.3272 – volume: 74 start-page: 933 year: 2019 ident: 10.1016/j.jaci.2020.01.038_bib35 article-title: CCR10(+) ILC2s with ILC1-like properties exhibit a protective function in severe allergic asthma publication-title: Allergy doi: 10.1111/all.13679 – volume: 8 start-page: 14601 year: 2017 ident: 10.1016/j.jaci.2020.01.038_bib15 article-title: IL-15 sustains IL-7R-independent ILC2 and ILC3 development publication-title: Nat Commun doi: 10.1038/ncomms14601 – volume: 30 start-page: 2972 year: 2000 ident: 10.1016/j.jaci.2020.01.038_bib10 article-title: CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease publication-title: Eur J Immunol doi: 10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-# – volume: 134 start-page: 671 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib12 article-title: Enhanced innate type 2 immune response in peripheral blood from patients with asthma publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2014.06.024 – volume: 17 start-page: 765 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib1 article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis publication-title: Nat Immunol doi: 10.1038/ni.3489 – volume: 17 start-page: 626 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib53 article-title: Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs publication-title: Nat Immunol doi: 10.1038/ni.3443 – volume: 162 start-page: 1278 year: 1999 ident: 10.1016/j.jaci.2020.01.038_bib9 article-title: Selective expression of a novel surface molecule by human Th2 cells in vivo publication-title: J Immunol doi: 10.4049/jimmunol.162.3.1278 – volume: 123 start-page: 925 year: 2009 ident: 10.1016/j.jaci.2020.01.038_bib20 article-title: Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2009.02.009 – volume: 210 start-page: 2939 year: 2013 ident: 10.1016/j.jaci.2020.01.038_bib6 article-title: A role for IL-25 and IL-33-driven type 2 innate lymphoid cells in atopic dermatitis publication-title: J Exp Med doi: 10.1084/jem.20130351 – volume: 279 start-page: L1047 year: 2000 ident: 10.1016/j.jaci.2020.01.038_bib42 article-title: Modulation of allergic inflammation in mice deficient in TNF receptors publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.2000.279.6.L1047 – volume: 459 start-page: 195 year: 1999 ident: 10.1016/j.jaci.2020.01.038_bib8 article-title: CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s) publication-title: FEBS Lett doi: 10.1016/S0014-5793(99)01251-X – volume: 17 start-page: 646 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib23 article-title: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity publication-title: Nat Immunol doi: 10.1038/ni.3447 – volume: 142 start-page: 793 year: 2018 ident: 10.1016/j.jaci.2020.01.038_bib21 article-title: Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9(+) and IL-13(+) type 2 innate lymphoid cell subpopulations publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2017.10.020 – volume: 134 start-page: 1175 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib18 article-title: Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2014.05.038 – volume: 185 start-page: 2222 year: 2010 ident: 10.1016/j.jaci.2020.01.038_bib40 article-title: CD30 ligand/CD30 plays a critical role in Th17 differentiation in mice publication-title: J Immunol doi: 10.4049/jimmunol.1000024 – volume: 69 start-page: 186 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib47 article-title: An important role of tumor necrosis factor receptor-2 on natural killer T cells on the development of dsRNA-enhanced Th2 cell response to inhaled allergens publication-title: Allergy doi: 10.1111/all.12301 – volume: 174 start-page: 1054 year: 2018 ident: 10.1016/j.jaci.2020.01.038_bib2 article-title: Innate lymphoid cells: 10 years on publication-title: Cell doi: 10.1016/j.cell.2018.07.017 – volume: 216 start-page: 1762 year: 2019 ident: 10.1016/j.jaci.2020.01.038_bib54 article-title: KLRG1 and NKp46 discriminate subpopulations of human CD117(+)CRTH2(-) ILCs biased toward ILC2 or ILC3 publication-title: J Exp Med doi: 10.1084/jem.20190490 – volume: 141 start-page: 257 year: 2018 ident: 10.1016/j.jaci.2020.01.038_bib17 article-title: Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2017.03.032 – volume: 16 start-page: 1313 year: 2002 ident: 10.1016/j.jaci.2020.01.038_bib51 article-title: Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/- mice publication-title: FASEB J doi: 10.1096/fj.02-0193fje – volume: 12 start-page: 1055 year: 2011 ident: 10.1016/j.jaci.2020.01.038_bib3 article-title: Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161 publication-title: Nat Immunol doi: 10.1038/ni.2104 – volume: 16 start-page: 306 year: 2015 ident: 10.1016/j.jaci.2020.01.038_bib26 article-title: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets publication-title: Nat Immunol doi: 10.1038/ni.3094 – volume: 190 start-page: 2614 year: 2013 ident: 10.1016/j.jaci.2020.01.038_bib43 article-title: Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation publication-title: J Immunol doi: 10.4049/jimmunol.1202354 – volume: 42 start-page: 538 year: 2015 ident: 10.1016/j.jaci.2020.01.038_bib49 article-title: ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity publication-title: Immunity doi: 10.1016/j.immuni.2015.02.007 – volume: 215 start-page: 2157 year: 2018 ident: 10.1016/j.jaci.2020.01.038_bib30 article-title: ICAM-1 controls development and function of ILC2 publication-title: J Exp Med doi: 10.1084/jem.20172359 – volume: 144 start-page: 1432 year: 2019 ident: 10.1016/j.jaci.2020.01.038_bib55 article-title: Unconventional ST2- and CD127-negative lung ILC2 populations are induced by the fungal allergen Alternaria alternate publication-title: JACI – volume: 213 start-page: 569 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib22 article-title: IL-12 drives functional plasticity of human group 2 innate lymphoid cells publication-title: J Exp Med doi: 10.1084/jem.20151750 – volume: 214 start-page: 1861 year: 2017 ident: 10.1016/j.jaci.2020.01.038_bib37 article-title: Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets publication-title: J Exp Med doi: 10.1084/jem.20170494 – volume: 30 start-page: 155 year: 2009 ident: 10.1016/j.jaci.2020.01.038_bib36 article-title: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells publication-title: Immunity doi: 10.1016/j.immuni.2008.12.009 – volume: 191 start-page: 4383 year: 2013 ident: 10.1016/j.jaci.2020.01.038_bib32 article-title: TCF-1 controls ILC2 and NKp46+RORgammat+ innate lymphocyte differentiation and protection in intestinal inflammation publication-title: J Immunol doi: 10.4049/jimmunol.1301228 – volume: 136 start-page: 59 year: 2015 ident: 10.1016/j.jaci.2020.01.038_bib14 article-title: Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2014.11.037 – volume: 17 start-page: 636 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib24 article-title: IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs publication-title: Nat Immunol doi: 10.1038/ni.3444 – volume: 215 start-page: 1383 year: 2018 ident: 10.1016/j.jaci.2020.01.038_bib31 article-title: Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine publication-title: J Exp Med doi: 10.1084/jem.20171934 – volume: 19 start-page: 1093 year: 2018 ident: 10.1016/j.jaci.2020.01.038_bib52 article-title: Tissue signals imprint ILC2 identity with anticipatory function publication-title: Nat Immunol doi: 10.1038/s41590-018-0201-4 – volume: 7 start-page: 304 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib48 article-title: ICOS Co-stimulation: friend or foe? publication-title: Front Immunol doi: 10.3389/fimmu.2016.00304 – volume: 539 start-page: 102 year: 2016 ident: 10.1016/j.jaci.2020.01.038_bib34 article-title: Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway publication-title: Nature doi: 10.1038/nature20105 – volume: 45 start-page: 2766 year: 2015 ident: 10.1016/j.jaci.2020.01.038_bib50 article-title: ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice publication-title: Eur J Immunol doi: 10.1002/eji.201545635 – volume: 36 start-page: 451 year: 2012 ident: 10.1016/j.jaci.2020.01.038_bib38 article-title: Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation publication-title: Immunity doi: 10.1016/j.immuni.2011.12.020 – volume: 508 start-page: 397 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib28 article-title: A committed precursor to innate lymphoid cells publication-title: Nature doi: 10.1038/nature13047 – volume: 280 start-page: L537 year: 2001 ident: 10.1016/j.jaci.2020.01.038_bib46 article-title: Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-alpha receptors publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.2001.280.3.L537 – volume: 109 start-page: 4343 year: 2007 ident: 10.1016/j.jaci.2020.01.038_bib11 article-title: GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells publication-title: Blood doi: 10.1182/blood-2006-05-025940 – volume: 181 start-page: 6316 year: 2008 ident: 10.1016/j.jaci.2020.01.038_bib41 article-title: A novel role of CD30L/CD30 signaling by T-T cell interaction in Th1 response against mycobacterial infection publication-title: J Immunol doi: 10.4049/jimmunol.181.9.6316 – volume: 190 start-page: 1373 year: 2014 ident: 10.1016/j.jaci.2020.01.038_bib13 article-title: IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201406-1039OC – volume: 41 start-page: 2947 year: 2011 ident: 10.1016/j.jaci.2020.01.038_bib44 article-title: The central role of CD30L/CD30 interactions in allergic rhinitis pathogenesis in mice publication-title: Eur J Immunol doi: 10.1002/eji.201141423 – reference: 32535133 - J Allergy Clin Immunol. 2020 Aug;146(2):280-282 |
SSID | ssj0009389 |
Score | 2.4510734 |
Snippet | Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production... Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin ) cells. Type 2 cytokine production... Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 390 |
SubjectTerms | Asthma Asthma - immunology Biomarkers - metabolism Cell Differentiation Cells, Cultured cytokines Cytokines - metabolism GATA3 Transcription Factor - genetics GATA3 Transcription Factor - metabolism Humans Immunity, Innate Interleukin-7 Receptor alpha Subunit - metabolism Lymphocytes - immunology novel ILC2 population Receptors, Immunologic - metabolism Receptors, Prostaglandin - metabolism Receptors, Tumor Necrosis Factor - metabolism Th2 Cells - immunology type 2 innate lymphoid cells |
Title | Optimal identification of human conventional and nonconventional (CRTH2–IL7Rα–) ILC2s using additional surface markers |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0091674920301287 https://dx.doi.org/10.1016/j.jaci.2020.01.038 https://www.ncbi.nlm.nih.gov/pubmed/32032632 https://www.proquest.com/docview/2352642570 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bahsxEBUhgdKX0PQWN61RoQ8tZRutpL3o0Zgau01SMA7kTWh1CQ6JE3x5CpT-Q78kP5KP6Jd0ZlfrNtCm0LddMcMKzexc0JkZQt5kyuY55yEBdZCJTCuZKBZUoqqssExVNuNY73x4lA-P5aeT7GSD9NtaGIRVRtvf2PTaWseV_Xia-1fTKdb4KoTQK45RPQT-WMEuC9TyD19_wTyUKJsQWKUJUsfCmQbjdWbsFHJEzurWnVij8mfn9Lfgs3ZCg0dkO0aPtNdscIds-Nlj8uAw3o8_IddfwAJcAMXURRRQffD0MtB6GB_9HWROzcxRyP7vrL3tjydD_uPb99FBMb69gYd3dHTQ5wuKCPlTivijSLpYzYOxnl4gwme-eEqOBx8n_WESxyskVgpeJkYGZmzJXWAePLeQzuMUDpPnFjxnGVwFmapPS4_dxQsvnQ0seFa5THhlMiOekU3YpN8lVHjmJWSKqasg1YakWiknCyuCT30mWNkhaXuu2sbe4zgC41y3ILMzjbLQKAvNUg2y6JD3a56rpvPGvdSiFZdua0rBCmpwDPdyZWuuO1r3T77XrUZo-B3xjsXM_OVqoTnOG0A7yDrkeaMq690LnFafC_7iP7-6Rx7iWwM_fEk2l_OVfwUh0bLq1jrfJVu90efh0U8yDwvg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZKKgGXin8CBYzEAYRW9fpnsz5WEdWGJkGqUqk3a9c_KBXdVElz4sI79El4ER6CJ-nMrjdQCYrEbeX1yJZnPD_yNzOEvFHaZhnnIQFxkIlMK5loFnSiKzWwTFdWccx3nkyz4lh-PFEnW2TY5cIgrDLq_lanN9o6juzF09w7n88xx1cjhF5z9OrB8b9FtrE6leqR7f3RYTH9VXtX5K0XrNMECWLuTAvzOi3tHMJEzprqnZim8mf79Df_s7FDB_fITnQg6X67x_tky9cPyO1JfCJ_SL5-AiVwBjPmLgKBmrOni0Cbfnz0d5w5LWtH60V9bezt8GhW8J_fLkfjwdGP7_Dxjo7GQ76iCJL_TBGCFKeu1stQWk_PEOSzXD0ixwcfZsMiiR0WEisFz5NSBlbanLvAPBhvIZ3HRhxlllkwnnlwFQSrPs09FhgfeOlsYMGzyinhdalK8Zj0YJP-KaHCMy8hWExdBdE2xNVaOzmwIvjUK8HyPkm7czU2lh_HLhhfTIczOzXIC4O8MCw1wIs-eb-hOW-Lb9w4W3TsMl1aKShCA7bhRiq1obomeP-ke91JhIEbic8sZe0X65Xh2HIAVSHrkyetqGx2L7BhfSb4s_9c9RW5U8wmYzMeTQ-fk7v4p0Uj7pLexXLtX4CHdFG9jDfgClHlDpE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+identification+of+human+conventional+and+nonconventional+%28CRTH2-IL7R%CE%B1-%29+ILC2s+using+additional+surface+markers&rft.jtitle=Journal+of+allergy+and+clinical+immunology&rft.au=Liu%2C+Sucai&rft.au=Sirohi%2C+Kapil&rft.au=Verma%2C+Mukesh&rft.au=McKay%2C+Jerome&rft.date=2020-08-01&rft.issn=1097-6825&rft.eissn=1097-6825&rft.volume=146&rft.issue=2&rft.spage=390&rft_id=info:doi/10.1016%2Fj.jaci.2020.01.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6749&client=summon |