Optimal identification of human conventional and nonconventional (CRTH2–IL7Rα–) ILC2s using additional surface markers

Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production by CRTH2–IL7Rα– innate lymphoid cells (ILCs) is unknown. We sought to identify CRTH2–IL7Rα– type 2 cytokine–producing ILCs and their disease...

Full description

Saved in:
Bibliographic Details
Published inJournal of allergy and clinical immunology Vol. 146; no. 2; pp. 390 - 405
Main Authors Liu, Sucai, Sirohi, Kapil, Verma, Mukesh, McKay, Jerome, Michalec, Lidia, Sripada, Anand, Danhorn, Tomas, Rollins, Donald, Good, James, Gorska, Magdalena M., Martin, Richard J., Alam, Rafeul
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production by CRTH2–IL7Rα– innate lymphoid cells (ILCs) is unknown. We sought to identify CRTH2–IL7Rα– type 2 cytokine–producing ILCs and their disease relevance. We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent. We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2–IL7Rα+ and CRTH2–IL7Rα– (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine–positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population. The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine–producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface–expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma. [Display omitted]
AbstractList Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production by CRTH2–IL7Rα– innate lymphoid cells (ILCs) is unknown. We sought to identify CRTH2–IL7Rα– type 2 cytokine–producing ILCs and their disease relevance. We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent. We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2–IL7Rα+ and CRTH2–IL7Rα– (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine–positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population. The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine–producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface–expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma. [Display omitted]
Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production by CRTH2-IL7Rα- innate lymphoid cells (ILCs) is unknown.BACKGROUNDHuman type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production by CRTH2-IL7Rα- innate lymphoid cells (ILCs) is unknown.We sought to identify CRTH2-IL7Rα- type 2 cytokine-producing ILCs and their disease relevance.OBJECTIVEWe sought to identify CRTH2-IL7Rα- type 2 cytokine-producing ILCs and their disease relevance.We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent.METHODSWe studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent.We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2-IL7Rα+ and CRTH2-IL7Rα- (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population.RESULTSWe found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2-IL7Rα+ and CRTH2-IL7Rα- (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population.The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.CONCLUSIONSThe commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.
Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin ) cells. Type 2 cytokine production by CRTH2 IL7Rα innate lymphoid cells (ILCs) is unknown. We sought to identify CRTH2 IL7Rα type 2 cytokine-producing ILCs and their disease relevance. We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent. We found that IL-5 and IL-13 were expressed not only by CRTH2 but also by CRTH2 IL7Rα and CRTH2 IL7Rα (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population. The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.
Author Gorska, Magdalena M.
Rollins, Donald
Liu, Sucai
Michalec, Lidia
Good, James
Sirohi, Kapil
Verma, Mukesh
Sripada, Anand
Danhorn, Tomas
Alam, Rafeul
Martin, Richard J.
McKay, Jerome
Author_xml – sequence: 1
  givenname: Sucai
  surname: Liu
  fullname: Liu, Sucai
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
– sequence: 2
  givenname: Kapil
  surname: Sirohi
  fullname: Sirohi, Kapil
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
– sequence: 3
  givenname: Mukesh
  surname: Verma
  fullname: Verma, Mukesh
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
– sequence: 4
  givenname: Jerome
  surname: McKay
  fullname: McKay, Jerome
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
– sequence: 5
  givenname: Lidia
  surname: Michalec
  fullname: Michalec, Lidia
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
– sequence: 6
  givenname: Anand
  surname: Sripada
  fullname: Sripada, Anand
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
– sequence: 7
  givenname: Tomas
  surname: Danhorn
  fullname: Danhorn, Tomas
  organization: Center for Genes and Environment, National Jewish Health, Denver, Colo
– sequence: 8
  givenname: Donald
  surname: Rollins
  fullname: Rollins, Donald
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo
– sequence: 9
  givenname: James
  surname: Good
  fullname: Good, James
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo
– sequence: 10
  givenname: Magdalena M.
  surname: Gorska
  fullname: Gorska, Magdalena M.
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
– sequence: 11
  givenname: Richard J.
  surname: Martin
  fullname: Martin, Richard J.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo
– sequence: 12
  givenname: Rafeul
  surname: Alam
  fullname: Alam, Rafeul
  email: alamr@njhealth.org
  organization: Division of Allergy and Immunology, Department of Medicine, Denver, Colo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32032632$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1u1DAYhi3Uik4LF2CBsiyLpJ_t_DiITTUCOtJIlaqytjz2Z_A0cQY7qVSx4Q6chItwCE5ST2e6oIuy8t_zfLLe95gc-MEjIW8oFBRofbYu1kq7ggGDAmgBXLwgMwptk9eCVQdkBtDSvG7K9ogcx7iGdOaifUmOOAPOas5m5MflZnS96jJn0I_OOq1GN_hssNm3qVc-04O_3b4MPkHKmyx94p-70_nV9QX7-_PXYtlc_fmdNu-yxXLOYjZF579myhi3R-MUrNKY9SrcYIivyKFVXcTX-_WEfPn08Xp-kS8vPy_m58tcl5yJXJUWlBbMWEBgnJcGQdBa1bXWiMKaFeUMqUCAhjVYGm3BIqxMxbFVleIn5HQ3dxOG7xPGUfYuauw65XGYomS8YnXJqgYS-naPTqsejdyEFE64k4-BJUDsAB2GGANaqd34ENkYlOskBbntRq7lthu57UYClambpLIn6uP0Z6UPOwlTQLcOg4zaoddoXEA9SjO45_X3T3TdOZ9K7m7w7n_yPeFZvtU
CitedBy_id crossref_primary_10_1111_sji_13357
crossref_primary_10_1186_s12943_023_01807_w
crossref_primary_10_1016_j_intimp_2024_111899
crossref_primary_10_1111_sji_13156
crossref_primary_10_1084_jem_20231827
crossref_primary_10_1016_j_jaci_2020_05_042
crossref_primary_10_1126_sciimmunol_abg6356
crossref_primary_10_1111_all_14720
crossref_primary_10_1016_j_it_2020_08_009
crossref_primary_10_1097_ACI_0000000000001018
crossref_primary_10_1016_j_alit_2022_12_001
crossref_primary_10_1155_2024_2020514
crossref_primary_10_1615_CritRevImmunol_2023047301
crossref_primary_10_1038_s41598_024_70880_y
crossref_primary_10_1016_j_intimp_2023_110658
crossref_primary_10_1038_s42003_023_05297_w
crossref_primary_10_1016_j_jaci_2021_03_015
crossref_primary_10_1002_stem_3369
crossref_primary_10_1016_j_coi_2024_102483
crossref_primary_10_1016_j_jneuroim_2024_578489
crossref_primary_10_1111_imr_70010
crossref_primary_10_3390_ijms25136913
crossref_primary_10_1126_scitranslmed_ado6649
crossref_primary_10_1111_1346_8138_15967
crossref_primary_10_1146_annurev_immunol_110119_091711
crossref_primary_10_1172_JCI169583
crossref_primary_10_1097_ACI_0000000000000798
crossref_primary_10_3389_fimmu_2022_946905
crossref_primary_10_2147_JAA_S286695
crossref_primary_10_1016_j_anai_2020_08_001
crossref_primary_10_1038_s41577_022_00704_5
crossref_primary_10_1155_2022_8871037
Cites_doi 10.1016/j.immuni.2018.04.028
10.3389/fimmu.2017.00176
10.1016/j.jaci.2013.05.012
10.3389/fimmu.2014.00214
10.1189/jlb.5TA0814-373
10.1084/jem.20140145
10.1016/j.jaci.2006.07.014
10.1084/jem.20140212
10.1126/scitranslmed.3004812
10.1038/ni.3272
10.1111/all.13679
10.1038/ncomms14601
10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-#
10.1016/j.jaci.2014.06.024
10.1038/ni.3489
10.1038/ni.3443
10.4049/jimmunol.162.3.1278
10.1016/j.jaci.2009.02.009
10.1084/jem.20130351
10.1152/ajplung.2000.279.6.L1047
10.1016/S0014-5793(99)01251-X
10.1038/ni.3447
10.1016/j.jaci.2017.10.020
10.1016/j.jaci.2014.05.038
10.4049/jimmunol.1000024
10.1111/all.12301
10.1016/j.cell.2018.07.017
10.1084/jem.20190490
10.1016/j.jaci.2017.03.032
10.1096/fj.02-0193fje
10.1038/ni.2104
10.1038/ni.3094
10.4049/jimmunol.1202354
10.1016/j.immuni.2015.02.007
10.1084/jem.20172359
10.1084/jem.20151750
10.1084/jem.20170494
10.1016/j.immuni.2008.12.009
10.4049/jimmunol.1301228
10.1016/j.jaci.2014.11.037
10.1038/ni.3444
10.1084/jem.20171934
10.1038/s41590-018-0201-4
10.3389/fimmu.2016.00304
10.1038/nature20105
10.1002/eji.201545635
10.1016/j.immuni.2011.12.020
10.1038/nature13047
10.1152/ajplung.2001.280.3.L537
10.1182/blood-2006-05-025940
10.4049/jimmunol.181.9.6316
10.1164/rccm.201406-1039OC
10.1002/eji.201141423
ContentType Journal Article
Copyright 2020 American Academy of Allergy, Asthma & Immunology
Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 American Academy of Allergy, Asthma & Immunology
– notice: Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jaci.2020.01.038
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6825
EndPage 405
ExternalDocumentID 32032632
10_1016_j_jaci_2020_01_038
S0091674920301287
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: AI102943; AI137970; HL126895
  funderid: https://doi.org/10.13039/100000002
– fundername: NIAID NIH HHS
  grantid: R01 AI137970
– fundername: NIAID NIH HHS
  grantid: R01 AI102943
– fundername: NHLBI NIH HHS
  grantid: R01 HL122995
– fundername: NHLBI NIH HHS
  grantid: R01 HL126895
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.XZ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
354
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8F7
8FE
8FH
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
C45
CAG
CJTIS
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDU
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
LK8
LUGTX
M27
M41
MO0
N4W
N9A
O-L
O9-
O9~
OAUVE
OBH
ODZKP
OHH
OHT
OK0
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPCBC
SSH
SSI
SSZ
T5K
TEORI
TWZ
UGJ
UNMZH
UV1
WH7
WOW
WUQ
X7M
XFW
YOC
YQI
YQJ
Z5R
ZGI
ZXP
ZY1
~02
~G-
~KM
AACTN
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4328-a4f0ac82df0e02334de0816a66ccee8fdb132e18e00727e4dcf0fe0bd53e9a5a3
IEDL.DBID .~1
ISSN 0091-6749
1097-6825
IngestDate Fri Jul 11 04:03:37 EDT 2025
Thu Apr 03 07:00:54 EDT 2025
Tue Jul 01 00:47:47 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
Sun Apr 06 06:53:17 EDT 2025
Tue Aug 26 17:44:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ILC
PMA
FMO
DN
FACS
BAL
NJH
Asthma
PCA
TPM
type 2 innate lymphoid cells
RNA-seq
novel ILC2 population
CRTH2
cytokines
Lin cell
Language English
License Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4328-a4f0ac82df0e02334de0816a66ccee8fdb132e18e00727e4dcf0fe0bd53e9a5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7398840
PMID 32032632
PQID 2352642570
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2352642570
pubmed_primary_32032632
crossref_citationtrail_10_1016_j_jaci_2020_01_038
crossref_primary_10_1016_j_jaci_2020_01_038
elsevier_sciencedirect_doi_10_1016_j_jaci_2020_01_038
elsevier_clinicalkey_doi_10_1016_j_jaci_2020_01_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of allergy and clinical immunology
PublicationTitleAlternate J Allergy Clin Immunol
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Robinette, Fuchs, Cortez, Lee, Wang, Durum (bib26) 2015; 16
Geiger, Abt, Gasteiger, Firth, O'Connor, Geary (bib29) 2014; 211
Quatromoni, Singhal, Bhojnagarwala, Hancock, Albelda, Eruslanov (bib19) 2015; 97
Mora-Velandia, Castro-Escamilla, Mendez, Aguilar-Flores, Velazquez-Avila, Tussie-Luna (bib16) 2017; 8
Verma, Liu, Michalec, Sripada, Gorska, Alam (bib21) 2018; 142
Wikenheiser, Stumhofer (bib48) 2016; 7
Klose, Artis (bib1) 2016; 17
Jackson, Makrinioti, Rana, Shamji, Trujillo-Torralbo, Footitt (bib13) 2014; 190
Sun, Yamada, Shibata, Muta, Tani, Podack (bib40) 2010; 185
Lei, Xiao, Liu, Shi, Yang, Li (bib30) 2018; 215
Beuraud, Lombardi, Luce, Horiot, Naline, Neukirch (bib35) 2019; 74
Vivier, Artis, Colonna, Diefenbach, Di Santo, Eberl (bib2) 2018; 174
Irvin, Zafar, Good, Rollins, Christianson, Gorska (bib18) 2014; 134
Nagata, Hirai, Tanaka, Ogawa, Aso, Sugamura (bib8) 1999; 459
Rudmann, Moore, Tepper, Aldrich, Pfeiffer, Hogenesch (bib42) 2000; 279
Schuh, Power, Proudfoot, Kunkel, Lukacs, Hogaboam (bib51) 2002; 16
Goplen, Karim, Liang, Gorska, Rozario, Guo (bib20) 2009; 123
Bjorklund, Forkel, Picelli, Konya, Theorell, Friberg (bib4) 2016; 17
Kirkham, Carlyle (bib7) 2014; 5
Cosmi, Annunziato, Galli, Maggi, Nagata, Romagnani (bib10) 2000; 30
Paclik, Stehle, Lahmann, Hutloff, Romagnani (bib50) 2015; 45
Silver, Kearley, Copenhaver, Sanden, Mori, Yu, Pritchard, Berlin, Hunter, Bowler, Erjefalt, Kolbeck, Humbles (bib53) 2016; 17
Ricardo-Gonzalez, Van Dyken, Schneider, Lee, Nussbaum, Liang (bib52) 2018; 19
Li, van Unen, Hollt, Thompson, van Bergen, Pezzotti (bib31) 2018; 215
De Fanis, Mori, Kurnat, Lee, Bova, Adkinson (bib11) 2007; 109
Constantinides, McDonald, Verhoef, Bendelac (bib28) 2014; 508
Yu, Tsang, Wang, Clare, Wang, Chen (bib34) 2016; 539
Ebihara, Song, Ryu, Plougastel-Douglas, Yang, Levanon (bib27) 2015; 16
Bartemes, Kephart, Fox, Kita (bib12) 2014; 134
Christianson, Goplen, Zafar, Irvin, Good, Rollins (bib14) 2015; 136
Mielke, Groom, Rankin, Seillet, Masson, Putoczki (bib32) 2013; 191
Faustino, da Fonseca, Takenaka, Mirotti, Florsheim, Guereschi (bib43) 2013; 190
Robinette, Bando, Song, Ulland, Gilfillan, Colonna (bib15) 2017; 8
Tang, Yamada, Shibata, Muta, Wajjwalku, Podack (bib41) 2008; 181
Bal, Bernink, Nagasawa, Groot, Shikhagaie, Golebski (bib24) 2016; 17
Nagasawa, Heesters, Kradolfer, Krabbendam, Martinez-Gonzalez, de Bruijn, Golebski, Hendriks, Stadhouders, Spits, Bal (bib54) 2019; 216
Cavagnero, Badrani, Najii, Amadeo, Shah, Gasparian, Pham, Wang, Seumois, Croft, Broide, Doherty (bib55) 2019; 144
Polte, Behrendt, Hansen (bib45) 2006; 118
Choi, Kim, Choi, Choi, Park, Lee (bib47) 2014; 69
Fang, Zhu (bib37) 2017; 214
Nagata, Tanaka, Ogawa, Kemmotsu, Imai, Yoshie (bib9) 1999; 162
Lim, Menegatti, Bustamante, Le Bourhis, Allez, Rogge (bib22) 2016; 213
Barlow, Peel, Fox, Panova, Hardman, Camelo (bib5) 2013; 132
Mjosberg, Trifari, Crellin, Peters, van Drunen, Piet (bib3) 2011; 12
Barnig, Cernadas, Dutile, Liu, Perrella, Kazani (bib39) 2013; 5
Cho, Zhang, Kleeberger (bib46) 2001; 280
Seillet, Rankin, Groom, Mielke, Tellier, Chopin (bib33) 2014; 211
Wei, Wei, Zhu, Zang, Hu-Li, Yao (bib36) 2009; 30
Ohne, Silver, Thompson-Snipes, Collet, Blanck, Cantarel (bib23) 2016; 17
Salimi, Barlow, Saunders, Xue, Gutowska-Owsiak, Wang (bib6) 2013; 210
Liu, Verma, Michalec, Liu, Sripada, Rollins (bib17) 2018; 141
Halim, Krauss, Sun, Takei (bib38) 2012; 36
Simoni, Fehlings, Kloverpris, McGovern, Koo, Loh (bib25) 2018; 48
Fuchiwaki, Sun, Fujimura, Yamada, Shibata, Muta (bib44) 2011; 41
Maazi, Patel, Sankaranarayanan, Suzuki, Rigas, Soroosh (bib49) 2015; 42
Kirkham (10.1016/j.jaci.2020.01.038_bib7) 2014; 5
Simoni (10.1016/j.jaci.2020.01.038_bib25) 2018; 48
Bjorklund (10.1016/j.jaci.2020.01.038_bib4) 2016; 17
Wikenheiser (10.1016/j.jaci.2020.01.038_bib48) 2016; 7
Geiger (10.1016/j.jaci.2020.01.038_bib29) 2014; 211
Sun (10.1016/j.jaci.2020.01.038_bib40) 2010; 185
Mielke (10.1016/j.jaci.2020.01.038_bib32) 2013; 191
Halim (10.1016/j.jaci.2020.01.038_bib38) 2012; 36
Cho (10.1016/j.jaci.2020.01.038_bib46) 2001; 280
Rudmann (10.1016/j.jaci.2020.01.038_bib42) 2000; 279
Irvin (10.1016/j.jaci.2020.01.038_bib18) 2014; 134
Constantinides (10.1016/j.jaci.2020.01.038_bib28) 2014; 508
Robinette (10.1016/j.jaci.2020.01.038_bib26) 2015; 16
Silver (10.1016/j.jaci.2020.01.038_bib53) 2016; 17
Barlow (10.1016/j.jaci.2020.01.038_bib5) 2013; 132
Paclik (10.1016/j.jaci.2020.01.038_bib50) 2015; 45
Jackson (10.1016/j.jaci.2020.01.038_bib13) 2014; 190
Faustino (10.1016/j.jaci.2020.01.038_bib43) 2013; 190
Beuraud (10.1016/j.jaci.2020.01.038_bib35) 2019; 74
Bal (10.1016/j.jaci.2020.01.038_bib24) 2016; 17
Lim (10.1016/j.jaci.2020.01.038_bib22) 2016; 213
Maazi (10.1016/j.jaci.2020.01.038_bib49) 2015; 42
Ricardo-Gonzalez (10.1016/j.jaci.2020.01.038_bib52) 2018; 19
De Fanis (10.1016/j.jaci.2020.01.038_bib11) 2007; 109
Nagata (10.1016/j.jaci.2020.01.038_bib8) 1999; 459
Choi (10.1016/j.jaci.2020.01.038_bib47) 2014; 69
Nagasawa (10.1016/j.jaci.2020.01.038_bib54) 2019; 216
Schuh (10.1016/j.jaci.2020.01.038_bib51) 2002; 16
Robinette (10.1016/j.jaci.2020.01.038_bib15) 2017; 8
Cavagnero (10.1016/j.jaci.2020.01.038_bib55) 2019; 144
Salimi (10.1016/j.jaci.2020.01.038_bib6) 2013; 210
Fang (10.1016/j.jaci.2020.01.038_bib37) 2017; 214
Tang (10.1016/j.jaci.2020.01.038_bib41) 2008; 181
Mora-Velandia (10.1016/j.jaci.2020.01.038_bib16) 2017; 8
Liu (10.1016/j.jaci.2020.01.038_bib17) 2018; 141
Verma (10.1016/j.jaci.2020.01.038_bib21) 2018; 142
Wei (10.1016/j.jaci.2020.01.038_bib36) 2009; 30
Barnig (10.1016/j.jaci.2020.01.038_bib39) 2013; 5
Christianson (10.1016/j.jaci.2020.01.038_bib14) 2015; 136
Mjosberg (10.1016/j.jaci.2020.01.038_bib3) 2011; 12
Ebihara (10.1016/j.jaci.2020.01.038_bib27) 2015; 16
Ohne (10.1016/j.jaci.2020.01.038_bib23) 2016; 17
Yu (10.1016/j.jaci.2020.01.038_bib34) 2016; 539
Nagata (10.1016/j.jaci.2020.01.038_bib9) 1999; 162
Cosmi (10.1016/j.jaci.2020.01.038_bib10) 2000; 30
Lei (10.1016/j.jaci.2020.01.038_bib30) 2018; 215
Vivier (10.1016/j.jaci.2020.01.038_bib2) 2018; 174
Fuchiwaki (10.1016/j.jaci.2020.01.038_bib44) 2011; 41
Bartemes (10.1016/j.jaci.2020.01.038_bib12) 2014; 134
Quatromoni (10.1016/j.jaci.2020.01.038_bib19) 2015; 97
Goplen (10.1016/j.jaci.2020.01.038_bib20) 2009; 123
Seillet (10.1016/j.jaci.2020.01.038_bib33) 2014; 211
Klose (10.1016/j.jaci.2020.01.038_bib1) 2016; 17
Li (10.1016/j.jaci.2020.01.038_bib31) 2018; 215
Polte (10.1016/j.jaci.2020.01.038_bib45) 2006; 118
32535133 - J Allergy Clin Immunol. 2020 Aug;146(2):280-282
References_xml – volume: 45
  start-page: 2766
  year: 2015
  end-page: 2772
  ident: bib50
  article-title: ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice
  publication-title: Eur J Immunol
– volume: 69
  start-page: 186
  year: 2014
  end-page: 198
  ident: bib47
  article-title: An important role of tumor necrosis factor receptor-2 on natural killer T cells on the development of dsRNA-enhanced Th2 cell response to inhaled allergens
  publication-title: Allergy
– volume: 210
  start-page: 2939
  year: 2013
  end-page: 2950
  ident: bib6
  article-title: A role for IL-25 and IL-33-driven type 2 innate lymphoid cells in atopic dermatitis
  publication-title: J Exp Med
– volume: 174
  start-page: 1054
  year: 2018
  end-page: 1066
  ident: bib2
  article-title: Innate lymphoid cells: 10 years on
  publication-title: Cell
– volume: 97
  start-page: 201
  year: 2015
  end-page: 209
  ident: bib19
  article-title: An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells
  publication-title: J Leukoc Biol
– volume: 7
  start-page: 304
  year: 2016
  ident: bib48
  article-title: ICOS Co-stimulation: friend or foe?
  publication-title: Front Immunol
– volume: 16
  start-page: 1124
  year: 2015
  end-page: 1133
  ident: bib27
  article-title: Runx3 specifies lineage commitment of innate lymphoid cells
  publication-title: Nat Immunol
– volume: 181
  start-page: 6316
  year: 2008
  end-page: 6327
  ident: bib41
  article-title: A novel role of CD30L/CD30 signaling by T-T cell interaction in Th1 response against mycobacterial infection
  publication-title: J Immunol
– volume: 74
  start-page: 933
  year: 2019
  end-page: 945
  ident: bib35
  article-title: CCR10(+) ILC2s with ILC1-like properties exhibit a protective function in severe allergic asthma
  publication-title: Allergy
– volume: 459
  start-page: 195
  year: 1999
  end-page: 199
  ident: bib8
  article-title: CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s)
  publication-title: FEBS Lett
– volume: 19
  start-page: 1093
  year: 2018
  end-page: 1099
  ident: bib52
  article-title: Tissue signals imprint ILC2 identity with anticipatory function
  publication-title: Nat Immunol
– volume: 191
  start-page: 4383
  year: 2013
  end-page: 4391
  ident: bib32
  article-title: TCF-1 controls ILC2 and NKp46+RORgammat+ innate lymphocyte differentiation and protection in intestinal inflammation
  publication-title: J Immunol
– volume: 36
  start-page: 451
  year: 2012
  end-page: 463
  ident: bib38
  article-title: Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation
  publication-title: Immunity
– volume: 162
  start-page: 1278
  year: 1999
  end-page: 1286
  ident: bib9
  article-title: Selective expression of a novel surface molecule by human Th2 cells in vivo
  publication-title: J Immunol
– volume: 123
  start-page: 925
  year: 2009
  end-page: 932 e11
  ident: bib20
  article-title: Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma
  publication-title: J Allergy Clin Immunol
– volume: 132
  start-page: 933
  year: 2013
  end-page: 941
  ident: bib5
  article-title: IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction
  publication-title: J Allergy Clin Immunol
– volume: 214
  start-page: 1861
  year: 2017
  end-page: 1876
  ident: bib37
  article-title: Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets
  publication-title: J Exp Med
– volume: 16
  start-page: 306
  year: 2015
  end-page: 317
  ident: bib26
  article-title: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets
  publication-title: Nat Immunol
– volume: 190
  start-page: 1373
  year: 2014
  end-page: 1382
  ident: bib13
  article-title: IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo
  publication-title: Am J Respir Crit Care Med
– volume: 48
  start-page: 1060
  year: 2018
  ident: bib25
  article-title: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency
  publication-title: Immunity
– volume: 118
  start-page: 942
  year: 2006
  end-page: 948
  ident: bib45
  article-title: Direct evidence for a critical role of CD30 in the development of allergic asthma
  publication-title: J Allergy Clin Immunol
– volume: 213
  start-page: 569
  year: 2016
  end-page: 583
  ident: bib22
  article-title: IL-12 drives functional plasticity of human group 2 innate lymphoid cells
  publication-title: J Exp Med
– volume: 17
  start-page: 626
  year: 2016
  end-page: 635
  ident: bib53
  article-title: Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs
  publication-title: Nat Immunol
– volume: 8
  start-page: 176
  year: 2017
  ident: bib16
  article-title: A human Lin(-) CD123(+) CD127(low) population endowed with ILC features and migratory capabilities contributes to immunopathological hallmarks of psoriasis
  publication-title: Front Immunol
– volume: 134
  start-page: 1175
  year: 2014
  end-page: 1186 e7
  ident: bib18
  article-title: Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma
  publication-title: J Allergy Clin Immunol
– volume: 17
  start-page: 765
  year: 2016
  end-page: 774
  ident: bib1
  article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis
  publication-title: Nat Immunol
– volume: 142
  start-page: 793
  year: 2018
  end-page: 803 e8
  ident: bib21
  article-title: Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9(+) and IL-13(+) type 2 innate lymphoid cell subpopulations
  publication-title: J Allergy Clin Immunol
– volume: 136
  start-page: 59
  year: 2015
  end-page: 68 e14
  ident: bib14
  article-title: Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33
  publication-title: J Allergy Clin Immunol
– volume: 141
  start-page: 257
  year: 2018
  end-page: 268 e6
  ident: bib17
  article-title: Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin
  publication-title: J Allergy Clin Immunol
– volume: 30
  start-page: 2972
  year: 2000
  end-page: 2979
  ident: bib10
  article-title: CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease
  publication-title: Eur J Immunol
– volume: 42
  start-page: 538
  year: 2015
  end-page: 551
  ident: bib49
  article-title: ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity
  publication-title: Immunity
– volume: 508
  start-page: 397
  year: 2014
  end-page: 401
  ident: bib28
  article-title: A committed precursor to innate lymphoid cells
  publication-title: Nature
– volume: 5
  start-page: 214
  year: 2014
  ident: bib7
  article-title: Complexity and diversity of the NKR-P1:Clr (Klrb1:Clec2) recognition systems
  publication-title: Front Immunol
– volume: 109
  start-page: 4343
  year: 2007
  end-page: 4350
  ident: bib11
  article-title: GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells
  publication-title: Blood
– volume: 12
  start-page: 1055
  year: 2011
  end-page: 1062
  ident: bib3
  article-title: Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161
  publication-title: Nat Immunol
– volume: 144
  start-page: 1432
  year: 2019
  end-page: 1435.e9
  ident: bib55
  article-title: Unconventional ST2- and CD127-negative lung ILC2 populations are induced by the fungal allergen
  publication-title: JACI
– volume: 279
  start-page: L1047
  year: 2000
  end-page: L1057
  ident: bib42
  article-title: Modulation of allergic inflammation in mice deficient in TNF receptors
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 134
  start-page: 671
  year: 2014
  end-page: 678 e4
  ident: bib12
  article-title: Enhanced innate type 2 immune response in peripheral blood from patients with asthma
  publication-title: J Allergy Clin Immunol
– volume: 17
  start-page: 452
  year: 2016
  end-page: 460
  ident: bib4
  article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing
  publication-title: Nat Immunol
– volume: 216
  start-page: 1762
  year: 2019
  end-page: 1776
  ident: bib54
  article-title: KLRG1 and NKp46 discriminate subpopulations of human CD117(+)CRTH2(-) ILCs biased toward ILC2 or ILC3
  publication-title: J Exp Med
– volume: 190
  start-page: 2614
  year: 2013
  end-page: 2621
  ident: bib43
  article-title: Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation
  publication-title: J Immunol
– volume: 8
  start-page: 14601
  year: 2017
  ident: bib15
  article-title: IL-15 sustains IL-7R-independent ILC2 and ILC3 development
  publication-title: Nat Commun
– volume: 17
  start-page: 646
  year: 2016
  end-page: 655
  ident: bib23
  article-title: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity
  publication-title: Nat Immunol
– volume: 17
  start-page: 636
  year: 2016
  end-page: 645
  ident: bib24
  article-title: IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs
  publication-title: Nat Immunol
– volume: 215
  start-page: 2157
  year: 2018
  end-page: 2174
  ident: bib30
  article-title: ICAM-1 controls development and function of ILC2
  publication-title: J Exp Med
– volume: 16
  start-page: 1313
  year: 2002
  end-page: 1315
  ident: bib51
  article-title: Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/- mice
  publication-title: FASEB J
– volume: 215
  start-page: 1383
  year: 2018
  end-page: 1396
  ident: bib31
  article-title: Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine
  publication-title: J Exp Med
– volume: 211
  start-page: 1733
  year: 2014
  end-page: 1740
  ident: bib33
  article-title: Nfil3 is required for the development of all innate lymphoid cell subsets
  publication-title: J Exp Med
– volume: 539
  start-page: 102
  year: 2016
  end-page: 106
  ident: bib34
  article-title: Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway
  publication-title: Nature
– volume: 185
  start-page: 2222
  year: 2010
  end-page: 2230
  ident: bib40
  article-title: CD30 ligand/CD30 plays a critical role in Th17 differentiation in mice
  publication-title: J Immunol
– volume: 211
  start-page: 1723
  year: 2014
  end-page: 1731
  ident: bib29
  article-title: Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens
  publication-title: J Exp Med
– volume: 41
  start-page: 2947
  year: 2011
  end-page: 2954
  ident: bib44
  article-title: The central role of CD30L/CD30 interactions in allergic rhinitis pathogenesis in mice
  publication-title: Eur J Immunol
– volume: 280
  start-page: L537
  year: 2001
  end-page: L546
  ident: bib46
  article-title: Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-alpha receptors
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 30
  start-page: 155
  year: 2009
  end-page: 167
  ident: bib36
  article-title: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells
  publication-title: Immunity
– volume: 5
  start-page: 174ra26
  year: 2013
  ident: bib39
  article-title: Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma
  publication-title: Sci Transl Med
– volume: 48
  start-page: 1060
  year: 2018
  ident: 10.1016/j.jaci.2020.01.038_bib25
  article-title: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.028
– volume: 8
  start-page: 176
  year: 2017
  ident: 10.1016/j.jaci.2020.01.038_bib16
  article-title: A human Lin(-) CD123(+) CD127(low) population endowed with ILC features and migratory capabilities contributes to immunopathological hallmarks of psoriasis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.00176
– volume: 132
  start-page: 933
  year: 2013
  ident: 10.1016/j.jaci.2020.01.038_bib5
  article-title: IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2013.05.012
– volume: 5
  start-page: 214
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib7
  article-title: Complexity and diversity of the NKR-P1:Clr (Klrb1:Clec2) recognition systems
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00214
– volume: 97
  start-page: 201
  year: 2015
  ident: 10.1016/j.jaci.2020.01.038_bib19
  article-title: An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.5TA0814-373
– volume: 211
  start-page: 1733
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib33
  article-title: Nfil3 is required for the development of all innate lymphoid cell subsets
  publication-title: J Exp Med
  doi: 10.1084/jem.20140145
– volume: 17
  start-page: 452
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib4
  article-title: The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing
  publication-title: Nat Immunol
– volume: 118
  start-page: 942
  year: 2006
  ident: 10.1016/j.jaci.2020.01.038_bib45
  article-title: Direct evidence for a critical role of CD30 in the development of allergic asthma
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2006.07.014
– volume: 211
  start-page: 1723
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib29
  article-title: Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens
  publication-title: J Exp Med
  doi: 10.1084/jem.20140212
– volume: 5
  start-page: 174ra26
  year: 2013
  ident: 10.1016/j.jaci.2020.01.038_bib39
  article-title: Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3004812
– volume: 16
  start-page: 1124
  year: 2015
  ident: 10.1016/j.jaci.2020.01.038_bib27
  article-title: Runx3 specifies lineage commitment of innate lymphoid cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.3272
– volume: 74
  start-page: 933
  year: 2019
  ident: 10.1016/j.jaci.2020.01.038_bib35
  article-title: CCR10(+) ILC2s with ILC1-like properties exhibit a protective function in severe allergic asthma
  publication-title: Allergy
  doi: 10.1111/all.13679
– volume: 8
  start-page: 14601
  year: 2017
  ident: 10.1016/j.jaci.2020.01.038_bib15
  article-title: IL-15 sustains IL-7R-independent ILC2 and ILC3 development
  publication-title: Nat Commun
  doi: 10.1038/ncomms14601
– volume: 30
  start-page: 2972
  year: 2000
  ident: 10.1016/j.jaci.2020.01.038_bib10
  article-title: CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease
  publication-title: Eur J Immunol
  doi: 10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-#
– volume: 134
  start-page: 671
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib12
  article-title: Enhanced innate type 2 immune response in peripheral blood from patients with asthma
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2014.06.024
– volume: 17
  start-page: 765
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib1
  article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis
  publication-title: Nat Immunol
  doi: 10.1038/ni.3489
– volume: 17
  start-page: 626
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib53
  article-title: Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs
  publication-title: Nat Immunol
  doi: 10.1038/ni.3443
– volume: 162
  start-page: 1278
  year: 1999
  ident: 10.1016/j.jaci.2020.01.038_bib9
  article-title: Selective expression of a novel surface molecule by human Th2 cells in vivo
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.3.1278
– volume: 123
  start-page: 925
  year: 2009
  ident: 10.1016/j.jaci.2020.01.038_bib20
  article-title: Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2009.02.009
– volume: 210
  start-page: 2939
  year: 2013
  ident: 10.1016/j.jaci.2020.01.038_bib6
  article-title: A role for IL-25 and IL-33-driven type 2 innate lymphoid cells in atopic dermatitis
  publication-title: J Exp Med
  doi: 10.1084/jem.20130351
– volume: 279
  start-page: L1047
  year: 2000
  ident: 10.1016/j.jaci.2020.01.038_bib42
  article-title: Modulation of allergic inflammation in mice deficient in TNF receptors
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.2000.279.6.L1047
– volume: 459
  start-page: 195
  year: 1999
  ident: 10.1016/j.jaci.2020.01.038_bib8
  article-title: CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s)
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(99)01251-X
– volume: 17
  start-page: 646
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib23
  article-title: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity
  publication-title: Nat Immunol
  doi: 10.1038/ni.3447
– volume: 142
  start-page: 793
  year: 2018
  ident: 10.1016/j.jaci.2020.01.038_bib21
  article-title: Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9(+) and IL-13(+) type 2 innate lymphoid cell subpopulations
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2017.10.020
– volume: 134
  start-page: 1175
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib18
  article-title: Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2014.05.038
– volume: 185
  start-page: 2222
  year: 2010
  ident: 10.1016/j.jaci.2020.01.038_bib40
  article-title: CD30 ligand/CD30 plays a critical role in Th17 differentiation in mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1000024
– volume: 69
  start-page: 186
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib47
  article-title: An important role of tumor necrosis factor receptor-2 on natural killer T cells on the development of dsRNA-enhanced Th2 cell response to inhaled allergens
  publication-title: Allergy
  doi: 10.1111/all.12301
– volume: 174
  start-page: 1054
  year: 2018
  ident: 10.1016/j.jaci.2020.01.038_bib2
  article-title: Innate lymphoid cells: 10 years on
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.017
– volume: 216
  start-page: 1762
  year: 2019
  ident: 10.1016/j.jaci.2020.01.038_bib54
  article-title: KLRG1 and NKp46 discriminate subpopulations of human CD117(+)CRTH2(-) ILCs biased toward ILC2 or ILC3
  publication-title: J Exp Med
  doi: 10.1084/jem.20190490
– volume: 141
  start-page: 257
  year: 2018
  ident: 10.1016/j.jaci.2020.01.038_bib17
  article-title: Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2017.03.032
– volume: 16
  start-page: 1313
  year: 2002
  ident: 10.1016/j.jaci.2020.01.038_bib51
  article-title: Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/- mice
  publication-title: FASEB J
  doi: 10.1096/fj.02-0193fje
– volume: 12
  start-page: 1055
  year: 2011
  ident: 10.1016/j.jaci.2020.01.038_bib3
  article-title: Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161
  publication-title: Nat Immunol
  doi: 10.1038/ni.2104
– volume: 16
  start-page: 306
  year: 2015
  ident: 10.1016/j.jaci.2020.01.038_bib26
  article-title: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets
  publication-title: Nat Immunol
  doi: 10.1038/ni.3094
– volume: 190
  start-page: 2614
  year: 2013
  ident: 10.1016/j.jaci.2020.01.038_bib43
  article-title: Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1202354
– volume: 42
  start-page: 538
  year: 2015
  ident: 10.1016/j.jaci.2020.01.038_bib49
  article-title: ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.007
– volume: 215
  start-page: 2157
  year: 2018
  ident: 10.1016/j.jaci.2020.01.038_bib30
  article-title: ICAM-1 controls development and function of ILC2
  publication-title: J Exp Med
  doi: 10.1084/jem.20172359
– volume: 144
  start-page: 1432
  year: 2019
  ident: 10.1016/j.jaci.2020.01.038_bib55
  article-title: Unconventional ST2- and CD127-negative lung ILC2 populations are induced by the fungal allergen Alternaria alternate
  publication-title: JACI
– volume: 213
  start-page: 569
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib22
  article-title: IL-12 drives functional plasticity of human group 2 innate lymphoid cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20151750
– volume: 214
  start-page: 1861
  year: 2017
  ident: 10.1016/j.jaci.2020.01.038_bib37
  article-title: Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets
  publication-title: J Exp Med
  doi: 10.1084/jem.20170494
– volume: 30
  start-page: 155
  year: 2009
  ident: 10.1016/j.jaci.2020.01.038_bib36
  article-title: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.12.009
– volume: 191
  start-page: 4383
  year: 2013
  ident: 10.1016/j.jaci.2020.01.038_bib32
  article-title: TCF-1 controls ILC2 and NKp46+RORgammat+ innate lymphocyte differentiation and protection in intestinal inflammation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1301228
– volume: 136
  start-page: 59
  year: 2015
  ident: 10.1016/j.jaci.2020.01.038_bib14
  article-title: Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2014.11.037
– volume: 17
  start-page: 636
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib24
  article-title: IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs
  publication-title: Nat Immunol
  doi: 10.1038/ni.3444
– volume: 215
  start-page: 1383
  year: 2018
  ident: 10.1016/j.jaci.2020.01.038_bib31
  article-title: Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine
  publication-title: J Exp Med
  doi: 10.1084/jem.20171934
– volume: 19
  start-page: 1093
  year: 2018
  ident: 10.1016/j.jaci.2020.01.038_bib52
  article-title: Tissue signals imprint ILC2 identity with anticipatory function
  publication-title: Nat Immunol
  doi: 10.1038/s41590-018-0201-4
– volume: 7
  start-page: 304
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib48
  article-title: ICOS Co-stimulation: friend or foe?
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00304
– volume: 539
  start-page: 102
  year: 2016
  ident: 10.1016/j.jaci.2020.01.038_bib34
  article-title: Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway
  publication-title: Nature
  doi: 10.1038/nature20105
– volume: 45
  start-page: 2766
  year: 2015
  ident: 10.1016/j.jaci.2020.01.038_bib50
  article-title: ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201545635
– volume: 36
  start-page: 451
  year: 2012
  ident: 10.1016/j.jaci.2020.01.038_bib38
  article-title: Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.020
– volume: 508
  start-page: 397
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib28
  article-title: A committed precursor to innate lymphoid cells
  publication-title: Nature
  doi: 10.1038/nature13047
– volume: 280
  start-page: L537
  year: 2001
  ident: 10.1016/j.jaci.2020.01.038_bib46
  article-title: Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-alpha receptors
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.2001.280.3.L537
– volume: 109
  start-page: 4343
  year: 2007
  ident: 10.1016/j.jaci.2020.01.038_bib11
  article-title: GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells
  publication-title: Blood
  doi: 10.1182/blood-2006-05-025940
– volume: 181
  start-page: 6316
  year: 2008
  ident: 10.1016/j.jaci.2020.01.038_bib41
  article-title: A novel role of CD30L/CD30 signaling by T-T cell interaction in Th1 response against mycobacterial infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.9.6316
– volume: 190
  start-page: 1373
  year: 2014
  ident: 10.1016/j.jaci.2020.01.038_bib13
  article-title: IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201406-1039OC
– volume: 41
  start-page: 2947
  year: 2011
  ident: 10.1016/j.jaci.2020.01.038_bib44
  article-title: The central role of CD30L/CD30 interactions in allergic rhinitis pathogenesis in mice
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201141423
– reference: 32535133 - J Allergy Clin Immunol. 2020 Aug;146(2):280-282
SSID ssj0009389
Score 2.4510734
Snippet Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin–) cells. Type 2 cytokine production...
Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin ) cells. Type 2 cytokine production...
Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 390
SubjectTerms Asthma
Asthma - immunology
Biomarkers - metabolism
Cell Differentiation
Cells, Cultured
cytokines
Cytokines - metabolism
GATA3 Transcription Factor - genetics
GATA3 Transcription Factor - metabolism
Humans
Immunity, Innate
Interleukin-7 Receptor alpha Subunit - metabolism
Lymphocytes - immunology
novel ILC2 population
Receptors, Immunologic - metabolism
Receptors, Prostaglandin - metabolism
Receptors, Tumor Necrosis Factor - metabolism
Th2 Cells - immunology
type 2 innate lymphoid cells
Title Optimal identification of human conventional and nonconventional (CRTH2–IL7Rα–) ILC2s using additional surface markers
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0091674920301287
https://dx.doi.org/10.1016/j.jaci.2020.01.038
https://www.ncbi.nlm.nih.gov/pubmed/32032632
https://www.proquest.com/docview/2352642570
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bahsxEBUhgdKX0PQWN61RoQ8tZRutpL3o0Zgau01SMA7kTWh1CQ6JE3x5CpT-Q78kP5KP6Jd0ZlfrNtCm0LddMcMKzexc0JkZQt5kyuY55yEBdZCJTCuZKBZUoqqssExVNuNY73x4lA-P5aeT7GSD9NtaGIRVRtvf2PTaWseV_Xia-1fTKdb4KoTQK45RPQT-WMEuC9TyD19_wTyUKJsQWKUJUsfCmQbjdWbsFHJEzurWnVij8mfn9Lfgs3ZCg0dkO0aPtNdscIds-Nlj8uAw3o8_IddfwAJcAMXURRRQffD0MtB6GB_9HWROzcxRyP7vrL3tjydD_uPb99FBMb69gYd3dHTQ5wuKCPlTivijSLpYzYOxnl4gwme-eEqOBx8n_WESxyskVgpeJkYGZmzJXWAePLeQzuMUDpPnFjxnGVwFmapPS4_dxQsvnQ0seFa5THhlMiOekU3YpN8lVHjmJWSKqasg1YakWiknCyuCT30mWNkhaXuu2sbe4zgC41y3ILMzjbLQKAvNUg2y6JD3a56rpvPGvdSiFZdua0rBCmpwDPdyZWuuO1r3T77XrUZo-B3xjsXM_OVqoTnOG0A7yDrkeaMq690LnFafC_7iP7-6Rx7iWwM_fEk2l_OVfwUh0bLq1jrfJVu90efh0U8yDwvg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZKKgGXin8CBYzEAYRW9fpnsz5WEdWGJkGqUqk3a9c_KBXdVElz4sI79El4ER6CJ-nMrjdQCYrEbeX1yJZnPD_yNzOEvFHaZhnnIQFxkIlMK5loFnSiKzWwTFdWccx3nkyz4lh-PFEnW2TY5cIgrDLq_lanN9o6juzF09w7n88xx1cjhF5z9OrB8b9FtrE6leqR7f3RYTH9VXtX5K0XrNMECWLuTAvzOi3tHMJEzprqnZim8mf79Df_s7FDB_fITnQg6X67x_tky9cPyO1JfCJ_SL5-AiVwBjPmLgKBmrOni0Cbfnz0d5w5LWtH60V9bezt8GhW8J_fLkfjwdGP7_Dxjo7GQ76iCJL_TBGCFKeu1stQWk_PEOSzXD0ixwcfZsMiiR0WEisFz5NSBlbanLvAPBhvIZ3HRhxlllkwnnlwFQSrPs09FhgfeOlsYMGzyinhdalK8Zj0YJP-KaHCMy8hWExdBdE2xNVaOzmwIvjUK8HyPkm7czU2lh_HLhhfTIczOzXIC4O8MCw1wIs-eb-hOW-Lb9w4W3TsMl1aKShCA7bhRiq1obomeP-ke91JhIEbic8sZe0X65Xh2HIAVSHrkyetqGx2L7BhfSb4s_9c9RW5U8wmYzMeTQ-fk7v4p0Uj7pLexXLtX4CHdFG9jDfgClHlDpE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+identification+of+human+conventional+and+nonconventional+%28CRTH2-IL7R%CE%B1-%29+ILC2s+using+additional+surface+markers&rft.jtitle=Journal+of+allergy+and+clinical+immunology&rft.au=Liu%2C+Sucai&rft.au=Sirohi%2C+Kapil&rft.au=Verma%2C+Mukesh&rft.au=McKay%2C+Jerome&rft.date=2020-08-01&rft.issn=1097-6825&rft.eissn=1097-6825&rft.volume=146&rft.issue=2&rft.spage=390&rft_id=info:doi/10.1016%2Fj.jaci.2020.01.038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6749&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6749&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6749&client=summon