Functional xylem characteristics associated with drought‐induced embolism in angiosperms
Summary Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured trait...
Saved in:
Published in | The New phytologist Vol. 236; no. 6; pp. 2019 - 2036 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lancaster
Wiley Subscription Services, Inc
01.12.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re‐evaluation: (1) our current understanding of drought‐induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter–vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought. |
---|---|
AbstractList | Summary
Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re‐evaluation: (1) our current understanding of drought‐induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter–vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought. Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re‐evaluation: (1) our current understanding of drought‐induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter–vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought. Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought. |
Author | Jansen, Steven Brodersen, Craig Gleason, Sean M. Delzon, Sylvain Bortolami, Giovanni Lens, Frederic |
Author_xml | – sequence: 1 givenname: Frederic orcidid: 0000-0002-5001-0149 surname: Lens fullname: Lens, Frederic email: frederic.lens@naturalis.nl organization: Institute of Biology Leiden, Plant Sciences – sequence: 2 givenname: Sean M. orcidid: 0000-0002-5607-4741 surname: Gleason fullname: Gleason, Sean M. organization: United States Department of Agriculture, Agricultural Research Service – sequence: 3 givenname: Giovanni orcidid: 0000-0001-7528-9644 surname: Bortolami fullname: Bortolami, Giovanni organization: Naturalis Biodiversity Center – sequence: 4 givenname: Craig orcidid: 0000-0002-0924-2570 surname: Brodersen fullname: Brodersen, Craig organization: Yale University – sequence: 5 givenname: Sylvain orcidid: 0000-0003-3442-1711 surname: Delzon fullname: Delzon, Sylvain organization: University of Bordeaux, INRAE, BIOGECO – sequence: 6 givenname: Steven orcidid: 0000-0002-4476-5334 surname: Jansen fullname: Jansen, Steven organization: Ulm University |
BackLink | https://hal.inrae.fr/hal-04115299$$DView record in HAL |
BookMark | eNqFkU1uFDEQha0oiEwCi9ygpWzIohP_tX-WUUQYpBGwCBJiY3nc7rQjtz3YbpLZcQTOyEnoZgJIURC1Kan0Vanee4dgP8RgAThG8AxNdR42_RkSlPI9sECUyVogwvfBAkIsakbZpwNwmPMthFA2DD8HB4RBIpnkC_D5agymuBi0r-633g6V6XXSptjkcnEmVzrnaJwutq3uXOmrNsXxpi8_vn13oR3NNLbDOnqXh8qFSocbF_PGpiG_AM867bN9-dCPwMer19eXy3r1_s3by4tVbSjBvO6gsGvKSMvXwliDbSfQmkFKWEtwo1lncEM7YZquIVgagqlppGZcUmwk7CA5Aqe7u732apPcoNNWRe3U8mKl5hmkCDVYyq9oYl_t2E2KX0abixpcNtZ7HWwcs8ICISkoY-L_KIcCs8l2PqEnj9DbOKbJ0pkifIqBwfnP8x1lUsw52U4ZV_TsfUnaeYWgmtNUU5rqV5p_lf3Z-C3vKfbh-p3zdvtvUL37sNxt_ATl369N |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_169165 crossref_primary_10_1111_nph_20115 crossref_primary_10_1093_forestry_cpad066 crossref_primary_10_1111_nph_19368 crossref_primary_10_1590_1677_941x_abb_2023_0019 crossref_primary_10_1111_nph_20035 crossref_primary_10_1093_jxb_eraf044 crossref_primary_10_1093_treephys_tpae017 crossref_primary_10_1016_j_foreco_2025_122539 crossref_primary_10_3390_agriculture13101867 crossref_primary_10_1016_j_flora_2025_152682 crossref_primary_10_1093_treephys_tpae131 crossref_primary_10_3389_fpls_2024_1512645 crossref_primary_10_1016_j_envexpbot_2024_106055 crossref_primary_10_3390_plants11233310 crossref_primary_10_1111_ppl_14408 crossref_primary_10_1007_s11676_024_01725_7 crossref_primary_10_1080_11263504_2024_2313207 crossref_primary_10_1111_1365_2435_14451 crossref_primary_10_1590_0001_3765202420240053 crossref_primary_10_1007_s00468_024_02571_0 crossref_primary_10_1016_j_envexpbot_2023_105484 crossref_primary_10_1111_pce_15084 crossref_primary_10_1093_aob_mcae054 crossref_primary_10_1093_treephys_tpae109 crossref_primary_10_1016_j_flora_2024_152458 crossref_primary_10_1093_jxb_erac446 crossref_primary_10_1111_nph_20222 crossref_primary_10_1111_ppl_70075 crossref_primary_10_17660_ActaHortic_2025_1419_16 crossref_primary_10_1002_ajb2_16214 crossref_primary_10_1111_pce_14713 crossref_primary_10_3389_fpls_2024_1393245 crossref_primary_10_1111_tpj_16809 crossref_primary_10_1111_ppl_13924 crossref_primary_10_3389_fpls_2024_1351438 crossref_primary_10_1111_ppl_14132 crossref_primary_10_1111_nph_19914 crossref_primary_10_1186_s12870_024_05348_2 crossref_primary_10_1111_nph_20185 crossref_primary_10_3390_agronomy14061267 crossref_primary_10_1515_hf_2024_0007 crossref_primary_10_3390_f14050920 crossref_primary_10_1093_forsci_fxac044 crossref_primary_10_1111_nph_20213 crossref_primary_10_1111_nph_20257 crossref_primary_10_1016_j_ecolind_2024_112037 crossref_primary_10_1111_nph_19342 crossref_primary_10_1016_j_envexpbot_2023_105338 crossref_primary_10_1007_s00442_024_05562_7 crossref_primary_10_1371_journal_pone_0293430 crossref_primary_10_1111_nph_18731 crossref_primary_10_1002_ajb2_16407 crossref_primary_10_3390_f14102058 crossref_primary_10_1002_ece3_11552 crossref_primary_10_1002_ajb2_16447 crossref_primary_10_1093_treephys_tpad021 crossref_primary_10_1111_pce_14921 crossref_primary_10_3390_ijms252011059 crossref_primary_10_1016_j_scitotenv_2023_163124 crossref_primary_10_3390_f15030571 crossref_primary_10_3390_ijms24032893 crossref_primary_10_1111_ele_14270 crossref_primary_10_1007_s00468_025_02603_3 crossref_primary_10_1093_aob_mcae077 crossref_primary_10_1111_1365_2435_14751 crossref_primary_10_3390_agronomy14030438 crossref_primary_10_1007_s00468_023_02459_5 crossref_primary_10_1111_ppl_13970 crossref_primary_10_1111_ppl_14421 crossref_primary_10_1016_j_chemosphere_2023_140380 crossref_primary_10_1093_aobpla_plae059 crossref_primary_10_1007_s00468_023_02475_5 crossref_primary_10_1007_s00468_024_02557_y crossref_primary_10_1038_s41598_024_80261_0 crossref_primary_10_1111_nph_19017 crossref_primary_10_2478_boku_2023_0006 crossref_primary_10_1088_1748_9326_ad8f48 crossref_primary_10_1093_treephys_tpad037 crossref_primary_10_1111_nph_20326 crossref_primary_10_1111_nph_19253 crossref_primary_10_1186_s12870_024_05859_y crossref_primary_10_1093_jxb_erad351 crossref_primary_10_3389_fpls_2024_1414448 crossref_primary_10_1111_pce_14788 crossref_primary_10_3389_fpls_2023_1002711 crossref_primary_10_1016_j_agrformet_2025_110430 crossref_primary_10_1098_rsos_231029 crossref_primary_10_3390_su16083373 crossref_primary_10_1093_plphys_kiad204 crossref_primary_10_1111_pce_15197 crossref_primary_10_1093_molbev_msaf011 crossref_primary_10_1111_nph_19615 crossref_primary_10_1016_j_envexpbot_2023_105476 crossref_primary_10_1111_ppl_14035 |
Cites_doi | 10.1016/j.jtbi.2007.03.036 10.1093/aob/mcx137 10.1111/nph.17043 10.1093/aob/mcu020 10.1104/pp.18.00883 10.1093/aob/mcz138 10.1073/pnas.2008987118 10.1111/ele.12851 10.1029/2018WR022801 10.1038/s41586-018-0240-x 10.1093/treephys/tpw031 10.5194/nhess-20-695-2020 10.1111/j.1365-3040.2005.01433.x 10.1016/j.plantsci.2010.12.011 10.1126/sciadv.aao6969 10.1111/ppl.12185 10.1093/treephys/tpu001 10.1093/treephys/26.6.689 10.1007/978-3-662-04578-7 10.1111/j.1469-8137.2010.03518.x 10.1111/pce.12139 10.1111/j.1365-3040.2010.02127.x 10.1038/nature11688 10.1111/pce.13418 10.1104/pp.125.2.779 10.1111/nph.13646 10.1093/plphys/kiab045 10.1093/treephys/tpv003 10.1163/22941932-40190259 10.1093/treephys/tpy148 10.1111/pce.12391 10.1111/nph.17875 10.1111/nph.17429 10.1038/s41559-017-0248-x 10.1093/treephys/tpv040 10.1104/pp.113.219774 10.1007/s11104-020-04525-0 10.1111/j.1365-3040.2010.02142.x 10.1111/nph.15333 10.1073/pnas.1221373110 10.1111/j.1365-3040.2011.02439.x 10.1111/nph.17577 10.1080/07373937.2021.1955706 10.1111/j.1365-3040.2010.02163.x 10.1111/pce.12461 10.1104/pp.15.00732 10.1111/j.1365-3040.2005.01336.x 10.1007/BF00328172 10.1104/pp.16.01079 10.1104/pp.16.01039 10.1007/BF01252532 10.1038/nplants.2015.114 10.1104/pp.20.00464 10.1111/nph.17117 10.1111/pce.14265 10.1093/aobpla/plw052 10.1163/22941932-20160128 10.1111/nph.14256 10.2307/2656722 10.1111/j.1469-8137.2009.02776.x 10.1111/1365-2435.13085 10.1111/pce.13415 10.1007/978-3-662-22627-8 10.1016/j.pbi.2013.02.005 10.1111/pce.14016 10.1073/pnas.1721728115 10.1111/plb.13384 10.1163/22941932-90000407 10.1111/1365-2435.13519 10.3732/ajb.0800248 10.1111/nph.16942 10.1093/aob/mct294 10.1007/s00442-002-1009-2 10.1111/nph.15079 10.1103/PhysRevE.89.033019 10.1016/0022-5193(65)90077-9 10.1139/b98-213 10.1111/j.1469-8137.1994.tb02964.x 10.1111/nph.17282 10.1111/j.1365-3040.2005.01330.x 10.1111/j.1365-3040.2005.01397.x 10.3732/ajb.89.5.820 10.1111/nph.12798 10.1111/ppl.13556 10.1890/ES15-00203.1 10.1093/aob/mcx144 10.1093/jxb/erz474 10.1104/pp.114.256602 10.1111/nph.15886 10.1007/s00468-015-1302-4 10.1111/nph.14450 10.2118/2504-PA 10.3389/ffgc.2021.704670 10.1007/BF00328731 10.1111/j.1438-8677.2012.00678.x 10.1021/acs.jpcb.6b01618 10.1111/j.1469-8137.2012.04118.x 10.3389/fpls.2021.732701 10.1016/j.micromeso.2019.109561 10.1073/pnas.1525678113 10.3389/fpls.2013.00056 10.1038/s41467-019-13673-6 10.1111/tpj.15125 10.1111/pce.12120 10.1093/jxb/ert193 10.1093/treephys/tpaa006 10.1371/journal.pone.0230868 10.1163/22941932-40190233 10.3732/ajb.93.10.1490 10.1111/pce.12566 10.1111/pce.14253 10.1111/pce.12148 10.1111/nph.16723 10.3390/plants9020231 10.1111/nph.13846 10.1111/pce.12678 10.1111/1365-2435.12656 10.1111/j.1469-8137.2011.03984.x 10.1104/pp.88.3.581 10.1093/treephys/tpab018 10.1111/pce.13654 10.1111/nph.16516 10.1103/PhysRevE.103.062407 10.1093/aob/mcu109 10.1093/treephys/tpt030 10.1093/aobpla/plab003 10.1111/nph.13017 10.1371/journal.pone.0159145 10.3389/fpls.2013.00108 10.1021/acs.jpcc.5b06660 10.1111/j.1469-8137.2008.02436.x 10.1163/22941932-bja10059 10.1104/pp.110.155200 10.1111/nph.15116 10.1007/978-3-319-15783-2_7 10.1111/nph.15549 10.1111/nph.14245 10.1111/j.1469-8137.2007.02061.x 10.1093/treephys/tpz064 10.1098/rstb.1895.0012 10.1104/pp.100.2.605 10.1104/pp.18.00103 10.1007/s00468-017-1610-y 10.1111/1365-2435.13975 10.1093/treephys/tpz072 10.3389/fpls.2012.00107 10.1111/pce.12777 10.1093/oxfordjournals.aob.a086825 10.1002/ajb2.1034 10.1111/ele.12748 10.1007/s40626-020-00189-4 10.1093/aob/mcaa196 10.1046/j.1365-3040.2002.00863.x 10.1111/pce.12852 10.1002/j.1537-2197.1989.tb15126.x 10.1073/pnas.2100314118 10.1111/pce.12758 10.1038/srep02031 10.1080/11956860.1999.11682519 10.1002/ajb2.1552 10.1104/pp.112.212712 10.1093/jxb/erg202 10.1163/22941932-90001369 10.1093/treephys/tpu056 10.2307/2656919 10.1111/nph.16746 10.1093/treephys/tpu059 10.1093/aob/mcz076 10.1111/nph.15135 10.1111/nph.17025 10.1111/nph.14589 10.1104/pp.113.228403 10.1111/j.1365-3040.2007.01729.x 10.3732/ajb.1200140 10.1111/nph.12850 10.1093/aob/mcz104 10.1078/1439-1791-00006 10.1111/pce.13565 10.1007/s13595-013-0317-5 10.1007/s00442-022-05124-9 10.1126/science.aat7631 10.1104/pp.114.249706 10.1002/ajb2.1518 10.1016/0927-7757(96)03637-0 10.1104/pp.120.1.11 10.20870/jph.2020.e-001 10.1104/pp.18.00743 10.1007/s00468-017-1574-y 10.1006/jtbi.2001.2485 10.1038/239163a0 10.1111/nph.14811 10.1007/s13595-018-0768-9 10.1093/aob/mcu232 10.1111/j.1365-3040.2004.01211.x 10.1111/j.1365-3040.2009.02000.x 10.1073/pnas.1522569113 10.1146/annurev.arplant.52.1.847 10.1111/j.1469-8137.2012.04244.x 10.1063/1.1699741 10.1016/j.tplants.2015.01.008 10.1073/pnas.1913072116 10.1103/RevModPhys.87.981 10.1146/annurev.pp.40.060189.000315 10.1073/pnas.1917195117 10.1002/ajb2.1450 10.1007/s00468-019-01897-4 10.5642/aliso.19660602.03 10.1104/pp.123.3.1015 10.1111/j.1469-8137.1991.tb00035.x |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation. Copyright © 2022 New Phytologist Trust 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation. – notice: Copyright © 2022 New Phytologist Trust – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC |
DOI | 10.1111/nph.18447 |
DatabaseName | CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Environmental Sciences |
EISSN | 1469-8137 |
EndPage | 2036 |
ExternalDocumentID | oai_HAL_hal_04115299v1 10_1111_nph_18447 NPH18447 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Dutch Research Council NWO funderid: grant ALWOP.488 – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) funderid: project number 383393940 – fundername: REGION project VITIPIN and Grand Programme de Recherche Bordeaux Plant Science |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC UMC |
ID | FETCH-LOGICAL-c4327-f08eb463d7b8cec2ef81b60436d325a6fc254f8c5f5329c324c59a67942c90f03 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri May 09 12:22:08 EDT 2025 Fri Jul 11 18:33:43 EDT 2025 Thu Jul 10 23:08:26 EDT 2025 Fri Jul 25 11:54:09 EDT 2025 Tue Jul 01 02:28:43 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Wed Jan 22 16:24:05 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fluid transport drought plant-water relations pit membrane thickness xylem sap embolism vessel diameter wood anatomy |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4327-f08eb463d7b8cec2ef81b60436d325a6fc254f8c5f5329c324c59a67942c90f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0924-2570 0000-0003-3442-1711 0000-0001-7528-9644 0000-0002-4476-5334 0000-0002-5001-0149 0000-0002-5607-4741 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.18447 |
PMID | 36039697 |
PQID | 2737002600 |
PQPubID | 2026848 |
PageCount | 18 |
ParticipantIDs | hal_primary_oai_HAL_hal_04115299v1 proquest_miscellaneous_2811984668 proquest_miscellaneous_2708261847 proquest_journals_2737002600 crossref_citationtrail_10_1111_nph_18447 crossref_primary_10_1111_nph_18447 wiley_primary_10_1111_nph_18447_NPH18447 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 2022-12 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Lancaster |
PublicationPlace_xml | – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 1989; 40 2013; 3 2013; 4 2020; 20 1950; 21 2004; 27 2019; 10 2004; 163 2000; 87 1983; 4 2013; 64 2020; 15 2016; 30 2013; 70 2018; 41 2011; 190 2015b 2012; 15 2016; 39 2012; 99 2016; 37 2016; 36 2019; 288 2003; 54 1968; 66 1991; 119 2012; 491 2018; 177 2009; 96 2018; 4 1999a; 6 2018; 218 2018; 217 1965; 8 2022; 40 2020; 450 2002; 89 2015a; 35 1984; 54 2018; 178 2007; 174 2006; 26 2015; 87 1988; 88 2006; 29 2022; 36 1983 2018; 219 2013; 110 2000; 123 2018; 32 2016a; 113 2001; 52 2010; 33 2022; 233 2018; 220 2022; 198 2021; 42 2021; 45 2021; 44 2016; 209 2018; 105 2020; 40 2009; 182 2002; 133 2019; 39 1970; 10 2019; 223 2020; 34 2020; 32 2012; 35 2014; 152 2019; 221 1999b; 86 2016; 11 2012; 194 2012; 196 2019; 40 2015; 115 2019; 42 2018; 115 2012; 193 2014; 37 2015; 119 1994; 15 2016; 170 2014; 34 2016; 8 1996; 117 2016; 172 2017; 40 2015; 35 2018; 121 2015; 36 2017; 1 2015; 38 1999; 120 2020; 368 2019; 124 2020; 128 2013; 163 2000; 1 2007; 30 2020; 125 2013; 161 2005; 28 1996; 105 1990; 84 2020; 7 2014; 205 1989; 76 2013; 16 2001 2021; 118 2020; 9 2016; 113 2020b; 228 2019; 116 2010; 153 2021; 230 2021; 232 2016b; 209 2021; 231 2020; 43 1895; 186 2021; 41 2014; 164 2018; 75 2014; 203 2015; 1 2007; 247 2006; 93 2017; 20 1972; 239 2015; 6 2021; 4 2020; 184 2015; 168 2021; 103 1992; 100 2015; 167 1966; 6 2021; 229 2022; 45 2020; 105 2020; 228 2020; 227 2002; 215 2020; 107 2005 2017; 173 2021; 186 2017; 213 2014; 89 2016; 120 2017; 214 2014; 114 2001; 125 2020; 229 2017; 215 2018; 69 2014; 113 2021; 13 2002; 25 2012; 3 2013; 36 2009; 32 2021; 12 1994; 126 2020a; 229 2013; 33 2022 2018; 558 2020; 71 2015; 20 1999; 77 2021; 173 2020; 117 2015 2011; 180 2008; 178 2018; 54 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 Angeles G (e_1_2_9_9_1) 2004; 163 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 Klepsch M (e_1_2_9_100_1) 2018; 69 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_211_1 Li S (e_1_2_9_112_1) 2015; 36 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 Brodribb TJ (e_1_2_9_23_1) 2015 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_123_1 e_1_2_9_169_1 Lens F (e_1_2_9_107_1) 2016; 172 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_212_1 e_1_2_9_90_1 André JP (e_1_2_9_6_1) 2005 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 Choat B (e_1_2_9_39_1) 2010; 33 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 121 start-page: 129 year: 2018 end-page: 141 article-title: Traits and trade‐offs in whole‐tree hydraulic architecture along the vertical axis of publication-title: Annals of Botany – volume: 69 start-page: 5611 year: 2018 end-page: 5623 article-title: Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy publication-title: Journal of Experimental Botany – volume: 20 start-page: 695 year: 2020 end-page: 712 article-title: Global‐scale drought risk assessment for agricultural systems publication-title: Natural Hazards and Earth System Sciences – volume: 28 start-page: 800 year: 2005 end-page: 812 article-title: Inter‐vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade‐off in xylem transport publication-title: Plant, Cell & Environment – volume: 124 start-page: 297 year: 2019 end-page: 306 article-title: The functional implications of tracheary connections across growth rings in four northern hardwood trees publication-title: Annals of Botany – volume: 186 start-page: 563 year: 1895 end-page: 576 article-title: On the ascent of sap publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 6 start-page: 25 year: 1966 end-page: 44 article-title: Wood anatomy of compositae: a summary, with comments on factors controlling wood evolution publication-title: Aliso – volume: 219 start-page: 77 year: 2018 end-page: 88 article-title: Hydraulic safety margins and air‐seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees publication-title: New Phytologist – volume: 84 start-page: 544 year: 1990 end-page: 552 article-title: A survey of vessel dimensions in stems of tropical lianas and other growth forms publication-title: Oecologia – volume: 3 start-page: 107 year: 2012 article-title: Freeze/thaw‐induced embolism: probability of critical bubble formation depends on speed of ice formation publication-title: Frontiers in Plant Science – volume: 4 start-page: 108 year: 2013 article-title: Maintenance of xylem network transport capacity: a review of embolism repair capacity in vascular plants publication-title: Frontiers in Plant Science – volume: 40 start-page: 673 year: 2019 end-page: 702 article-title: Function and three‐dimensional structure of intervessel pit membranes in angiosperms: a review publication-title: IAWA Journal – volume: 15 start-page: 335 year: 1994 end-page: 360 article-title: Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? publication-title: IAWA Journal – volume: 77 start-page: 253 year: 1999 end-page: 261 article-title: Characters and origin of vessels with heterogeneous structure in leaf and flower abscission zones publication-title: Canadian Journal of Botany – volume: 107 start-page: 618 year: 2020 end-page: 627 article-title: Factors controlling drought resistance in grapevine ( , chardonnay): application of a new micro CT method to assess functional embolism resistance publication-title: American Journal of Botany – volume: 33 start-page: 672 year: 2013 end-page: 683 article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees publication-title: Tree Physiology – volume: 8 start-page: 264 year: 1965 end-page: 275 article-title: An analysis of irreversible plant cell elongation publication-title: Journal of Theoretical Biology – volume: 198 start-page: 629 year: 2022 end-page: 644 article-title: Soil water availability and branch age explain variability in xylem safety of European beech in Central Europe publication-title: Oecologia – volume: 8 year: 2016 article-title: The chemical identity of intervessel pit membranes in challenges hydrogel control of xylem hydraulic conductivity publication-title: AoB PLANTS – volume: 35 start-page: 400 year: 2015 end-page: 409 article-title: Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues publication-title: Tree Physiology – volume: 37 start-page: 35 year: 2014 end-page: 44 article-title: Recalcitrant vulnerability curves: methods of analysis and the concept of fibre bridges for enhanced cavitation resistance publication-title: Plant, Cell & Environment – volume: 13 year: 2021 article-title: Functional hydraulic sectoring in grapevines as evidenced by sap flow, dye infusion, leaf removal and micro‐computed tomography publication-title: AoB PLANTS – volume: 164 start-page: 992 year: 2014 end-page: 998 article-title: Freeze‐thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms publication-title: Plant Physiology – volume: 558 start-page: 531 year: 2018 end-page: 539 article-title: Triggers of tree mortality under drought publication-title: Nature – volume: 233 start-page: 1556 year: 2022 end-page: 1559 article-title: A crucial phase in plants – it's a gas, gas, gas! publication-title: New Phytologist – volume: 29 start-page: 26 year: 2006 end-page: 35 article-title: Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status publication-title: Plant, Cell & Environment – volume: 153 start-page: 1932 year: 2010 end-page: 1939 article-title: Calcium is a major determinant of xylem vulnerability to cavitation publication-title: Plant Physiology – volume: 213 start-page: 1068 year: 2017 end-page: 1075 article-title: X‐ray microtomography observations of xylem embolism in stems of are consistent with hydraulic measurements of percentage loss of conductance publication-title: New Phytologist – volume: 178 start-page: 1584 year: 2018 end-page: 1601 article-title: The causes of leaf hydraulic vulnerability and its influence on gas exchange in publication-title: Plant Physiology – volume: 20 start-page: 199 year: 2015 end-page: 205 article-title: Nanobubbles: a new paradigm for air‐seeding in xylem publication-title: Trends in Plant Science – volume: 203 start-page: 355 year: 2014 end-page: 358 article-title: Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin publication-title: New Phytologist – volume: 115 start-page: 187 year: 2015 end-page: 199 article-title: Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in × publication-title: Annals of Botany – volume: 227 start-page: 146 year: 2020 end-page: 155 article-title: Xylem cavitation isolates leaky flowers during water stress in pyrethrum publication-title: New Phytologist – volume: 105 start-page: 174 year: 2018 end-page: 187 article-title: From the sap's perspective: the nature of vessel surfaces in angiosperm xylem publication-title: American Journal of Botany – volume: 177 start-page: 1066 year: 2018 end-page: 1077 article-title: Low vulnerability to xylem embolism in leaves and stems of North American oaks publication-title: Plant Physiology – volume: 221 start-page: 1831 year: 2019 end-page: 1842 article-title: Insights from micro‐CT analysis: testing the hydraulic vulnerability segmentation in and seedlings publication-title: New Phytologist – volume: 223 start-page: 1296 year: 2019 end-page: 1306 article-title: No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak publication-title: New Phytologist – volume: 113 start-page: 977 year: 2014 end-page: 989 article-title: Some properties of the walls of metaxylem vessels of maize roots, including tests of the wettability of their lumenal wall surfaces publication-title: Annals of Botany – volume: 247 start-page: 788 year: 2007 end-page: 803 article-title: The relevance of xylem network structure for plant hydraulic efficiency and safety publication-title: Journal of Theoretical Biology – volume: 87 start-page: 1287 year: 2000 end-page: 1299 article-title: Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation publication-title: American Journal of Botany – volume: 217 start-page: 117 year: 2018 end-page: 126 article-title: visualization of the final stages of xylem vessel refilling in grapevine ( ) stems publication-title: New Phytologist – volume: 220 start-page: 836 year: 2018 end-page: 850 article-title: A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought publication-title: New Phytologist – volume: 288 start-page: 109561 year: 2019 article-title: Gas oversolubility in nanoconfined liquids: review and perspectives for adsorbent design publication-title: Microporous and Mesoporous Materials – volume: 52 start-page: 847 year: 2001 end-page: 875 article-title: The cohesion‐tension mechanism and the acquisition of water by plant roots publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 215 start-page: 489 year: 2017 end-page: 499 article-title: Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact publication-title: New Phytologist – volume: 41 start-page: 2718 year: 2018 end-page: 2730 article-title: A network model links wood anatomy to xylem hydraulic behaviour publication-title: Plant Cell & Environment – volume: 118 year: 2021 article-title: Evolutionary relationships between drought‐related traits and climate shape large hydraulic safety margins in western North American oaks publication-title: Proceedings of the National Academy of Sciences, USA – volume: 54 start-page: 4901 year: 2018 end-page: 4915 article-title: Distributed plant hydraulic and hydrological modeling to understand the susceptibility of riparian woodland trees to drought‐induced mortality publication-title: Water Resources Research – volume: 196 start-page: 661 year: 2012 end-page: 665 article-title: Centrifuge technique consistently overestimates vulnerability to water stress‐induced cavitation in grapevines as confirmed with high‐resolution computed tomography publication-title: New Phytologist – volume: 36 start-page: 983 year: 2016 end-page: 993 article-title: A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species publication-title: Tree Physiology – volume: 70 start-page: 659 year: 2013 end-page: 661 article-title: Hydraulic failure and repair are not routine in trees publication-title: Annals of Forest Science – volume: 4 year: 2013 article-title: How to quantify conduits in wood? publication-title: Frontiers in Plant Science – volume: 35 start-page: 744 year: 2015 end-page: 755 article-title: Patterns of drought‐induced embolism formation and spread in living walnut saplings visualized using X‐ray microtomography publication-title: Tree Physiology – volume: 40 start-page: 816 year: 2017 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – volume: 33 start-page: 1502 year: 2010 end-page: 1512 article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to long‐vesseled species publication-title: Plant, Cell & Environment – volume: 105 start-page: 293 year: 1996 end-page: 301 article-title: Root and stem xylem embolism, stomatal conductance, and leaf turgor in populations along a soil moisture gradient publication-title: Oecologia – volume: 121 start-page: 849 year: 2018 end-page: 861 article-title: Introducing turgor‐driven growth dynamics into functional–structural plant models publication-title: Annals of Botany – volume: 1 start-page: 1285 year: 2017 end-page: 1291 article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality publication-title: Nature Ecology & Evolution – start-page: 189 year: 2015b end-page: 207 – volume: 15 start-page: 496 year: 2012 end-page: 504 article-title: Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method publication-title: Plant Biology – volume: 103 year: 2021 article-title: Air spread through a wetted deformable membrane: implications for the mechanism of soft valves in plants publication-title: Physical Review E – volume: 71 start-page: 1151 year: 2020 end-page: 1159 article-title: Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique publication-title: Journal of Experimental Botany – volume: 30 start-page: 1599 year: 2007 end-page: 1609 article-title: Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities publication-title: Plant, Cell & Environment – volume: 6 start-page: 180 year: 1999a end-page: 186 article-title: Differential susceptibility to xylem cavitation among three pairs of species in the transverse mountain ranges of southern California publication-title: Ecoscience – volume: 64 start-page: 4779 year: 2013 end-page: 4791 article-title: Methods for measuring plant vulnerability to cavitation: a critical review publication-title: Journal of Experimental Botany – volume: 41 start-page: 2869 year: 2018 end-page: 2881 article-title: Coordination between leaf, stem, and root hydraulics and gas exchange in three arid‐zone angiosperms during severe drought and recovery publication-title: Plant, Cell & Environment – volume: 45 start-page: 1204 year: 2021 end-page: 1215 article-title: Xylem embolism spread is largely prevented by interconduit pit membranes until the majority of conduits are gas‐filled publication-title: Plant, Cell & Environment – volume: 1 start-page: 31 year: 2000 end-page: 41 article-title: Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah publication-title: Basic and Applied Ecology – volume: 12 start-page: 732701 year: 2021 article-title: Dynamic surface tension enhances the stability of nanobubbles in xylem sap publication-title: Frontiers in Plant Science – volume: 43 start-page: 116 year: 2020 end-page: 130 article-title: High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem publication-title: Plant, Cell & Environment – volume: 93 start-page: 1490 year: 2006 end-page: 1500 article-title: Size and function in conifer tracheids and angiosperm vessels publication-title: American Journal of Botany – volume: 186 start-page: 373 year: 2021 end-page: 387 article-title: Xylem network connectivity and embolism spread in grapevine ( L.) publication-title: Plant Physiology – volume: 32 start-page: 1324 year: 2009 end-page: 1333 article-title: Xylem function of arid‐land shrubs from California, USA: an ecological and evolutionary analysis publication-title: Plant, Cell & Environment – volume: 88 start-page: 581 year: 1988 end-page: 587 article-title: Mechanism of water stress‐induced xylem embolism publication-title: Plant Physiology – volume: 34 start-page: 61 year: 2020 end-page: 71 article-title: Within‐tree variability and sample storage effects of bordered pit membranes in xylem of publication-title: Trees – volume: 228 start-page: 884 year: 2020 end-page: 897 article-title: Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species publication-title: New Phytologist – volume: 34 start-page: 894 year: 2014 end-page: 905 article-title: How reliable are methods to assess xylem vulnerability to cavitation? The issue of ‘open vessel’ artifact in oaks publication-title: Tree Physiology – volume: 38 start-page: 2519 year: 2015 end-page: 2526 article-title: A comparison of two methods for measuring vessel length in woody plants publication-title: Plant, Cell & Environment – volume: 117 start-page: 10733 year: 2020 end-page: 10739 article-title: Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids publication-title: Proceedings of the National Academy of Sciences, USA – volume: 89 year: 2014 article-title: Gas flow in plant microfluidic networks controlled by capillary valves publication-title: Physical Review E – volume: 39 start-page: 1783 year: 2019 end-page: 1791 article-title: Vessel‐length determination using silicone and air injection: are there artifacts? publication-title: Tree Physiology – volume: 36 start-page: 179 year: 2015 end-page: 192 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – volume: 124 start-page: 1173 year: 2019 end-page: 1183 article-title: Embolism resistance in petioles and leaflets of palms publication-title: Annals of Botany – volume: 230 start-page: 1896 year: 2021 end-page: 1910 article-title: Understanding and predicting forest mortality in the western United States using long‐term forest inventory data and modeled hydraulic damage publication-title: New Phytologist – volume: 126 start-page: 695 year: 1994 end-page: 705 article-title: Conduit diameter and drought‐induced embolism in Greene (Labiatae) publication-title: New Phytologist – volume: 133 start-page: 19 year: 2002 end-page: 29 article-title: Xylem hydraulic properties of roots and stems of nine Mediterranean woody species publication-title: Oecologia – volume: 174 start-page: 787 year: 2007 end-page: 798 article-title: Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral publication-title: New Phytologist – volume: 4 year: 2021 article-title: Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority publication-title: Frontiers in Forests and Global Change – volume: 40 start-page: 697 year: 2022 end-page: 718 article-title: A fully implicit coupled pore‐network/free‐flow model for the pore‐scale simulation of drying processes publication-title: Drying Technology – volume: 34 start-page: 777 year: 2020 end-page: 787 article-title: Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community publication-title: Functional Ecology – volume: 163 start-page: 999 year: 2013 end-page: 1011 article-title: Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation publication-title: Plant Physiology – volume: 182 start-page: 664 year: 2009 end-page: 674 article-title: Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of publication-title: New Phytologist – volume: 213 start-page: 1076 year: 2017 end-page: 1092 article-title: Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline publication-title: New Phytologist – volume: 36 start-page: 1916 year: 2013 end-page: 1918 article-title: Cutting‐edge research or cutting‐edge artifact? An overdue control experiment complicates the xylem refilling story publication-title: Plant, Cell & Environment – volume: 161 start-page: 1820 year: 2013 end-page: 1829 article-title: visualizations of drought‐induced embolism spread in publication-title: Plant Physiology – volume: 203 start-page: 842 year: 2014 end-page: 850 article-title: Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis publication-title: New Phytologist – volume: 113 start-page: 617 year: 2014 end-page: 627 article-title: Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi‐arid habitat publication-title: Annals of Botany – volume: 32 start-page: 331 year: 2020 end-page: 340 article-title: A semi‐automated method for measuring xylem vessel length distribution publication-title: Theoretical and Experimental Plant Physiology – volume: 1 start-page: 15114 year: 2015 article-title: Evolutionary outcomes should inform strategies to increase drought tolerance publication-title: Nature Plants – volume: 120 start-page: 5209 year: 2016 end-page: 5222 article-title: Stability limit of water by metastable vapor–liquid equilibrium with nanoporous silicon membranes publication-title: Journal of Physical Chemistry B – volume: 170 start-page: 273 year: 2016 end-page: 282 article-title: Noninvasive measurement of vulnerability to drought‐induced embolism by X‐ray microtomography publication-title: Plant Physiology – volume: 25 start-page: 815 year: 2002 end-page: 819 article-title: A technique for measuring xylem hydraulic conductance under high negative pressures publication-title: Plant, Cell & Environment – volume: 194 start-page: 982 year: 2012 end-page: 990 article-title: No evidence for an open vessel effect in centrifuge‐based vulnerability curves of a long‐vesselled liana ( ) publication-title: New Phytologist – volume: 38 start-page: 1060 year: 2015 end-page: 1068 article-title: Excising stem samples underwater at native tension does not induce xylem cavitation publication-title: Plant, Cell & Environment – volume: 172 start-page: 661 year: 2016 end-page: 667 article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees publication-title: Plant Physiology – volume: 10 start-page: 5645 year: 2019 article-title: pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine publication-title: Nature Communications – volume: 214 start-page: 561 year: 2017 end-page: 569 article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation publication-title: New Phytologist – volume: 40 start-page: 433 year: 2020 end-page: 444 article-title: Dynamic surface tension of xylem sap lipids publication-title: Tree Physiology – year: 2005 – volume: 152 start-page: 465 year: 2014 end-page: 474 article-title: Vulnerability to cavitation in current‐year shoots: further evidence of an open‐vessel artefact associated with centrifuge and air‐injection techniques publication-title: Physiologia Plantarum – volume: 172 start-page: 1657 year: 2016 end-page: 1668 article-title: Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension publication-title: Plant Physiology – volume: 37 start-page: 152 year: 2016 end-page: 171 article-title: Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem publication-title: IAWA Journal – volume: 29 start-page: 571 year: 2006 end-page: 583 article-title: Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees publication-title: Plant, Cell & Environment – volume: 42 start-page: 279 year: 2021 end-page: 298 article-title: Hydraulic function and conduit structure in the xylem of five oak species publication-title: IAWA Journal – volume: 30 start-page: 1740 year: 2016 end-page: 1744 article-title: Are leaves more vulnerable to cavitation than branches? publication-title: Functional Ecology – volume: 20 start-page: 539 year: 2017 end-page: 553 article-title: Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area publication-title: Ecology Letters – volume: 178 start-page: 719 year: 2008 end-page: 739 article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? publication-title: New Phytologist – volume: 32 start-page: 349 year: 2018 end-page: 358 article-title: Is embolism resistance in plant xylem associated with quantity and characteristics of lignin? publication-title: Trees – volume: 218 start-page: 1025 year: 2018 end-page: 1035 article-title: Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots publication-title: New Phytologist – volume: 27 start-page: 1065 year: 2004 end-page: 1076 article-title: New evidence for a role of vessel‐associated cells and phloem in the rapid xylem refilling of cavitated stems of L publication-title: Plant, Cell & Environment – volume: 39 start-page: 2342 year: 2016 end-page: 2345 article-title: Toward an index of desiccation time to tree mortality under drought publication-title: Plant, Cell & Environment – volume: 4 year: 2018 article-title: Drought will not leave your glass empty: low risk of hydraulic failure revealed by long‐term drought observations in world's top wine regions publication-title: Science Advances – volume: 193 start-page: 713 year: 2012 end-page: 720 article-title: Rare pits, large vessels and extreme vulnerability to cavitation in a ring‐porous tree species publication-title: New Phytologist – volume: 218 start-page: 1360 year: 2018 end-page: 1370 article-title: Vessel scaling in evergreen angiosperm leaves conforms with Murray's law and area‐filling assumptions: implications for plant size, leaf size and cold tolerance publication-title: New Phytologist – volume: 209 start-page: 123 year: 2016 end-page: 136 article-title: Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world's woody plant species publication-title: New Phytologist – volume: 229 start-page: 3053 year: 2021 end-page: 3057 article-title: Wood density predicts mortality threshold for diverse trees publication-title: New Phytologist – volume: 38 start-page: 201 year: 2015 end-page: 206 article-title: X‐ray microtomography (micro‐CT): a reference technology for high‐resolution quantification of xylem embolism in trees publication-title: Plant, Cell & Environment – volume: 99 start-page: 1583 year: 2012 end-page: 1591 article-title: A global analysis of xylem vessel length in woody plants publication-title: American Journal of Botany – volume: 10 start-page: 85 year: 1970 end-page: 90 article-title: Snap‐off of oil droplets in water‐wet pores publication-title: Society of Petroleum Engineering Journal – volume: 117 start-page: 55 year: 1996 end-page: 76 article-title: Gas bubble snap‐off under pressure‐driven flow in constricted noncircular capillaries publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 173 start-page: 2081 year: 2021 end-page: 2090 article-title: Narrow vessels cavitate first during a simulated drought in publication-title: Physiologia Plantarum – volume: 96 start-page: 409 year: 2009 end-page: 419 article-title: Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms publication-title: American Journal of Botany – start-page: 251 year: 2015 end-page: 281 – volume: 35 start-page: 601 year: 2012 end-page: 610 article-title: Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? publication-title: Plant, Cell & Environment – volume: 11 year: 2016 article-title: Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California's historic drought of 2014 publication-title: PLoS ONE – volume: 231 start-page: 996 year: 2021 end-page: 1007 article-title: The roles of conduit redundancy and connectivity in xylem hydraulic functions publication-title: New Phytologist – volume: 125 start-page: 779 year: 2001 end-page: 786 article-title: Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem publication-title: Plant Physiology – volume: 40 start-page: 4 year: 2019 end-page: 22 article-title: Large volume vessels are vulnerable to water‐stress‐induced embolism in stems of poplar publication-title: IAWA Journal – volume: 33 start-page: 1059 year: 2010 end-page: 1069 article-title: The impact of vessel size on vulnerability curves: data and models for within‐species variability in saplings of aspen, Michx publication-title: Plant, Cell & Environment – volume: 167 start-page: 40 year: 2015 end-page: 43 article-title: Direct X‐ray microtomography observation confirms the introduction of embolism upon xylem cutting under tension publication-title: Plant Physiology – volume: 209 start-page: 1403 year: 2016b end-page: 1409 article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure publication-title: New Phytologist – volume: 66 start-page: 185 year: 1968 end-page: 204 article-title: Pit membranes in hard woods – fine structure and development publication-title: Protoplasma – volume: 232 start-page: 68 year: 2021 end-page: 79 article-title: Linking xylem network failure with leaf tissue death publication-title: New Phytologist – volume: 107 start-page: 1 year: 2020 end-page: 14 article-title: Imperforate tracheary elements and vessels alleviate xylem tension under severe dehydration: insights from water release curves for excised twigs of three tree species publication-title: American Journal of Botany – volume: 230 start-page: 1829 year: 2021 end-page: 1843 article-title: Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms publication-title: New Phytologist – volume: 190 start-page: 709 year: 2011 end-page: 723 article-title: Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus publication-title: New Phytologist – volume: 113 start-page: 4865 year: 2016a end-page: 4869 article-title: Revealing catastrophic failure of leaf networks under stress publication-title: Proceedings of the National Academy of Sciences, USA – volume: 3 start-page: 2031 year: 2013 article-title: Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress publication-title: Scientific Reports – volume: 228 start-page: 512 year: 2020b end-page: 524 article-title: Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across neotropical trees publication-title: New Phytologist – volume: 42 start-page: 2422 year: 2019 end-page: 2436 article-title: Direct comparison of four methods to construct xylem vulnerability curves: Differences among techniques are linked to vessel network characteristics publication-title: Plant, Cell & Environment – volume: 34 start-page: 275 year: 2014 end-page: 284 article-title: Whole‐plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats publication-title: Tree Physiology – volume: 239 start-page: 163 year: 1972 end-page: 164 article-title: Role of turgor in plant cell growth publication-title: Nature – volume: 168 start-page: 521 year: 2015 end-page: 531 article-title: Studies on the tempo of bubble formation in recently cavitated vessels: A model to predict the pressure of air bubbles publication-title: Plant Physiology – volume: 110 start-page: 3755 year: 2013 end-page: 3759 article-title: Real‐time 3D imaging of Haines jumps in porous media flow publication-title: Proceedings of the National Academy of Sciences, USA – volume: 173 start-page: 1177 year: 2017 end-page: 1196 article-title: Xylem surfactants introduce a new element to the cohesion‐tension theory publication-title: Plant Physiology – volume: 450 start-page: 479 year: 2020 end-page: 495 article-title: Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem publication-title: Plant Soil – volume: 54 start-page: 543 year: 1984 end-page: 552 article-title: Distribution of vessel ends in stems of some diffuse‐and ring‐porous trees: the nodal regions as ‘safety zones’ of the water conducting system publication-title: Annals of Botany – volume: 30 start-page: 305 year: 2016 end-page: 316 article-title: Freezing xylem conduits with liquid nitrogen creates artifactual embolisms in water‐stressed broadleaf trees publication-title: Trees – volume: 229 start-page: 1955 year: 2020 end-page: 1969 article-title: An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes publication-title: New Phytologist – volume: 76 start-page: 1452 year: 1989 end-page: 1459 article-title: Variation in vessel length and diameter in stems of six tropical and subtropical lianas publication-title: American Journal of Botany – volume: 114 start-page: 325 year: 2014 end-page: 334 article-title: Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms publication-title: Annals of Botany – year: 2001 – volume: 33 start-page: 1543 year: 2010 end-page: 1552 article-title: Does sample length influence the shape of vulnerability to cavitation curves? A test with the Cavitron spinning technique publication-title: Plant, Cell & Environment – volume: 123 start-page: 1015 year: 2000 end-page: 1020 article-title: Bordered pit structure and vessel wall surface properties: implications for embolism repair publication-title: Plant Physiology – volume: 9 start-page: 231 year: 2020 article-title: Investigating effects of bordered pit membrane morphology and properties on plant xylem hydraulic functions – a case study from 3D reconstruction and microflow modelling of pit membranes in angiosperm xylem publication-title: Plants – volume: 39 start-page: 944 year: 2016 end-page: 950 article-title: Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry publication-title: Plant, Cell & Environment – volume: 184 start-page: 212 year: 2020 end-page: 222 article-title: Xylem embolism spreads by single‐conduit events in three dry forest angiosperm stems publication-title: Plant Physiology – volume: 120 start-page: 11 year: 1999 end-page: 21 article-title: Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? publication-title: Plant Physiology – volume: 205 start-page: 116 year: 2014 end-page: 127 article-title: The standard centrifuge method accurately measures vulnerability curves of long‐vesselled olive stems publication-title: New Phytologist – volume: 229 start-page: 1453 year: 2020a end-page: 1466 article-title: Linking drought‐induced xylem embolism resistance to wood anatomical traits in neotropical trees publication-title: New Phytologist – volume: 41 start-page: 1384 year: 2021 end-page: 1399 article-title: Plasticity of the xylem vulnerability to embolism in poplar relies on quantitative pit properties rather than on pit structure publication-title: Tree Physiology – volume: 32 start-page: 1467 year: 2018 end-page: 1478 article-title: Insular woody daisies ( , Asteraceae) are more resistant to drought‐induced hydraulic failure than their herbaceous relatives publication-title: Functional Ecology – volume: 39 start-page: 1685 year: 2016 end-page: 1695 article-title: Short‐time xylem tension relaxation prevents vessel refilling and alleviates cryo‐fixation artifacts in diffuse‐porous and publication-title: Tree Physiology – volume: 28 start-page: 1082 year: 2005 end-page: 1089 article-title: The spatial pattern of air seeding thresholds in mature sugar maple trees publication-title: Plant, Cell & Environment – volume: 119 start-page: 345 year: 1991 end-page: 360 article-title: The hydraulic architecture of trees and other woody plants publication-title: New Phytologist – volume: 125 start-page: 701 year: 2020 end-page: 720 article-title: Using the CODIT model to explain secondary metabolites of xylem in defence systems of temperate trees against decay fungi publication-title: Annals of Botany – volume: 100 start-page: 605 year: 1992 end-page: 613 article-title: Xylem embolism in response to freeze‐thaw cycles and water stress in ring‐porous, diffuse‐porous, and conifer species publication-title: Plant Physiology – volume: 21 start-page: 721 year: 1950 end-page: 722 article-title: Limiting negative pressure of water publication-title: Journal of Applied Physics – volume: 20 start-page: 1437 year: 2017 end-page: 1447 article-title: Plant resistance to drought depends on timely stomatal closure publication-title: Ecology Letters – volume: 54 start-page: 1889 year: 2003 end-page: 1897 article-title: Air method measurements of apple vessel length distributions with improved apparatus and theory publication-title: Journal of Experimental Botany – volume: 118 year: 2021 article-title: The widened pipe model of plant hydraulic evolution publication-title: Proceedings of the National Academy of Sciences, USA – volume: 75 start-page: 88 year: 2018 article-title: An inconvenient truth about xylem resistance to embolism in the model species for refilling L publication-title: Annals of Forest Science – volume: 113 start-page: 5024 year: 2016 end-page: 5029 article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 year: 2020 article-title: Loss and recovery of leaf hydraulic conductance: root pressure, embolism, and extra‐xylary resistance publication-title: Journal of Plant Hydraulics – volume: 115 start-page: 7551 year: 2018 end-page: 7556 article-title: Plant height and hydraulic vulnerability to drought and cold publication-title: Proceedings of the National Academy of Sciences, USA – year: 1983 – volume: 178 start-page: 1142 year: 2018 end-page: 1153 article-title: Comparison of micropore distribution in cell walls of softwood and hardwood xylem publication-title: Plant Physiology – volume: 105 start-page: 1477 year: 2020 end-page: 1494 article-title: Lipids in xylem sap of woody plants across the angiosperm phylogeny publication-title: The Plant Journal – volume: 36 start-page: 1938 year: 2013 end-page: 1949 article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism publication-title: Plant, Cell & Environment – volume: 33 start-page: 1234 year: 2010 end-page: 1238 article-title: A computational algorithm addressing how vessel length might depend on vessel diameter publication-title: Plant, Cell & Environment – volume: 15 year: 2020 article-title: Two coastal Pacific evergreens, , Pursh. and , Née show little water stress during California's exceptional drought publication-title: PLoS ONE – volume: 116 start-page: 25734 year: 2019 end-page: 25744 article-title: The impact of rising CO and acclimation on the response of US forests to global warming publication-title: Proceedings of the National Academy of Sciences, USA – volume: 86 start-page: 1367 year: 1999b end-page: 1372 article-title: The relationship between xylem conduit diameter and cavitation caused by freezing publication-title: American Journal of Botany – volume: 32 start-page: 51 year: 2018 end-page: 60 article-title: Intra‐specific relationship between vessel length and vessel diameter of four species with long‐to‐short species‐average vessel lengths: further validation of the computation algorithm publication-title: Trees – volume: 87 start-page: 981 year: 2015 end-page: 1035 article-title: Surface nanobubbles and nanodroplets publication-title: Reviews of Modern Physics – volume: 39 start-page: 740 year: 2019 end-page: 746 article-title: ‘Pressure fatigue’: the influence of sap pressure cycles on cavitation vulnerability in publication-title: Tree Physiology – volume: 180 start-page: 604 year: 2011 end-page: 611 article-title: Refilling embolized xylem conduits: Is it a matter of phloem unloading? publication-title: Plant Science – volume: 4 start-page: 141 year: 1983 end-page: 159 article-title: Some ecological trends in vessel characters publication-title: IAWA Journal – volume: 36 start-page: 699 year: 2022 end-page: 712 article-title: High variation in hydraulic efficiency but not xylem safety between roots and branches in four temperate broad‐leaved tree species publication-title: Functional Ecology – volume: 16 start-page: 287 year: 2013 end-page: 292 article-title: Embolism resistance as a key mechanism to understand adaptive plant strategies publication-title: Current Opinion in Plant Biology – year: 2022 article-title: Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought publication-title: Plant Biology – volume: 40 start-page: 19 year: 1989 end-page: 36 article-title: Vulnerability of xylem to cavitation and embolism publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 6 year: 2015 article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene publication-title: Ecosphere – volume: 368 start-page: 261 year: 2020 end-page: 266 article-title: Hanging by a thread? Forests and drought publication-title: Science – volume: 40 start-page: 831 year: 2017 end-page: 845 article-title: An ecophysiological and developmental perspective on variation in vessel diameter publication-title: Plant, Cell & Environment – volume: 163 start-page: 551 year: 2004 end-page: 452 article-title: The cohesion‐tension theory publication-title: New Phytologist – volume: 35 start-page: 185 year: 2015a end-page: 196 article-title: Root resistance to cavitation is accurately measured using a centrifuge technique publication-title: Tree Physiology – volume: 215 start-page: 23 year: 2002 end-page: 38 article-title: Relationships between embolism, stem water tension, and diameter changes publication-title: Journal of Theoretical Biology – volume: 119 start-page: 21547 year: 2015 end-page: 21554 article-title: Solubility of gases in water confined in nanoporous materials: ZSM‐5, MCM‐41, and MIL‐100 publication-title: Journal of Physical Chemistry C – volume: 107 start-page: 1328 year: 2020 end-page: 1341 article-title: From Carlquist's ecological wood anatomy to Carlquist's Law: why comparative anatomy is crucial for functional xylem biology publication-title: American Journal of Botany – volume: 128 start-page: 171 year: 2020 end-page: 182 article-title: Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of accessions publication-title: Annals of Botany – volume: 44 start-page: 1329 year: 2021 end-page: 1345 article-title: No gas source, no problem: proximity to pre‐existing embolism and segmentation affect embolism spreading in angiosperm xylem by gas diffusion publication-title: Plant, Cell & Environment – volume: 89 start-page: 820 year: 2002 end-page: 828 article-title: Shoot dieback during prolonged drought in (Rhamnaceae) chaparral of California: a possible case of hydraulic failure publication-title: American Journal of Botany – volume: 26 start-page: 689 year: 2006 end-page: 701 article-title: Scaling of angiosperm xylem structure with safety and efficiency publication-title: Tree Physiology – volume: 491 start-page: 752 year: 2012 end-page: 755 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – volume: 45 start-page: 1216 year: 2022 end-page: 1228 article-title: Mechanisms of xylem hydraulic recovery after drought in publication-title: Plant, Cell & Environment – volume: 163 start-page: 551 year: 2004 ident: e_1_2_9_9_1 article-title: The cohesion‐tension theory publication-title: New Phytologist – ident: e_1_2_9_119_1 doi: 10.1016/j.jtbi.2007.03.036 – ident: e_1_2_9_146_1 doi: 10.1093/aob/mcx137 – ident: e_1_2_9_201_1 doi: 10.1111/nph.17043 – volume: 172 start-page: 661 year: 2016 ident: e_1_2_9_107_1 article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees publication-title: Plant Physiology – ident: e_1_2_9_127_1 doi: 10.1093/aob/mcu020 – ident: e_1_2_9_60_1 doi: 10.1104/pp.18.00883 – ident: e_1_2_9_132_1 doi: 10.1093/aob/mcz138 – ident: e_1_2_9_169_1 doi: 10.1073/pnas.2008987118 – ident: e_1_2_9_125_1 doi: 10.1111/ele.12851 – ident: e_1_2_9_183_1 doi: 10.1029/2018WR022801 – ident: e_1_2_9_38_1 doi: 10.1038/s41586-018-0240-x – ident: e_1_2_9_94_1 doi: 10.1093/treephys/tpw031 – ident: e_1_2_9_131_1 doi: 10.5194/nhess-20-695-2020 – ident: e_1_2_9_123_1 doi: 10.1111/j.1365-3040.2005.01433.x – ident: e_1_2_9_135_1 doi: 10.1016/j.plantsci.2010.12.011 – ident: e_1_2_9_34_1 doi: 10.1126/sciadv.aao6969 – volume: 36 start-page: 179 year: 2015 ident: e_1_2_9_112_1 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – ident: e_1_2_9_188_1 doi: 10.1111/ppl.12185 – ident: e_1_2_9_69_1 doi: 10.1093/treephys/tpu001 – ident: e_1_2_9_77_1 doi: 10.1093/treephys/26.6.689 – ident: e_1_2_9_31_1 doi: 10.1007/978-3-662-04578-7 – ident: e_1_2_9_108_1 doi: 10.1111/j.1469-8137.2010.03518.x – ident: e_1_2_9_209_1 doi: 10.1111/pce.12139 – ident: e_1_2_9_27_1 doi: 10.1111/j.1365-3040.2010.02127.x – ident: e_1_2_9_40_1 doi: 10.1038/nature11688 – ident: e_1_2_9_52_1 doi: 10.1111/pce.13418 – ident: e_1_2_9_79_1 doi: 10.1104/pp.125.2.779 – ident: e_1_2_9_71_1 doi: 10.1111/nph.13646 – ident: e_1_2_9_205_1 doi: 10.1093/plphys/kiab045 – ident: e_1_2_9_151_1 doi: 10.1093/treephys/tpv003 – ident: e_1_2_9_96_1 doi: 10.1163/22941932-40190259 – ident: e_1_2_9_195_1 doi: 10.1093/treephys/tpy148 – ident: e_1_2_9_48_1 doi: 10.1111/pce.12391 – ident: e_1_2_9_91_1 doi: 10.1111/nph.17875 – ident: e_1_2_9_134_1 doi: 10.1111/nph.17429 – ident: e_1_2_9_2_1 doi: 10.1038/s41559-017-0248-x – ident: e_1_2_9_101_1 doi: 10.1093/treephys/tpv040 – ident: e_1_2_9_158_1 doi: 10.1104/pp.113.219774 – ident: e_1_2_9_211_1 doi: 10.1007/s11104-020-04525-0 – ident: e_1_2_9_28_1 doi: 10.1111/j.1365-3040.2010.02142.x – ident: e_1_2_9_200_1 doi: 10.1111/nph.15333 – ident: e_1_2_9_13_1 doi: 10.1073/pnas.1221373110 – ident: e_1_2_9_176_1 doi: 10.1111/j.1365-3040.2011.02439.x – ident: e_1_2_9_22_1 doi: 10.1111/nph.17577 – ident: e_1_2_9_207_1 doi: 10.1080/07373937.2021.1955706 – ident: e_1_2_9_49_1 doi: 10.1111/j.1365-3040.2010.02163.x – ident: e_1_2_9_198_1 doi: 10.1111/pce.12461 – ident: e_1_2_9_37_1 doi: 10.1104/pp.15.00732 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365-3040.2005.01336.x – ident: e_1_2_9_64_1 doi: 10.1007/BF00328172 – ident: e_1_2_9_35_1 doi: 10.1104/pp.16.01079 – ident: e_1_2_9_160_1 doi: 10.1104/pp.16.01039 – ident: e_1_2_9_164_1 doi: 10.1007/BF01252532 – ident: e_1_2_9_68_1 doi: 10.1038/nplants.2015.114 – ident: e_1_2_9_95_1 doi: 10.1104/pp.20.00464 – ident: e_1_2_9_115_1 doi: 10.1111/nph.17117 – ident: e_1_2_9_67_1 doi: 10.1111/pce.14265 – ident: e_1_2_9_99_1 doi: 10.1093/aobpla/plw052 – ident: e_1_2_9_113_1 doi: 10.1163/22941932-20160128 – ident: e_1_2_9_166_1 doi: 10.1111/nph.14256 – ident: e_1_2_9_148_1 doi: 10.2307/2656722 – ident: e_1_2_9_42_1 doi: 10.1111/j.1469-8137.2009.02776.x – ident: e_1_2_9_61_1 doi: 10.1111/1365-2435.13085 – ident: e_1_2_9_133_1 doi: 10.1111/pce.13415 – ident: e_1_2_9_216_1 doi: 10.1007/978-3-662-22627-8 – ident: e_1_2_9_109_1 doi: 10.1016/j.pbi.2013.02.005 – ident: e_1_2_9_73_1 doi: 10.1111/pce.14016 – ident: e_1_2_9_140_1 doi: 10.1073/pnas.1721728115 – ident: e_1_2_9_74_1 doi: 10.1111/plb.13384 – ident: e_1_2_9_11_1 doi: 10.1163/22941932-90000407 – ident: e_1_2_9_173_1 doi: 10.1111/1365-2435.13519 – volume: 33 start-page: 1502 year: 2010 ident: e_1_2_9_39_1 article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to long‐vesseled species publication-title: Plant, Cell & Environment – ident: e_1_2_9_92_1 doi: 10.3732/ajb.0800248 – ident: e_1_2_9_110_1 doi: 10.1111/nph.16942 – ident: e_1_2_9_93_1 doi: 10.1093/aob/mct294 – ident: e_1_2_9_124_1 doi: 10.1007/s00442-002-1009-2 – ident: e_1_2_9_154_1 doi: 10.1111/nph.15079 – ident: e_1_2_9_29_1 doi: 10.1103/PhysRevE.89.033019 – ident: e_1_2_9_118_1 doi: 10.1016/0022-5193(65)90077-9 – ident: e_1_2_9_7_1 doi: 10.1139/b98-213 – volume-title: Vascular organization of angiosperms: a new vision year: 2005 ident: e_1_2_9_6_1 – ident: e_1_2_9_81_1 doi: 10.1111/j.1469-8137.1994.tb02964.x – ident: e_1_2_9_97_1 doi: 10.1111/nph.17282 – ident: e_1_2_9_210_1 doi: 10.1111/j.1365-3040.2005.01330.x – ident: e_1_2_9_59_1 doi: 10.1111/j.1365-3040.2005.01397.x – ident: e_1_2_9_54_1 doi: 10.3732/ajb.89.5.820 – ident: e_1_2_9_57_1 doi: 10.1111/nph.12798 – start-page: 251 volume-title: Crop physiology ‐ applications for genetic improvement and agronomy year: 2015 ident: e_1_2_9_23_1 – ident: e_1_2_9_12_1 doi: 10.1111/ppl.13556 – ident: e_1_2_9_4_1 doi: 10.1890/ES15-00203.1 – ident: e_1_2_9_51_1 doi: 10.1093/aob/mcx144 – ident: e_1_2_9_53_1 doi: 10.1093/jxb/erz474 – ident: e_1_2_9_203_1 doi: 10.1104/pp.114.256602 – ident: e_1_2_9_170_1 doi: 10.1111/nph.15886 – ident: e_1_2_9_194_1 doi: 10.1007/s00468-015-1302-4 – ident: e_1_2_9_171_1 doi: 10.1111/nph.14450 – ident: e_1_2_9_155_1 doi: 10.2118/2504-PA – ident: e_1_2_9_8_1 doi: 10.3389/ffgc.2021.704670 – ident: e_1_2_9_3_1 doi: 10.1007/BF00328731 – ident: e_1_2_9_186_1 doi: 10.1111/j.1438-8677.2012.00678.x – ident: e_1_2_9_36_1 doi: 10.1021/acs.jpcb.6b01618 – ident: e_1_2_9_87_1 doi: 10.1111/j.1469-8137.2012.04118.x – ident: e_1_2_9_86_1 doi: 10.3389/fpls.2021.732701 – ident: e_1_2_9_44_1 doi: 10.1016/j.micromeso.2019.109561 – ident: e_1_2_9_5_1 doi: 10.1073/pnas.1525678113 – ident: e_1_2_9_165_1 doi: 10.3389/fpls.2013.00056 – ident: e_1_2_9_15_1 doi: 10.1038/s41467-019-13673-6 – ident: e_1_2_9_162_1 doi: 10.1111/tpj.15125 – ident: e_1_2_9_26_1 doi: 10.1111/pce.12120 – ident: e_1_2_9_46_1 doi: 10.1093/jxb/ert193 – ident: e_1_2_9_212_1 doi: 10.1093/treephys/tpaa006 – volume: 69 start-page: 5611 year: 2018 ident: e_1_2_9_100_1 article-title: Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy publication-title: Journal of Experimental Botany – ident: e_1_2_9_32_1 doi: 10.1371/journal.pone.0230868 – ident: e_1_2_9_90_1 doi: 10.1163/22941932-40190233 – ident: e_1_2_9_177_1 doi: 10.3732/ajb.93.10.1490 – ident: e_1_2_9_141_1 doi: 10.1111/pce.12566 – ident: e_1_2_9_10_1 doi: 10.1111/pce.14253 – ident: e_1_2_9_175_1 doi: 10.1111/pce.12148 – ident: e_1_2_9_111_1 doi: 10.1111/nph.16723 – ident: e_1_2_9_114_1 doi: 10.3390/plants9020231 – ident: e_1_2_9_25_1 doi: 10.1111/nph.13846 – ident: e_1_2_9_161_1 doi: 10.1111/pce.12678 – ident: e_1_2_9_215_1 doi: 10.1111/1365-2435.12656 – ident: e_1_2_9_43_1 doi: 10.1111/j.1469-8137.2011.03984.x – ident: e_1_2_9_179_1 doi: 10.1104/pp.88.3.581 – ident: e_1_2_9_106_1 doi: 10.1093/treephys/tpab018 – ident: e_1_2_9_214_1 doi: 10.1111/pce.13654 – ident: e_1_2_9_16_1 doi: 10.1111/nph.16516 – ident: e_1_2_9_142_1 doi: 10.1103/PhysRevE.103.062407 – ident: e_1_2_9_185_1 doi: 10.1093/aob/mcu109 – ident: e_1_2_9_196_1 doi: 10.1093/treephys/tpt030 – ident: e_1_2_9_130_1 doi: 10.1093/aobpla/plab003 – ident: e_1_2_9_80_1 doi: 10.1111/nph.13017 – ident: e_1_2_9_197_1 doi: 10.1371/journal.pone.0159145 – ident: e_1_2_9_19_1 doi: 10.3389/fpls.2013.00108 – ident: e_1_2_9_84_1 doi: 10.1021/acs.jpcc.5b06660 – ident: e_1_2_9_128_1 doi: 10.1111/j.1469-8137.2008.02436.x – ident: e_1_2_9_143_1 doi: 10.1163/22941932-bja10059 – ident: e_1_2_9_83_1 doi: 10.1104/pp.110.155200 – ident: e_1_2_9_70_1 doi: 10.1111/nph.15116 – ident: e_1_2_9_152_1 doi: 10.1007/978-3-319-15783-2_7 – ident: e_1_2_9_121_1 doi: 10.1111/nph.15549 – ident: e_1_2_9_136_1 doi: 10.1111/nph.14245 – ident: e_1_2_9_150_1 doi: 10.1111/j.1469-8137.2007.02061.x – ident: e_1_2_9_65_1 doi: 10.1093/treephys/tpz064 – ident: e_1_2_9_58_1 doi: 10.1098/rstb.1895.0012 – ident: e_1_2_9_178_1 doi: 10.1104/pp.100.2.605 – ident: e_1_2_9_172_1 doi: 10.1104/pp.18.00103 – ident: e_1_2_9_117_1 doi: 10.1007/s00468-017-1610-y – ident: e_1_2_9_122_1 doi: 10.1111/1365-2435.13975 – ident: e_1_2_9_138_1 doi: 10.1093/treephys/tpz072 – ident: e_1_2_9_168_1 doi: 10.3389/fpls.2012.00107 – ident: e_1_2_9_78_1 doi: 10.1111/pce.12777 – ident: e_1_2_9_156_1 doi: 10.1093/oxfordjournals.aob.a086825 – ident: e_1_2_9_159_1 doi: 10.1002/ajb2.1034 – ident: e_1_2_9_72_1 doi: 10.1111/ele.12748 – ident: e_1_2_9_145_1 doi: 10.1007/s40626-020-00189-4 – ident: e_1_2_9_184_1 doi: 10.1093/aob/mcaa196 – ident: e_1_2_9_45_1 doi: 10.1046/j.1365-3040.2002.00863.x – ident: e_1_2_9_180_1 doi: 10.1111/pce.12852 – ident: e_1_2_9_63_1 doi: 10.1002/j.1537-2197.1989.tb15126.x – ident: e_1_2_9_102_1 doi: 10.1073/pnas.2100314118 – ident: e_1_2_9_14_1 doi: 10.1111/pce.12758 – ident: e_1_2_9_116_1 doi: 10.1038/srep02031 – ident: e_1_2_9_55_1 doi: 10.1080/11956860.1999.11682519 – ident: e_1_2_9_139_1 doi: 10.1002/ajb2.1552 – ident: e_1_2_9_20_1 doi: 10.1104/pp.112.212712 – ident: e_1_2_9_50_1 doi: 10.1093/jxb/erg202 – ident: e_1_2_9_190_1 doi: 10.1163/22941932-90001369 – ident: e_1_2_9_202_1 doi: 10.1093/treephys/tpu056 – ident: e_1_2_9_56_1 doi: 10.2307/2656919 – ident: e_1_2_9_66_1 doi: 10.1111/nph.16746 – ident: e_1_2_9_126_1 doi: 10.1093/treephys/tpu059 – ident: e_1_2_9_206_1 doi: 10.1093/aob/mcz076 – ident: e_1_2_9_204_1 doi: 10.1111/nph.15135 – ident: e_1_2_9_174_1 doi: 10.1111/nph.17025 – ident: e_1_2_9_187_1 doi: 10.1111/nph.14589 – ident: e_1_2_9_33_1 doi: 10.1104/pp.113.228403 – ident: e_1_2_9_88_1 doi: 10.1111/j.1365-3040.2007.01729.x – ident: e_1_2_9_89_1 doi: 10.3732/ajb.1200140 – ident: e_1_2_9_147_1 doi: 10.1111/nph.12850 – ident: e_1_2_9_62_1 doi: 10.1093/aob/mcz104 – ident: e_1_2_9_76_1 doi: 10.1078/1439-1791-00006 – ident: e_1_2_9_199_1 doi: 10.1111/pce.13565 – ident: e_1_2_9_47_1 doi: 10.1007/s13595-013-0317-5 – ident: e_1_2_9_208_1 doi: 10.1007/s00442-022-05124-9 – ident: e_1_2_9_24_1 doi: 10.1126/science.aat7631 – ident: e_1_2_9_189_1 doi: 10.1104/pp.114.249706 – ident: e_1_2_9_213_1 doi: 10.1002/ajb2.1518 – ident: e_1_2_9_104_1 doi: 10.1016/0927-7757(96)03637-0 – ident: e_1_2_9_192_1 doi: 10.1104/pp.120.1.11 – ident: e_1_2_9_137_1 doi: 10.20870/jph.2020.e-001 – ident: e_1_2_9_167_1 doi: 10.1104/pp.18.00743 – ident: e_1_2_9_144_1 doi: 10.1007/s00468-017-1574-y – ident: e_1_2_9_85_1 doi: 10.1006/jtbi.2001.2485 – ident: e_1_2_9_153_1 doi: 10.1038/239163a0 – ident: e_1_2_9_18_1 doi: 10.1111/nph.14811 – ident: e_1_2_9_105_1 doi: 10.1007/s13595-018-0768-9 – ident: e_1_2_9_82_1 doi: 10.1093/aob/mcu232 – ident: e_1_2_9_157_1 doi: 10.1111/j.1365-3040.2004.01211.x – ident: e_1_2_9_75_1 doi: 10.1111/j.1365-3040.2009.02000.x – ident: e_1_2_9_21_1 doi: 10.1073/pnas.1522569113 – ident: e_1_2_9_182_1 doi: 10.1146/annurev.arplant.52.1.847 – ident: e_1_2_9_129_1 doi: 10.1111/j.1469-8137.2012.04244.x – ident: e_1_2_9_17_1 doi: 10.1063/1.1699741 – ident: e_1_2_9_163_1 doi: 10.1016/j.tplants.2015.01.008 – ident: e_1_2_9_181_1 doi: 10.1073/pnas.1913072116 – ident: e_1_2_9_120_1 doi: 10.1103/RevModPhys.87.981 – ident: e_1_2_9_193_1 doi: 10.1146/annurev.pp.40.060189.000315 – ident: e_1_2_9_98_1 doi: 10.1073/pnas.1917195117 – ident: e_1_2_9_149_1 doi: 10.1002/ajb2.1450 – ident: e_1_2_9_103_1 doi: 10.1007/s00468-019-01897-4 – ident: e_1_2_9_30_1 doi: 10.5642/aliso.19660602.03 – ident: e_1_2_9_217_1 doi: 10.1104/pp.123.3.1015 – ident: e_1_2_9_191_1 doi: 10.1111/j.1469-8137.1991.tb00035.x |
SSID | ssj0009562 |
Score | 2.659846 |
SecondaryResourceType | review_article |
Snippet | Summary
Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to... Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess... Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2019 |
SubjectTerms | Angiosperms Biodiversity and Ecology Blood vessels Diameters Drought Embolism Environmental Sciences Evaluation fluid transport Global Changes mortality pit membrane thickness plant–water relations vessel diameter Vulnerability Water transport wood anatomy Xylem xylem sap |
Title | Functional xylem characteristics associated with drought‐induced embolism in angiosperms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18447 https://www.proquest.com/docview/2737002600 https://www.proquest.com/docview/2708261847 https://www.proquest.com/docview/2811984668 https://hal.inrae.fr/hal-04115299 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxNBEB9q8aEvtmpLU6OsxYe-XLjc3e7t0qcqhiBaRFoIRThu_5wNJpdiEjE--RH8jH4SZ_b-kBYtpW_H7Rzs7uzc_GZ39jcAr6xSjhttAulsHiSIcAONug-0DaXi3HDtT_A_nIrhefJuxEcbcNzchan4IdoNN7IM_78mA8_1fM3Iy6vLHoYnCd0kp1wtAkSfojXCXRE1DMwiEaOaVYiyeNovr_miB5eUCbkGM9fBqvc2g2343PSzSjL52lsudM_8vEHheM-B7MCjGoWyk2rZPIYNVz6Bh69niBRXT-FigM6u2iNkP1YTN2XmOq0zy2ulOstoI5dZX-xn8efXbwzxcbFY5qZ6NhnPp2xcsrz8MvaM5NP5LpwP3p69GQZ1DYbAJHGUBkUonU5EbFMtjTORKxDnCuKtt3HEc1EYjDALaXjB40gZhGeGq1yglUdGhUUY78FmOSvdPjAleCxkvwgV1UZSRgqZSlW4UAubujTtwFGjjczUBOVUJ2OSNYEKzlTmZ6oDh63oVcXK8U8hVGnbTjzaw5P3Gb0LEwTC6Ii_9zvQbTSe1dY7zxDSpZ5sLezAy7YZ7Y4OU_LSzZYkg-CJquWkt8jIfl8hwBMSx-aXwP97m51-HPqHg7uLPoOtiG5j-OyaLmwuvi3dc8RIC_3CG8NfTTYNqg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB61BQku_CNSChgEEpeNNt611z5wKJQopWmEUCtFXLbrn6VRk01FEiCceAQehFfhJXgSxt4fpQgQlx64rXZHK9szY38ej78BeGyktEwrHQhrsiBGhBso1H2gTCgkY5opf4K_P-C9w_jVkA3X4Ft9F6bkh2gCbs4z_HztHNwFpFe8vDg9buP-JE6qlMo9u_yIG7bZs90d1O4TSrsvD170gqqmQKDjiCZBHgqrYh6ZRAltNbU54jbueNhNRFnGc407plxolrOISo1wQzOZcbRaqmWYhxH-dx0uuArijql_5w1dofjltOZ85jEfVjxGLm-oaeqZ1W_92OVergDbVXjs17fuVfhej0yZ1nLSXsxVW3_-hTTyfxm6a3ClAtpku_SM67Bmixtw8fkUwfDyJrzt4npehkHJp-XYTog-y1xNsspurSEuVk2Mr2c0__Hl66gw6A-G2ImajkezCRkVJCvejTzp-mR2Cw7PpV-3YaOYFvYOEMlZxEUnD6Ur_yS14CIRMreh4iaxSdKCp7X6U11xsLtSIOO03ouhZlKvmRY8akRPS-KR3wqhDTXfHVV4b7ufundhjFgfscaHTgu2ahNLqwlqliJqTTyfXNiCh81nnFrceVFW2OnCySA-dAWBkr_IiE5HIoblAvvmbe7PrU0Hr3v-YfPfRR_Apd7Bfj_t7w727sJl6i6f-GSiLdiYv1_YewgJ5-q-90QCR-dtvz8B6cVqew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB61BaFe-EcEChgEEpeNNt611z5wKIQopSWqEJUiLsv6Z2nUZBORBAgnHoH34FV4Cp6EsfdHKQLEpQduq93RyvbM2N_Y428AHhopLdNKB8KaLIgR4QYKdR8oEwrJmGbKn-C_HPD-UfxiyIYb8K2-C1PyQzQbbs4z_HztHHxm8jUnL2bHbQxP4qTKqNy3q48Yr82f7HVRuY8o7T1__awfVCUFAh1HNAnyUFgV88gkSmirqc0RtnFHw24iyjKeawyYcqFZziIqNaINzWTG0WiplmEeRvjfTTgX81C6OhHdV3SN4ZfTmvKZx3xY0Ri5tKGmqacWv81jl3q5hmvX0bFf3nqX4Hs9MGVWy0l7uVBt_fkXzsj_ZOQuw8UKZpPd0i-uwIYtrsL5p1OEwqtr8KaHq3m5CUo-rcZ2QvRp3mqSVVZrDXE71cT4akaLH1--jgqD3mCInajpeDSfkFFBsuLdyFOuT-bX4ehM-nUDtoppYW8CkZxFXHTyULriT1ILLhIhcxsqbhKbJC14XGs_1RUDuysEMk7rSAw1k3rNtOBBIzoraUd-K4Qm1Hx3ROH93YPUvQtjRPqIND50WrBTW1haTU_zFDFr4tnkwhbcbz7jxOJOi7LCTpdOBtGhKweU_EVGdDoSESwX2Ddvcn9ubTo47PuHW_8ueg8uHHZ76cHeYP82bFN388RnEu3A1uL90t5BPLhQd70fEnh71ub7EymdaSo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+xylem+characteristics+associated+with+drought%E2%80%90induced+embolism+in+angiosperms&rft.jtitle=The+New+phytologist&rft.au=Lens%2C+Frederic&rft.au=Gleason%2C+Sean+M.&rft.au=Bortolami%2C+Giovanni&rft.au=Brodersen%2C+Craig&rft.date=2022-12-01&rft.issn=0028-646X&rft.volume=236&rft.issue=6+p.2019-2036&rft.spage=2019&rft.epage=2036&rft_id=info:doi/10.1111%2Fnph.18447&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |