Functional xylem characteristics associated with drought‐induced embolism in angiosperms

Summary Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured trait...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 236; no. 6; pp. 2019 - 2036
Main Authors Lens, Frederic, Gleason, Sean M., Bortolami, Giovanni, Brodersen, Craig, Delzon, Sylvain, Jansen, Steven
Format Journal Article
LanguageEnglish
Published Lancaster Wiley Subscription Services, Inc 01.12.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re‐evaluation: (1) our current understanding of drought‐induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter–vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
AbstractList Summary Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re‐evaluation: (1) our current understanding of drought‐induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter–vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re‐evaluation: (1) our current understanding of drought‐induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter–vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Author Jansen, Steven
Brodersen, Craig
Gleason, Sean M.
Delzon, Sylvain
Bortolami, Giovanni
Lens, Frederic
Author_xml – sequence: 1
  givenname: Frederic
  orcidid: 0000-0002-5001-0149
  surname: Lens
  fullname: Lens, Frederic
  email: frederic.lens@naturalis.nl
  organization: Institute of Biology Leiden, Plant Sciences
– sequence: 2
  givenname: Sean M.
  orcidid: 0000-0002-5607-4741
  surname: Gleason
  fullname: Gleason, Sean M.
  organization: United States Department of Agriculture, Agricultural Research Service
– sequence: 3
  givenname: Giovanni
  orcidid: 0000-0001-7528-9644
  surname: Bortolami
  fullname: Bortolami, Giovanni
  organization: Naturalis Biodiversity Center
– sequence: 4
  givenname: Craig
  orcidid: 0000-0002-0924-2570
  surname: Brodersen
  fullname: Brodersen, Craig
  organization: Yale University
– sequence: 5
  givenname: Sylvain
  orcidid: 0000-0003-3442-1711
  surname: Delzon
  fullname: Delzon, Sylvain
  organization: University of Bordeaux, INRAE, BIOGECO
– sequence: 6
  givenname: Steven
  orcidid: 0000-0002-4476-5334
  surname: Jansen
  fullname: Jansen, Steven
  organization: Ulm University
BackLink https://hal.inrae.fr/hal-04115299$$DView record in HAL
BookMark eNqFkU1uFDEQha0oiEwCi9ygpWzIohP_tX-WUUQYpBGwCBJiY3nc7rQjtz3YbpLZcQTOyEnoZgJIURC1Kan0Vanee4dgP8RgAThG8AxNdR42_RkSlPI9sECUyVogwvfBAkIsakbZpwNwmPMthFA2DD8HB4RBIpnkC_D5agymuBi0r-633g6V6XXSptjkcnEmVzrnaJwutq3uXOmrNsXxpi8_vn13oR3NNLbDOnqXh8qFSocbF_PGpiG_AM867bN9-dCPwMer19eXy3r1_s3by4tVbSjBvO6gsGvKSMvXwliDbSfQmkFKWEtwo1lncEM7YZquIVgagqlppGZcUmwk7CA5Aqe7u732apPcoNNWRe3U8mKl5hmkCDVYyq9oYl_t2E2KX0abixpcNtZ7HWwcs8ICISkoY-L_KIcCs8l2PqEnj9DbOKbJ0pkifIqBwfnP8x1lUsw52U4ZV_TsfUnaeYWgmtNUU5rqV5p_lf3Z-C3vKfbh-p3zdvtvUL37sNxt_ATl369N
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_169165
crossref_primary_10_1111_nph_20115
crossref_primary_10_1093_forestry_cpad066
crossref_primary_10_1111_nph_19368
crossref_primary_10_1590_1677_941x_abb_2023_0019
crossref_primary_10_1111_nph_20035
crossref_primary_10_1093_jxb_eraf044
crossref_primary_10_1093_treephys_tpae017
crossref_primary_10_1016_j_foreco_2025_122539
crossref_primary_10_3390_agriculture13101867
crossref_primary_10_1016_j_flora_2025_152682
crossref_primary_10_1093_treephys_tpae131
crossref_primary_10_3389_fpls_2024_1512645
crossref_primary_10_1016_j_envexpbot_2024_106055
crossref_primary_10_3390_plants11233310
crossref_primary_10_1111_ppl_14408
crossref_primary_10_1007_s11676_024_01725_7
crossref_primary_10_1080_11263504_2024_2313207
crossref_primary_10_1111_1365_2435_14451
crossref_primary_10_1590_0001_3765202420240053
crossref_primary_10_1007_s00468_024_02571_0
crossref_primary_10_1016_j_envexpbot_2023_105484
crossref_primary_10_1111_pce_15084
crossref_primary_10_1093_aob_mcae054
crossref_primary_10_1093_treephys_tpae109
crossref_primary_10_1016_j_flora_2024_152458
crossref_primary_10_1093_jxb_erac446
crossref_primary_10_1111_nph_20222
crossref_primary_10_1111_ppl_70075
crossref_primary_10_17660_ActaHortic_2025_1419_16
crossref_primary_10_1002_ajb2_16214
crossref_primary_10_1111_pce_14713
crossref_primary_10_3389_fpls_2024_1393245
crossref_primary_10_1111_tpj_16809
crossref_primary_10_1111_ppl_13924
crossref_primary_10_3389_fpls_2024_1351438
crossref_primary_10_1111_ppl_14132
crossref_primary_10_1111_nph_19914
crossref_primary_10_1186_s12870_024_05348_2
crossref_primary_10_1111_nph_20185
crossref_primary_10_3390_agronomy14061267
crossref_primary_10_1515_hf_2024_0007
crossref_primary_10_3390_f14050920
crossref_primary_10_1093_forsci_fxac044
crossref_primary_10_1111_nph_20213
crossref_primary_10_1111_nph_20257
crossref_primary_10_1016_j_ecolind_2024_112037
crossref_primary_10_1111_nph_19342
crossref_primary_10_1016_j_envexpbot_2023_105338
crossref_primary_10_1007_s00442_024_05562_7
crossref_primary_10_1371_journal_pone_0293430
crossref_primary_10_1111_nph_18731
crossref_primary_10_1002_ajb2_16407
crossref_primary_10_3390_f14102058
crossref_primary_10_1002_ece3_11552
crossref_primary_10_1002_ajb2_16447
crossref_primary_10_1093_treephys_tpad021
crossref_primary_10_1111_pce_14921
crossref_primary_10_3390_ijms252011059
crossref_primary_10_1016_j_scitotenv_2023_163124
crossref_primary_10_3390_f15030571
crossref_primary_10_3390_ijms24032893
crossref_primary_10_1111_ele_14270
crossref_primary_10_1007_s00468_025_02603_3
crossref_primary_10_1093_aob_mcae077
crossref_primary_10_1111_1365_2435_14751
crossref_primary_10_3390_agronomy14030438
crossref_primary_10_1007_s00468_023_02459_5
crossref_primary_10_1111_ppl_13970
crossref_primary_10_1111_ppl_14421
crossref_primary_10_1016_j_chemosphere_2023_140380
crossref_primary_10_1093_aobpla_plae059
crossref_primary_10_1007_s00468_023_02475_5
crossref_primary_10_1007_s00468_024_02557_y
crossref_primary_10_1038_s41598_024_80261_0
crossref_primary_10_1111_nph_19017
crossref_primary_10_2478_boku_2023_0006
crossref_primary_10_1088_1748_9326_ad8f48
crossref_primary_10_1093_treephys_tpad037
crossref_primary_10_1111_nph_20326
crossref_primary_10_1111_nph_19253
crossref_primary_10_1186_s12870_024_05859_y
crossref_primary_10_1093_jxb_erad351
crossref_primary_10_3389_fpls_2024_1414448
crossref_primary_10_1111_pce_14788
crossref_primary_10_3389_fpls_2023_1002711
crossref_primary_10_1016_j_agrformet_2025_110430
crossref_primary_10_1098_rsos_231029
crossref_primary_10_3390_su16083373
crossref_primary_10_1093_plphys_kiad204
crossref_primary_10_1111_pce_15197
crossref_primary_10_1093_molbev_msaf011
crossref_primary_10_1111_nph_19615
crossref_primary_10_1016_j_envexpbot_2023_105476
crossref_primary_10_1111_ppl_14035
Cites_doi 10.1016/j.jtbi.2007.03.036
10.1093/aob/mcx137
10.1111/nph.17043
10.1093/aob/mcu020
10.1104/pp.18.00883
10.1093/aob/mcz138
10.1073/pnas.2008987118
10.1111/ele.12851
10.1029/2018WR022801
10.1038/s41586-018-0240-x
10.1093/treephys/tpw031
10.5194/nhess-20-695-2020
10.1111/j.1365-3040.2005.01433.x
10.1016/j.plantsci.2010.12.011
10.1126/sciadv.aao6969
10.1111/ppl.12185
10.1093/treephys/tpu001
10.1093/treephys/26.6.689
10.1007/978-3-662-04578-7
10.1111/j.1469-8137.2010.03518.x
10.1111/pce.12139
10.1111/j.1365-3040.2010.02127.x
10.1038/nature11688
10.1111/pce.13418
10.1104/pp.125.2.779
10.1111/nph.13646
10.1093/plphys/kiab045
10.1093/treephys/tpv003
10.1163/22941932-40190259
10.1093/treephys/tpy148
10.1111/pce.12391
10.1111/nph.17875
10.1111/nph.17429
10.1038/s41559-017-0248-x
10.1093/treephys/tpv040
10.1104/pp.113.219774
10.1007/s11104-020-04525-0
10.1111/j.1365-3040.2010.02142.x
10.1111/nph.15333
10.1073/pnas.1221373110
10.1111/j.1365-3040.2011.02439.x
10.1111/nph.17577
10.1080/07373937.2021.1955706
10.1111/j.1365-3040.2010.02163.x
10.1111/pce.12461
10.1104/pp.15.00732
10.1111/j.1365-3040.2005.01336.x
10.1007/BF00328172
10.1104/pp.16.01079
10.1104/pp.16.01039
10.1007/BF01252532
10.1038/nplants.2015.114
10.1104/pp.20.00464
10.1111/nph.17117
10.1111/pce.14265
10.1093/aobpla/plw052
10.1163/22941932-20160128
10.1111/nph.14256
10.2307/2656722
10.1111/j.1469-8137.2009.02776.x
10.1111/1365-2435.13085
10.1111/pce.13415
10.1007/978-3-662-22627-8
10.1016/j.pbi.2013.02.005
10.1111/pce.14016
10.1073/pnas.1721728115
10.1111/plb.13384
10.1163/22941932-90000407
10.1111/1365-2435.13519
10.3732/ajb.0800248
10.1111/nph.16942
10.1093/aob/mct294
10.1007/s00442-002-1009-2
10.1111/nph.15079
10.1103/PhysRevE.89.033019
10.1016/0022-5193(65)90077-9
10.1139/b98-213
10.1111/j.1469-8137.1994.tb02964.x
10.1111/nph.17282
10.1111/j.1365-3040.2005.01330.x
10.1111/j.1365-3040.2005.01397.x
10.3732/ajb.89.5.820
10.1111/nph.12798
10.1111/ppl.13556
10.1890/ES15-00203.1
10.1093/aob/mcx144
10.1093/jxb/erz474
10.1104/pp.114.256602
10.1111/nph.15886
10.1007/s00468-015-1302-4
10.1111/nph.14450
10.2118/2504-PA
10.3389/ffgc.2021.704670
10.1007/BF00328731
10.1111/j.1438-8677.2012.00678.x
10.1021/acs.jpcb.6b01618
10.1111/j.1469-8137.2012.04118.x
10.3389/fpls.2021.732701
10.1016/j.micromeso.2019.109561
10.1073/pnas.1525678113
10.3389/fpls.2013.00056
10.1038/s41467-019-13673-6
10.1111/tpj.15125
10.1111/pce.12120
10.1093/jxb/ert193
10.1093/treephys/tpaa006
10.1371/journal.pone.0230868
10.1163/22941932-40190233
10.3732/ajb.93.10.1490
10.1111/pce.12566
10.1111/pce.14253
10.1111/pce.12148
10.1111/nph.16723
10.3390/plants9020231
10.1111/nph.13846
10.1111/pce.12678
10.1111/1365-2435.12656
10.1111/j.1469-8137.2011.03984.x
10.1104/pp.88.3.581
10.1093/treephys/tpab018
10.1111/pce.13654
10.1111/nph.16516
10.1103/PhysRevE.103.062407
10.1093/aob/mcu109
10.1093/treephys/tpt030
10.1093/aobpla/plab003
10.1111/nph.13017
10.1371/journal.pone.0159145
10.3389/fpls.2013.00108
10.1021/acs.jpcc.5b06660
10.1111/j.1469-8137.2008.02436.x
10.1163/22941932-bja10059
10.1104/pp.110.155200
10.1111/nph.15116
10.1007/978-3-319-15783-2_7
10.1111/nph.15549
10.1111/nph.14245
10.1111/j.1469-8137.2007.02061.x
10.1093/treephys/tpz064
10.1098/rstb.1895.0012
10.1104/pp.100.2.605
10.1104/pp.18.00103
10.1007/s00468-017-1610-y
10.1111/1365-2435.13975
10.1093/treephys/tpz072
10.3389/fpls.2012.00107
10.1111/pce.12777
10.1093/oxfordjournals.aob.a086825
10.1002/ajb2.1034
10.1111/ele.12748
10.1007/s40626-020-00189-4
10.1093/aob/mcaa196
10.1046/j.1365-3040.2002.00863.x
10.1111/pce.12852
10.1002/j.1537-2197.1989.tb15126.x
10.1073/pnas.2100314118
10.1111/pce.12758
10.1038/srep02031
10.1080/11956860.1999.11682519
10.1002/ajb2.1552
10.1104/pp.112.212712
10.1093/jxb/erg202
10.1163/22941932-90001369
10.1093/treephys/tpu056
10.2307/2656919
10.1111/nph.16746
10.1093/treephys/tpu059
10.1093/aob/mcz076
10.1111/nph.15135
10.1111/nph.17025
10.1111/nph.14589
10.1104/pp.113.228403
10.1111/j.1365-3040.2007.01729.x
10.3732/ajb.1200140
10.1111/nph.12850
10.1093/aob/mcz104
10.1078/1439-1791-00006
10.1111/pce.13565
10.1007/s13595-013-0317-5
10.1007/s00442-022-05124-9
10.1126/science.aat7631
10.1104/pp.114.249706
10.1002/ajb2.1518
10.1016/0927-7757(96)03637-0
10.1104/pp.120.1.11
10.20870/jph.2020.e-001
10.1104/pp.18.00743
10.1007/s00468-017-1574-y
10.1006/jtbi.2001.2485
10.1038/239163a0
10.1111/nph.14811
10.1007/s13595-018-0768-9
10.1093/aob/mcu232
10.1111/j.1365-3040.2004.01211.x
10.1111/j.1365-3040.2009.02000.x
10.1073/pnas.1522569113
10.1146/annurev.arplant.52.1.847
10.1111/j.1469-8137.2012.04244.x
10.1063/1.1699741
10.1016/j.tplants.2015.01.008
10.1073/pnas.1913072116
10.1103/RevModPhys.87.981
10.1146/annurev.pp.40.060189.000315
10.1073/pnas.1917195117
10.1002/ajb2.1450
10.1007/s00468-019-01897-4
10.5642/aliso.19660602.03
10.1104/pp.123.3.1015
10.1111/j.1469-8137.1991.tb00035.x
ContentType Journal Article
Copyright 2022 The Authors. © 2022 New Phytologist Foundation.
Copyright © 2022 New Phytologist Trust
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 The Authors. © 2022 New Phytologist Foundation.
– notice: Copyright © 2022 New Phytologist Trust
– notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
DOI 10.1111/nph.18447
DatabaseName CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
EISSN 1469-8137
EndPage 2036
ExternalDocumentID oai_HAL_hal_04115299v1
10_1111_nph_18447
NPH18447
Genre reviewArticle
GrantInformation_xml – fundername: Dutch Research Council NWO
  funderid: grant ALWOP.488
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  funderid: project number 383393940
– fundername: REGION project VITIPIN and Grand Programme de Recherche Bordeaux Plant Science
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
UMC
ID FETCH-LOGICAL-c4327-f08eb463d7b8cec2ef81b60436d325a6fc254f8c5f5329c324c59a67942c90f03
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri May 09 12:22:08 EDT 2025
Fri Jul 11 18:33:43 EDT 2025
Thu Jul 10 23:08:26 EDT 2025
Fri Jul 25 11:54:09 EDT 2025
Tue Jul 01 02:28:43 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Wed Jan 22 16:24:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fluid transport
drought
plant-water relations
pit membrane thickness
xylem sap
embolism
vessel diameter
wood anatomy
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4327-f08eb463d7b8cec2ef81b60436d325a6fc254f8c5f5329c324c59a67942c90f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0924-2570
0000-0003-3442-1711
0000-0001-7528-9644
0000-0002-4476-5334
0000-0002-5001-0149
0000-0002-5607-4741
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.18447
PMID 36039697
PQID 2737002600
PQPubID 2026848
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_04115299v1
proquest_miscellaneous_2811984668
proquest_miscellaneous_2708261847
proquest_journals_2737002600
crossref_citationtrail_10_1111_nph_18447
crossref_primary_10_1111_nph_18447
wiley_primary_10_1111_nph_18447_NPH18447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
2022-12
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Lancaster
PublicationPlace_xml – name: Lancaster
PublicationTitle The New phytologist
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 1989; 40
2013; 3
2013; 4
2020; 20
1950; 21
2004; 27
2019; 10
2004; 163
2000; 87
1983; 4
2013; 64
2020; 15
2016; 30
2013; 70
2018; 41
2011; 190
2015b
2012; 15
2016; 39
2012; 99
2016; 37
2016; 36
2019; 288
2003; 54
1968; 66
1991; 119
2012; 491
2018; 177
2009; 96
2018; 4
1999a; 6
2018; 218
2018; 217
1965; 8
2022; 40
2020; 450
2002; 89
2015a; 35
1984; 54
2018; 178
2007; 174
2006; 26
2015; 87
1988; 88
2006; 29
2022; 36
1983
2018; 219
2013; 110
2000; 123
2018; 32
2016a; 113
2001; 52
2010; 33
2022; 233
2018; 220
2022; 198
2021; 42
2021; 45
2021; 44
2016; 209
2018; 105
2020; 40
2009; 182
2002; 133
2019; 39
1970; 10
2019; 223
2020; 34
2020; 32
2012; 35
2014; 152
2019; 221
1999b; 86
2016; 11
2012; 194
2012; 196
2019; 40
2015; 115
2019; 42
2018; 115
2012; 193
2014; 37
2015; 119
1994; 15
2016; 170
2014; 34
2016; 8
1996; 117
2016; 172
2017; 40
2015; 35
2018; 121
2015; 36
2017; 1
2015; 38
1999; 120
2020; 368
2019; 124
2020; 128
2013; 163
2000; 1
2007; 30
2020; 125
2013; 161
2005; 28
1996; 105
1990; 84
2020; 7
2014; 205
1989; 76
2013; 16
2001
2021; 118
2020; 9
2016; 113
2020b; 228
2019; 116
2010; 153
2021; 230
2021; 232
2016b; 209
2021; 231
2020; 43
1895; 186
2021; 41
2014; 164
2018; 75
2014; 203
2015; 1
2007; 247
2006; 93
2017; 20
1972; 239
2015; 6
2021; 4
2020; 184
2015; 168
2021; 103
1992; 100
2015; 167
1966; 6
2021; 229
2022; 45
2020; 105
2020; 228
2020; 227
2002; 215
2020; 107
2005
2017; 173
2021; 186
2017; 213
2014; 89
2016; 120
2017; 214
2014; 114
2001; 125
2020; 229
2017; 215
2018; 69
2014; 113
2021; 13
2002; 25
2012; 3
2013; 36
2009; 32
2021; 12
1994; 126
2020a; 229
2013; 33
2022
2018; 558
2020; 71
2015; 20
1999; 77
2021; 173
2020; 117
2015
2011; 180
2008; 178
2018; 54
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
Angeles G (e_1_2_9_9_1) 2004; 163
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
Klepsch M (e_1_2_9_100_1) 2018; 69
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_211_1
Li S (e_1_2_9_112_1) 2015; 36
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
Brodribb TJ (e_1_2_9_23_1) 2015
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_123_1
e_1_2_9_169_1
Lens F (e_1_2_9_107_1) 2016; 172
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_212_1
e_1_2_9_90_1
André JP (e_1_2_9_6_1) 2005
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
Choat B (e_1_2_9_39_1) 2010; 33
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 121
  start-page: 129
  year: 2018
  end-page: 141
  article-title: Traits and trade‐offs in whole‐tree hydraulic architecture along the vertical axis of
  publication-title: Annals of Botany
– volume: 69
  start-page: 5611
  year: 2018
  end-page: 5623
  article-title: Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 695
  year: 2020
  end-page: 712
  article-title: Global‐scale drought risk assessment for agricultural systems
  publication-title: Natural Hazards and Earth System Sciences
– volume: 28
  start-page: 800
  year: 2005
  end-page: 812
  article-title: Inter‐vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade‐off in xylem transport
  publication-title: Plant, Cell & Environment
– volume: 124
  start-page: 297
  year: 2019
  end-page: 306
  article-title: The functional implications of tracheary connections across growth rings in four northern hardwood trees
  publication-title: Annals of Botany
– volume: 186
  start-page: 563
  year: 1895
  end-page: 576
  article-title: On the ascent of sap
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 6
  start-page: 25
  year: 1966
  end-page: 44
  article-title: Wood anatomy of compositae: a summary, with comments on factors controlling wood evolution
  publication-title: Aliso
– volume: 219
  start-page: 77
  year: 2018
  end-page: 88
  article-title: Hydraulic safety margins and air‐seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees
  publication-title: New Phytologist
– volume: 84
  start-page: 544
  year: 1990
  end-page: 552
  article-title: A survey of vessel dimensions in stems of tropical lianas and other growth forms
  publication-title: Oecologia
– volume: 3
  start-page: 107
  year: 2012
  article-title: Freeze/thaw‐induced embolism: probability of critical bubble formation depends on speed of ice formation
  publication-title: Frontiers in Plant Science
– volume: 4
  start-page: 108
  year: 2013
  article-title: Maintenance of xylem network transport capacity: a review of embolism repair capacity in vascular plants
  publication-title: Frontiers in Plant Science
– volume: 40
  start-page: 673
  year: 2019
  end-page: 702
  article-title: Function and three‐dimensional structure of intervessel pit membranes in angiosperms: a review
  publication-title: IAWA Journal
– volume: 15
  start-page: 335
  year: 1994
  end-page: 360
  article-title: Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?
  publication-title: IAWA Journal
– volume: 77
  start-page: 253
  year: 1999
  end-page: 261
  article-title: Characters and origin of vessels with heterogeneous structure in leaf and flower abscission zones
  publication-title: Canadian Journal of Botany
– volume: 107
  start-page: 618
  year: 2020
  end-page: 627
  article-title: Factors controlling drought resistance in grapevine ( , chardonnay): application of a new micro CT method to assess functional embolism resistance
  publication-title: American Journal of Botany
– volume: 33
  start-page: 672
  year: 2013
  end-page: 683
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 8
  start-page: 264
  year: 1965
  end-page: 275
  article-title: An analysis of irreversible plant cell elongation
  publication-title: Journal of Theoretical Biology
– volume: 198
  start-page: 629
  year: 2022
  end-page: 644
  article-title: Soil water availability and branch age explain variability in xylem safety of European beech in Central Europe
  publication-title: Oecologia
– volume: 8
  year: 2016
  article-title: The chemical identity of intervessel pit membranes in challenges hydrogel control of xylem hydraulic conductivity
  publication-title: AoB PLANTS
– volume: 35
  start-page: 400
  year: 2015
  end-page: 409
  article-title: Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues
  publication-title: Tree Physiology
– volume: 37
  start-page: 35
  year: 2014
  end-page: 44
  article-title: Recalcitrant vulnerability curves: methods of analysis and the concept of fibre bridges for enhanced cavitation resistance
  publication-title: Plant, Cell & Environment
– volume: 13
  year: 2021
  article-title: Functional hydraulic sectoring in grapevines as evidenced by sap flow, dye infusion, leaf removal and micro‐computed tomography
  publication-title: AoB PLANTS
– volume: 164
  start-page: 992
  year: 2014
  end-page: 998
  article-title: Freeze‐thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms
  publication-title: Plant Physiology
– volume: 558
  start-page: 531
  year: 2018
  end-page: 539
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– volume: 233
  start-page: 1556
  year: 2022
  end-page: 1559
  article-title: A crucial phase in plants – it's a gas, gas, gas!
  publication-title: New Phytologist
– volume: 29
  start-page: 26
  year: 2006
  end-page: 35
  article-title: Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status
  publication-title: Plant, Cell & Environment
– volume: 153
  start-page: 1932
  year: 2010
  end-page: 1939
  article-title: Calcium is a major determinant of xylem vulnerability to cavitation
  publication-title: Plant Physiology
– volume: 213
  start-page: 1068
  year: 2017
  end-page: 1075
  article-title: X‐ray microtomography observations of xylem embolism in stems of are consistent with hydraulic measurements of percentage loss of conductance
  publication-title: New Phytologist
– volume: 178
  start-page: 1584
  year: 2018
  end-page: 1601
  article-title: The causes of leaf hydraulic vulnerability and its influence on gas exchange in
  publication-title: Plant Physiology
– volume: 20
  start-page: 199
  year: 2015
  end-page: 205
  article-title: Nanobubbles: a new paradigm for air‐seeding in xylem
  publication-title: Trends in Plant Science
– volume: 203
  start-page: 355
  year: 2014
  end-page: 358
  article-title: Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin
  publication-title: New Phytologist
– volume: 115
  start-page: 187
  year: 2015
  end-page: 199
  article-title: Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in ×
  publication-title: Annals of Botany
– volume: 227
  start-page: 146
  year: 2020
  end-page: 155
  article-title: Xylem cavitation isolates leaky flowers during water stress in pyrethrum
  publication-title: New Phytologist
– volume: 105
  start-page: 174
  year: 2018
  end-page: 187
  article-title: From the sap's perspective: the nature of vessel surfaces in angiosperm xylem
  publication-title: American Journal of Botany
– volume: 177
  start-page: 1066
  year: 2018
  end-page: 1077
  article-title: Low vulnerability to xylem embolism in leaves and stems of North American oaks
  publication-title: Plant Physiology
– volume: 221
  start-page: 1831
  year: 2019
  end-page: 1842
  article-title: Insights from micro‐CT analysis: testing the hydraulic vulnerability segmentation in and seedlings
  publication-title: New Phytologist
– volume: 223
  start-page: 1296
  year: 2019
  end-page: 1306
  article-title: No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak
  publication-title: New Phytologist
– volume: 113
  start-page: 977
  year: 2014
  end-page: 989
  article-title: Some properties of the walls of metaxylem vessels of maize roots, including tests of the wettability of their lumenal wall surfaces
  publication-title: Annals of Botany
– volume: 247
  start-page: 788
  year: 2007
  end-page: 803
  article-title: The relevance of xylem network structure for plant hydraulic efficiency and safety
  publication-title: Journal of Theoretical Biology
– volume: 87
  start-page: 1287
  year: 2000
  end-page: 1299
  article-title: Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation
  publication-title: American Journal of Botany
– volume: 217
  start-page: 117
  year: 2018
  end-page: 126
  article-title: visualization of the final stages of xylem vessel refilling in grapevine ( ) stems
  publication-title: New Phytologist
– volume: 220
  start-page: 836
  year: 2018
  end-page: 850
  article-title: A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought
  publication-title: New Phytologist
– volume: 288
  start-page: 109561
  year: 2019
  article-title: Gas oversolubility in nanoconfined liquids: review and perspectives for adsorbent design
  publication-title: Microporous and Mesoporous Materials
– volume: 52
  start-page: 847
  year: 2001
  end-page: 875
  article-title: The cohesion‐tension mechanism and the acquisition of water by plant roots
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 215
  start-page: 489
  year: 2017
  end-page: 499
  article-title: Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact
  publication-title: New Phytologist
– volume: 41
  start-page: 2718
  year: 2018
  end-page: 2730
  article-title: A network model links wood anatomy to xylem hydraulic behaviour
  publication-title: Plant Cell & Environment
– volume: 118
  year: 2021
  article-title: Evolutionary relationships between drought‐related traits and climate shape large hydraulic safety margins in western North American oaks
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 54
  start-page: 4901
  year: 2018
  end-page: 4915
  article-title: Distributed plant hydraulic and hydrological modeling to understand the susceptibility of riparian woodland trees to drought‐induced mortality
  publication-title: Water Resources Research
– volume: 196
  start-page: 661
  year: 2012
  end-page: 665
  article-title: Centrifuge technique consistently overestimates vulnerability to water stress‐induced cavitation in grapevines as confirmed with high‐resolution computed tomography
  publication-title: New Phytologist
– volume: 36
  start-page: 983
  year: 2016
  end-page: 993
  article-title: A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species
  publication-title: Tree Physiology
– volume: 70
  start-page: 659
  year: 2013
  end-page: 661
  article-title: Hydraulic failure and repair are not routine in trees
  publication-title: Annals of Forest Science
– volume: 4
  year: 2013
  article-title: How to quantify conduits in wood?
  publication-title: Frontiers in Plant Science
– volume: 35
  start-page: 744
  year: 2015
  end-page: 755
  article-title: Patterns of drought‐induced embolism formation and spread in living walnut saplings visualized using X‐ray microtomography
  publication-title: Tree Physiology
– volume: 40
  start-page: 816
  year: 2017
  end-page: 830
  article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost
  publication-title: Plant, Cell & Environment
– volume: 33
  start-page: 1502
  year: 2010
  end-page: 1512
  article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to long‐vesseled species
  publication-title: Plant, Cell & Environment
– volume: 105
  start-page: 293
  year: 1996
  end-page: 301
  article-title: Root and stem xylem embolism, stomatal conductance, and leaf turgor in populations along a soil moisture gradient
  publication-title: Oecologia
– volume: 121
  start-page: 849
  year: 2018
  end-page: 861
  article-title: Introducing turgor‐driven growth dynamics into functional–structural plant models
  publication-title: Annals of Botany
– volume: 1
  start-page: 1285
  year: 2017
  end-page: 1291
  article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality
  publication-title: Nature Ecology & Evolution
– start-page: 189
  year: 2015b
  end-page: 207
– volume: 15
  start-page: 496
  year: 2012
  end-page: 504
  article-title: Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method
  publication-title: Plant Biology
– volume: 103
  year: 2021
  article-title: Air spread through a wetted deformable membrane: implications for the mechanism of soft valves in plants
  publication-title: Physical Review E
– volume: 71
  start-page: 1151
  year: 2020
  end-page: 1159
  article-title: Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique
  publication-title: Journal of Experimental Botany
– volume: 30
  start-page: 1599
  year: 2007
  end-page: 1609
  article-title: Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities
  publication-title: Plant, Cell & Environment
– volume: 6
  start-page: 180
  year: 1999a
  end-page: 186
  article-title: Differential susceptibility to xylem cavitation among three pairs of species in the transverse mountain ranges of southern California
  publication-title: Ecoscience
– volume: 64
  start-page: 4779
  year: 2013
  end-page: 4791
  article-title: Methods for measuring plant vulnerability to cavitation: a critical review
  publication-title: Journal of Experimental Botany
– volume: 41
  start-page: 2869
  year: 2018
  end-page: 2881
  article-title: Coordination between leaf, stem, and root hydraulics and gas exchange in three arid‐zone angiosperms during severe drought and recovery
  publication-title: Plant, Cell & Environment
– volume: 45
  start-page: 1204
  year: 2021
  end-page: 1215
  article-title: Xylem embolism spread is largely prevented by interconduit pit membranes until the majority of conduits are gas‐filled
  publication-title: Plant, Cell & Environment
– volume: 1
  start-page: 31
  year: 2000
  end-page: 41
  article-title: Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah
  publication-title: Basic and Applied Ecology
– volume: 12
  start-page: 732701
  year: 2021
  article-title: Dynamic surface tension enhances the stability of nanobubbles in xylem sap
  publication-title: Frontiers in Plant Science
– volume: 43
  start-page: 116
  year: 2020
  end-page: 130
  article-title: High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem
  publication-title: Plant, Cell & Environment
– volume: 93
  start-page: 1490
  year: 2006
  end-page: 1500
  article-title: Size and function in conifer tracheids and angiosperm vessels
  publication-title: American Journal of Botany
– volume: 186
  start-page: 373
  year: 2021
  end-page: 387
  article-title: Xylem network connectivity and embolism spread in grapevine ( L.)
  publication-title: Plant Physiology
– volume: 32
  start-page: 1324
  year: 2009
  end-page: 1333
  article-title: Xylem function of arid‐land shrubs from California, USA: an ecological and evolutionary analysis
  publication-title: Plant, Cell & Environment
– volume: 88
  start-page: 581
  year: 1988
  end-page: 587
  article-title: Mechanism of water stress‐induced xylem embolism
  publication-title: Plant Physiology
– volume: 34
  start-page: 61
  year: 2020
  end-page: 71
  article-title: Within‐tree variability and sample storage effects of bordered pit membranes in xylem of
  publication-title: Trees
– volume: 228
  start-page: 884
  year: 2020
  end-page: 897
  article-title: Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species
  publication-title: New Phytologist
– volume: 34
  start-page: 894
  year: 2014
  end-page: 905
  article-title: How reliable are methods to assess xylem vulnerability to cavitation? The issue of ‘open vessel’ artifact in oaks
  publication-title: Tree Physiology
– volume: 38
  start-page: 2519
  year: 2015
  end-page: 2526
  article-title: A comparison of two methods for measuring vessel length in woody plants
  publication-title: Plant, Cell & Environment
– volume: 117
  start-page: 10733
  year: 2020
  end-page: 10739
  article-title: Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 89
  year: 2014
  article-title: Gas flow in plant microfluidic networks controlled by capillary valves
  publication-title: Physical Review E
– volume: 39
  start-page: 1783
  year: 2019
  end-page: 1791
  article-title: Vessel‐length determination using silicone and air injection: are there artifacts?
  publication-title: Tree Physiology
– volume: 36
  start-page: 179
  year: 2015
  end-page: 192
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– volume: 124
  start-page: 1173
  year: 2019
  end-page: 1183
  article-title: Embolism resistance in petioles and leaflets of palms
  publication-title: Annals of Botany
– volume: 230
  start-page: 1896
  year: 2021
  end-page: 1910
  article-title: Understanding and predicting forest mortality in the western United States using long‐term forest inventory data and modeled hydraulic damage
  publication-title: New Phytologist
– volume: 126
  start-page: 695
  year: 1994
  end-page: 705
  article-title: Conduit diameter and drought‐induced embolism in Greene (Labiatae)
  publication-title: New Phytologist
– volume: 133
  start-page: 19
  year: 2002
  end-page: 29
  article-title: Xylem hydraulic properties of roots and stems of nine Mediterranean woody species
  publication-title: Oecologia
– volume: 174
  start-page: 787
  year: 2007
  end-page: 798
  article-title: Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral
  publication-title: New Phytologist
– volume: 4
  year: 2021
  article-title: Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority
  publication-title: Frontiers in Forests and Global Change
– volume: 40
  start-page: 697
  year: 2022
  end-page: 718
  article-title: A fully implicit coupled pore‐network/free‐flow model for the pore‐scale simulation of drying processes
  publication-title: Drying Technology
– volume: 34
  start-page: 777
  year: 2020
  end-page: 787
  article-title: Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community
  publication-title: Functional Ecology
– volume: 163
  start-page: 999
  year: 2013
  end-page: 1011
  article-title: Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation
  publication-title: Plant Physiology
– volume: 182
  start-page: 664
  year: 2009
  end-page: 674
  article-title: Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of
  publication-title: New Phytologist
– volume: 213
  start-page: 1076
  year: 2017
  end-page: 1092
  article-title: Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline
  publication-title: New Phytologist
– volume: 36
  start-page: 1916
  year: 2013
  end-page: 1918
  article-title: Cutting‐edge research or cutting‐edge artifact? An overdue control experiment complicates the xylem refilling story
  publication-title: Plant, Cell & Environment
– volume: 161
  start-page: 1820
  year: 2013
  end-page: 1829
  article-title: visualizations of drought‐induced embolism spread in
  publication-title: Plant Physiology
– volume: 203
  start-page: 842
  year: 2014
  end-page: 850
  article-title: Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis
  publication-title: New Phytologist
– volume: 113
  start-page: 617
  year: 2014
  end-page: 627
  article-title: Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi‐arid habitat
  publication-title: Annals of Botany
– volume: 32
  start-page: 331
  year: 2020
  end-page: 340
  article-title: A semi‐automated method for measuring xylem vessel length distribution
  publication-title: Theoretical and Experimental Plant Physiology
– volume: 1
  start-page: 15114
  year: 2015
  article-title: Evolutionary outcomes should inform strategies to increase drought tolerance
  publication-title: Nature Plants
– volume: 120
  start-page: 5209
  year: 2016
  end-page: 5222
  article-title: Stability limit of water by metastable vapor–liquid equilibrium with nanoporous silicon membranes
  publication-title: Journal of Physical Chemistry B
– volume: 170
  start-page: 273
  year: 2016
  end-page: 282
  article-title: Noninvasive measurement of vulnerability to drought‐induced embolism by X‐ray microtomography
  publication-title: Plant Physiology
– volume: 25
  start-page: 815
  year: 2002
  end-page: 819
  article-title: A technique for measuring xylem hydraulic conductance under high negative pressures
  publication-title: Plant, Cell & Environment
– volume: 194
  start-page: 982
  year: 2012
  end-page: 990
  article-title: No evidence for an open vessel effect in centrifuge‐based vulnerability curves of a long‐vesselled liana ( )
  publication-title: New Phytologist
– volume: 38
  start-page: 1060
  year: 2015
  end-page: 1068
  article-title: Excising stem samples underwater at native tension does not induce xylem cavitation
  publication-title: Plant, Cell & Environment
– volume: 172
  start-page: 661
  year: 2016
  end-page: 667
  article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees
  publication-title: Plant Physiology
– volume: 10
  start-page: 5645
  year: 2019
  article-title: pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine
  publication-title: Nature Communications
– volume: 214
  start-page: 561
  year: 2017
  end-page: 569
  article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation
  publication-title: New Phytologist
– volume: 40
  start-page: 433
  year: 2020
  end-page: 444
  article-title: Dynamic surface tension of xylem sap lipids
  publication-title: Tree Physiology
– year: 2005
– volume: 152
  start-page: 465
  year: 2014
  end-page: 474
  article-title: Vulnerability to cavitation in current‐year shoots: further evidence of an open‐vessel artefact associated with centrifuge and air‐injection techniques
  publication-title: Physiologia Plantarum
– volume: 172
  start-page: 1657
  year: 2016
  end-page: 1668
  article-title: Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension
  publication-title: Plant Physiology
– volume: 37
  start-page: 152
  year: 2016
  end-page: 171
  article-title: Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem
  publication-title: IAWA Journal
– volume: 29
  start-page: 571
  year: 2006
  end-page: 583
  article-title: Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees
  publication-title: Plant, Cell & Environment
– volume: 42
  start-page: 279
  year: 2021
  end-page: 298
  article-title: Hydraulic function and conduit structure in the xylem of five oak species
  publication-title: IAWA Journal
– volume: 30
  start-page: 1740
  year: 2016
  end-page: 1744
  article-title: Are leaves more vulnerable to cavitation than branches?
  publication-title: Functional Ecology
– volume: 20
  start-page: 539
  year: 2017
  end-page: 553
  article-title: Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area
  publication-title: Ecology Letters
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 32
  start-page: 349
  year: 2018
  end-page: 358
  article-title: Is embolism resistance in plant xylem associated with quantity and characteristics of lignin?
  publication-title: Trees
– volume: 218
  start-page: 1025
  year: 2018
  end-page: 1035
  article-title: Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots
  publication-title: New Phytologist
– volume: 27
  start-page: 1065
  year: 2004
  end-page: 1076
  article-title: New evidence for a role of vessel‐associated cells and phloem in the rapid xylem refilling of cavitated stems of L
  publication-title: Plant, Cell & Environment
– volume: 39
  start-page: 2342
  year: 2016
  end-page: 2345
  article-title: Toward an index of desiccation time to tree mortality under drought
  publication-title: Plant, Cell & Environment
– volume: 4
  year: 2018
  article-title: Drought will not leave your glass empty: low risk of hydraulic failure revealed by long‐term drought observations in world's top wine regions
  publication-title: Science Advances
– volume: 193
  start-page: 713
  year: 2012
  end-page: 720
  article-title: Rare pits, large vessels and extreme vulnerability to cavitation in a ring‐porous tree species
  publication-title: New Phytologist
– volume: 218
  start-page: 1360
  year: 2018
  end-page: 1370
  article-title: Vessel scaling in evergreen angiosperm leaves conforms with Murray's law and area‐filling assumptions: implications for plant size, leaf size and cold tolerance
  publication-title: New Phytologist
– volume: 209
  start-page: 123
  year: 2016
  end-page: 136
  article-title: Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world's woody plant species
  publication-title: New Phytologist
– volume: 229
  start-page: 3053
  year: 2021
  end-page: 3057
  article-title: Wood density predicts mortality threshold for diverse trees
  publication-title: New Phytologist
– volume: 38
  start-page: 201
  year: 2015
  end-page: 206
  article-title: X‐ray microtomography (micro‐CT): a reference technology for high‐resolution quantification of xylem embolism in trees
  publication-title: Plant, Cell & Environment
– volume: 99
  start-page: 1583
  year: 2012
  end-page: 1591
  article-title: A global analysis of xylem vessel length in woody plants
  publication-title: American Journal of Botany
– volume: 10
  start-page: 85
  year: 1970
  end-page: 90
  article-title: Snap‐off of oil droplets in water‐wet pores
  publication-title: Society of Petroleum Engineering Journal
– volume: 117
  start-page: 55
  year: 1996
  end-page: 76
  article-title: Gas bubble snap‐off under pressure‐driven flow in constricted noncircular capillaries
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 173
  start-page: 2081
  year: 2021
  end-page: 2090
  article-title: Narrow vessels cavitate first during a simulated drought in
  publication-title: Physiologia Plantarum
– volume: 96
  start-page: 409
  year: 2009
  end-page: 419
  article-title: Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms
  publication-title: American Journal of Botany
– start-page: 251
  year: 2015
  end-page: 281
– volume: 35
  start-page: 601
  year: 2012
  end-page: 610
  article-title: Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid?
  publication-title: Plant, Cell & Environment
– volume: 11
  year: 2016
  article-title: Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California's historic drought of 2014
  publication-title: PLoS ONE
– volume: 231
  start-page: 996
  year: 2021
  end-page: 1007
  article-title: The roles of conduit redundancy and connectivity in xylem hydraulic functions
  publication-title: New Phytologist
– volume: 125
  start-page: 779
  year: 2001
  end-page: 786
  article-title: Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem
  publication-title: Plant Physiology
– volume: 40
  start-page: 4
  year: 2019
  end-page: 22
  article-title: Large volume vessels are vulnerable to water‐stress‐induced embolism in stems of poplar
  publication-title: IAWA Journal
– volume: 33
  start-page: 1059
  year: 2010
  end-page: 1069
  article-title: The impact of vessel size on vulnerability curves: data and models for within‐species variability in saplings of aspen, Michx
  publication-title: Plant, Cell & Environment
– volume: 167
  start-page: 40
  year: 2015
  end-page: 43
  article-title: Direct X‐ray microtomography observation confirms the introduction of embolism upon xylem cutting under tension
  publication-title: Plant Physiology
– volume: 209
  start-page: 1403
  year: 2016b
  end-page: 1409
  article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure
  publication-title: New Phytologist
– volume: 66
  start-page: 185
  year: 1968
  end-page: 204
  article-title: Pit membranes in hard woods – fine structure and development
  publication-title: Protoplasma
– volume: 232
  start-page: 68
  year: 2021
  end-page: 79
  article-title: Linking xylem network failure with leaf tissue death
  publication-title: New Phytologist
– volume: 107
  start-page: 1
  year: 2020
  end-page: 14
  article-title: Imperforate tracheary elements and vessels alleviate xylem tension under severe dehydration: insights from water release curves for excised twigs of three tree species
  publication-title: American Journal of Botany
– volume: 230
  start-page: 1829
  year: 2021
  end-page: 1843
  article-title: Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms
  publication-title: New Phytologist
– volume: 190
  start-page: 709
  year: 2011
  end-page: 723
  article-title: Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus
  publication-title: New Phytologist
– volume: 113
  start-page: 4865
  year: 2016a
  end-page: 4869
  article-title: Revealing catastrophic failure of leaf networks under stress
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 3
  start-page: 2031
  year: 2013
  article-title: Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress
  publication-title: Scientific Reports
– volume: 228
  start-page: 512
  year: 2020b
  end-page: 524
  article-title: Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across neotropical trees
  publication-title: New Phytologist
– volume: 42
  start-page: 2422
  year: 2019
  end-page: 2436
  article-title: Direct comparison of four methods to construct xylem vulnerability curves: Differences among techniques are linked to vessel network characteristics
  publication-title: Plant, Cell & Environment
– volume: 34
  start-page: 275
  year: 2014
  end-page: 284
  article-title: Whole‐plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats
  publication-title: Tree Physiology
– volume: 239
  start-page: 163
  year: 1972
  end-page: 164
  article-title: Role of turgor in plant cell growth
  publication-title: Nature
– volume: 168
  start-page: 521
  year: 2015
  end-page: 531
  article-title: Studies on the tempo of bubble formation in recently cavitated vessels: A model to predict the pressure of air bubbles
  publication-title: Plant Physiology
– volume: 110
  start-page: 3755
  year: 2013
  end-page: 3759
  article-title: Real‐time 3D imaging of Haines jumps in porous media flow
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 173
  start-page: 1177
  year: 2017
  end-page: 1196
  article-title: Xylem surfactants introduce a new element to the cohesion‐tension theory
  publication-title: Plant Physiology
– volume: 450
  start-page: 479
  year: 2020
  end-page: 495
  article-title: Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem
  publication-title: Plant Soil
– volume: 54
  start-page: 543
  year: 1984
  end-page: 552
  article-title: Distribution of vessel ends in stems of some diffuse‐and ring‐porous trees: the nodal regions as ‘safety zones’ of the water conducting system
  publication-title: Annals of Botany
– volume: 30
  start-page: 305
  year: 2016
  end-page: 316
  article-title: Freezing xylem conduits with liquid nitrogen creates artifactual embolisms in water‐stressed broadleaf trees
  publication-title: Trees
– volume: 229
  start-page: 1955
  year: 2020
  end-page: 1969
  article-title: An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes
  publication-title: New Phytologist
– volume: 76
  start-page: 1452
  year: 1989
  end-page: 1459
  article-title: Variation in vessel length and diameter in stems of six tropical and subtropical lianas
  publication-title: American Journal of Botany
– volume: 114
  start-page: 325
  year: 2014
  end-page: 334
  article-title: Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms
  publication-title: Annals of Botany
– year: 2001
– volume: 33
  start-page: 1543
  year: 2010
  end-page: 1552
  article-title: Does sample length influence the shape of vulnerability to cavitation curves? A test with the Cavitron spinning technique
  publication-title: Plant, Cell & Environment
– volume: 123
  start-page: 1015
  year: 2000
  end-page: 1020
  article-title: Bordered pit structure and vessel wall surface properties: implications for embolism repair
  publication-title: Plant Physiology
– volume: 9
  start-page: 231
  year: 2020
  article-title: Investigating effects of bordered pit membrane morphology and properties on plant xylem hydraulic functions – a case study from 3D reconstruction and microflow modelling of pit membranes in angiosperm xylem
  publication-title: Plants
– volume: 39
  start-page: 944
  year: 2016
  end-page: 950
  article-title: Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry
  publication-title: Plant, Cell & Environment
– volume: 184
  start-page: 212
  year: 2020
  end-page: 222
  article-title: Xylem embolism spreads by single‐conduit events in three dry forest angiosperm stems
  publication-title: Plant Physiology
– volume: 120
  start-page: 11
  year: 1999
  end-page: 21
  article-title: Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm?
  publication-title: Plant Physiology
– volume: 205
  start-page: 116
  year: 2014
  end-page: 127
  article-title: The standard centrifuge method accurately measures vulnerability curves of long‐vesselled olive stems
  publication-title: New Phytologist
– volume: 229
  start-page: 1453
  year: 2020a
  end-page: 1466
  article-title: Linking drought‐induced xylem embolism resistance to wood anatomical traits in neotropical trees
  publication-title: New Phytologist
– volume: 41
  start-page: 1384
  year: 2021
  end-page: 1399
  article-title: Plasticity of the xylem vulnerability to embolism in poplar relies on quantitative pit properties rather than on pit structure
  publication-title: Tree Physiology
– volume: 32
  start-page: 1467
  year: 2018
  end-page: 1478
  article-title: Insular woody daisies ( , Asteraceae) are more resistant to drought‐induced hydraulic failure than their herbaceous relatives
  publication-title: Functional Ecology
– volume: 39
  start-page: 1685
  year: 2016
  end-page: 1695
  article-title: Short‐time xylem tension relaxation prevents vessel refilling and alleviates cryo‐fixation artifacts in diffuse‐porous and
  publication-title: Tree Physiology
– volume: 28
  start-page: 1082
  year: 2005
  end-page: 1089
  article-title: The spatial pattern of air seeding thresholds in mature sugar maple trees
  publication-title: Plant, Cell & Environment
– volume: 119
  start-page: 345
  year: 1991
  end-page: 360
  article-title: The hydraulic architecture of trees and other woody plants
  publication-title: New Phytologist
– volume: 125
  start-page: 701
  year: 2020
  end-page: 720
  article-title: Using the CODIT model to explain secondary metabolites of xylem in defence systems of temperate trees against decay fungi
  publication-title: Annals of Botany
– volume: 100
  start-page: 605
  year: 1992
  end-page: 613
  article-title: Xylem embolism in response to freeze‐thaw cycles and water stress in ring‐porous, diffuse‐porous, and conifer species
  publication-title: Plant Physiology
– volume: 21
  start-page: 721
  year: 1950
  end-page: 722
  article-title: Limiting negative pressure of water
  publication-title: Journal of Applied Physics
– volume: 20
  start-page: 1437
  year: 2017
  end-page: 1447
  article-title: Plant resistance to drought depends on timely stomatal closure
  publication-title: Ecology Letters
– volume: 54
  start-page: 1889
  year: 2003
  end-page: 1897
  article-title: Air method measurements of apple vessel length distributions with improved apparatus and theory
  publication-title: Journal of Experimental Botany
– volume: 118
  year: 2021
  article-title: The widened pipe model of plant hydraulic evolution
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 75
  start-page: 88
  year: 2018
  article-title: An inconvenient truth about xylem resistance to embolism in the model species for refilling L
  publication-title: Annals of Forest Science
– volume: 113
  start-page: 5024
  year: 2016
  end-page: 5029
  article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  year: 2020
  article-title: Loss and recovery of leaf hydraulic conductance: root pressure, embolism, and extra‐xylary resistance
  publication-title: Journal of Plant Hydraulics
– volume: 115
  start-page: 7551
  year: 2018
  end-page: 7556
  article-title: Plant height and hydraulic vulnerability to drought and cold
  publication-title: Proceedings of the National Academy of Sciences, USA
– year: 1983
– volume: 178
  start-page: 1142
  year: 2018
  end-page: 1153
  article-title: Comparison of micropore distribution in cell walls of softwood and hardwood xylem
  publication-title: Plant Physiology
– volume: 105
  start-page: 1477
  year: 2020
  end-page: 1494
  article-title: Lipids in xylem sap of woody plants across the angiosperm phylogeny
  publication-title: The Plant Journal
– volume: 36
  start-page: 1938
  year: 2013
  end-page: 1949
  article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism
  publication-title: Plant, Cell & Environment
– volume: 33
  start-page: 1234
  year: 2010
  end-page: 1238
  article-title: A computational algorithm addressing how vessel length might depend on vessel diameter
  publication-title: Plant, Cell & Environment
– volume: 15
  year: 2020
  article-title: Two coastal Pacific evergreens, , Pursh. and , Née show little water stress during California's exceptional drought
  publication-title: PLoS ONE
– volume: 116
  start-page: 25734
  year: 2019
  end-page: 25744
  article-title: The impact of rising CO and acclimation on the response of US forests to global warming
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 86
  start-page: 1367
  year: 1999b
  end-page: 1372
  article-title: The relationship between xylem conduit diameter and cavitation caused by freezing
  publication-title: American Journal of Botany
– volume: 32
  start-page: 51
  year: 2018
  end-page: 60
  article-title: Intra‐specific relationship between vessel length and vessel diameter of four species with long‐to‐short species‐average vessel lengths: further validation of the computation algorithm
  publication-title: Trees
– volume: 87
  start-page: 981
  year: 2015
  end-page: 1035
  article-title: Surface nanobubbles and nanodroplets
  publication-title: Reviews of Modern Physics
– volume: 39
  start-page: 740
  year: 2019
  end-page: 746
  article-title: ‘Pressure fatigue’: the influence of sap pressure cycles on cavitation vulnerability in
  publication-title: Tree Physiology
– volume: 180
  start-page: 604
  year: 2011
  end-page: 611
  article-title: Refilling embolized xylem conduits: Is it a matter of phloem unloading?
  publication-title: Plant Science
– volume: 4
  start-page: 141
  year: 1983
  end-page: 159
  article-title: Some ecological trends in vessel characters
  publication-title: IAWA Journal
– volume: 36
  start-page: 699
  year: 2022
  end-page: 712
  article-title: High variation in hydraulic efficiency but not xylem safety between roots and branches in four temperate broad‐leaved tree species
  publication-title: Functional Ecology
– volume: 16
  start-page: 287
  year: 2013
  end-page: 292
  article-title: Embolism resistance as a key mechanism to understand adaptive plant strategies
  publication-title: Current Opinion in Plant Biology
– year: 2022
  article-title: Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought
  publication-title: Plant Biology
– volume: 40
  start-page: 19
  year: 1989
  end-page: 36
  article-title: Vulnerability of xylem to cavitation and embolism
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 6
  year: 2015
  article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene
  publication-title: Ecosphere
– volume: 368
  start-page: 261
  year: 2020
  end-page: 266
  article-title: Hanging by a thread? Forests and drought
  publication-title: Science
– volume: 40
  start-page: 831
  year: 2017
  end-page: 845
  article-title: An ecophysiological and developmental perspective on variation in vessel diameter
  publication-title: Plant, Cell & Environment
– volume: 163
  start-page: 551
  year: 2004
  end-page: 452
  article-title: The cohesion‐tension theory
  publication-title: New Phytologist
– volume: 35
  start-page: 185
  year: 2015a
  end-page: 196
  article-title: Root resistance to cavitation is accurately measured using a centrifuge technique
  publication-title: Tree Physiology
– volume: 215
  start-page: 23
  year: 2002
  end-page: 38
  article-title: Relationships between embolism, stem water tension, and diameter changes
  publication-title: Journal of Theoretical Biology
– volume: 119
  start-page: 21547
  year: 2015
  end-page: 21554
  article-title: Solubility of gases in water confined in nanoporous materials: ZSM‐5, MCM‐41, and MIL‐100
  publication-title: Journal of Physical Chemistry C
– volume: 107
  start-page: 1328
  year: 2020
  end-page: 1341
  article-title: From Carlquist's ecological wood anatomy to Carlquist's Law: why comparative anatomy is crucial for functional xylem biology
  publication-title: American Journal of Botany
– volume: 128
  start-page: 171
  year: 2020
  end-page: 182
  article-title: Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of accessions
  publication-title: Annals of Botany
– volume: 44
  start-page: 1329
  year: 2021
  end-page: 1345
  article-title: No gas source, no problem: proximity to pre‐existing embolism and segmentation affect embolism spreading in angiosperm xylem by gas diffusion
  publication-title: Plant, Cell & Environment
– volume: 89
  start-page: 820
  year: 2002
  end-page: 828
  article-title: Shoot dieback during prolonged drought in (Rhamnaceae) chaparral of California: a possible case of hydraulic failure
  publication-title: American Journal of Botany
– volume: 26
  start-page: 689
  year: 2006
  end-page: 701
  article-title: Scaling of angiosperm xylem structure with safety and efficiency
  publication-title: Tree Physiology
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 45
  start-page: 1216
  year: 2022
  end-page: 1228
  article-title: Mechanisms of xylem hydraulic recovery after drought in
  publication-title: Plant, Cell & Environment
– volume: 163
  start-page: 551
  year: 2004
  ident: e_1_2_9_9_1
  article-title: The cohesion‐tension theory
  publication-title: New Phytologist
– ident: e_1_2_9_119_1
  doi: 10.1016/j.jtbi.2007.03.036
– ident: e_1_2_9_146_1
  doi: 10.1093/aob/mcx137
– ident: e_1_2_9_201_1
  doi: 10.1111/nph.17043
– volume: 172
  start-page: 661
  year: 2016
  ident: e_1_2_9_107_1
  article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees
  publication-title: Plant Physiology
– ident: e_1_2_9_127_1
  doi: 10.1093/aob/mcu020
– ident: e_1_2_9_60_1
  doi: 10.1104/pp.18.00883
– ident: e_1_2_9_132_1
  doi: 10.1093/aob/mcz138
– ident: e_1_2_9_169_1
  doi: 10.1073/pnas.2008987118
– ident: e_1_2_9_125_1
  doi: 10.1111/ele.12851
– ident: e_1_2_9_183_1
  doi: 10.1029/2018WR022801
– ident: e_1_2_9_38_1
  doi: 10.1038/s41586-018-0240-x
– ident: e_1_2_9_94_1
  doi: 10.1093/treephys/tpw031
– ident: e_1_2_9_131_1
  doi: 10.5194/nhess-20-695-2020
– ident: e_1_2_9_123_1
  doi: 10.1111/j.1365-3040.2005.01433.x
– ident: e_1_2_9_135_1
  doi: 10.1016/j.plantsci.2010.12.011
– ident: e_1_2_9_34_1
  doi: 10.1126/sciadv.aao6969
– volume: 36
  start-page: 179
  year: 2015
  ident: e_1_2_9_112_1
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– ident: e_1_2_9_188_1
  doi: 10.1111/ppl.12185
– ident: e_1_2_9_69_1
  doi: 10.1093/treephys/tpu001
– ident: e_1_2_9_77_1
  doi: 10.1093/treephys/26.6.689
– ident: e_1_2_9_31_1
  doi: 10.1007/978-3-662-04578-7
– ident: e_1_2_9_108_1
  doi: 10.1111/j.1469-8137.2010.03518.x
– ident: e_1_2_9_209_1
  doi: 10.1111/pce.12139
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1365-3040.2010.02127.x
– ident: e_1_2_9_40_1
  doi: 10.1038/nature11688
– ident: e_1_2_9_52_1
  doi: 10.1111/pce.13418
– ident: e_1_2_9_79_1
  doi: 10.1104/pp.125.2.779
– ident: e_1_2_9_71_1
  doi: 10.1111/nph.13646
– ident: e_1_2_9_205_1
  doi: 10.1093/plphys/kiab045
– ident: e_1_2_9_151_1
  doi: 10.1093/treephys/tpv003
– ident: e_1_2_9_96_1
  doi: 10.1163/22941932-40190259
– ident: e_1_2_9_195_1
  doi: 10.1093/treephys/tpy148
– ident: e_1_2_9_48_1
  doi: 10.1111/pce.12391
– ident: e_1_2_9_91_1
  doi: 10.1111/nph.17875
– ident: e_1_2_9_134_1
  doi: 10.1111/nph.17429
– ident: e_1_2_9_2_1
  doi: 10.1038/s41559-017-0248-x
– ident: e_1_2_9_101_1
  doi: 10.1093/treephys/tpv040
– ident: e_1_2_9_158_1
  doi: 10.1104/pp.113.219774
– ident: e_1_2_9_211_1
  doi: 10.1007/s11104-020-04525-0
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1365-3040.2010.02142.x
– ident: e_1_2_9_200_1
  doi: 10.1111/nph.15333
– ident: e_1_2_9_13_1
  doi: 10.1073/pnas.1221373110
– ident: e_1_2_9_176_1
  doi: 10.1111/j.1365-3040.2011.02439.x
– ident: e_1_2_9_22_1
  doi: 10.1111/nph.17577
– ident: e_1_2_9_207_1
  doi: 10.1080/07373937.2021.1955706
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1365-3040.2010.02163.x
– ident: e_1_2_9_198_1
  doi: 10.1111/pce.12461
– ident: e_1_2_9_37_1
  doi: 10.1104/pp.15.00732
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-3040.2005.01336.x
– ident: e_1_2_9_64_1
  doi: 10.1007/BF00328172
– ident: e_1_2_9_35_1
  doi: 10.1104/pp.16.01079
– ident: e_1_2_9_160_1
  doi: 10.1104/pp.16.01039
– ident: e_1_2_9_164_1
  doi: 10.1007/BF01252532
– ident: e_1_2_9_68_1
  doi: 10.1038/nplants.2015.114
– ident: e_1_2_9_95_1
  doi: 10.1104/pp.20.00464
– ident: e_1_2_9_115_1
  doi: 10.1111/nph.17117
– ident: e_1_2_9_67_1
  doi: 10.1111/pce.14265
– ident: e_1_2_9_99_1
  doi: 10.1093/aobpla/plw052
– ident: e_1_2_9_113_1
  doi: 10.1163/22941932-20160128
– ident: e_1_2_9_166_1
  doi: 10.1111/nph.14256
– ident: e_1_2_9_148_1
  doi: 10.2307/2656722
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1469-8137.2009.02776.x
– ident: e_1_2_9_61_1
  doi: 10.1111/1365-2435.13085
– ident: e_1_2_9_133_1
  doi: 10.1111/pce.13415
– ident: e_1_2_9_216_1
  doi: 10.1007/978-3-662-22627-8
– ident: e_1_2_9_109_1
  doi: 10.1016/j.pbi.2013.02.005
– ident: e_1_2_9_73_1
  doi: 10.1111/pce.14016
– ident: e_1_2_9_140_1
  doi: 10.1073/pnas.1721728115
– ident: e_1_2_9_74_1
  doi: 10.1111/plb.13384
– ident: e_1_2_9_11_1
  doi: 10.1163/22941932-90000407
– ident: e_1_2_9_173_1
  doi: 10.1111/1365-2435.13519
– volume: 33
  start-page: 1502
  year: 2010
  ident: e_1_2_9_39_1
  article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to long‐vesseled species
  publication-title: Plant, Cell & Environment
– ident: e_1_2_9_92_1
  doi: 10.3732/ajb.0800248
– ident: e_1_2_9_110_1
  doi: 10.1111/nph.16942
– ident: e_1_2_9_93_1
  doi: 10.1093/aob/mct294
– ident: e_1_2_9_124_1
  doi: 10.1007/s00442-002-1009-2
– ident: e_1_2_9_154_1
  doi: 10.1111/nph.15079
– ident: e_1_2_9_29_1
  doi: 10.1103/PhysRevE.89.033019
– ident: e_1_2_9_118_1
  doi: 10.1016/0022-5193(65)90077-9
– ident: e_1_2_9_7_1
  doi: 10.1139/b98-213
– volume-title: Vascular organization of angiosperms: a new vision
  year: 2005
  ident: e_1_2_9_6_1
– ident: e_1_2_9_81_1
  doi: 10.1111/j.1469-8137.1994.tb02964.x
– ident: e_1_2_9_97_1
  doi: 10.1111/nph.17282
– ident: e_1_2_9_210_1
  doi: 10.1111/j.1365-3040.2005.01330.x
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1365-3040.2005.01397.x
– ident: e_1_2_9_54_1
  doi: 10.3732/ajb.89.5.820
– ident: e_1_2_9_57_1
  doi: 10.1111/nph.12798
– start-page: 251
  volume-title: Crop physiology ‐ applications for genetic improvement and agronomy
  year: 2015
  ident: e_1_2_9_23_1
– ident: e_1_2_9_12_1
  doi: 10.1111/ppl.13556
– ident: e_1_2_9_4_1
  doi: 10.1890/ES15-00203.1
– ident: e_1_2_9_51_1
  doi: 10.1093/aob/mcx144
– ident: e_1_2_9_53_1
  doi: 10.1093/jxb/erz474
– ident: e_1_2_9_203_1
  doi: 10.1104/pp.114.256602
– ident: e_1_2_9_170_1
  doi: 10.1111/nph.15886
– ident: e_1_2_9_194_1
  doi: 10.1007/s00468-015-1302-4
– ident: e_1_2_9_171_1
  doi: 10.1111/nph.14450
– ident: e_1_2_9_155_1
  doi: 10.2118/2504-PA
– ident: e_1_2_9_8_1
  doi: 10.3389/ffgc.2021.704670
– ident: e_1_2_9_3_1
  doi: 10.1007/BF00328731
– ident: e_1_2_9_186_1
  doi: 10.1111/j.1438-8677.2012.00678.x
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.jpcb.6b01618
– ident: e_1_2_9_87_1
  doi: 10.1111/j.1469-8137.2012.04118.x
– ident: e_1_2_9_86_1
  doi: 10.3389/fpls.2021.732701
– ident: e_1_2_9_44_1
  doi: 10.1016/j.micromeso.2019.109561
– ident: e_1_2_9_5_1
  doi: 10.1073/pnas.1525678113
– ident: e_1_2_9_165_1
  doi: 10.3389/fpls.2013.00056
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-019-13673-6
– ident: e_1_2_9_162_1
  doi: 10.1111/tpj.15125
– ident: e_1_2_9_26_1
  doi: 10.1111/pce.12120
– ident: e_1_2_9_46_1
  doi: 10.1093/jxb/ert193
– ident: e_1_2_9_212_1
  doi: 10.1093/treephys/tpaa006
– volume: 69
  start-page: 5611
  year: 2018
  ident: e_1_2_9_100_1
  article-title: Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy
  publication-title: Journal of Experimental Botany
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0230868
– ident: e_1_2_9_90_1
  doi: 10.1163/22941932-40190233
– ident: e_1_2_9_177_1
  doi: 10.3732/ajb.93.10.1490
– ident: e_1_2_9_141_1
  doi: 10.1111/pce.12566
– ident: e_1_2_9_10_1
  doi: 10.1111/pce.14253
– ident: e_1_2_9_175_1
  doi: 10.1111/pce.12148
– ident: e_1_2_9_111_1
  doi: 10.1111/nph.16723
– ident: e_1_2_9_114_1
  doi: 10.3390/plants9020231
– ident: e_1_2_9_25_1
  doi: 10.1111/nph.13846
– ident: e_1_2_9_161_1
  doi: 10.1111/pce.12678
– ident: e_1_2_9_215_1
  doi: 10.1111/1365-2435.12656
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1469-8137.2011.03984.x
– ident: e_1_2_9_179_1
  doi: 10.1104/pp.88.3.581
– ident: e_1_2_9_106_1
  doi: 10.1093/treephys/tpab018
– ident: e_1_2_9_214_1
  doi: 10.1111/pce.13654
– ident: e_1_2_9_16_1
  doi: 10.1111/nph.16516
– ident: e_1_2_9_142_1
  doi: 10.1103/PhysRevE.103.062407
– ident: e_1_2_9_185_1
  doi: 10.1093/aob/mcu109
– ident: e_1_2_9_196_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_9_130_1
  doi: 10.1093/aobpla/plab003
– ident: e_1_2_9_80_1
  doi: 10.1111/nph.13017
– ident: e_1_2_9_197_1
  doi: 10.1371/journal.pone.0159145
– ident: e_1_2_9_19_1
  doi: 10.3389/fpls.2013.00108
– ident: e_1_2_9_84_1
  doi: 10.1021/acs.jpcc.5b06660
– ident: e_1_2_9_128_1
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: e_1_2_9_143_1
  doi: 10.1163/22941932-bja10059
– ident: e_1_2_9_83_1
  doi: 10.1104/pp.110.155200
– ident: e_1_2_9_70_1
  doi: 10.1111/nph.15116
– ident: e_1_2_9_152_1
  doi: 10.1007/978-3-319-15783-2_7
– ident: e_1_2_9_121_1
  doi: 10.1111/nph.15549
– ident: e_1_2_9_136_1
  doi: 10.1111/nph.14245
– ident: e_1_2_9_150_1
  doi: 10.1111/j.1469-8137.2007.02061.x
– ident: e_1_2_9_65_1
  doi: 10.1093/treephys/tpz064
– ident: e_1_2_9_58_1
  doi: 10.1098/rstb.1895.0012
– ident: e_1_2_9_178_1
  doi: 10.1104/pp.100.2.605
– ident: e_1_2_9_172_1
  doi: 10.1104/pp.18.00103
– ident: e_1_2_9_117_1
  doi: 10.1007/s00468-017-1610-y
– ident: e_1_2_9_122_1
  doi: 10.1111/1365-2435.13975
– ident: e_1_2_9_138_1
  doi: 10.1093/treephys/tpz072
– ident: e_1_2_9_168_1
  doi: 10.3389/fpls.2012.00107
– ident: e_1_2_9_78_1
  doi: 10.1111/pce.12777
– ident: e_1_2_9_156_1
  doi: 10.1093/oxfordjournals.aob.a086825
– ident: e_1_2_9_159_1
  doi: 10.1002/ajb2.1034
– ident: e_1_2_9_72_1
  doi: 10.1111/ele.12748
– ident: e_1_2_9_145_1
  doi: 10.1007/s40626-020-00189-4
– ident: e_1_2_9_184_1
  doi: 10.1093/aob/mcaa196
– ident: e_1_2_9_45_1
  doi: 10.1046/j.1365-3040.2002.00863.x
– ident: e_1_2_9_180_1
  doi: 10.1111/pce.12852
– ident: e_1_2_9_63_1
  doi: 10.1002/j.1537-2197.1989.tb15126.x
– ident: e_1_2_9_102_1
  doi: 10.1073/pnas.2100314118
– ident: e_1_2_9_14_1
  doi: 10.1111/pce.12758
– ident: e_1_2_9_116_1
  doi: 10.1038/srep02031
– ident: e_1_2_9_55_1
  doi: 10.1080/11956860.1999.11682519
– ident: e_1_2_9_139_1
  doi: 10.1002/ajb2.1552
– ident: e_1_2_9_20_1
  doi: 10.1104/pp.112.212712
– ident: e_1_2_9_50_1
  doi: 10.1093/jxb/erg202
– ident: e_1_2_9_190_1
  doi: 10.1163/22941932-90001369
– ident: e_1_2_9_202_1
  doi: 10.1093/treephys/tpu056
– ident: e_1_2_9_56_1
  doi: 10.2307/2656919
– ident: e_1_2_9_66_1
  doi: 10.1111/nph.16746
– ident: e_1_2_9_126_1
  doi: 10.1093/treephys/tpu059
– ident: e_1_2_9_206_1
  doi: 10.1093/aob/mcz076
– ident: e_1_2_9_204_1
  doi: 10.1111/nph.15135
– ident: e_1_2_9_174_1
  doi: 10.1111/nph.17025
– ident: e_1_2_9_187_1
  doi: 10.1111/nph.14589
– ident: e_1_2_9_33_1
  doi: 10.1104/pp.113.228403
– ident: e_1_2_9_88_1
  doi: 10.1111/j.1365-3040.2007.01729.x
– ident: e_1_2_9_89_1
  doi: 10.3732/ajb.1200140
– ident: e_1_2_9_147_1
  doi: 10.1111/nph.12850
– ident: e_1_2_9_62_1
  doi: 10.1093/aob/mcz104
– ident: e_1_2_9_76_1
  doi: 10.1078/1439-1791-00006
– ident: e_1_2_9_199_1
  doi: 10.1111/pce.13565
– ident: e_1_2_9_47_1
  doi: 10.1007/s13595-013-0317-5
– ident: e_1_2_9_208_1
  doi: 10.1007/s00442-022-05124-9
– ident: e_1_2_9_24_1
  doi: 10.1126/science.aat7631
– ident: e_1_2_9_189_1
  doi: 10.1104/pp.114.249706
– ident: e_1_2_9_213_1
  doi: 10.1002/ajb2.1518
– ident: e_1_2_9_104_1
  doi: 10.1016/0927-7757(96)03637-0
– ident: e_1_2_9_192_1
  doi: 10.1104/pp.120.1.11
– ident: e_1_2_9_137_1
  doi: 10.20870/jph.2020.e-001
– ident: e_1_2_9_167_1
  doi: 10.1104/pp.18.00743
– ident: e_1_2_9_144_1
  doi: 10.1007/s00468-017-1574-y
– ident: e_1_2_9_85_1
  doi: 10.1006/jtbi.2001.2485
– ident: e_1_2_9_153_1
  doi: 10.1038/239163a0
– ident: e_1_2_9_18_1
  doi: 10.1111/nph.14811
– ident: e_1_2_9_105_1
  doi: 10.1007/s13595-018-0768-9
– ident: e_1_2_9_82_1
  doi: 10.1093/aob/mcu232
– ident: e_1_2_9_157_1
  doi: 10.1111/j.1365-3040.2004.01211.x
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1365-3040.2009.02000.x
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.1522569113
– ident: e_1_2_9_182_1
  doi: 10.1146/annurev.arplant.52.1.847
– ident: e_1_2_9_129_1
  doi: 10.1111/j.1469-8137.2012.04244.x
– ident: e_1_2_9_17_1
  doi: 10.1063/1.1699741
– ident: e_1_2_9_163_1
  doi: 10.1016/j.tplants.2015.01.008
– ident: e_1_2_9_181_1
  doi: 10.1073/pnas.1913072116
– ident: e_1_2_9_120_1
  doi: 10.1103/RevModPhys.87.981
– ident: e_1_2_9_193_1
  doi: 10.1146/annurev.pp.40.060189.000315
– ident: e_1_2_9_98_1
  doi: 10.1073/pnas.1917195117
– ident: e_1_2_9_149_1
  doi: 10.1002/ajb2.1450
– ident: e_1_2_9_103_1
  doi: 10.1007/s00468-019-01897-4
– ident: e_1_2_9_30_1
  doi: 10.5642/aliso.19660602.03
– ident: e_1_2_9_217_1
  doi: 10.1104/pp.123.3.1015
– ident: e_1_2_9_191_1
  doi: 10.1111/j.1469-8137.1991.tb00035.x
SSID ssj0009562
Score 2.659846
SecondaryResourceType review_article
Snippet Summary Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to...
Hydraulic failure resulting from drought‐induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess...
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2019
SubjectTerms Angiosperms
Biodiversity and Ecology
Blood vessels
Diameters
Drought
Embolism
Environmental Sciences
Evaluation
fluid transport
Global Changes
mortality
pit membrane thickness
plant–water relations
vessel diameter
Vulnerability
Water transport
wood anatomy
Xylem
xylem sap
Title Functional xylem characteristics associated with drought‐induced embolism in angiosperms
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18447
https://www.proquest.com/docview/2737002600
https://www.proquest.com/docview/2708261847
https://www.proquest.com/docview/2811984668
https://hal.inrae.fr/hal-04115299
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxNBEB9q8aEvtmpLU6OsxYe-XLjc3e7t0qcqhiBaRFoIRThu_5wNJpdiEjE--RH8jH4SZ_b-kBYtpW_H7Rzs7uzc_GZ39jcAr6xSjhttAulsHiSIcAONug-0DaXi3HDtT_A_nIrhefJuxEcbcNzchan4IdoNN7IM_78mA8_1fM3Iy6vLHoYnCd0kp1wtAkSfojXCXRE1DMwiEaOaVYiyeNovr_miB5eUCbkGM9fBqvc2g2343PSzSjL52lsudM_8vEHheM-B7MCjGoWyk2rZPIYNVz6Bh69niBRXT-FigM6u2iNkP1YTN2XmOq0zy2ulOstoI5dZX-xn8efXbwzxcbFY5qZ6NhnPp2xcsrz8MvaM5NP5LpwP3p69GQZ1DYbAJHGUBkUonU5EbFMtjTORKxDnCuKtt3HEc1EYjDALaXjB40gZhGeGq1yglUdGhUUY78FmOSvdPjAleCxkvwgV1UZSRgqZSlW4UAubujTtwFGjjczUBOVUJ2OSNYEKzlTmZ6oDh63oVcXK8U8hVGnbTjzaw5P3Gb0LEwTC6Ii_9zvQbTSe1dY7zxDSpZ5sLezAy7YZ7Y4OU_LSzZYkg-CJquWkt8jIfl8hwBMSx-aXwP97m51-HPqHg7uLPoOtiG5j-OyaLmwuvi3dc8RIC_3CG8NfTTYNqg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB61BQku_CNSChgEEpeNNt611z5wKJQopWmEUCtFXLbrn6VRk01FEiCceAQehFfhJXgSxt4fpQgQlx64rXZHK9szY38ej78BeGyktEwrHQhrsiBGhBso1H2gTCgkY5opf4K_P-C9w_jVkA3X4Ft9F6bkh2gCbs4z_HztHNwFpFe8vDg9buP-JE6qlMo9u_yIG7bZs90d1O4TSrsvD170gqqmQKDjiCZBHgqrYh6ZRAltNbU54jbueNhNRFnGc407plxolrOISo1wQzOZcbRaqmWYhxH-dx0uuArijql_5w1dofjltOZ85jEfVjxGLm-oaeqZ1W_92OVergDbVXjs17fuVfhej0yZ1nLSXsxVW3_-hTTyfxm6a3ClAtpku_SM67Bmixtw8fkUwfDyJrzt4npehkHJp-XYTog-y1xNsspurSEuVk2Mr2c0__Hl66gw6A-G2ImajkezCRkVJCvejTzp-mR2Cw7PpV-3YaOYFvYOEMlZxEUnD6Ur_yS14CIRMreh4iaxSdKCp7X6U11xsLtSIOO03ouhZlKvmRY8akRPS-KR3wqhDTXfHVV4b7ufundhjFgfscaHTgu2ahNLqwlqliJqTTyfXNiCh81nnFrceVFW2OnCySA-dAWBkr_IiE5HIoblAvvmbe7PrU0Hr3v-YfPfRR_Apd7Bfj_t7w727sJl6i6f-GSiLdiYv1_YewgJ5-q-90QCR-dtvz8B6cVqew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB61BaFe-EcEChgEEpeNNt611z5wKIQopSWqEJUiLsv6Z2nUZBORBAgnHoH34FV4Cp6EsfdHKQLEpQduq93RyvbM2N_Y428AHhopLdNKB8KaLIgR4QYKdR8oEwrJmGbKn-C_HPD-UfxiyIYb8K2-C1PyQzQbbs4z_HztHHxm8jUnL2bHbQxP4qTKqNy3q48Yr82f7HVRuY8o7T1__awfVCUFAh1HNAnyUFgV88gkSmirqc0RtnFHw24iyjKeawyYcqFZziIqNaINzWTG0WiplmEeRvjfTTgX81C6OhHdV3SN4ZfTmvKZx3xY0Ri5tKGmqacWv81jl3q5hmvX0bFf3nqX4Hs9MGVWy0l7uVBt_fkXzsj_ZOQuw8UKZpPd0i-uwIYtrsL5p1OEwqtr8KaHq3m5CUo-rcZ2QvRp3mqSVVZrDXE71cT4akaLH1--jgqD3mCInajpeDSfkFFBsuLdyFOuT-bX4ehM-nUDtoppYW8CkZxFXHTyULriT1ILLhIhcxsqbhKbJC14XGs_1RUDuysEMk7rSAw1k3rNtOBBIzoraUd-K4Qm1Hx3ROH93YPUvQtjRPqIND50WrBTW1haTU_zFDFr4tnkwhbcbz7jxOJOi7LCTpdOBtGhKweU_EVGdDoSESwX2Ddvcn9ubTo47PuHW_8ueg8uHHZ76cHeYP82bFN388RnEu3A1uL90t5BPLhQd70fEnh71ub7EymdaSo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+xylem+characteristics+associated+with+drought%E2%80%90induced+embolism+in+angiosperms&rft.jtitle=The+New+phytologist&rft.au=Lens%2C+Frederic&rft.au=Gleason%2C+Sean+M.&rft.au=Bortolami%2C+Giovanni&rft.au=Brodersen%2C+Craig&rft.date=2022-12-01&rft.issn=0028-646X&rft.volume=236&rft.issue=6+p.2019-2036&rft.spage=2019&rft.epage=2036&rft_id=info:doi/10.1111%2Fnph.18447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon