WALL SHEAR STRESS IN A SUBJECT SPECIFIC HUMAN AORTA — INFLUENCE OF FLUID-STRUCTURE INTERACTION
Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion change...
Saved in:
Published in | International journal of applied mechanics Vol. 3; no. 4; pp. 759 - 778 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Imperial College Press
01.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion changes the WSS or if a rigid wall assumption is sufficient. Magnetic resonance imaging (MRI) was used to acquire subject specific geometry and flow rates in a human aorta, which were used as inputs in numerical models. Both rigid wall models and fluid-structure interaction (FSI) models were considered, and used to calculate the WSS on the aortic wall. A physiological range of different wall stiffnesses in the FSI simulations was used in order to investigate its effect on the flow dynamics. MRI measurements of velocity in the descending aorta were used as validation of the numerical models, and good agreement was achieved. It was found that the influence of wall motion was low on time-averaged WSS and oscillating shear index, but when regarding instantaneous WSS values the effect from the wall motion was clearly visible. Therefore, if instantaneous WSS is to be investigated, a FSI simulation should be considered. |
---|---|
AbstractList | Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion changes the WSS or if a rigid wall assumption is sufficient. Magnetic resonance imaging (MRI) was used to acquire subject specific geometry and flow rates in a human aorta, which were used as inputs in numerical models. Both rigid wall models and fluid-structure interaction (FSI) models were considered, and used to calculate the WSS on the aortic wall. A physiological range of different wall stiffnesses in the FSI simulations was used in order to investigate its effect on the flow dynamics. MRI measurements of velocity in the descending aorta were used as validation of the numerical models, and good agreement was achieved. It was found that the influence of wall motion was low on time-averaged WSS and oscillating shear index, but when regarding instantaneous WSS values the effect from the wall motion was clearly visible. Therefore, if instantaneous WSS is to be investigated, a FSI simulation should be considered. Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion changes the WSS or if a rigid wall assumption is sufficient. Magnetic resonance imaging (MRI) was used to acquire subject specific geometry and flow rates in a human aorta, which were used as inputs in numerical models. Both rigid wall models and fluid-structure interaction (FSI) models were considered, and used to calculate the WSS on the aortic wall. A physiological range of different wall stiffnesses in the FSI simulations was used in order to investigate its effect on the flow dynamics. MRI measurements of velocity in the descending aorta were used as validation of the numerical models, and good agreement was achieved. It was found that the influence of wall motion was low on time-averaged WSS and oscillating shear index, but when regarding instantaneous WSS values the e.ect from the wall motion was clearly visible. Therefore, if instantaneous WSS is to be investigated, a FSI simulation should be considered. |
Author | LANTZ, JONAS KARLSSON, MATTS RENNER, JOHAN |
Author_xml | – sequence: 1 givenname: JONAS surname: LANTZ fullname: LANTZ, JONAS email: jonas.lantz@liu.se organization: Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden – sequence: 2 givenname: JOHAN surname: RENNER fullname: RENNER, JOHAN email: johan.renner@liu.se organization: Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden – sequence: 3 givenname: MATTS surname: KARLSSON fullname: KARLSSON, MATTS email: matts.karlsson@liu.se organization: Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71720$$DView record from Swedish Publication Index |
BookMark | eNp9kEtOwzAQhi0EEqX0AOx8AAIex3ktQ-rQoNCgPIBdcJ0EGZWmSlpV7DgEJ-QkuCrqgkrMZkbz_9_MaM7Q8aJd1AhdALkCYPQ6A8dyXWoBACFAqX2EBtuW4VL7-XhfW3CKRn3_RnQw2zSZN0AvT34c42zC_RRnecqzDEdT7OOsuLnjQY6zBx5EYRTgSXHvayFJcx9_f35pVxgXfBpwnIRYl9HY0HwR5EXKtZjz1A_yKJmeo5NGzPt69JuHqAh5HkyMOLmNAj82JDOpbVTM8iyX6cscqGpmEjGzCDgzaQI4LvMsYVFC6soTbuNJm4lGkpkLlUNNU1JKzSG63M3tN_VyPSuXnXoX3UfZClWO1aNftt1rOVfr0gGHEm2HnV12bd93dbMHgJTbp5YHT9WM84eRaiVWql2sOqHm_5JkR27abl71UtWLlWqU3C89RH4A1uKDOg |
CitedBy_id | crossref_primary_10_1097_MAT_0000000000002351 crossref_primary_10_1007_s11517_021_02417_8 crossref_primary_10_1016_j_compfluid_2018_01_012 crossref_primary_10_1007_s00380_015_0758_x crossref_primary_10_3389_fped_2015_00107 crossref_primary_10_1016_j_jbiomech_2015_11_040 crossref_primary_10_1016_j_medengphy_2016_01_003 crossref_primary_10_1049_htl_2013_0040 crossref_primary_10_1142_S1758825114500690 crossref_primary_10_1007_s11831_024_10193_5 crossref_primary_10_1115_1_4043722 crossref_primary_10_1080_21681163_2016_1184589 crossref_primary_10_1016_j_ces_2013_02_045 crossref_primary_10_1016_j_compmedimag_2014_09_002 crossref_primary_10_1007_s10237_015_0679_8 crossref_primary_10_1109_TMI_2021_3057496 crossref_primary_10_1007_s13239_024_00731_4 crossref_primary_10_1016_j_jbiomech_2016_11_024 crossref_primary_10_1080_10255842_2015_1052419 crossref_primary_10_1080_10255842_2014_887698 crossref_primary_10_1155_2015_628416 crossref_primary_10_1093_ejcts_ezab471 crossref_primary_10_1115_1_4067448 crossref_primary_10_1007_s13369_024_08810_3 crossref_primary_10_1177_09544119221106829 crossref_primary_10_1016_j_jvs_2016_07_108 crossref_primary_10_1115_1_4053082 crossref_primary_10_1186_s12938_021_00921_4 crossref_primary_10_1007_s13239_018_00387_x crossref_primary_10_3390_jpm11040253 crossref_primary_10_1115_1_4048570 crossref_primary_10_1080_10255842_2017_1334770 crossref_primary_10_3390_app12168049 crossref_primary_10_1016_j_mimet_2013_10_002 crossref_primary_10_1177_02676591221093195 crossref_primary_10_1016_j_cmpb_2022_106826 crossref_primary_10_1007_s13239_018_00394_y crossref_primary_10_1016_j_compfluid_2021_105123 crossref_primary_10_1016_j_euromechflu_2019_09_006 crossref_primary_10_1016_j_flowmeasinst_2020_101791 crossref_primary_10_1088_2057_1976_2_2_025016 crossref_primary_10_1002_cnm_2798 crossref_primary_10_3390_jcm14041290 crossref_primary_10_1016_j_crhy_2013_05_003 crossref_primary_10_32604_fdmp_2021_010925 crossref_primary_10_1080_10255842_2020_1714965 crossref_primary_10_1016_j_jfluidstructs_2021_103346 crossref_primary_10_3390_jimaging9060123 crossref_primary_10_1016_j_jvssci_2023_100119 crossref_primary_10_1111_aor_12802 crossref_primary_10_1142_S1758825115500210 crossref_primary_10_4236_wjcd_2015_56016 crossref_primary_10_1142_S0219519417500464 crossref_primary_10_1016_j_medengphy_2014_12_011 crossref_primary_10_1016_j_medengphy_2020_07_003 crossref_primary_10_32604_fdmp_2021_010974 crossref_primary_10_1007_s00366_024_02100_0 crossref_primary_10_1002_cnm_3134 crossref_primary_10_3390_bioengineering11121196 crossref_primary_10_1016_j_medengphy_2023_104014 crossref_primary_10_1007_s00162_021_00566_y crossref_primary_10_1063_5_0233298 crossref_primary_10_1016_j_compbiomed_2021_104652 crossref_primary_10_1016_j_jbiomech_2020_109691 crossref_primary_10_1016_j_ijmecsci_2019_105222 crossref_primary_10_1016_j_jbiomech_2015_02_027 crossref_primary_10_1016_j_mri_2017_12_005 crossref_primary_10_1016_j_jvs_2015_04_421 crossref_primary_10_1111_nep_13219 crossref_primary_10_1142_S1758825118500357 crossref_primary_10_1080_10255842_2019_1597860 crossref_primary_10_1016_j_cma_2022_114654 crossref_primary_10_1080_10255842_2018_1521964 crossref_primary_10_1016_j_jbiomech_2012_10_012 crossref_primary_10_1115_1_4043357 crossref_primary_10_1007_s13239_014_0187_5 crossref_primary_10_1002_cnm_2620 crossref_primary_10_1007_s13239_021_00552_9 crossref_primary_10_1111_aor_13883 crossref_primary_10_1007_s00449_013_0954_y crossref_primary_10_1016_j_apm_2014_01_004 crossref_primary_10_3389_fphys_2021_732561 crossref_primary_10_1016_j_jbiomech_2021_110793 crossref_primary_10_1007_s10439_013_0879_2 crossref_primary_10_1140_epjs_s11734_024_01380_3 crossref_primary_10_1016_j_cpcardiol_2022_101505 crossref_primary_10_1186_s12964_023_01089_1 crossref_primary_10_1371_journal_pone_0112395 crossref_primary_10_1007_s11517_017_1693_z crossref_primary_10_1115_1_4051923 crossref_primary_10_1093_neuros_nyaa021 crossref_primary_10_1016_j_medengphy_2011_12_002 crossref_primary_10_1007_s13239_013_0146_6 crossref_primary_10_1016_j_jbiomech_2016_11_044 crossref_primary_10_1007_s10439_017_1913_6 crossref_primary_10_1007_s00380_017_0979_2 crossref_primary_10_1007_s10237_014_0567_7 crossref_primary_10_1080_10255842_2022_2106133 |
Cites_doi | 10.1115/1.1574332 10.1115/1.1487357 10.1115/1.2798332 10.1161/01.ATV.5.3.293 10.1016/j.jfluidstructs.2009.03.002 10.1007/s10554-008-9373-6 10.1115/1.2795948 10.1016/j.medengphy.2005.06.008 10.1007/s10867-006-9027-7 10.1007/s00466-009-0425-0 10.1243/09544119JEIM725 10.1186/1471-2342-10-1 10.1142/S1758825109000095 10.1115/1.1934040 10.1007/s11517-008-0359-2 10.1007/11866565_32 10.1001/jama.282.21.2035 10.1186/1475-925X-5-25 10.1161/STROKEAHA.107.503698 10.1007/s10439-009-9857-0 10.1007/s10439-010-0094-3 10.1007/BF01907921 10.1172/JCI104617 10.1161/01.STR.0000111597.34179.47 10.1080/10255840701827412 10.1016/j.medengphy.2004.12.003 10.1114/B:ABME.0000049032.51742.10 10.1016/0021-9150(94)90207-0 |
ContentType | Journal Article |
Copyright | 2011, Imperial College Press |
Copyright_xml | – notice: 2011, Imperial College Press |
DBID | AAYXX CITATION ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.1142/S1758825111001226 |
DatabaseName | CrossRef SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1758-826X |
EndPage | 778 |
ExternalDocumentID | oai_DiVA_org_liu_71720 10_1142_S1758825111001226 S1758825111001226 |
GroupedDBID | 0R~ 4.4 ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF EBS EJD HZ~ O9- P2P P71 RWJ AAYXX ADMLS CITATION ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
ID | FETCH-LOGICAL-c4326-d45958400071de430ab5017bc31178495a5200ed9a8f9c64afc0b81d7233c2223 |
ISSN | 1758-8251 |
IngestDate | Thu Aug 21 06:56:10 EDT 2025 Tue Jul 01 03:34:55 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Aug 23 08:19:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | magnetic resonance imaging Computational fluid dynamics pressure wave wall deformation windkessel model computational fluid dynamics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4326-d45958400071de430ab5017bc31178495a5200ed9a8f9c64afc0b81d7233c2223 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71720 |
PageCount | 20 |
ParticipantIDs | worldscientific_primary_S1758825111001226 crossref_primary_10_1142_S1758825111001226 crossref_citationtrail_10_1142_S1758825111001226 swepub_primary_oai_DiVA_org_liu_71720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20111200 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 20111200 |
PublicationDecade | 2010 |
PublicationTitle | International journal of applied mechanics |
PublicationYear | 2011 |
Publisher | Imperial College Press |
Publisher_xml | – name: Imperial College Press |
References | rf23 rf4 rf22 rf7 rf25 rf6 rf9 rf21 rf20 rf27 rf26 rf28 McGregor R. H. (rf24); 10 Cheng R. (rf5); 12 Grant B. J. (rf11); 252 rf12 rf34 rf33 rf14 rf36 rf13 rf35 rf30 rf10 rf32 rf31 rf19 rf16 rf15 rf18 rf17 Dempere-Marco L. (rf8); 9 Stergiopulos N. (rf29); 276 rf3 |
References_xml | – ident: rf17 doi: 10.1115/1.1574332 – volume: 252 start-page: H585 ident: rf11 publication-title: American Journal of Physiology – ident: rf27 doi: 10.1115/1.1487357 – ident: rf3 doi: 10.1115/1.2798332 – ident: rf20 doi: 10.1161/01.ATV.5.3.293 – ident: rf4 doi: 10.1016/j.jfluidstructs.2009.03.002 – volume: 9 start-page: 438 ident: rf8 publication-title: Medical Image Computing and Computer-Assisted Intervention – ident: rf16 doi: 10.1007/s10554-008-9373-6 – ident: rf12 doi: 10.1115/1.2795948 – volume: 12 start-page: 772 ident: rf5 publication-title: Journal of Heart Valve Disease – ident: rf35 doi: 10.1016/j.medengphy.2005.06.008 – ident: rf9 doi: 10.1007/s10867-006-9027-7 – ident: rf7 – ident: rf31 doi: 10.1007/s00466-009-0425-0 – ident: rf18 doi: 10.1243/09544119JEIM725 – ident: rf13 doi: 10.1186/1471-2342-10-1 – volume: 10 start-page: 227 ident: rf24 publication-title: Medical Image Computing and Computer-Assisted Intervention – ident: rf32 doi: 10.1142/S1758825109000095 – volume: 276 start-page: H81 ident: rf29 publication-title: American Journal of Physiology – ident: rf22 doi: 10.1115/1.1934040 – ident: rf34 doi: 10.1007/s11517-008-0359-2 – ident: rf30 doi: 10.1007/11866565_32 – ident: rf23 doi: 10.1001/jama.282.21.2035 – ident: rf10 doi: 10.1186/1475-925X-5-25 – ident: rf15 doi: 10.1161/STROKEAHA.107.503698 – ident: rf28 doi: 10.1007/s10439-009-9857-0 – ident: rf36 doi: 10.1007/s10439-010-0094-3 – ident: rf19 doi: 10.1007/BF01907921 – ident: rf33 doi: 10.1172/JCI104617 – ident: rf14 doi: 10.1161/01.STR.0000111597.34179.47 – ident: rf26 doi: 10.1080/10255840701827412 – ident: rf21 doi: 10.1016/j.medengphy.2004.12.003 – ident: rf6 doi: 10.1114/B:ABME.0000049032.51742.10 – ident: rf25 doi: 10.1016/0021-9150(94)90207-0 |
SSID | ssj0000463349 |
Score | 2.2655113 |
Snippet | Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is... |
SourceID | swepub crossref worldscientific |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 759 |
Title | WALL SHEAR STRESS IN A SUBJECT SPECIFIC HUMAN AORTA — INFLUENCE OF FLUID-STRUCTURE INTERACTION |
URI | http://www.worldscientific.com/doi/abs/10.1142/S1758825111001226 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71720 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7oU9rPgV5U8-wAGiQJM4TXq02kbpkiaoSWHFJes4KVpp6aJVe-HEI3DgCXkSxnbq9bYLYrlEketMW8_n8diZ-QahF8TnXr8Ome3XvLLJgnObBU3fDjxYrnpVyHpcZCNP0348J0fH_nGn88OIWlqvqjf827V5Jf-jVWgDvYos2RtoVguFBrgH_cIVNAzXf9LxR5okVh6P6Qw8OzGU1iSFmd4WMbHy9-PhJIJhjudTCh9ks4Jam-gGAn2jZC5PmLLIgtvJyAYp86EMhJBUuSrCxPRfrx4gGrQTrPVmvzQildgIoU9oWnySWMnSy6LHs3GaqhiMoyym-nXQOzpL8jyToQdTWhS5eSghouJ0gIeyo7ANsUVWrFpmzDZZuFAbX8_AGDEMadDyhKs1OVBlfnbNPRH0sbmQLL5M0N85rnsNtfbWkqcDEVVatlvuiLiF9l3YeIDl3KejaZLrczvBsObJXZX-j-3LcpDzdkfOFXenJaM9QIeSDlelvIqIMMOlKe6gw3YvgqkC1l3UaZb30IHBUHkfnQiIYQkxrCCGJymmuIUY3kAMS4hhCTH86_tPrMGFswhvgQsb4HqA5tG4GMZ2W5TD5gRcfbsm_gCcVumb1g3MZ1b5YNUr7jlOEMJ2mwkir6YesHAx4H3CFhymvFPDWHpcOKMP0d7yfNk8QnjhVyDNl0m8JGzqsPG4E_CKeAELPOZ2UW8zdiVvGetF4ZSz8o9q66LX-pGviq7lb51fKoXoroJrfXT6gZbnF5_Ls9N1GYB_3-uiV1v60g_syHx8kx_wBN2-nDxP0d7qYt08Ax93VT1vYfcbYD2LRQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WALL+SHEAR+STRESS+IN+A+SUBJECT+SPECIFIC+HUMAN+AORTA+%E2%80%94+INFLUENCE+OF+FLUID-STRUCTURE+INTERACTION&rft.jtitle=International+journal+of+applied+mechanics&rft.au=LANTZ%2C+JONAS&rft.au=RENNER%2C+JOHAN&rft.au=KARLSSON%2C+MATTS&rft.date=2011-12-01&rft.issn=1758-8251&rft.eissn=1758-826X&rft.volume=3&rft.issue=4&rft.spage=759&rft.epage=778&rft_id=info:doi/10.1142%2FS1758825111001226&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S1758825111001226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-8251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-8251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-8251&client=summon |