WALL SHEAR STRESS IN A SUBJECT SPECIFIC HUMAN AORTA — INFLUENCE OF FLUID-STRUCTURE INTERACTION

Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion change...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied mechanics Vol. 3; no. 4; pp. 759 - 778
Main Authors LANTZ, JONAS, RENNER, JOHAN, KARLSSON, MATTS
Format Journal Article
LanguageEnglish
Published Imperial College Press 01.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion changes the WSS or if a rigid wall assumption is sufficient. Magnetic resonance imaging (MRI) was used to acquire subject specific geometry and flow rates in a human aorta, which were used as inputs in numerical models. Both rigid wall models and fluid-structure interaction (FSI) models were considered, and used to calculate the WSS on the aortic wall. A physiological range of different wall stiffnesses in the FSI simulations was used in order to investigate its effect on the flow dynamics. MRI measurements of velocity in the descending aorta were used as validation of the numerical models, and good agreement was achieved. It was found that the influence of wall motion was low on time-averaged WSS and oscillating shear index, but when regarding instantaneous WSS values the effect from the wall motion was clearly visible. Therefore, if instantaneous WSS is to be investigated, a FSI simulation should be considered.
AbstractList Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion changes the WSS or if a rigid wall assumption is sufficient. Magnetic resonance imaging (MRI) was used to acquire subject specific geometry and flow rates in a human aorta, which were used as inputs in numerical models. Both rigid wall models and fluid-structure interaction (FSI) models were considered, and used to calculate the WSS on the aortic wall. A physiological range of different wall stiffnesses in the FSI simulations was used in order to investigate its effect on the flow dynamics. MRI measurements of velocity in the descending aorta were used as validation of the numerical models, and good agreement was achieved. It was found that the influence of wall motion was low on time-averaged WSS and oscillating shear index, but when regarding instantaneous WSS values the effect from the wall motion was clearly visible. Therefore, if instantaneous WSS is to be investigated, a FSI simulation should be considered.
Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is sensitive to pulsatile effects and local changes in geometry. The aim of this study is therefore to investigate if the effect of wall motion changes the WSS or if a rigid wall assumption is sufficient. Magnetic resonance imaging (MRI) was used to acquire subject specific geometry and flow rates in a human aorta, which were used as inputs in numerical models. Both rigid wall models and fluid-structure interaction (FSI) models were considered, and used to calculate the WSS on the aortic wall. A physiological range of different wall stiffnesses in the FSI simulations was used in order to investigate its effect on the flow dynamics. MRI measurements of velocity in the descending aorta were used as validation of the numerical models, and good agreement was achieved. It was found that the influence of wall motion was low on time-averaged WSS and oscillating shear index, but when regarding instantaneous WSS values the e.ect from the wall motion was clearly visible. Therefore, if instantaneous WSS is to be investigated, a FSI simulation should be considered.
Author LANTZ, JONAS
KARLSSON, MATTS
RENNER, JOHAN
Author_xml – sequence: 1
  givenname: JONAS
  surname: LANTZ
  fullname: LANTZ, JONAS
  email: jonas.lantz@liu.se
  organization: Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden
– sequence: 2
  givenname: JOHAN
  surname: RENNER
  fullname: RENNER, JOHAN
  email: johan.renner@liu.se
  organization: Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden
– sequence: 3
  givenname: MATTS
  surname: KARLSSON
  fullname: KARLSSON, MATTS
  email: matts.karlsson@liu.se
  organization: Department of Management and Engineering, Linköping University, SE-581 83 Linköping, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71720$$DView record from Swedish Publication Index
BookMark eNp9kEtOwzAQhi0EEqX0AOx8AAIex3ktQ-rQoNCgPIBdcJ0EGZWmSlpV7DgEJ-QkuCrqgkrMZkbz_9_MaM7Q8aJd1AhdALkCYPQ6A8dyXWoBACFAqX2EBtuW4VL7-XhfW3CKRn3_RnQw2zSZN0AvT34c42zC_RRnecqzDEdT7OOsuLnjQY6zBx5EYRTgSXHvayFJcx9_f35pVxgXfBpwnIRYl9HY0HwR5EXKtZjz1A_yKJmeo5NGzPt69JuHqAh5HkyMOLmNAj82JDOpbVTM8iyX6cscqGpmEjGzCDgzaQI4LvMsYVFC6soTbuNJm4lGkpkLlUNNU1JKzSG63M3tN_VyPSuXnXoX3UfZClWO1aNftt1rOVfr0gGHEm2HnV12bd93dbMHgJTbp5YHT9WM84eRaiVWql2sOqHm_5JkR27abl71UtWLlWqU3C89RH4A1uKDOg
CitedBy_id crossref_primary_10_1097_MAT_0000000000002351
crossref_primary_10_1007_s11517_021_02417_8
crossref_primary_10_1016_j_compfluid_2018_01_012
crossref_primary_10_1007_s00380_015_0758_x
crossref_primary_10_3389_fped_2015_00107
crossref_primary_10_1016_j_jbiomech_2015_11_040
crossref_primary_10_1016_j_medengphy_2016_01_003
crossref_primary_10_1049_htl_2013_0040
crossref_primary_10_1142_S1758825114500690
crossref_primary_10_1007_s11831_024_10193_5
crossref_primary_10_1115_1_4043722
crossref_primary_10_1080_21681163_2016_1184589
crossref_primary_10_1016_j_ces_2013_02_045
crossref_primary_10_1016_j_compmedimag_2014_09_002
crossref_primary_10_1007_s10237_015_0679_8
crossref_primary_10_1109_TMI_2021_3057496
crossref_primary_10_1007_s13239_024_00731_4
crossref_primary_10_1016_j_jbiomech_2016_11_024
crossref_primary_10_1080_10255842_2015_1052419
crossref_primary_10_1080_10255842_2014_887698
crossref_primary_10_1155_2015_628416
crossref_primary_10_1093_ejcts_ezab471
crossref_primary_10_1115_1_4067448
crossref_primary_10_1007_s13369_024_08810_3
crossref_primary_10_1177_09544119221106829
crossref_primary_10_1016_j_jvs_2016_07_108
crossref_primary_10_1115_1_4053082
crossref_primary_10_1186_s12938_021_00921_4
crossref_primary_10_1007_s13239_018_00387_x
crossref_primary_10_3390_jpm11040253
crossref_primary_10_1115_1_4048570
crossref_primary_10_1080_10255842_2017_1334770
crossref_primary_10_3390_app12168049
crossref_primary_10_1016_j_mimet_2013_10_002
crossref_primary_10_1177_02676591221093195
crossref_primary_10_1016_j_cmpb_2022_106826
crossref_primary_10_1007_s13239_018_00394_y
crossref_primary_10_1016_j_compfluid_2021_105123
crossref_primary_10_1016_j_euromechflu_2019_09_006
crossref_primary_10_1016_j_flowmeasinst_2020_101791
crossref_primary_10_1088_2057_1976_2_2_025016
crossref_primary_10_1002_cnm_2798
crossref_primary_10_3390_jcm14041290
crossref_primary_10_1016_j_crhy_2013_05_003
crossref_primary_10_32604_fdmp_2021_010925
crossref_primary_10_1080_10255842_2020_1714965
crossref_primary_10_1016_j_jfluidstructs_2021_103346
crossref_primary_10_3390_jimaging9060123
crossref_primary_10_1016_j_jvssci_2023_100119
crossref_primary_10_1111_aor_12802
crossref_primary_10_1142_S1758825115500210
crossref_primary_10_4236_wjcd_2015_56016
crossref_primary_10_1142_S0219519417500464
crossref_primary_10_1016_j_medengphy_2014_12_011
crossref_primary_10_1016_j_medengphy_2020_07_003
crossref_primary_10_32604_fdmp_2021_010974
crossref_primary_10_1007_s00366_024_02100_0
crossref_primary_10_1002_cnm_3134
crossref_primary_10_3390_bioengineering11121196
crossref_primary_10_1016_j_medengphy_2023_104014
crossref_primary_10_1007_s00162_021_00566_y
crossref_primary_10_1063_5_0233298
crossref_primary_10_1016_j_compbiomed_2021_104652
crossref_primary_10_1016_j_jbiomech_2020_109691
crossref_primary_10_1016_j_ijmecsci_2019_105222
crossref_primary_10_1016_j_jbiomech_2015_02_027
crossref_primary_10_1016_j_mri_2017_12_005
crossref_primary_10_1016_j_jvs_2015_04_421
crossref_primary_10_1111_nep_13219
crossref_primary_10_1142_S1758825118500357
crossref_primary_10_1080_10255842_2019_1597860
crossref_primary_10_1016_j_cma_2022_114654
crossref_primary_10_1080_10255842_2018_1521964
crossref_primary_10_1016_j_jbiomech_2012_10_012
crossref_primary_10_1115_1_4043357
crossref_primary_10_1007_s13239_014_0187_5
crossref_primary_10_1002_cnm_2620
crossref_primary_10_1007_s13239_021_00552_9
crossref_primary_10_1111_aor_13883
crossref_primary_10_1007_s00449_013_0954_y
crossref_primary_10_1016_j_apm_2014_01_004
crossref_primary_10_3389_fphys_2021_732561
crossref_primary_10_1016_j_jbiomech_2021_110793
crossref_primary_10_1007_s10439_013_0879_2
crossref_primary_10_1140_epjs_s11734_024_01380_3
crossref_primary_10_1016_j_cpcardiol_2022_101505
crossref_primary_10_1186_s12964_023_01089_1
crossref_primary_10_1371_journal_pone_0112395
crossref_primary_10_1007_s11517_017_1693_z
crossref_primary_10_1115_1_4051923
crossref_primary_10_1093_neuros_nyaa021
crossref_primary_10_1016_j_medengphy_2011_12_002
crossref_primary_10_1007_s13239_013_0146_6
crossref_primary_10_1016_j_jbiomech_2016_11_044
crossref_primary_10_1007_s10439_017_1913_6
crossref_primary_10_1007_s00380_017_0979_2
crossref_primary_10_1007_s10237_014_0567_7
crossref_primary_10_1080_10255842_2022_2106133
Cites_doi 10.1115/1.1574332
10.1115/1.1487357
10.1115/1.2798332
10.1161/01.ATV.5.3.293
10.1016/j.jfluidstructs.2009.03.002
10.1007/s10554-008-9373-6
10.1115/1.2795948
10.1016/j.medengphy.2005.06.008
10.1007/s10867-006-9027-7
10.1007/s00466-009-0425-0
10.1243/09544119JEIM725
10.1186/1471-2342-10-1
10.1142/S1758825109000095
10.1115/1.1934040
10.1007/s11517-008-0359-2
10.1007/11866565_32
10.1001/jama.282.21.2035
10.1186/1475-925X-5-25
10.1161/STROKEAHA.107.503698
10.1007/s10439-009-9857-0
10.1007/s10439-010-0094-3
10.1007/BF01907921
10.1172/JCI104617
10.1161/01.STR.0000111597.34179.47
10.1080/10255840701827412
10.1016/j.medengphy.2004.12.003
10.1114/B:ABME.0000049032.51742.10
10.1016/0021-9150(94)90207-0
ContentType Journal Article
Copyright 2011, Imperial College Press
Copyright_xml – notice: 2011, Imperial College Press
DBID AAYXX
CITATION
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1142/S1758825111001226
DatabaseName CrossRef
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1758-826X
EndPage 778
ExternalDocumentID oai_DiVA_org_liu_71720
10_1142_S1758825111001226
S1758825111001226
GroupedDBID 0R~
4.4
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
EBS
EJD
HZ~
O9-
P2P
P71
RWJ
AAYXX
ADMLS
CITATION
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c4326-d45958400071de430ab5017bc31178495a5200ed9a8f9c64afc0b81d7233c2223
ISSN 1758-8251
IngestDate Thu Aug 21 06:56:10 EDT 2025
Tue Jul 01 03:34:55 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Fri Aug 23 08:19:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords magnetic resonance imaging
Computational fluid dynamics
pressure wave
wall deformation
windkessel model
computational fluid dynamics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4326-d45958400071de430ab5017bc31178495a5200ed9a8f9c64afc0b81d7233c2223
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71720
PageCount 20
ParticipantIDs worldscientific_primary_S1758825111001226
crossref_primary_10_1142_S1758825111001226
crossref_citationtrail_10_1142_S1758825111001226
swepub_primary_oai_DiVA_org_liu_71720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20111200
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 20111200
PublicationDecade 2010
PublicationTitle International journal of applied mechanics
PublicationYear 2011
Publisher Imperial College Press
Publisher_xml – name: Imperial College Press
References rf23
rf4
rf22
rf7
rf25
rf6
rf9
rf21
rf20
rf27
rf26
rf28
McGregor R. H. (rf24); 10
Cheng R. (rf5); 12
Grant B. J. (rf11); 252
rf12
rf34
rf33
rf14
rf36
rf13
rf35
rf30
rf10
rf32
rf31
rf19
rf16
rf15
rf18
rf17
Dempere-Marco L. (rf8); 9
Stergiopulos N. (rf29); 276
rf3
References_xml – ident: rf17
  doi: 10.1115/1.1574332
– volume: 252
  start-page: H585
  ident: rf11
  publication-title: American Journal of Physiology
– ident: rf27
  doi: 10.1115/1.1487357
– ident: rf3
  doi: 10.1115/1.2798332
– ident: rf20
  doi: 10.1161/01.ATV.5.3.293
– ident: rf4
  doi: 10.1016/j.jfluidstructs.2009.03.002
– volume: 9
  start-page: 438
  ident: rf8
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– ident: rf16
  doi: 10.1007/s10554-008-9373-6
– ident: rf12
  doi: 10.1115/1.2795948
– volume: 12
  start-page: 772
  ident: rf5
  publication-title: Journal of Heart Valve Disease
– ident: rf35
  doi: 10.1016/j.medengphy.2005.06.008
– ident: rf9
  doi: 10.1007/s10867-006-9027-7
– ident: rf7
– ident: rf31
  doi: 10.1007/s00466-009-0425-0
– ident: rf18
  doi: 10.1243/09544119JEIM725
– ident: rf13
  doi: 10.1186/1471-2342-10-1
– volume: 10
  start-page: 227
  ident: rf24
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– ident: rf32
  doi: 10.1142/S1758825109000095
– volume: 276
  start-page: H81
  ident: rf29
  publication-title: American Journal of Physiology
– ident: rf22
  doi: 10.1115/1.1934040
– ident: rf34
  doi: 10.1007/s11517-008-0359-2
– ident: rf30
  doi: 10.1007/11866565_32
– ident: rf23
  doi: 10.1001/jama.282.21.2035
– ident: rf10
  doi: 10.1186/1475-925X-5-25
– ident: rf15
  doi: 10.1161/STROKEAHA.107.503698
– ident: rf28
  doi: 10.1007/s10439-009-9857-0
– ident: rf36
  doi: 10.1007/s10439-010-0094-3
– ident: rf19
  doi: 10.1007/BF01907921
– ident: rf33
  doi: 10.1172/JCI104617
– ident: rf14
  doi: 10.1161/01.STR.0000111597.34179.47
– ident: rf26
  doi: 10.1080/10255840701827412
– ident: rf21
  doi: 10.1016/j.medengphy.2004.12.003
– ident: rf6
  doi: 10.1114/B:ABME.0000049032.51742.10
– ident: rf25
  doi: 10.1016/0021-9150(94)90207-0
SSID ssj0000463349
Score 2.2655113
Snippet Vascular wall shear stress (WSS) has been correlated to the development of atherosclerosis in arteries. As WSS depends on the blood flow dynamics, it is...
SourceID swepub
crossref
worldscientific
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 759
Title WALL SHEAR STRESS IN A SUBJECT SPECIFIC HUMAN AORTA — INFLUENCE OF FLUID-STRUCTURE INTERACTION
URI http://www.worldscientific.com/doi/abs/10.1142/S1758825111001226
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71720
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7oU9rPgV5U8-wAGiQJM4TXq02kbpkiaoSWHFJes4KVpp6aJVe-HEI3DgCXkSxnbq9bYLYrlEketMW8_n8diZ-QahF8TnXr8Ome3XvLLJgnObBU3fDjxYrnpVyHpcZCNP0348J0fH_nGn88OIWlqvqjf827V5Jf-jVWgDvYos2RtoVguFBrgH_cIVNAzXf9LxR5okVh6P6Qw8OzGU1iSFmd4WMbHy9-PhJIJhjudTCh9ks4Jam-gGAn2jZC5PmLLIgtvJyAYp86EMhJBUuSrCxPRfrx4gGrQTrPVmvzQildgIoU9oWnySWMnSy6LHs3GaqhiMoyym-nXQOzpL8jyToQdTWhS5eSghouJ0gIeyo7ANsUVWrFpmzDZZuFAbX8_AGDEMadDyhKs1OVBlfnbNPRH0sbmQLL5M0N85rnsNtfbWkqcDEVVatlvuiLiF9l3YeIDl3KejaZLrczvBsObJXZX-j-3LcpDzdkfOFXenJaM9QIeSDlelvIqIMMOlKe6gw3YvgqkC1l3UaZb30IHBUHkfnQiIYQkxrCCGJymmuIUY3kAMS4hhCTH86_tPrMGFswhvgQsb4HqA5tG4GMZ2W5TD5gRcfbsm_gCcVumb1g3MZ1b5YNUr7jlOEMJ2mwkir6YesHAx4H3CFhymvFPDWHpcOKMP0d7yfNk8QnjhVyDNl0m8JGzqsPG4E_CKeAELPOZ2UW8zdiVvGetF4ZSz8o9q66LX-pGviq7lb51fKoXoroJrfXT6gZbnF5_Ls9N1GYB_3-uiV1v60g_syHx8kx_wBN2-nDxP0d7qYt08Ax93VT1vYfcbYD2LRQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WALL+SHEAR+STRESS+IN+A+SUBJECT+SPECIFIC+HUMAN+AORTA+%E2%80%94+INFLUENCE+OF+FLUID-STRUCTURE+INTERACTION&rft.jtitle=International+journal+of+applied+mechanics&rft.au=LANTZ%2C+JONAS&rft.au=RENNER%2C+JOHAN&rft.au=KARLSSON%2C+MATTS&rft.date=2011-12-01&rft.issn=1758-8251&rft.eissn=1758-826X&rft.volume=3&rft.issue=4&rft.spage=759&rft.epage=778&rft_id=info:doi/10.1142%2FS1758825111001226&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S1758825111001226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-8251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-8251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-8251&client=summon