Engineering singlet and triplet excitons of TADF emitters by different host‐guest interactions
Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and tripl...
Saved in:
Published in | Aggregate (Hoboken) Vol. 5; no. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Guangzhou
John Wiley & Sons, Inc
01.02.2024
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2692-4560 2766-8541 2692-4560 |
DOI | 10.1002/agt2.416 |
Cover
Loading…
Abstract | Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics.
The previous work about host‐guest interactions of TADF materials mainly focus on the origin of solid‐state solvation and the temporal behavior of TADF emitters in various hosts, which are all based on the singlet state with CT character. Within this context, technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. The present investigation provides valuable insights for manipulating the TADF device in glassy matrices by introducing codopants with polar side chains or conjugate π‐planar structures. |
---|---|
AbstractList | Abstract Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics. Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics. Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics. The previous work about host‐guest interactions of TADF materials mainly focus on the origin of solid‐state solvation and the temporal behavior of TADF emitters in various hosts, which are all based on the singlet state with CT character. Within this context, technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. The present investigation provides valuable insights for manipulating the TADF device in glassy matrices by introducing codopants with polar side chains or conjugate π‐planar structures. Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1 CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics. |
Author | Cui, Lin‐Song Zhang, Wei An, Rui Zhi Zhang, Jiachen Kong, Jie Zhou, Yujie Zhou, Meng |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-4459-1602 surname: Zhang fullname: Zhang, Wei organization: University of Science and Technology of China – sequence: 2 givenname: Jie orcidid: 0000-0002-7532-3950 surname: Kong fullname: Kong, Jie organization: University of Science and Technology of China – sequence: 3 givenname: Rui Zhi surname: An fullname: An, Rui Zhi organization: University of Science and Technology of China – sequence: 4 givenname: Jiachen surname: Zhang fullname: Zhang, Jiachen organization: University of Science and Technology of China – sequence: 5 givenname: Yujie surname: Zhou fullname: Zhou, Yujie organization: University of Science and Technology of China – sequence: 6 givenname: Lin‐Song orcidid: 0000-0001-6577-3432 surname: Cui fullname: Cui, Lin‐Song email: lscui@ustc.edu.cn organization: University of Science and Technology of China – sequence: 7 givenname: Meng orcidid: 0000-0001-5187-9084 surname: Zhou fullname: Zhou, Meng email: mzhou88@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNp1kc9uFSEUxolpE2vbxEcgceNmrvwbhlne1LY2adLN7RphODNyM4Ur0Ojd9RF8Rp9ExmuMMe0GPsjvfAfO9wYdhRgAobeUrCgh7IOZClsJKl-hEyZ71ohWkqN_9Gt0nvOWVLSlnLbkBH2-DJMPAMmHCee6zFCwCQ6X5HeLhu-DLzFkHEe8WX-8wvDgS4GUsd1j58cREoSCv8Rcfj79mB4hF-xDBcxQfK07Q8ejmTOc_9lP0f3V5ebiU3N7d31zsb5tBsGZbPggZOfGQVoFQASroq_nDlprqGhBSalkRwfLCTinVGt5B9xZSiyMSgA_RTcHXxfNVu-SfzBpr6Px-vdFTJM2qfhhBu2sdAyocXZ0grDO0J63qgfGDXGK0er17uC1S_Hr8iO9jY8p1OdrTlSvJBdUVer9gRpSzDnB-LcrJXqJQy9x6BpHRVf_oXWoZplPScbPzxU0h4Jvfob9i8Z6fb1hC_8LM2-etQ |
CitedBy_id | crossref_primary_10_1021_acsami_4c01637 crossref_primary_10_1039_D3CP05654F crossref_primary_10_1002_adom_202401844 crossref_primary_10_1002_anie_202404978 crossref_primary_10_1002_chem_202500644 crossref_primary_10_1002_ange_202404978 crossref_primary_10_1002_chem_202402294 crossref_primary_10_1021_acsaom_3c00370 crossref_primary_10_1021_acs_jpclett_4c00145 crossref_primary_10_1002_flm2_24 crossref_primary_10_1016_j_orgel_2025_107223 |
Cites_doi | 10.1038/ncomms13680 10.1021/j100096a001 10.1103/PhysRevB.60.14422 10.1002/anie.202217530 10.1103/PhysRevB.68.075211 10.1002/adfm.202201772 10.1021/acs.jpcc.7b11411 10.1021/jp054777w 10.1021/acs.jpcc.1c04283 10.1039/D1CP04905D 10.1021/acs.jpcc.8b08228 10.1039/D1SC07180G 10.1021/jacs.6b12124 10.1021/acs.accounts.0c00060 10.1021/acsaelm.0c00514 10.1126/sciadv.1700904 10.1002/agt2.243 10.1002/agt2.182 10.1038/s41566-020-0668-z 10.1021/acs.jpcc.9b03867 10.1002/3527600248 10.1021/jacs.2c05537 10.1002/anie.202213463 10.1021/acs.jpclett.1c03810 10.1038/nphoton.2012.31 10.1021/acs.chemrev.6b00127 10.1016/j.cplett.2004.06.011 10.1038/nature11687 10.1002/anie.201609459 10.1039/D1SC04188F 10.1126/sciadv.abj9961 10.1021/jacs.0c01225 10.1002/adfm.201807599 10.1002/adfm.201606458 10.1038/ncomms5016 10.1063/1.1733929 10.1002/adma.201604856 10.1021/acs.jpclett.7b01689 10.1038/s41566-021-00870-3 10.1039/C7TC04099G 10.1002/agt2.4 10.1021/jacs.6b05488 10.1039/C6CS00368K 10.1002/adom.202002153 10.1051/jcp/1953500064 10.1039/C9CP05907E 10.1002/adma.201402532 10.1016/j.matt.2023.02.002 10.1002/adom.201801644 10.1038/nmat4154 10.1021/jacs.9b12136 10.1103/PhysRevLett.91.247403 10.1088/2050-6120/aa537e 10.1021/jacs.2c02678 10.1021/acsenergylett.7b00268 10.1021/acs.jpclett.9b00810 10.1039/C7CC09612G 10.1038/s41563-022-01321-2 10.1002/jcc.22885 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/agt2.416 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2692-4560 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_db6d2e1adbfd4027a193589e23a0d821 10_1002_agt2_416 AGT2416 |
Genre | article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences funderid: YSBR‐007 – fundername: National Natural Science Foundation of China funderid: 22203085; 22273095 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB0450202 |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS AVUZU BENPR CCPQU EBS GROUPED_DOAJ IAO IGS ITC M~E OK1 PIMPY AAYXX AFPKN CITATION PHGZM PHGZT AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c4326-3c467dfc6b8ee042c6b97df7e5ba145e8668671cb30edd885b37e3db10bef84e3 |
IEDL.DBID | 24P |
ISSN | 2692-4560 2766-8541 |
IngestDate | Wed Aug 27 01:30:04 EDT 2025 Sun Jul 13 04:01:04 EDT 2025 Tue Jul 01 02:17:42 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Jan 22 16:15:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4326-3c467dfc6b8ee042c6b97df7e5ba145e8668671cb30edd885b37e3db10bef84e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6577-3432 0000-0001-5187-9084 0000-0002-4459-1602 0000-0002-7532-3950 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagt2.416 |
PQID | 3089863418 |
PQPubID | 6860422 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db6d2e1adbfd4027a193589e23a0d821 proquest_journals_3089863418 crossref_primary_10_1002_agt2_416 crossref_citationtrail_10_1002_agt2_416 wiley_primary_10_1002_agt2_416_AGT2416 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 20240201 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Guangzhou |
PublicationPlace_xml | – name: Guangzhou |
PublicationTitle | Aggregate (Hoboken) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 5 2018; 122 2017; 8 2017; 2 2017; 3 2023; 4 2023; 6 2021; 125 2019; 10 2017; 46 2014; 26 2022; 24 2020; 14 2022; 21 2019; 123 2012; 492 2023; 62 1963; 38 2014; 5 2020; 2 2003; 91 2020; 1 2020; 53 2001 2005; 109 2019; 29 2016; 116 2022; 32 2021; 9 2019; 7 2021; 7 2015; 14 2020; 142 2017; 27 1953; 50 2017; 29 2003 1999; 60 2012; 33 2017; 139 2022; 144 2021; 15 2016; 7 2021; 12 2022; 3 2022; 61 2004; 393 2017; 56 2003; 68 2022; 13 2016 2016; 138 2020; 22 2012; 6 2018; 54 1994; 98 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 Reichardt C. (e_1_2_9_59_1) 2003 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 53 start-page: 962 year: 2020 publication-title: Acc. Chem. Res. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – year: 2001 – volume: 5 year: 2017 publication-title: Methods Appl. Fluoresc. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1526 year: 2017 publication-title: ACS Energy Lett. – volume: 139 start-page: 4042 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 123 start-page: 4407 year: 2019 publication-title: J. Phys. Chem. C – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 6 start-page: 253 year: 2012 publication-title: Nat. Photonics – volume: 142 start-page: 8074 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4016 year: 2014 publication-title: Nat. Commun. – volume: 68 year: 2003 publication-title: Phys. Rev. B – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 22 start-page: 265 year: 2020 publication-title: Phys. Chem. Chem. Phys. – volume: 3 year: 2022 publication-title: Aggregate – volume: 60 year: 1999 publication-title: Phys. Rev. B – volume: 492 start-page: 234 year: 2012 publication-title: Nature – volume: 1 start-page: 45 year: 2020 publication-title: Aggregate – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 13 start-page: 1839 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 2868 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 54 start-page: 3926 year: 2018 publication-title: Chem. Commun. – volume: 142 start-page: 2448 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 915 year: 2017 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 780 year: 2021 publication-title: Nat. Photonics – volume: 50 start-page: 64 year: 1953 publication-title: J. Chim. Phys. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1231 year: 2023 publication-title: Matter – year: 2003 – volume: 38 start-page: 2042 year: 1963 publication-title: J. Chem. Phys. – volume: 8 start-page: 4183 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 4 year: 2023 publication-title: Aggregate – volume: 26 start-page: 7931 year: 2014 publication-title: Adv. Mater. – volume: 14 start-page: 636 year: 2020 publication-title: Nat. Photonics – year: 2016 – volume: 393 start-page: 51 year: 2004 publication-title: Chem. Phys. Lett. – volume: 24 start-page: 313 year: 2022 publication-title: Phys. Chem. Chem. Phys. – volume: 109 start-page: 9378 year: 2005 publication-title: J. Phys. Chem. A – volume: 12 year: 2021 publication-title: Chem. Sci. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 56 start-page: 1571 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 122 start-page: 3727 year: 2018 publication-title: J. Phys. Chem. C – volume: 14 start-page: 330 year: 2015 publication-title: Nat. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 10 start-page: 2475 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 98 year: 1994 publication-title: J. Phys. Chem. – volume: 13 start-page: 3625 year: 2022 publication-title: Chem. Sci. – volume: 21 start-page: 1150 year: 2022 publication-title: Nat. Mater. – ident: e_1_2_9_23_1 doi: 10.1038/ncomms13680 – ident: e_1_2_9_61_1 doi: 10.1021/j100096a001 – ident: e_1_2_9_4_1 doi: 10.1103/PhysRevB.60.14422 – ident: e_1_2_9_13_1 doi: 10.1002/anie.202217530 – ident: e_1_2_9_56_1 – ident: e_1_2_9_5_1 doi: 10.1103/PhysRevB.68.075211 – ident: e_1_2_9_37_1 doi: 10.1002/adfm.202201772 – ident: e_1_2_9_33_1 doi: 10.1021/acs.jpcc.7b11411 – ident: e_1_2_9_60_1 doi: 10.1021/jp054777w – ident: e_1_2_9_27_1 doi: 10.1021/acs.jpcc.1c04283 – ident: e_1_2_9_53_1 doi: 10.1039/D1CP04905D – ident: e_1_2_9_21_1 doi: 10.1021/acs.jpcc.8b08228 – ident: e_1_2_9_40_1 doi: 10.1039/D1SC07180G – ident: e_1_2_9_14_1 doi: 10.1021/jacs.6b12124 – ident: e_1_2_9_30_1 doi: 10.1021/acs.accounts.0c00060 – ident: e_1_2_9_54_1 doi: 10.1021/acsaelm.0c00514 – ident: e_1_2_9_42_1 doi: 10.1126/sciadv.1700904 – ident: e_1_2_9_29_1 doi: 10.1002/agt2.243 – ident: e_1_2_9_46_1 doi: 10.1002/agt2.182 – ident: e_1_2_9_25_1 doi: 10.1038/s41566-020-0668-z – ident: e_1_2_9_34_1 doi: 10.1021/acs.jpcc.9b03867 – ident: e_1_2_9_58_1 doi: 10.1002/3527600248 – ident: e_1_2_9_19_1 doi: 10.1021/jacs.2c05537 – ident: e_1_2_9_15_1 doi: 10.1002/anie.202213463 – ident: e_1_2_9_51_1 doi: 10.1021/acs.jpclett.1c03810 – ident: e_1_2_9_8_1 doi: 10.1038/nphoton.2012.31 – ident: e_1_2_9_31_1 doi: 10.1021/acs.chemrev.6b00127 – ident: e_1_2_9_62_1 doi: 10.1016/j.cplett.2004.06.011 – ident: e_1_2_9_6_1 doi: 10.1038/nature11687 – ident: e_1_2_9_10_1 doi: 10.1002/anie.201609459 – ident: e_1_2_9_43_1 doi: 10.1039/D1SC04188F – ident: e_1_2_9_28_1 doi: 10.1126/sciadv.abj9961 – ident: e_1_2_9_24_1 doi: 10.1021/jacs.0c01225 – ident: e_1_2_9_44_1 doi: 10.1002/adfm.201807599 – ident: e_1_2_9_39_1 doi: 10.1002/adfm.201606458 – ident: e_1_2_9_7_1 doi: 10.1038/ncomms5016 – ident: e_1_2_9_3_1 doi: 10.1063/1.1733929 – ident: e_1_2_9_38_1 doi: 10.1002/adma.201604856 – ident: e_1_2_9_47_1 doi: 10.1021/acs.jpclett.7b01689 – ident: e_1_2_9_20_1 doi: 10.1038/s41566-021-00870-3 – ident: e_1_2_9_50_1 doi: 10.1039/C7TC04099G – volume-title: Solvents and Solvent Effects in Organic Chemistry year: 2003 ident: e_1_2_9_59_1 – ident: e_1_2_9_9_1 doi: 10.1002/agt2.4 – ident: e_1_2_9_18_1 doi: 10.1021/jacs.6b05488 – ident: e_1_2_9_12_1 doi: 10.1039/C6CS00368K – ident: e_1_2_9_49_1 doi: 10.1002/adom.202002153 – ident: e_1_2_9_2_1 doi: 10.1051/jcp/1953500064 – ident: e_1_2_9_52_1 doi: 10.1039/C9CP05907E – ident: e_1_2_9_11_1 doi: 10.1002/adma.201402532 – ident: e_1_2_9_45_1 doi: 10.1016/j.matt.2023.02.002 – ident: e_1_2_9_48_1 doi: 10.1002/adom.201801644 – ident: e_1_2_9_26_1 doi: 10.1038/nmat4154 – ident: e_1_2_9_35_1 doi: 10.1021/jacs.9b12136 – ident: e_1_2_9_55_1 doi: 10.1103/PhysRevLett.91.247403 – ident: e_1_2_9_16_1 doi: 10.1088/2050-6120/aa537e – ident: e_1_2_9_22_1 doi: 10.1021/jacs.2c02678 – ident: e_1_2_9_32_1 doi: 10.1021/acsenergylett.7b00268 – ident: e_1_2_9_36_1 doi: 10.1021/acs.jpclett.9b00810 – ident: e_1_2_9_17_1 doi: 10.1039/C7CC09612G – ident: e_1_2_9_41_1 doi: 10.1038/s41563-022-01321-2 – ident: e_1_2_9_57_1 doi: 10.1002/jcc.22885 |
SSID | ssj0002513150 |
Score | 2.315382 |
Snippet | Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host... Abstract Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Electrons Geometry host‐guest interaction Investigations Polymers Polymethyl methacrylate singlet Spectrum analysis TADF triplet |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWWUH0FE2ym83mWB-1CHpqobd1XymCptJG0Js_wd_oL3E2jxJB8eItm8xhmMnsfJPsfIPQUaYCE0hufMU19SkI-SkkAj9SPNVlZ2TiGoVv79hgRG_G8bg16sudCavogSvDuTYxE9lQGpUZqHUSGbo_d6mNiAwML1vII8h5rWLK7cGQtQlAnYZtNojO5KSITqkba97KPyVN_zds2UaoZYrpr6HVGhviXqXTOlqy-QZaaTEGbqL71gq7Mh_MjmVucDFzX8wLbF81xGg-x9MMD3uXfWyfHkoGTazecDMNpcCut-Pz_WPi1MGOMmJWNTjMt9CofzW8GPj1kARfU4BePtGw1ZlMM8WthQiEixTWiY2VDGlsOWOOwk4rElhjOI8VSSwxKgyUzTi1ZBt18mludxBWGmof8BxUZIymnCjNQsl1SqhmsZGZh04a0wldM4i7QRaPouI-joQzsgAje-hwIflcsWb8IHPurL947niuyxvgfVF7X_zlfQ91G9-JOvjmggQ85QzSM_fQcenPX5UQveshYBi2-x_K7KHlCCBPdaa7izrF7MXuA2Qp1EH5dn4BUunsRQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1PT9swFLdGuYzDtI0hysrkSdM4GRLbcZzTVBhdNWkVQkXiZvwv1aSRsjaT4LaPsM-4T7LnxOmKBNzixIqs9_z-2u_3EPpQmsQlWjpipOWEwyRSgCEg1MjCNpWReSgU_jYR4wv-9TK7jAm3ZbxW2enERlG7uQ058iOWyEIK0Lny081PErpGhdPV2EJjA22CCpYQfG0en07OzldZFrDeLG3atNJcCCIznnYItAk90rOaHvLQ6nzNJjXQ_ff8zXWvtTE7o5foRfQX8bBl8Cv0zFev0dYaiuA2ulob4RD6AyuwrhyuFyGLXmN_a0FuqyWel3g6_DzC_vp7g6qJzR3uOqTUONR7_P39ZxaWgwOMxKIteli-QRej0-nJmMTGCcRycMcIs6D-XGmFkd6DVMJDAePcZ0anPPNSiABrZw1LvHNSZoblnjmTJsaXknu2g3rVvPK7CBsL8RBwE6I0wQvJjBWplrZg3IrM6bKPDjrSKRtRxUNzix-qxUOmKhBZAZH76P1q5k2LpPHAnONA_dX3gH3dvJgvZiqKknJGOOpT7UzpIPrNdRrOcgtPmU6cpGkfDTreqSiQS_V_-_TRx4afjy5CDb9Mwa8Re0__5y16TsHBaW9wD1CvXvzy--Cg1OZd3IX_AJl85sE priority: 102 providerName: ProQuest |
Title | Engineering singlet and triplet excitons of TADF emitters by different host‐guest interactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagt2.416 https://www.proquest.com/docview/3089863418 https://doaj.org/article/db6d2e1adbfd4027a193589e23a0d821 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB5Be4ED4lcstCsjITiFJrbjdY5b6FIhUVVoK_Vm_JcVEs1Wu6lUbjwCz8iTdMZJlq0EErc4mUjWTMbzjeP5BuB17fKQWx0yp73MJAplFQaCjDtd-VQZOaFC4c8n6vhMfjovz_tTlVQL0_FDbDbcyDPSek0Obt364A9pqF20_B3CibuwS5W1xJvP5elmfwXjtihSg1auKp4hTsgH7tmcHwwv34pGibT_FtLcxqsp4MwewoMeKbJpZ9pHcCc2j-H-Fn_gE_i6NWKU9KMRmG0Ca1e0f96yeO3RY5s1W9ZsPv0wY_HiW-LTZO4HG3qjtIwqPX7__LWg6TAikFh15Q7rp3A2O5q_P876lgmZlwjEMuFx4Qu1V07HiP6IFxWOJ7F0tpBl1EoRoZ13Io8haF06MYkiuCJ3sdYyimew0yyb-ByY85gJoR0xP1Oy0sJ5VVjtKyG9KoOtR_B2UJ3xPZ84tbX4bjomZG5IyQaVPIJXG8nLjkPjLzKHpP3Nc2K9TjeWq4XpncgEpwKPhQ2uDpj3TmxBf3GryIXNg-bFCPYG25neFddG5LrSCoO1HsGbZM9_TsJMP84R0agX_yv4Eu5xBDndKe492GlXV3EfQUrrxulrHMPu4dHJ6ZdxSvVvAJW05zU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ7qQgEj8TiZJrbjOAeEtrTLlrYrhLZSb278yAqpzZbdIOiNn8Av4UfxSxjnsSwScOstTiwrGo_HM2PP9wE8LUzkolw5apQVVGAnmuFGQJlRma0rI9NQKHw4lqMj8e44OV6DH10tTLhW2dnE2lC7mQ058i0eqUxJtLnq9fknGlijwulqR6HRqMW-v_iCIdvi1d4Ozu8zxoa7kzcj2rIKUCvQV6Hcom1whZVGeY8qiw8ZtlOfmDwWiVdSBsw3a3jknVMqMTz13Jk4Mr5QwnMc9wqsC46hTA_Wt3fH7z8sszroLfC4poVlqZRUJSLuEG8jtpVPK_ZSBGr1lT2wpgr4w79d9ZLrbW54E260_ikZNAp1C9Z8eRuur6AW3oGTlRYJqQacepKXjlTzkLWviP9q0U6UCzIryGSwMyT-7GON4knMBekYWSoS6kt-fvs-Db9DAmzFvCmyWNyFo0sR6T3olbPSbwAxFuMv1B6MCqXIFDdWxrmyGRdWJi4v-vCiE522LYp5INM41Q3-MtNByBqF3Icny57nDXLHX_psB-kvvwes7frFbD7V7dLVzkjHfJw7UziMttM8DmfHmWc8j5xicR82u7nTrQFY6N_q2ofn9Xz-8yf04O0E_Sh5___jPIaro8nhgT7YG-8_gGsMnavm9vgm9Kr5Z_8QnaPKPGo1ksDJZS-CXxNBJJk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkCp6QAWKWKBgJASnlMROvM5xC11oeaiHXYR6MX5lhVSyaDdIcOMn9Df2lzDOY1mkInGLk4kUzXg83ziebwB2Mx3aUAkbaGHiIEahIMVAEFAtUlNWRrZ9ofD5BT_pxz-vkqv6VKWvhan4ISYbbt4zyvXaO_idzQ5eSEPVoKBfEU7MwrwnycMZPd-57P_uT3ZYMHKzqGzRSnlKA0QKYcM-G9KD5vVX8aik7X-FNacRaxlyup9gscaKpFMZdwlmXL4MH6cYBFfgempEfNqPZiAqt6QY-R30grgHgz6bj8kwI73OUZe425uSUZPoR9J0RymIr_X49_R34D-HeAqJUVXwMP4M_e733uFJUDdNCEyMUCxgBpc-mxmuhXPokXiR4rjtEq2iOHGCc09pZzQLnbVCJJq1HbM6CrXLROzYKszlw9ytAdEGcyG0JGZoPE4F04ZHSpiUxYYnVmUt2G9UJ03NKO4bW_yRFRcylV7JEpXcgp2J5F3FovEfmW9e-5Pnnve6vDEcDWTtRtJqbqmLlNWZxcy3rSL_Hzd1lKnQChq1YLOxnaydcSxZKFLBMVyLFuyV9nzzI2TnuIeYhq-_V3AbPvw66sqzHxenG7BAEfFUR7o3Ya4Y3bsviFgKvVVPzWd2iekK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+singlet+and+triplet+excitons+of+TADF+emitters+by+different+host%E2%80%90guest+interactions&rft.jtitle=Aggregate+%28Hoboken%29&rft.au=Zhang%2C+Wei&rft.au=Kong%2C+Jie&rft.au=An%2C+Rui+Zhi&rft.au=Zhang%2C+Jiachen&rft.date=2024-02-01&rft.issn=2692-4560&rft.eissn=2692-4560&rft.volume=5&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fagt2.416&rft.externalDBID=10.1002%252Fagt2.416&rft.externalDocID=AGT2416 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-4560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-4560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-4560&client=summon |