Engineering singlet and triplet excitons of TADF emitters by different host‐guest interactions

Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and tripl...

Full description

Saved in:
Bibliographic Details
Published inAggregate (Hoboken) Vol. 5; no. 1
Main Authors Zhang, Wei, Kong, Jie, An, Rui Zhi, Zhang, Jiachen, Zhou, Yujie, Cui, Lin‐Song, Zhou, Meng
Format Journal Article
LanguageEnglish
Published Guangzhou John Wiley & Sons, Inc 01.02.2024
Wiley
Subjects
Online AccessGet full text
ISSN2692-4560
2766-8541
2692-4560
DOI10.1002/agt2.416

Cover

Loading…
Abstract Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics. The previous work about host‐guest interactions of TADF materials mainly focus on the origin of solid‐state solvation and the temporal behavior of TADF emitters in various hosts, which are all based on the singlet state with CT character. Within this context, technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. The present investigation provides valuable insights for manipulating the TADF device in glassy matrices by introducing codopants with polar side chains or conjugate π‐planar structures.
AbstractList Abstract Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics.
Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics.
Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics. The previous work about host‐guest interactions of TADF materials mainly focus on the origin of solid‐state solvation and the temporal behavior of TADF emitters in various hosts, which are all based on the singlet state with CT character. Within this context, technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. The present investigation provides valuable insights for manipulating the TADF device in glassy matrices by introducing codopants with polar side chains or conjugate π‐planar structures.
Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host‐guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host‐guest interaction‐modulated exciton recombination by using time‐resolved spectroscopy. We found that the early‐time relaxation is accelerated in polar polymer because dipole‐dipole interaction facilitates the stabilization of the 1 CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π‐π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host‐guest interactions based on their electronic characteristics.
Author Cui, Lin‐Song
Zhang, Wei
An, Rui Zhi
Zhang, Jiachen
Kong, Jie
Zhou, Yujie
Zhou, Meng
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-4459-1602
  surname: Zhang
  fullname: Zhang, Wei
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-7532-3950
  surname: Kong
  fullname: Kong, Jie
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Rui Zhi
  surname: An
  fullname: An, Rui Zhi
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Jiachen
  surname: Zhang
  fullname: Zhang, Jiachen
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Yujie
  surname: Zhou
  fullname: Zhou, Yujie
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Lin‐Song
  orcidid: 0000-0001-6577-3432
  surname: Cui
  fullname: Cui, Lin‐Song
  email: lscui@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Meng
  orcidid: 0000-0001-5187-9084
  surname: Zhou
  fullname: Zhou, Meng
  email: mzhou88@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNp1kc9uFSEUxolpE2vbxEcgceNmrvwbhlne1LY2adLN7RphODNyM4Ur0Ojd9RF8Rp9ExmuMMe0GPsjvfAfO9wYdhRgAobeUrCgh7IOZClsJKl-hEyZ71ohWkqN_9Gt0nvOWVLSlnLbkBH2-DJMPAMmHCee6zFCwCQ6X5HeLhu-DLzFkHEe8WX-8wvDgS4GUsd1j58cREoSCv8Rcfj79mB4hF-xDBcxQfK07Q8ejmTOc_9lP0f3V5ebiU3N7d31zsb5tBsGZbPggZOfGQVoFQASroq_nDlprqGhBSalkRwfLCTinVGt5B9xZSiyMSgA_RTcHXxfNVu-SfzBpr6Px-vdFTJM2qfhhBu2sdAyocXZ0grDO0J63qgfGDXGK0er17uC1S_Hr8iO9jY8p1OdrTlSvJBdUVer9gRpSzDnB-LcrJXqJQy9x6BpHRVf_oXWoZplPScbPzxU0h4Jvfob9i8Z6fb1hC_8LM2-etQ
CitedBy_id crossref_primary_10_1021_acsami_4c01637
crossref_primary_10_1039_D3CP05654F
crossref_primary_10_1002_adom_202401844
crossref_primary_10_1002_anie_202404978
crossref_primary_10_1002_chem_202500644
crossref_primary_10_1002_ange_202404978
crossref_primary_10_1002_chem_202402294
crossref_primary_10_1021_acsaom_3c00370
crossref_primary_10_1021_acs_jpclett_4c00145
crossref_primary_10_1002_flm2_24
crossref_primary_10_1016_j_orgel_2025_107223
Cites_doi 10.1038/ncomms13680
10.1021/j100096a001
10.1103/PhysRevB.60.14422
10.1002/anie.202217530
10.1103/PhysRevB.68.075211
10.1002/adfm.202201772
10.1021/acs.jpcc.7b11411
10.1021/jp054777w
10.1021/acs.jpcc.1c04283
10.1039/D1CP04905D
10.1021/acs.jpcc.8b08228
10.1039/D1SC07180G
10.1021/jacs.6b12124
10.1021/acs.accounts.0c00060
10.1021/acsaelm.0c00514
10.1126/sciadv.1700904
10.1002/agt2.243
10.1002/agt2.182
10.1038/s41566-020-0668-z
10.1021/acs.jpcc.9b03867
10.1002/3527600248
10.1021/jacs.2c05537
10.1002/anie.202213463
10.1021/acs.jpclett.1c03810
10.1038/nphoton.2012.31
10.1021/acs.chemrev.6b00127
10.1016/j.cplett.2004.06.011
10.1038/nature11687
10.1002/anie.201609459
10.1039/D1SC04188F
10.1126/sciadv.abj9961
10.1021/jacs.0c01225
10.1002/adfm.201807599
10.1002/adfm.201606458
10.1038/ncomms5016
10.1063/1.1733929
10.1002/adma.201604856
10.1021/acs.jpclett.7b01689
10.1038/s41566-021-00870-3
10.1039/C7TC04099G
10.1002/agt2.4
10.1021/jacs.6b05488
10.1039/C6CS00368K
10.1002/adom.202002153
10.1051/jcp/1953500064
10.1039/C9CP05907E
10.1002/adma.201402532
10.1016/j.matt.2023.02.002
10.1002/adom.201801644
10.1038/nmat4154
10.1021/jacs.9b12136
10.1103/PhysRevLett.91.247403
10.1088/2050-6120/aa537e
10.1021/jacs.2c02678
10.1021/acsenergylett.7b00268
10.1021/acs.jpclett.9b00810
10.1039/C7CC09612G
10.1038/s41563-022-01321-2
10.1002/jcc.22885
ContentType Journal Article
Copyright 2023 The Authors. published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/agt2.416
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2692-4560
EndPage n/a
ExternalDocumentID oai_doaj_org_article_db6d2e1adbfd4027a193589e23a0d821
10_1002_agt2_416
AGT2416
Genre article
GrantInformation_xml – fundername: Chinese Academy of Sciences
  funderid: YSBR‐007
– fundername: National Natural Science Foundation of China
  funderid: 22203085; 22273095
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB0450202
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
AVUZU
BENPR
CCPQU
EBS
GROUPED_DOAJ
IAO
IGS
ITC
M~E
OK1
PIMPY
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c4326-3c467dfc6b8ee042c6b97df7e5ba145e8668671cb30edd885b37e3db10bef84e3
IEDL.DBID 24P
ISSN 2692-4560
2766-8541
IngestDate Wed Aug 27 01:30:04 EDT 2025
Sun Jul 13 04:01:04 EDT 2025
Tue Jul 01 02:17:42 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Jan 22 16:15:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4326-3c467dfc6b8ee042c6b97df7e5ba145e8668671cb30edd885b37e3db10bef84e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6577-3432
0000-0001-5187-9084
0000-0002-4459-1602
0000-0002-7532-3950
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagt2.416
PQID 3089863418
PQPubID 6860422
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_db6d2e1adbfd4027a193589e23a0d821
proquest_journals_3089863418
crossref_primary_10_1002_agt2_416
crossref_citationtrail_10_1002_agt2_416
wiley_primary_10_1002_agt2_416_AGT2416
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Guangzhou
PublicationPlace_xml – name: Guangzhou
PublicationTitle Aggregate (Hoboken)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 5
2018; 122
2017; 8
2017; 2
2017; 3
2023; 4
2023; 6
2021; 125
2019; 10
2017; 46
2014; 26
2022; 24
2020; 14
2022; 21
2019; 123
2012; 492
2023; 62
1963; 38
2014; 5
2020; 2
2003; 91
2020; 1
2020; 53
2001
2005; 109
2019; 29
2016; 116
2022; 32
2021; 9
2019; 7
2021; 7
2015; 14
2020; 142
2017; 27
1953; 50
2017; 29
2003
1999; 60
2012; 33
2017; 139
2022; 144
2021; 15
2016; 7
2021; 12
2022; 3
2022; 61
2004; 393
2017; 56
2003; 68
2022; 13
2016
2016; 138
2020; 22
2012; 6
2018; 54
1994; 98
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
Reichardt C. (e_1_2_9_59_1) 2003
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 53
  start-page: 962
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– year: 2001
– volume: 5
  year: 2017
  publication-title: Methods Appl. Fluoresc.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1526
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 139
  start-page: 4042
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 123
  start-page: 4407
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 6
  start-page: 253
  year: 2012
  publication-title: Nat. Photonics
– volume: 142
  start-page: 8074
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4016
  year: 2014
  publication-title: Nat. Commun.
– volume: 68
  year: 2003
  publication-title: Phys. Rev. B
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 22
  start-page: 265
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  year: 2022
  publication-title: Aggregate
– volume: 60
  year: 1999
  publication-title: Phys. Rev. B
– volume: 492
  start-page: 234
  year: 2012
  publication-title: Nature
– volume: 1
  start-page: 45
  year: 2020
  publication-title: Aggregate
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 13
  start-page: 1839
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 2868
  year: 2020
  publication-title: ACS Appl. Electron. Mater.
– volume: 54
  start-page: 3926
  year: 2018
  publication-title: Chem. Commun.
– volume: 142
  start-page: 2448
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 46
  start-page: 915
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 780
  year: 2021
  publication-title: Nat. Photonics
– volume: 50
  start-page: 64
  year: 1953
  publication-title: J. Chim. Phys.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1231
  year: 2023
  publication-title: Matter
– year: 2003
– volume: 38
  start-page: 2042
  year: 1963
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 4183
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  year: 2023
  publication-title: Aggregate
– volume: 26
  start-page: 7931
  year: 2014
  publication-title: Adv. Mater.
– volume: 14
  start-page: 636
  year: 2020
  publication-title: Nat. Photonics
– year: 2016
– volume: 393
  start-page: 51
  year: 2004
  publication-title: Chem. Phys. Lett.
– volume: 24
  start-page: 313
  year: 2022
  publication-title: Phys. Chem. Chem. Phys.
– volume: 109
  start-page: 9378
  year: 2005
  publication-title: J. Phys. Chem. A
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 56
  start-page: 1571
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 122
  start-page: 3727
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 330
  year: 2015
  publication-title: Nat. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 2475
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 98
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 13
  start-page: 3625
  year: 2022
  publication-title: Chem. Sci.
– volume: 21
  start-page: 1150
  year: 2022
  publication-title: Nat. Mater.
– ident: e_1_2_9_23_1
  doi: 10.1038/ncomms13680
– ident: e_1_2_9_61_1
  doi: 10.1021/j100096a001
– ident: e_1_2_9_4_1
  doi: 10.1103/PhysRevB.60.14422
– ident: e_1_2_9_13_1
  doi: 10.1002/anie.202217530
– ident: e_1_2_9_56_1
– ident: e_1_2_9_5_1
  doi: 10.1103/PhysRevB.68.075211
– ident: e_1_2_9_37_1
  doi: 10.1002/adfm.202201772
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.jpcc.7b11411
– ident: e_1_2_9_60_1
  doi: 10.1021/jp054777w
– ident: e_1_2_9_27_1
  doi: 10.1021/acs.jpcc.1c04283
– ident: e_1_2_9_53_1
  doi: 10.1039/D1CP04905D
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.jpcc.8b08228
– ident: e_1_2_9_40_1
  doi: 10.1039/D1SC07180G
– ident: e_1_2_9_14_1
  doi: 10.1021/jacs.6b12124
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.accounts.0c00060
– ident: e_1_2_9_54_1
  doi: 10.1021/acsaelm.0c00514
– ident: e_1_2_9_42_1
  doi: 10.1126/sciadv.1700904
– ident: e_1_2_9_29_1
  doi: 10.1002/agt2.243
– ident: e_1_2_9_46_1
  doi: 10.1002/agt2.182
– ident: e_1_2_9_25_1
  doi: 10.1038/s41566-020-0668-z
– ident: e_1_2_9_34_1
  doi: 10.1021/acs.jpcc.9b03867
– ident: e_1_2_9_58_1
  doi: 10.1002/3527600248
– ident: e_1_2_9_19_1
  doi: 10.1021/jacs.2c05537
– ident: e_1_2_9_15_1
  doi: 10.1002/anie.202213463
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.jpclett.1c03810
– ident: e_1_2_9_8_1
  doi: 10.1038/nphoton.2012.31
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.chemrev.6b00127
– ident: e_1_2_9_62_1
  doi: 10.1016/j.cplett.2004.06.011
– ident: e_1_2_9_6_1
  doi: 10.1038/nature11687
– ident: e_1_2_9_10_1
  doi: 10.1002/anie.201609459
– ident: e_1_2_9_43_1
  doi: 10.1039/D1SC04188F
– ident: e_1_2_9_28_1
  doi: 10.1126/sciadv.abj9961
– ident: e_1_2_9_24_1
  doi: 10.1021/jacs.0c01225
– ident: e_1_2_9_44_1
  doi: 10.1002/adfm.201807599
– ident: e_1_2_9_39_1
  doi: 10.1002/adfm.201606458
– ident: e_1_2_9_7_1
  doi: 10.1038/ncomms5016
– ident: e_1_2_9_3_1
  doi: 10.1063/1.1733929
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.201604856
– ident: e_1_2_9_47_1
  doi: 10.1021/acs.jpclett.7b01689
– ident: e_1_2_9_20_1
  doi: 10.1038/s41566-021-00870-3
– ident: e_1_2_9_50_1
  doi: 10.1039/C7TC04099G
– volume-title: Solvents and Solvent Effects in Organic Chemistry
  year: 2003
  ident: e_1_2_9_59_1
– ident: e_1_2_9_9_1
  doi: 10.1002/agt2.4
– ident: e_1_2_9_18_1
  doi: 10.1021/jacs.6b05488
– ident: e_1_2_9_12_1
  doi: 10.1039/C6CS00368K
– ident: e_1_2_9_49_1
  doi: 10.1002/adom.202002153
– ident: e_1_2_9_2_1
  doi: 10.1051/jcp/1953500064
– ident: e_1_2_9_52_1
  doi: 10.1039/C9CP05907E
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.201402532
– ident: e_1_2_9_45_1
  doi: 10.1016/j.matt.2023.02.002
– ident: e_1_2_9_48_1
  doi: 10.1002/adom.201801644
– ident: e_1_2_9_26_1
  doi: 10.1038/nmat4154
– ident: e_1_2_9_35_1
  doi: 10.1021/jacs.9b12136
– ident: e_1_2_9_55_1
  doi: 10.1103/PhysRevLett.91.247403
– ident: e_1_2_9_16_1
  doi: 10.1088/2050-6120/aa537e
– ident: e_1_2_9_22_1
  doi: 10.1021/jacs.2c02678
– ident: e_1_2_9_32_1
  doi: 10.1021/acsenergylett.7b00268
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.jpclett.9b00810
– ident: e_1_2_9_17_1
  doi: 10.1039/C7CC09612G
– ident: e_1_2_9_41_1
  doi: 10.1038/s41563-022-01321-2
– ident: e_1_2_9_57_1
  doi: 10.1002/jcc.22885
SSID ssj0002513150
Score 2.315382
Snippet Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host...
Abstract Understanding the host‐guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Electrons
Geometry
host‐guest interaction
Investigations
Polymers
Polymethyl methacrylate
singlet
Spectrum analysis
TADF
triplet
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWWUH0FE2ym83mWB-1CHpqobd1XymCptJG0Js_wd_oL3E2jxJB8eItm8xhmMnsfJPsfIPQUaYCE0hufMU19SkI-SkkAj9SPNVlZ2TiGoVv79hgRG_G8bg16sudCavogSvDuTYxE9lQGpUZqHUSGbo_d6mNiAwML1vII8h5rWLK7cGQtQlAnYZtNojO5KSITqkba97KPyVN_zds2UaoZYrpr6HVGhviXqXTOlqy-QZaaTEGbqL71gq7Mh_MjmVucDFzX8wLbF81xGg-x9MMD3uXfWyfHkoGTazecDMNpcCut-Pz_WPi1MGOMmJWNTjMt9CofzW8GPj1kARfU4BePtGw1ZlMM8WthQiEixTWiY2VDGlsOWOOwk4rElhjOI8VSSwxKgyUzTi1ZBt18mludxBWGmof8BxUZIymnCjNQsl1SqhmsZGZh04a0wldM4i7QRaPouI-joQzsgAje-hwIflcsWb8IHPurL947niuyxvgfVF7X_zlfQ91G9-JOvjmggQ85QzSM_fQcenPX5UQveshYBi2-x_K7KHlCCBPdaa7izrF7MXuA2Qp1EH5dn4BUunsRQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1PT9swFLdGuYzDtI0hysrkSdM4GRLbcZzTVBhdNWkVQkXiZvwv1aSRsjaT4LaPsM-4T7LnxOmKBNzixIqs9_z-2u_3EPpQmsQlWjpipOWEwyRSgCEg1MjCNpWReSgU_jYR4wv-9TK7jAm3ZbxW2enERlG7uQ058iOWyEIK0Lny081PErpGhdPV2EJjA22CCpYQfG0en07OzldZFrDeLG3atNJcCCIznnYItAk90rOaHvLQ6nzNJjXQ_ff8zXWvtTE7o5foRfQX8bBl8Cv0zFev0dYaiuA2ulob4RD6AyuwrhyuFyGLXmN_a0FuqyWel3g6_DzC_vp7g6qJzR3uOqTUONR7_P39ZxaWgwOMxKIteli-QRej0-nJmMTGCcRycMcIs6D-XGmFkd6DVMJDAePcZ0anPPNSiABrZw1LvHNSZoblnjmTJsaXknu2g3rVvPK7CBsL8RBwE6I0wQvJjBWplrZg3IrM6bKPDjrSKRtRxUNzix-qxUOmKhBZAZH76P1q5k2LpPHAnONA_dX3gH3dvJgvZiqKknJGOOpT7UzpIPrNdRrOcgtPmU6cpGkfDTreqSiQS_V_-_TRx4afjy5CDb9Mwa8Re0__5y16TsHBaW9wD1CvXvzy--Cg1OZd3IX_AJl85sE
  priority: 102
  providerName: ProQuest
Title Engineering singlet and triplet excitons of TADF emitters by different host‐guest interactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagt2.416
https://www.proquest.com/docview/3089863418
https://doaj.org/article/db6d2e1adbfd4027a193589e23a0d821
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB5Be4ED4lcstCsjITiFJrbjdY5b6FIhUVVoK_Vm_JcVEs1Wu6lUbjwCz8iTdMZJlq0EErc4mUjWTMbzjeP5BuB17fKQWx0yp73MJAplFQaCjDtd-VQZOaFC4c8n6vhMfjovz_tTlVQL0_FDbDbcyDPSek0Obt364A9pqF20_B3CibuwS5W1xJvP5elmfwXjtihSg1auKp4hTsgH7tmcHwwv34pGibT_FtLcxqsp4MwewoMeKbJpZ9pHcCc2j-H-Fn_gE_i6NWKU9KMRmG0Ca1e0f96yeO3RY5s1W9ZsPv0wY_HiW-LTZO4HG3qjtIwqPX7__LWg6TAikFh15Q7rp3A2O5q_P876lgmZlwjEMuFx4Qu1V07HiP6IFxWOJ7F0tpBl1EoRoZ13Io8haF06MYkiuCJ3sdYyimew0yyb-ByY85gJoR0xP1Oy0sJ5VVjtKyG9KoOtR_B2UJ3xPZ84tbX4bjomZG5IyQaVPIJXG8nLjkPjLzKHpP3Nc2K9TjeWq4XpncgEpwKPhQ2uDpj3TmxBf3GryIXNg-bFCPYG25neFddG5LrSCoO1HsGbZM9_TsJMP84R0agX_yv4Eu5xBDndKe492GlXV3EfQUrrxulrHMPu4dHJ6ZdxSvVvAJW05zU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ7qQgEj8TiZJrbjOAeEtrTLlrYrhLZSb278yAqpzZbdIOiNn8Av4UfxSxjnsSwScOstTiwrGo_HM2PP9wE8LUzkolw5apQVVGAnmuFGQJlRma0rI9NQKHw4lqMj8e44OV6DH10tTLhW2dnE2lC7mQ058i0eqUxJtLnq9fknGlijwulqR6HRqMW-v_iCIdvi1d4Ozu8zxoa7kzcj2rIKUCvQV6Hcom1whZVGeY8qiw8ZtlOfmDwWiVdSBsw3a3jknVMqMTz13Jk4Mr5QwnMc9wqsC46hTA_Wt3fH7z8sszroLfC4poVlqZRUJSLuEG8jtpVPK_ZSBGr1lT2wpgr4w79d9ZLrbW54E260_ikZNAp1C9Z8eRuur6AW3oGTlRYJqQacepKXjlTzkLWviP9q0U6UCzIryGSwMyT-7GON4knMBekYWSoS6kt-fvs-Db9DAmzFvCmyWNyFo0sR6T3olbPSbwAxFuMv1B6MCqXIFDdWxrmyGRdWJi4v-vCiE522LYp5INM41Q3-MtNByBqF3Icny57nDXLHX_psB-kvvwes7frFbD7V7dLVzkjHfJw7UziMttM8DmfHmWc8j5xicR82u7nTrQFY6N_q2ofn9Xz-8yf04O0E_Sh5___jPIaro8nhgT7YG-8_gGsMnavm9vgm9Kr5Z_8QnaPKPGo1ksDJZS-CXxNBJJk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkCp6QAWKWKBgJASnlMROvM5xC11oeaiHXYR6MX5lhVSyaDdIcOMn9Df2lzDOY1mkInGLk4kUzXg83ziebwB2Mx3aUAkbaGHiIEahIMVAEFAtUlNWRrZ9ofD5BT_pxz-vkqv6VKWvhan4ISYbbt4zyvXaO_idzQ5eSEPVoKBfEU7MwrwnycMZPd-57P_uT3ZYMHKzqGzRSnlKA0QKYcM-G9KD5vVX8aik7X-FNacRaxlyup9gscaKpFMZdwlmXL4MH6cYBFfgempEfNqPZiAqt6QY-R30grgHgz6bj8kwI73OUZe425uSUZPoR9J0RymIr_X49_R34D-HeAqJUVXwMP4M_e733uFJUDdNCEyMUCxgBpc-mxmuhXPokXiR4rjtEq2iOHGCc09pZzQLnbVCJJq1HbM6CrXLROzYKszlw9ytAdEGcyG0JGZoPE4F04ZHSpiUxYYnVmUt2G9UJ03NKO4bW_yRFRcylV7JEpXcgp2J5F3FovEfmW9e-5Pnnve6vDEcDWTtRtJqbqmLlNWZxcy3rSL_Hzd1lKnQChq1YLOxnaydcSxZKFLBMVyLFuyV9nzzI2TnuIeYhq-_V3AbPvw66sqzHxenG7BAEfFUR7o3Ya4Y3bsviFgKvVVPzWd2iekK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+singlet+and+triplet+excitons+of+TADF+emitters+by+different+host%E2%80%90guest+interactions&rft.jtitle=Aggregate+%28Hoboken%29&rft.au=Zhang%2C+Wei&rft.au=Kong%2C+Jie&rft.au=An%2C+Rui+Zhi&rft.au=Zhang%2C+Jiachen&rft.date=2024-02-01&rft.issn=2692-4560&rft.eissn=2692-4560&rft.volume=5&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fagt2.416&rft.externalDBID=10.1002%252Fagt2.416&rft.externalDocID=AGT2416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-4560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-4560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-4560&client=summon