Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis
Since its original formulation by Janzen in 1966, the hypothesis that obligate ant-plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes o...
Saved in:
Published in | Oikos Vol. 99; no. 3; pp. 457 - 468 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Munksgaard International Publishers
01.12.2002
Blackwell Publishers Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since its original formulation by Janzen in 1966, the hypothesis that obligate ant-plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes of phenolic compounds (hydrolysable tannins, flavonoids, and condensed tannins) spectrophotometrically in the foliage of 20 anti-plant and non-ant-plant species of the three unrelated genera Leonardoxa, Macaranga and Acacia (and three other closely related Mimosoideae from the genera Leucaena, Mimosa and Prosopis). We further determined biological activities of leaf extracts of the mimosoid species against fungal spore germination (as measure of pathogen resistance), seed germination (as measure of allelopathic activity), and caterpillar growth (as measure of anti-herbivore defence). Condensed tannin content in three of four populations of the non-myrmecophytic Leonardoxa was significantly higher than in populations of the myrmecophyte. In contrast, we observed no consistent differences between ant-plants and non-ant-plants in the Mimosoideae and in the genus Macaranga, though contents of phenolic compounds varied strongly among different species in each of these two plant groups. Similarly, among the investigated Mimosoideae, biological activity against spore or seed germination and caterpillar growth varied considerably but showed no clear relation with the existence of an obligate mutualism with ants. Our results did not support the hypothesis of 'trade-offs' between indirect, biotic and direct, chemical defence in ant-plants. A critical re-evaluation of the published data suggests that support for this hypothesis is more tenuous than is usually believed. The general and well-established phenomenon that myrmecophytes are subject to severe attack by herbivores when deprived of their ants still lacks an explanation. It remains to be studied whether the trade-off hypothesis holds true only for specific compounds (such as chitinases and amides whose cost may be the direct negative effects on plants' ant mutualists), or whether the pattern of dramatically reduced direct defence of ant-plants is caused by classes of defensive compounds not yet studied. |
---|---|
AbstractList | Since its original formulation by Janzen in 1966, the hypothesis that obligate ant‐plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes of phenolic compounds (hydrolysable tannins, flavonoids, and condensed tannins) spectrophotometrically in the foliage of 20 ant‐plant and non‐ant‐plant species of the three unrelated genera Leonardoxa,Macaranga and Acacia (and three other closely related Mimosoideae from the genera Leucaena, Mimosa and Prosopis). We further determined biological activities of leaf extracts of the mimosoid species against fungal spore germination (as measure of pathogen resistance), seed germination (as measure of allelopathic activity), and caterpillar growth (as measure of anti‐herbivore defence).
Condensed tannin content in three of four populations of the non‐myrmecophytic Leonardoxa was significantly higher than in populations of the myrmecophyte. In contrast, we observed no consistent differences between ant‐plants and non‐ant‐plants in the Mimosoideae and in the genus Macaranga, though contents of phenolic compounds varied strongly among different species in each of these two plant groups. Similarly, among the investigated Mimosoideae, biological activity against spore or seed germination and caterpillar growth varied considerably but showed no clear relation with the existence of an obligate mutualism with ants. Our results did not support the hypothesis of ‘trade‐offs’ between indirect, biotic and direct, chemical defence in ant‐plants.
A critical re‐evaluation of the published data suggests that support for this hypothesis is more tenuous than is usually believed. The general and well‐established phenomenon that myrmecophytes are subject to severe attack by herbivores when deprived of their ants still lacks an explanation. It remains to be studied whether the trade‐off hypothesis holds true only for specific compounds (such as chitinases and amides whose cost may be the direct negative effects on plants’ ant mutualists), or whether the pattern of dramatically reduced direct defence of ant‐plants is caused by classes of defensive compounds not yet studied. Since its original formulation by Janzen in 1966, the hypothesis that obligate ant-plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes of phenolic compounds (hydrolysable tannins, flavonoids, and condensed tannins) spectrophotometrically in the foliage of 20 anti-plant and non-ant-plant species of the three unrelated genera Leonardoxa, Macaranga and Acacia (and three other closely related Mimosoideae from the genera Leucaena, Mimosa and Prosopis). We further determined biological activities of leaf extracts of the mimosoid species against fungal spore germination (as measure of pathogen resistance), seed germination (as measure of allelopathic activity), and caterpillar growth (as measure of anti-herbivore defence). Condensed tannin content in three of four populations of the non-myrmecophytic Leonardoxa was significantly higher than in populations of the myrmecophyte. In contrast, we observed no consistent differences between ant-plants and non-ant-plants in the Mimosoideae and in the genus Macaranga, though contents of phenolic compounds varied strongly among different species in each of these two plant groups. Similarly, among the investigated Mimosoideae, biological activity against spore or seed germination and caterpillar growth varied considerably but showed no clear relation with the existence of an obligate mutualism with ants. Our results did not support the hypothesis of 'trade-offs' between indirect, biotic and direct, chemical defence in ant-plants. A critical re-evaluation of the published data suggests that support for this hypothesis is more tenuous than is usually believed. The general and well-established phenomenon that myrmecophytes are subject to severe attack by herbivores when deprived of their ants still lacks an explanation. It remains to be studied whether the trade-off hypothesis holds true only for specific compounds (such as chitinases and amides whose cost may be the direct negative effects on plants' ant mutualists), or whether the pattern of dramatically reduced direct defence of ant-plants is caused by classes of defensive compounds not yet studied. Since its original formulation by Janzen in 1966, the hypothesis that obligate ant-plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes of phenolic compounds (hydrolysable tannins, flavonoids, and condensed tannins) spectrophotometrically in the foliage of 20 ant-plant and non-ant-plant species of the three unrelated genera Leonardoxa, Macaranga and Acacia (and three other closely related Mimosoideae from the genera Leucaena, Mimosa and Prosopis). We further determined biological activities of leaf extracts of the mimosoid species against fungal spore germination (as measure of pathogen resistance), seed germination (as measure of allelopathic activity), and caterpillar growth (as measure of anti-herbivore defence). Condensed tannin content in three of four populations of the non-myrmecophytic Leonardoxa was significantly higher than in populations of the myrmecophyte. In contrast, we observed no consistent differences between ant-plants and non-ant-plants in the Mimosoideae and in the genus Macaranga, though contents of phenolic compounds varied strongly among different species in each of these two plant groups. Similarly, among the investigated Mimosoideae, biological activity against spore or seed germination and caterpillar growth varied considerably but showed no clear relation with the existence of an obligate mutualism with ants. Our results did not support the hypothesis of 'trade-offs' between indirect, biotic and direct, chemical defence in ant-plants. A critical re-evaluation of the published data suggests that support for this hypothesis is more tenuous than is usually believed. The general and well-established phenomenon that myrmecophytes are subject to severe attack by herbivores when deprived of their ants still lacks an explanation. It remains to be studied whether the trade-off hypothesis holds true only for specific compounds (such as chitinases and amides whose cost may be the direct negative effects on plants' ant mutualists), or whether the pattern of dramatically reduced direct defence of ant-plants is caused by classes of defensive compounds not yet studied. Since its original formulation by Janzen in 1966, the hypothesis that obligate ant‐plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes of phenolic compounds (hydrolysable tannins, flavonoids, and condensed tannins) spectrophotometrically in the foliage of 20 ant‐plant and non‐ant‐plant species of the three unrelated genera Leonardoxa, Macaranga and Acacia (and three other closely related Mimosoideae from the genera Leucaena , Mimosa and Prosopis ). We further determined biological activities of leaf extracts of the mimosoid species against fungal spore germination (as measure of pathogen resistance), seed germination (as measure of allelopathic activity), and caterpillar growth (as measure of anti‐herbivore defence). Condensed tannin content in three of four populations of the non‐myrmecophytic Leonardoxa was significantly higher than in populations of the myrmecophyte. In contrast, we observed no consistent differences between ant‐plants and non‐ant‐plants in the Mimosoideae and in the genus Macaranga , though contents of phenolic compounds varied strongly among different species in each of these two plant groups. Similarly, among the investigated Mimosoideae, biological activity against spore or seed germination and caterpillar growth varied considerably but showed no clear relation with the existence of an obligate mutualism with ants. Our results did not support the hypothesis of ‘trade‐offs’ between indirect, biotic and direct, chemical defence in ant‐plants. A critical re‐evaluation of the published data suggests that support for this hypothesis is more tenuous than is usually believed. The general and well‐established phenomenon that myrmecophytes are subject to severe attack by herbivores when deprived of their ants still lacks an explanation. It remains to be studied whether the trade‐off hypothesis holds true only for specific compounds (such as chitinases and amides whose cost may be the direct negative effects on plants’ ant mutualists), or whether the pattern of dramatically reduced direct defence of ant‐plants is caused by classes of defensive compounds not yet studied. |
Author | Heil, Martin Andary, Claude Schürkens, Steffen Linsenmair, K. Eduard Delsinne, Thibaut McKey, Doyle Hilpert, Andrea Sousa S., Mario |
Author_xml | – sequence: 1 givenname: Martin surname: Heil fullname: Heil, Martin – sequence: 2 givenname: Thibaut surname: Delsinne fullname: Delsinne, Thibaut – sequence: 3 givenname: Andrea surname: Hilpert fullname: Hilpert, Andrea – sequence: 4 givenname: Steffen surname: Schürkens fullname: Schürkens, Steffen – sequence: 5 givenname: Claude surname: Andary fullname: Andary, Claude – sequence: 6 givenname: K. Eduard surname: Linsenmair fullname: Linsenmair, K. Eduard – sequence: 7 givenname: Mario surname: Sousa S. fullname: Sousa S., Mario – sequence: 8 givenname: Doyle surname: McKey fullname: McKey, Doyle |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14435579$$DView record in Pascal Francis |
BookMark | eNqNkU2P0zAQhi20SHQX_gEHX-CW7Dh2YvsCWlWwrCishEDlZlxnorqkSdd22fbfb9JWPXCBi8fS-84zX5fkous7JIQyyBlwcb3KWQWQgYQqLwCKnDFdinz3jEzOwgWZAHDIWKH1C3IZ4woApJRiQn59w3rrsKZuiWvvbEtrbLBzSH1HbZeyTTu88T29oS74dHAEzPCPbbc2-b6jfUMtffQ1tntqncNNGmjL_aZPS4w-viTPG9tGfHWKV-THxw_fp5-y2f3t3fRmljnBC5GVqFEvnC2tEIrDopYAipdQl1ZZLIamALV2la0r1TQOOGfaFoVW6BpcyIZfkbdH7ib0D1uMyax9dNgO7WO_jYapSlaV0oPxzclo4zBNE2znfDSb4Nc27A0TgpelHH3vjj4X-hgDNsb5dBg5Betbw8CMBzArM-7ZjHs24wHM4QBmNwDUX4BzjX-nnmo_-hb3_51n7u8-H74D4PURsIqpD2cAL4VUfJSzo-xjwt1ZtuG3qSSXpZl_vTV6Pv2pvrCZmfMniMS48g |
CODEN | OIKSAA |
CitedBy_id | crossref_primary_10_1111_j_1095_8312_2010_01521_x crossref_primary_10_13102_sociobiology_v60i3_236_241 crossref_primary_10_1007_s10886_005_7104_1 crossref_primary_10_1007_s10886_010_9852_9 crossref_primary_10_1016_j_bbalip_2005_03_001 crossref_primary_10_1111_j_1365_2745_2006_01165_x crossref_primary_10_1093_aobpla_plv002 crossref_primary_10_1111_j_1365_2311_2006_00795_x crossref_primary_10_1111_j_1469_8137_2005_01611_x crossref_primary_10_1890_0012_9658_2006_87_132_PDS_2_0_CO_2 crossref_primary_10_1111_j_1469_8137_2006_01864_x crossref_primary_10_1007_s00114_023_01858_5 crossref_primary_10_1890_03_0233 crossref_primary_10_1111_j_1442_9993_2006_01639_x crossref_primary_10_1007_s00114_008_0398_4 crossref_primary_10_1055_s_2005_873009 crossref_primary_10_4039_tce_2014_24 crossref_primary_10_1093_aob_mcq093 crossref_primary_10_1111_j_1469_8137_2009_02804_x crossref_primary_10_1016_j_porgcoat_2024_108629 crossref_primary_10_1111_j_1744_7429_2012_00914_x crossref_primary_10_1890_03_0391 crossref_primary_10_1007_s00114_019_1647_4 crossref_primary_10_1007_s00442_010_1799_6 crossref_primary_10_1111_j_1570_7458_2009_00842_x crossref_primary_10_1016_j_aspen_2008_10_006 crossref_primary_10_1556_ComEc_6_2005_2_8 crossref_primary_10_1016_j_isci_2022_105261 crossref_primary_10_3390_ijms13033203 crossref_primary_10_1007_s10311_006_0068_8 crossref_primary_10_1051_forest_2009082 crossref_primary_10_1111_j_1365_2745_2008_01404_x crossref_primary_10_1890_04_1283 crossref_primary_10_1111_j_1365_2745_2010_01728_x crossref_primary_10_1146_annurev_ecolsys_34_011802_132410 crossref_primary_10_1007_s11692_014_9295_2 crossref_primary_10_1111_1365_2745_12034 crossref_primary_10_1016_j_agee_2006_01_002 crossref_primary_10_1002_ecy_2853 crossref_primary_10_1007_s11829_011_9121_z crossref_primary_10_1016_j_pmpp_2020_101524 crossref_primary_10_1093_aob_mcs164 crossref_primary_10_1093_aob_mcv113 crossref_primary_10_1111_j_1365_2745_2010_01713_x crossref_primary_10_1007_s10886_008_9432_4 crossref_primary_10_1098_rsbl_2012_0271 crossref_primary_10_1016_j_tree_2006_10_012 crossref_primary_10_1002_ece3_7497 crossref_primary_10_1371_journal_pone_0099691 crossref_primary_10_1371_journal_pone_0014308 crossref_primary_10_3732_ajb_91_6_871 crossref_primary_10_1111_j_1365_2745_2007_01327_x crossref_primary_10_1017_S0266467422000293 crossref_primary_10_1890_08_1274_1 crossref_primary_10_1111_j_1095_8312_2006_00660_x crossref_primary_10_1007_s00442_008_1024_z crossref_primary_10_1016_j_anbehav_2006_07_022 crossref_primary_10_1016_j_pmpp_2014_09_001 crossref_primary_10_1007_s11258_015_0491_7 crossref_primary_10_3109_13880209_2010_551777 crossref_primary_10_1111_j_1469_8137_2006_01916_x |
Cites_doi | 10.1146/annurev.phyto.37.1.285 10.1016/1360-1385(96)10040-6 10.1007/BF00378662 10.1086/282909 10.1023/A:1010345123670 10.1016/0003-2697(78)90819-9 10.1007/s004250050543 10.5962/bhl.title.15726 10.1007/BF00323148 10.2307/3294 10.5962/bhl.title.123341 10.1007/978-94-009-7994-9_11 10.1023/A:1012234702403 10.1021/bk-1987-0330.ch002 10.2307/1934304 10.1007/BF00385059 10.1111/j.1744-7429.1999.tb00141.x 10.1111/j.1365-2311.1983.tb00490.x 10.1046/j.1365-2435.1998.00158.x 10.1007/s001140050589 10.1007/s001140050778 10.2307/2387840 10.1007/BF00317792 10.1111/j.1570-7458.2007.00594.x 10.1006/pmpp.1999.0215 10.1007/s004420000532 10.1007/s004420000534 10.1104/pp.126.3.1105 10.1017/CBO9780511721878 10.1073/pnas.98.3.1083 10.1007/s004420050302 10.1016/B978-012083490-7/50002-5 10.1111/j.0014-3820.2001.tb00674.x 10.2307/1310178 10.1890/0012-9658(1998)079[0593:ASBAFP]2.0.CO;2 10.1007/BF00940397 10.1016/S1360-1385(01)02186-0 10.2307/2960606 10.2307/3546567 10.1007/s002650050538 10.1016/S0377-8401(01)00227-9 10.2307/1933414 10.2307/3761383 10.1007/BF00385058 10.1038/361153a0 10.1515/9780691228198 10.2307/3671484 10.1111/j.1558-5646.1966.tb03364.x 10.2307/2399983 10.2307/1942495 10.1080/07060669709500518 10.2307/3565666 10.2307/1934677 10.1016/0169-5347(90)90094-T 10.1111/j.1442-9993.2000.tb00071.x 10.1126/science.230.4728.895 10.1007/BF00378394 10.1006/mpev.2001.0941 10.1016/S0377-8401(01)00228-0 10.1016/S0021-9673(01)93963-9 10.1086/417659 |
ContentType | Journal Article |
Copyright | Copyright 2002 Oikos 2003 INIST-CNRS |
Copyright_xml | – notice: Copyright 2002 Oikos – notice: 2003 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SN 7SS C1K |
DOI | 10.1034/j.1600-0706.2002.11954.x |
DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1600-0706 |
EndPage | 468 |
ExternalDocumentID | 14435579 10_1034_j_1600_0706_2002_11954_x OIK11954 3547834 ark_67375_WNG_9WCX8M1L_W |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2AX 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANLZ AAONW AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACKIV ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEJZ AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AIAGR AICQM AIDBO AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DCZOG DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TEORI TN5 UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 Y2W YFH YNT YUY YV5 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACHIC ACRPL ACYXJ ADNMO ADXHL AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AETEA AGHNM CITATION IQODW 7SN 7SS C1K |
ID | FETCH-LOGICAL-c4324-5e9e9bca5a44830bd7008350d5a8ae2def0e99c6ad68ffc03319a2298ecfeb7f3 |
IEDL.DBID | DR2 |
ISSN | 0030-1299 |
IngestDate | Fri Jul 11 03:09:16 EDT 2025 Mon Jul 21 09:12:41 EDT 2025 Thu Apr 24 22:55:47 EDT 2025 Tue Jul 01 04:10:30 EDT 2025 Wed Jan 22 16:53:55 EST 2025 Thu Jul 03 21:20:58 EDT 2025 Wed Oct 30 09:53:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Insecta Formicoidea Flavonoid Mutualism Phytophagous Dicotyledones Angiospermae Euphorbiaceae Chemical composition Aculeata Formicidae Interspecific comparison Allelopathy Biological activity Sensitivity resistance Leguminosae Animal plant relation Arthropoda Myrmecophilous Acacia Phenols Defense mechanism Spermatophyta Hymenoptera Invertebrata Vegetal tannin |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4324-5e9e9bca5a44830bd7008350d5a8ae2def0e99c6ad68ffc03319a2298ecfeb7f3 |
Notes | ark:/67375/WNG-9WCX8M1L-W istex:0B09EBF5746F50063F7716DA57CD41830E558F7A ArticleID:OIK11954 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 18676689 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_18676689 pascalfrancis_primary_14435579 crossref_citationtrail_10_1034_j_1600_0706_2002_11954_x crossref_primary_10_1034_j_1600_0706_2002_11954_x wiley_primary_10_1034_j_1600_0706_2002_11954_x_OIK11954 jstor_primary_3547834 istex_primary_ark_67375_WNG_9WCX8M1L_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2002 |
PublicationDateYYYYMMDD | 2002-12-01 |
PublicationDate_xml | – month: 12 year: 2002 text: December 2002 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Oikos |
PublicationTitleAlternate | Oikos |
PublicationYear | 2002 |
Publisher | Munksgaard International Publishers Blackwell Publishers Blackwell |
Publisher_xml | – name: Munksgaard International Publishers – name: Blackwell Publishers – name: Blackwell |
References | McKey, D.. 1984. Interaction of the ant-plant Leonardoxa africana (Caesalpiniaceae) with its obligate inhabitants in a rainforest in Cameroon. Biotropica 16: 81-99. Agrawal, A. A. and Dubin-Thaler, B. J.. 1999. Induced responses to herbivory in the Neotropical ant-plant association between Azteca ants and Cecropia trees: response of ants to potential inducing cues. Behav. Ecol. Sociobiol. 45: 47-54. Bazzaz, F. A. and Grace, J. (eds). 1997. Plant resource allocation. Academic Press. Mueller-Harvey, I.. 2001. Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 91: 3-20. Janzen, D. H.. 1974. Swollen-thorn acacias of Central America. Smithsonian Institution Press. Jones, C. G. and Hartley, S. E.. 1999. A protein competition model of phenolic allocation. Oikos 86: 27-44. Feeny, P.. 1976. Plant apparency and chemical defense. Recent Advances in Phytochemistry 10: 1-40. Rudd, V. E.. 1966. Acacia cochliacantha or Acacia cymbispina in Mexico?. Leaflets of Western Botany X: 257-262. McMurrough, I. and McDowell, J.. 1978. Chromatographic separation and automated analysis of flavanols. Anal. Biochem. 91: 92-100. Hain, R., Reif, H. J., Krause, E. et al. 1993. Disease resistance results from foreign phyotalexin expression in a novel plant. Nature 361: 153-156. Herms, D. A. and Mattson, W. J.. 1992. The dilemma of plants: to grow or to defend. Q. Rev. Biol. 67: 283-335. Janzen, D. H.. 1972. Protection of Barteria (Passifloraceae) by Pachysima ants (Pseudomyrmecinae) in a Nigerian rain forest. Ecology 53: 885-892. Seigler, D. S. and Ebinger, J. E.. 1995. Taxonomic revision of the ant-acacias (Fabaceae, Mimosoideae; Acacia, series Gummiferae) of the new world. Ann. Missouri Bot. Garden 82: 117-138. Janzen, D. H.. 1969. Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology 50: 147-153. Shirley, B. W.. 1996. Flavonoid biosynthesis: 'new' functions for an 'old' pathway. Trends Plant Sci. 1: 377-382. Hammerschmidt, R.. 1999a. Induced disease resistance: how do induced plants stop pathogens?. Physiol. Mol. Plant Pathol. 55: 77-84. Blattner, F. R., Weising, K., Bänfer, G. et al. 2001. Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae). Mol. Phylogenet. Evol. 19. Dyer, L. A., Dodson, C. D., Beihoffer, J. and Letourneau, D. K.. 2001. Trade-offs in antiherbivore defenses in Piper cenocladum: ant mutualists versus plant secondary metabolites. J. Chem. Ecol. 27: 581-592. Heil, M., Fiala, B., Boller, T. and Linsenmair, K. E.. 1999. Reduced chitinase activities in ant plants of the genus Macaranga. Naturwissenschaften 86: 146-149. Yu, H. and Sutton, J. C.. 1997. Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Can. J. Phytopathol. 19: 237-245. Hammerschmidt, R.. 1999b. Phytoalexins: what have we learned after 60 years?. Annu. Rev. Phytopathol. 37: 285-306. Standley, . 1920. Trees and Shrubs of Mexico. - Contributions from the US National Herbarium Vol. 23. Bieza, K. and Lois, R.. 2001. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol. 126: 1105-1115. Letourneau, D. K. and Barbosa, P.. 1999. Ants, stem borers and pubescence in Endospermum in Papua New Guinea. Biotropica 31: 295-302. Rehr, S. S., Feeny, P. P. and Janzen, D. H.. 1973. Chemical defence in Central American non-ant Acacias. J. Anim. Ecol. 42: 405-416. Fiala, B., Maschwitz, U., Tho, Y. P. and Helbig, A. J.. 1989. Studies of a South East Asian ant-plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia 79: 463-470. Heil, M., Hilpert, A., Fiala, B. and Linsenmair, K. E.. 2001b. Nutrient availability and indirect (biotic) defence in a Malaysian ant-plant. Oecologia 126: 404-408. Gaume, L., McKey, D. and Anstett, M.-C.. 1997. Benefits conferred by 'timid' ants: active anti-herbivore protection of the rainforest tree Leonardoxa africana by the minute ant Petalomyrmex phylax. Oecologia 112: 209-216. Mole, S. and Waterman, P. G.. 1987a. A critical analysis of techniques for measuring tannins in ecological studies II. Techniques for biochemically defining tannins. Oecologia 72: 148-156. Slik, J. W. F.. 1998. A key to the Macaranga Thou. and Mallotus Lour. (Euphorbiaceae) species of east Kalimantan (Indonesia). Flora Malesiana Bull. 12: 157-178. Brattsen, L. B., Samuelian, J. H., Long, K. Y. et al. 1983. Cyanide as a feeding stimulant for the southern armyworm, Spodoptera eridania. Ecol. Entomol. 8: 125-132. Perello, A., Monaco, C. and Cordo, C.. 1997. Evaluation of Trichoderma harzianum and Gliocladium roseum in controlling leaf blotch of wheat (Septoria tritici) under in vitro and greenhouse conditions. Z. Pflanzenkrankheiten und Pflanzenschutz - J. Plant Diseases and Protection 104: 588-598. Hölldobler, B. and Wilson, E. O.. 1990. The ants. Springer. Hughes, C.. 1998. Monograph of Leucaena (Leguminosae-Mimosoidaeae). Am. Soc. Plant Taxon. Fiala, B., Grunsky, H., Maschwitz, U. and Linsenmair, K. E.. 1994. Diversity of ant-plant interactions: protective efficacy in Macaranga species with different degrees of ant association. Oecologia 97: 186-192. Davies, S. J., Lum, S. K. Y., Chan, R. and Wng, L. K.. 2001. Evolution of myrmecophytism in western malesian Macaranga (Euphorbiaceae). Evolution 55: 1542-1559. Steward, J. L. and Keeler, K. H.. 1988. Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)?. Oikos 53: 79-86. Coley, P. D.. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr. 53: 209-233. Heil, M., Fiala, B., Maschwitz, U. and Linsenmair, K. E.. 2001a. On benefits of indirect defence: short- and long-term studies in antiherbivore protection via mutualistic ants. Oecologia 126: 395-403. Mole, S. and Waterman, P. G.. 1987b. A critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins. Oecologia 72: 137-147. Rocha, C. F. D. and Bergallo, H. G.. 1992. Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs Coelomera ruficornis on Cecropia pachystachya. Oecologia 91: 249-252. Heil, M. and Baldwin, I. T.. 2002. Fitness costs of induced resistance - the emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61-67. Heil, M., Fiala, B., Linsenmair, K. E. et al. 1997. Food body production in Macaranga triloba (Euphorbiaceae): a plant investment in anti-herbivore defence via mutualistic ant partners. J. Ecol. 85: 847-861. Beattie, A. J.. 1985. The evolutionary ecology of ant-plant mutualisms. Cambridge Univ. Press. Seigler, D. S. and Ebinger, J. E.. 1987. Cyanogenic glycosides in ant-acacias of Mexico and Central America. Southwestern Nat. 32: 499-503. Taiz, L. and Zeiger, E.. 1998. Plant physiology. Sinauer Associations. Martin, J. S. and Martin, M. M.. 1982. Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54: 205-211. Bazzaz, F. A., Chiariello, N. R., Coley, P. D. and Pitelka, L. F.. 1987. Allocating resources to reproduction and defense. BioScience 37: 58-67. Baldwin, I. T. and Preston, C. A.. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208: 137-145. Fiala, B. and Maschwitz, U.. 1992. Domatia as most important adaptions in the evolution of myrmecophytes in the paleotropical tree genus Macaranga (Euphorbiaceae). Plant Syst. Evol. 180: 53-64. Heil, M., Staehelin, C. and McKey, D.. 2000. Low chitinase activity in Acacia myrmecophytes: a potential trade-off between biotic and chemical defences?. Naturwissenschaften 87: 555-558. Janzen, D. H.. 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20: 249-275. Heil, M., Koch, T., Hilpert, A. et al. 2001c. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc. Natl. Acad. Sci. USA 98: 1083-1088. McKey, D.. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108: 305-320. Treutter, D.. 1989. Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde. J. Chromatogr. 467: 185-193. McKey, D.. 2000. Leonardoxa africana (Leguminoase: Caesalpinioideae): a complex of mostly allopatric subspecies. Adansonia 22: 71-109. Eck, G., Fiala, B., Linsenmair, K. E. and Proksch, P.. 2001. Trade off between chemical and biotic anti-herbivore defense in the Southeast Asian plant genus Macaranga. J. Chem. Ecol. 27: 1979-1996. Karban, R. and Baldwin, I. T.. 1997. Induced responses to herbivory. Univ. of Chicago Press. Whitmore, T. C.. 1967. Studies in Macaranga, an easy genus of Malayan wayside trees. Malayan Nat. J. 20: 89-99. Heil, M., Fiala, B., Kaiser, W. and Linsenmair, K. E.. 1998. Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Funct. Ecol. 12: 117-122. Janzen, D. H.. 1967b. Interaction of the bull's-horn acacia (Acacia cornigera L.) with an ant inhabitant (Pseudomyrmex ferruginea F. Smith) in eastern Mexico. Kansas Univ. Sci. Bull. 47: 315-558. Coley, P. D., Bryant, J. P. and Chapin, F. S. III. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899. Davidson, D. W. and McKey, D.. 1993. The evolutionary ecology of symbiotic ant-plant relationships. J. Hymenoptera Res. 2: 13-83. Tollrian, R. and Harvell, C. D.. 1999. The ecology and evolution of inducible defenses. Princeton Univ. Press. Simms, E. L. and Fritz, R. S.. 1990. The ecology and evolution of host-plant resistance to insects. Trends Ecol. Evol. 5: 356-360. Schroers, F. J., Samuels, G. J., Seifert, K. A. and Gams, W.. 1999. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, a 2001; 91 1987; 32 1967b; 47 1967; 20 1999a; 55 1997; 85 2000; 87 1982; 54 1997; 112 1987b; 72 1983; 53 1999; 45 1983; 8 1993; 361 1974 1974; 108 1973 1999; 86 1993; 2 1979 1987; 37 1999; 208 1987a; 72 1997; 104 1992; 91 1973; 42 1990 1984; 16 1989; 467 1966; X 2001b; 126 2001; 19 1987 1997; 19 1985 1982 1972; 53 1996; 1 2001; 55 1967a; 48 1989; 79 1999; 91 1998; 12 1966; 20 1999b; 37 1978; 91 1992; 180 2001a; 126 2001c; 98 1969; 50 2000; 22 2002; 7 1998 1997 2001; 27 1988; 53 2001; 126 1999 1976; 10 1995; 82 1920 1999; 31 1992; 67 1985; 230 1990; 5 1994; 97 1998; 79 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Davidson D. W. (e_1_2_7_13_1) 1993; 2 Hughes C. (e_1_2_7_35_1) 1998 McKey D. (e_1_2_7_48_1) 1979 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Taiz L. (e_1_2_7_69_1) 1998 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Whitmore T. C. (e_1_2_7_73_1) 1973 Janzen D. H. (e_1_2_7_38_1) 1967; 47 Rudd V. E. (e_1_2_7_59_1) 1966 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 Perello A. (e_1_2_7_55_1) 1997; 104 e_1_2_7_63_1 Feeny P. (e_1_2_7_17_1) 1976; 10 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 McKey D. (e_1_2_7_50_1) 2000; 22 e_1_2_7_27_1 e_1_2_7_29_1 Whitmore T. C. (e_1_2_7_72_1) 1967; 20 Standley (e_1_2_7_67_1) 1920 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 Slik J. W. F. (e_1_2_7_66_1) 1998; 12 |
References_xml | – reference: Heil, M., Fiala, B., Boller, T. and Linsenmair, K. E.. 1999. Reduced chitinase activities in ant plants of the genus Macaranga. Naturwissenschaften 86: 146-149. – reference: Beattie, A. J.. 1985. The evolutionary ecology of ant-plant mutualisms. Cambridge Univ. Press. – reference: McKey, D.. 1984. Interaction of the ant-plant Leonardoxa africana (Caesalpiniaceae) with its obligate inhabitants in a rainforest in Cameroon. Biotropica 16: 81-99. – reference: Taiz, L. and Zeiger, E.. 1998. Plant physiology. Sinauer Associations. – reference: Hughes, C.. 1998. Monograph of Leucaena (Leguminosae-Mimosoidaeae). Am. Soc. Plant Taxon. – reference: Feeny, P.. 1976. Plant apparency and chemical defense. Recent Advances in Phytochemistry 10: 1-40. – reference: Brattsen, L. B., Samuelian, J. H., Long, K. Y. et al. 1983. Cyanide as a feeding stimulant for the southern armyworm, Spodoptera eridania. Ecol. Entomol. 8: 125-132. – reference: Heil, M., Fiala, B., Linsenmair, K. E. et al. 1997. Food body production in Macaranga triloba (Euphorbiaceae): a plant investment in anti-herbivore defence via mutualistic ant partners. J. Ecol. 85: 847-861. – reference: Heil, M., Fiala, B., Kaiser, W. and Linsenmair, K. E.. 1998. Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Funct. Ecol. 12: 117-122. – reference: Heil, M., Koch, T., Hilpert, A. et al. 2001c. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc. Natl. Acad. Sci. USA 98: 1083-1088. – reference: Heil, M., Hilpert, A., Fiala, B. and Linsenmair, K. E.. 2001b. Nutrient availability and indirect (biotic) defence in a Malaysian ant-plant. Oecologia 126: 404-408. – reference: Janzen, D. H.. 1974. Swollen-thorn acacias of Central America. Smithsonian Institution Press. – reference: McKey, D.. 2000. Leonardoxa africana (Leguminoase: Caesalpinioideae): a complex of mostly allopatric subspecies. Adansonia 22: 71-109. – reference: Steward, J. L. and Keeler, K. H.. 1988. Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)?. Oikos 53: 79-86. – reference: Bazzaz, F. A. and Grace, J. (eds). 1997. Plant resource allocation. Academic Press. – reference: Fiala, B. and Maschwitz, U.. 1992. Domatia as most important adaptions in the evolution of myrmecophytes in the paleotropical tree genus Macaranga (Euphorbiaceae). Plant Syst. Evol. 180: 53-64. – reference: Herms, D. A. and Mattson, W. J.. 1992. The dilemma of plants: to grow or to defend. Q. Rev. Biol. 67: 283-335. – reference: Janzen, D. H.. 1967b. Interaction of the bull's-horn acacia (Acacia cornigera L.) with an ant inhabitant (Pseudomyrmex ferruginea F. Smith) in eastern Mexico. Kansas Univ. Sci. Bull. 47: 315-558. – reference: McKey, D.. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108: 305-320. – reference: Davies, S. J., Lum, S. K. Y., Chan, R. and Wng, L. K.. 2001. Evolution of myrmecophytism in western malesian Macaranga (Euphorbiaceae). Evolution 55: 1542-1559. – reference: Schroers, F. J., Samuels, G. J., Seifert, K. A. and Gams, W.. 1999. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91: 365-385. – reference: Seigler, D. S. and Ebinger, J. E.. 1987. Cyanogenic glycosides in ant-acacias of Mexico and Central America. Southwestern Nat. 32: 499-503. – reference: Janzen, D. H.. 1967a. Fire, vegetation structure, and the ant×Acacia interaction in Central America. Ecology 48: 26-35. – reference: Heil, M., Fiala, B., Maschwitz, U. and Linsenmair, K. E.. 2001a. On benefits of indirect defence: short- and long-term studies in antiherbivore protection via mutualistic ants. Oecologia 126: 395-403. – reference: Hammerschmidt, R.. 1999b. Phytoalexins: what have we learned after 60 years?. Annu. Rev. Phytopathol. 37: 285-306. – reference: Fiala, B., Maschwitz, U., Tho, Y. P. and Helbig, A. J.. 1989. Studies of a South East Asian ant-plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia 79: 463-470. – reference: Bazzaz, F. A., Chiariello, N. R., Coley, P. D. and Pitelka, L. F.. 1987. Allocating resources to reproduction and defense. BioScience 37: 58-67. – reference: Tollrian, R. and Harvell, C. D.. 1999. The ecology and evolution of inducible defenses. Princeton Univ. Press. – reference: Heil, M. and Baldwin, I. T.. 2002. Fitness costs of induced resistance - the emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61-67. – reference: McMurrough, I. and McDowell, J.. 1978. Chromatographic separation and automated analysis of flavanols. Anal. Biochem. 91: 92-100. – reference: Davidson, D. W. and McKey, D.. 1993. The evolutionary ecology of symbiotic ant-plant relationships. J. Hymenoptera Res. 2: 13-83. – reference: Schofield, P., Mbugua, D. M. and Pell, A. N.. 2001. Analysis of condensed tannins: a review. Anim. Feed Sci. Technol. 91: 21-40. – reference: Shirley, B. W.. 1996. Flavonoid biosynthesis: 'new' functions for an 'old' pathway. Trends Plant Sci. 1: 377-382. – reference: Coley, P. D., Bryant, J. P. and Chapin, F. S. III. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899. – reference: Letourneau, D. K.. 1998. Ants, stem-borers, and fungal pathogens: experimental tests of a fitness advantage in Piper ant-plants. Ecology 79: 593-603. – reference: Bieza, K. and Lois, R.. 2001. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol. 126: 1105-1115. – reference: Hölldobler, B. and Wilson, E. O.. 1990. The ants. Springer. – reference: Rocha, C. F. D. and Bergallo, H. G.. 1992. Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs Coelomera ruficornis on Cecropia pachystachya. Oecologia 91: 249-252. – reference: Mueller-Harvey, I.. 2001. Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 91: 3-20. – reference: Jones, C. G. and Hartley, S. E.. 1999. A protein competition model of phenolic allocation. Oikos 86: 27-44. – reference: Eck, G., Fiala, B., Linsenmair, K. E. and Proksch, P.. 2001. Trade off between chemical and biotic anti-herbivore defense in the Southeast Asian plant genus Macaranga. J. Chem. Ecol. 27: 1979-1996. – reference: Karban, R. and Baldwin, I. T.. 1997. Induced responses to herbivory. Univ. of Chicago Press. – reference: Hain, R., Reif, H. J., Krause, E. et al. 1993. Disease resistance results from foreign phyotalexin expression in a novel plant. Nature 361: 153-156. – reference: Letourneau, D. K. and Barbosa, P.. 1999. Ants, stem borers and pubescence in Endospermum in Papua New Guinea. Biotropica 31: 295-302. – reference: Yu, H. and Sutton, J. C.. 1997. Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Can. J. Phytopathol. 19: 237-245. – reference: Slik, J. W. F.. 1998. A key to the Macaranga Thou. and Mallotus Lour. (Euphorbiaceae) species of east Kalimantan (Indonesia). Flora Malesiana Bull. 12: 157-178. – reference: Rehr, S. S., Feeny, P. P. and Janzen, D. H.. 1973. Chemical defence in Central American non-ant Acacias. J. Anim. Ecol. 42: 405-416. – reference: Blattner, F. R., Weising, K., Bänfer, G. et al. 2001. Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae). Mol. Phylogenet. Evol. 19. – reference: Mole, S. and Waterman, P. G.. 1987a. A critical analysis of techniques for measuring tannins in ecological studies II. Techniques for biochemically defining tannins. Oecologia 72: 148-156. – reference: Janzen, D. H.. 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20: 249-275. – reference: Mole, S. and Waterman, P. G.. 1987b. A critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins. Oecologia 72: 137-147. – reference: Seigler, D. S. and Ebinger, J. E.. 1995. Taxonomic revision of the ant-acacias (Fabaceae, Mimosoideae; Acacia, series Gummiferae) of the new world. Ann. Missouri Bot. Garden 82: 117-138. – reference: Heil, M., Staehelin, C. and McKey, D.. 2000. Low chitinase activity in Acacia myrmecophytes: a potential trade-off between biotic and chemical defences?. Naturwissenschaften 87: 555-558. – reference: Gaume, L., McKey, D. and Anstett, M.-C.. 1997. Benefits conferred by 'timid' ants: active anti-herbivore protection of the rainforest tree Leonardoxa africana by the minute ant Petalomyrmex phylax. Oecologia 112: 209-216. – reference: Simms, E. L. and Fritz, R. S.. 1990. The ecology and evolution of host-plant resistance to insects. Trends Ecol. Evol. 5: 356-360. – reference: Standley, . 1920. Trees and Shrubs of Mexico. - Contributions from the US National Herbarium Vol. 23. – reference: Whitmore, T. C.. 1967. Studies in Macaranga, an easy genus of Malayan wayside trees. Malayan Nat. J. 20: 89-99. – reference: Perello, A., Monaco, C. and Cordo, C.. 1997. Evaluation of Trichoderma harzianum and Gliocladium roseum in controlling leaf blotch of wheat (Septoria tritici) under in vitro and greenhouse conditions. Z. Pflanzenkrankheiten und Pflanzenschutz - J. Plant Diseases and Protection 104: 588-598. – reference: Agrawal, A. A. and Dubin-Thaler, B. J.. 1999. Induced responses to herbivory in the Neotropical ant-plant association between Azteca ants and Cecropia trees: response of ants to potential inducing cues. Behav. Ecol. Sociobiol. 45: 47-54. – reference: Dyer, L. A., Dodson, C. D., Beihoffer, J. and Letourneau, D. K.. 2001. Trade-offs in antiherbivore defenses in Piper cenocladum: ant mutualists versus plant secondary metabolites. J. Chem. Ecol. 27: 581-592. – reference: Janzen, D. H.. 1972. Protection of Barteria (Passifloraceae) by Pachysima ants (Pseudomyrmecinae) in a Nigerian rain forest. Ecology 53: 885-892. – reference: Fiala, B., Grunsky, H., Maschwitz, U. and Linsenmair, K. E.. 1994. Diversity of ant-plant interactions: protective efficacy in Macaranga species with different degrees of ant association. Oecologia 97: 186-192. – reference: Coley, P. D.. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr. 53: 209-233. – reference: Rudd, V. E.. 1966. Acacia cochliacantha or Acacia cymbispina in Mexico?. Leaflets of Western Botany X: 257-262. – reference: Janzen, D. H.. 1969. Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology 50: 147-153. – reference: Hammerschmidt, R.. 1999a. Induced disease resistance: how do induced plants stop pathogens?. Physiol. Mol. Plant Pathol. 55: 77-84. – reference: Baldwin, I. T. and Preston, C. A.. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208: 137-145. – reference: Martin, J. S. and Martin, M. M.. 1982. Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54: 205-211. – reference: Treutter, D.. 1989. Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde. J. Chromatogr. 467: 185-193. – year: 1985 – volume: 2 start-page: 13 year: 1993 end-page: 83 article-title: The evolutionary ecology of symbiotic ant‐plant relationships publication-title: J. Hymenoptera Res. – volume: 79 start-page: 463 year: 1989 end-page: 470 article-title: Studies of a South East Asian ant‐plant association: protection of trees by publication-title: Oecologia – volume: 91 start-page: 365 year: 1999 end-page: 385 article-title: Classification of the mycoparasite in as , its relationship to , and notes on other ‐like fungi publication-title: Mycologia – volume: 22 start-page: 71 year: 2000 end-page: 109 article-title: (Leguminoase: Caesalpinioideae): a complex of mostly allopatric subspecies publication-title: Adansonia – volume: 91 start-page: 249 year: 1992 end-page: 252 article-title: Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant‐plant: vs on publication-title: Oecologia – volume: 55 start-page: 1542 year: 2001 end-page: 1559 article-title: Evolution of myrmecophytism in western malesian (Euphorbiaceae) publication-title: Evolution – volume: 126 start-page: 404 year: 2001b end-page: 408 article-title: Nutrient availability and indirect (biotic) defence in a Malaysian ant‐plant publication-title: Oecologia – volume: 42 start-page: 405 year: 1973 end-page: 416 article-title: Chemical defence in Central American non‐ant publication-title: J. Anim. Ecol. – start-page: 105 year: 1973 end-page: 113 – start-page: 111 year: 1982 end-page: 162 – volume: 50 start-page: 147 year: 1969 end-page: 153 article-title: Allelopathy by myrmecophytes: the ant as an allelopathic agent of publication-title: Ecology – volume: 8 start-page: 125 year: 1983 end-page: 132 article-title: Cyanide as a feeding stimulant for the southern armyworm, publication-title: Ecol. Entomol. – volume: 85 start-page: 847 year: 1997 end-page: 861 article-title: Food body production in (Euphorbiaceae): a plant investment in anti‐herbivore defence via mutualistic ant partners publication-title: J. Ecol. – volume: 82 start-page: 117 year: 1995 end-page: 138 article-title: Taxonomic revision of the ant‐acacias (Fabaceae, Mimosoideae; , series Gummiferae) of the new world publication-title: Ann. Missouri Bot. Garden – year: 1990 – volume: 67 start-page: 283 year: 1992 end-page: 335 article-title: The dilemma of plants: to grow or to defend publication-title: Q. Rev. Biol. – volume: X start-page: 257 year: 1966 end-page: 262 article-title: or in Mexico? publication-title: Leaflets of Western Botany – year: 1998 – volume: 27 start-page: 1979 year: 2001 end-page: 1996 article-title: Trade off between chemical and biotic anti‐herbivore defense in the Southeast Asian plant genus publication-title: J. Chem. Ecol. – volume: 53 start-page: 885 year: 1972 end-page: 892 article-title: Protection of (Passifloraceae) by ants (Pseudomyrmecinae) in a Nigerian rain forest publication-title: Ecology – volume: 91 start-page: 21 year: 2001 end-page: 40 article-title: Analysis of condensed tannins: a review publication-title: Anim. Feed Sci. Technol. – volume: 19 year: 2001 article-title: Molecular analysis of phylogenetic relationships among myrmecophytic species (Euphorbiaceae) publication-title: Mol. Phylogenet. Evol. – volume: 79 start-page: 593 year: 1998 end-page: 603 article-title: Ants, stem‐borers, and fungal pathogens: experimental tests of a fitness advantage in Piper ant‐plants publication-title: Ecology – volume: 31 start-page: 295 year: 1999 end-page: 302 article-title: Ants, stem borers and pubescence in in Papua New Guinea publication-title: Biotropica – volume: 53 start-page: 209 year: 1983 end-page: 233 article-title: Herbivory and defensive characteristics of tree species in a lowland tropical forest publication-title: Ecol. Monogr. – volume: 97 start-page: 186 year: 1994 end-page: 192 article-title: Diversity of ant‐plant interactions: protective efficacy in species with different degrees of ant association publication-title: Oecologia – year: 1997 – volume: 37 start-page: 285 year: 1999b end-page: 306 article-title: Phytoalexins: what have we learned after 60 years? publication-title: Annu. Rev. Phytopathol. – volume: 27 start-page: 581 year: 2001 end-page: 592 article-title: Trade‐offs in antiherbivore defenses in : ant mutualists versus plant secondary metabolites publication-title: J. Chem. Ecol. – volume: 5 start-page: 356 year: 1990 end-page: 360 article-title: The ecology and evolution of host‐plant resistance to insects publication-title: Trends Ecol. Evol. – volume: 16 start-page: 81 year: 1984 end-page: 99 article-title: Interaction of the ant‐plant (Caesalpiniaceae) with its obligate inhabitants in a rainforest in Cameroon publication-title: Biotropica – start-page: 55 year: 1979 end-page: 133 – year: 1920 – volume: 361 start-page: 153 year: 1993 end-page: 156 article-title: Disease resistance results from foreign phyotalexin expression in a novel plant publication-title: Nature – volume: 91 start-page: 92 year: 1978 end-page: 100 article-title: Chromatographic separation and automated analysis of flavanols publication-title: Anal. Biochem. – volume: 32 start-page: 499 year: 1987 end-page: 503 article-title: Cyanogenic glycosides in ant‐acacias of Mexico and Central America publication-title: Southwestern Nat. – volume: 467 start-page: 185 year: 1989 end-page: 193 article-title: Chemical reaction detection of catechins and proanthocyanidins with 4‐dimethylaminocinnamaldehyde publication-title: J. Chromatogr. – volume: 20 start-page: 89 year: 1967 end-page: 99 article-title: Studies in , an easy genus of Malayan wayside trees publication-title: Malayan Nat. J. – volume: 45 start-page: 47 year: 1999 end-page: 54 article-title: Induced responses to herbivory in the Neotropical ant‐plant association between ants and trees: response of ants to potential inducing cues publication-title: Behav. Ecol. Sociobiol. – volume: 126 start-page: 395 year: 2001a end-page: 403 article-title: On benefits of indirect defence: short‐ and long‐term studies in antiherbivore protection via mutualistic ants publication-title: Oecologia – volume: 87 start-page: 555 year: 2000 end-page: 558 article-title: Low chitinase activity in myrmecophytes: a potential trade‐off between biotic and chemical defences? publication-title: Naturwissenschaften – volume: 91 start-page: 3 year: 2001 end-page: 20 article-title: Analysis of hydrolysable tannins publication-title: Anim. Feed Sci. Technol. – volume: 180 start-page: 53 year: 1992 end-page: 64 article-title: Domatia as most important adaptions in the evolution of myrmecophytes in the paleotropical tree genus (Euphorbiaceae) publication-title: Plant Syst. Evol. – volume: 47 start-page: 315 year: 1967b end-page: 558 article-title: Interaction of the bull's‐horn acacia ( L.) with an ant inhabitant ( F. Smith) in eastern Mexico publication-title: Kansas Univ. Sci. Bull. – volume: 48 start-page: 26 year: 1967a end-page: 35 article-title: Fire, vegetation structure, and the ant× interaction in Central America publication-title: Ecology – volume: 108 start-page: 305 year: 1974 end-page: 320 article-title: Adaptive patterns in alkaloid physiology publication-title: Am. Nat. – year: 1987 – volume: 19 start-page: 237 year: 1997 end-page: 245 article-title: Morphological development and interactions of and in raspberry publication-title: Can. J. Phytopathol. – volume: 86 start-page: 146 year: 1999 end-page: 149 article-title: Reduced chitinase activities in ant plants of the genus publication-title: Naturwissenschaften – volume: 230 start-page: 895 year: 1985 end-page: 899 article-title: Resource availability and plant antiherbivore defense publication-title: Science – volume: 112 start-page: 209 year: 1997 end-page: 216 article-title: Benefits conferred by ‘timid’ ants: active anti‐herbivore protection of the rainforest tree by the minute ant publication-title: Oecologia – volume: 12 start-page: 157 year: 1998 end-page: 178 article-title: A key to the Thou. and Lour. (Euphorbiaceae) species of east Kalimantan (Indonesia) publication-title: Flora Malesiana Bull. – volume: 53 start-page: 79 year: 1988 end-page: 86 article-title: Are there trade‐offs among antiherbivore defenses in (Convolvulaceae)? publication-title: Oikos – volume: 126 start-page: 1105 year: 2001 end-page: 1115 article-title: An mutant tolerant to lethal ultraviolet‐B levels shows constitutively elevated accumulation of flavonoids and other phenolics publication-title: Plant Physiol. – volume: 54 start-page: 205 year: 1982 end-page: 211 article-title: Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein‐precipitating constituents in mature foliage of six oak species publication-title: Oecologia – volume: 72 start-page: 148 year: 1987a end-page: 156 article-title: A critical analysis of techniques for measuring tannins in ecological studies II. Techniques for biochemically defining tannins publication-title: Oecologia – volume: 55 start-page: 77 year: 1999a end-page: 84 article-title: Induced disease resistance: how do induced plants stop pathogens? publication-title: Physiol. Mol. Plant Pathol. – volume: 72 start-page: 137 year: 1987b end-page: 147 article-title: A critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins publication-title: Oecologia – volume: 7 start-page: 61 year: 2002 end-page: 67 article-title: Fitness costs of induced resistance – the emerging experimental support for a slippery concept publication-title: Trends Plant Sci. – volume: 98 start-page: 1083 year: 2001c end-page: 1088 article-title: Extrafloral nectar production of the ant‐associated plant, , is an induced, indirect, defensive response elicited by jasmonic acid publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 249 year: 1966 end-page: 275 article-title: Coevolution of mutualism between ants and acacias in Central America publication-title: Evolution – volume: 37 start-page: 58 year: 1987 end-page: 67 article-title: Allocating resources to reproduction and defense publication-title: BioScience – year: 1974 – volume: 1 start-page: 377 year: 1996 end-page: 382 article-title: Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway publication-title: Trends Plant Sci. – volume: 12 start-page: 117 year: 1998 end-page: 122 article-title: Chemical contents of food bodies: adaptations to their role in ant attraction and nutrition publication-title: Funct. Ecol. – volume: 104 start-page: 588 year: 1997 end-page: 598 article-title: Evaluation of and in controlling leaf blotch of wheat ( ) under in vitro and greenhouse conditions publication-title: Z. Pflanzenkrankheiten und Pflanzenschutz – J. Plant Diseases and Protection – volume: 208 start-page: 137 year: 1999 end-page: 145 article-title: The eco‐physiological complexity of plant responses to insect herbivores publication-title: Planta – volume: 86 start-page: 27 year: 1999 end-page: 44 article-title: A protein competition model of phenolic allocation publication-title: Oikos – volume: 10 start-page: 1 year: 1976 end-page: 40 article-title: Plant apparency and chemical defense publication-title: Recent Advances in Phytochemistry – year: 1999 – ident: e_1_2_7_24_1 doi: 10.1146/annurev.phyto.37.1.285 – ident: e_1_2_7_64_1 doi: 10.1016/1360-1385(96)10040-6 – ident: e_1_2_7_19_1 doi: 10.1007/BF00378662 – volume: 10 start-page: 1 year: 1976 ident: e_1_2_7_17_1 article-title: Plant apparency and chemical defense publication-title: Recent Advances in Phytochemistry – ident: e_1_2_7_47_1 doi: 10.1086/282909 – ident: e_1_2_7_15_1 doi: 10.1023/A:1010345123670 – ident: e_1_2_7_51_1 doi: 10.1016/0003-2697(78)90819-9 – ident: e_1_2_7_3_1 doi: 10.1007/s004250050543 – volume-title: Trees and Shrubs of Mexico. – Contributions from the US National Herbarium Vol. 23 year: 1920 ident: e_1_2_7_67_1 doi: 10.5962/bhl.title.15726 – ident: e_1_2_7_20_1 doi: 10.1007/BF00323148 – ident: e_1_2_7_56_1 doi: 10.2307/3294 – ident: e_1_2_7_41_1 doi: 10.5962/bhl.title.123341 – ident: e_1_2_7_10_1 doi: 10.1007/978-94-009-7994-9_11 – ident: e_1_2_7_16_1 doi: 10.1023/A:1012234702403 – ident: e_1_2_7_57_1 doi: 10.1021/bk-1987-0330.ch002 – ident: e_1_2_7_40_1 doi: 10.2307/1934304 – volume: 2 start-page: 13 year: 1993 ident: e_1_2_7_13_1 article-title: The evolutionary ecology of symbiotic ant‐plant relationships publication-title: J. Hymenoptera Res. – ident: e_1_2_7_52_1 doi: 10.1007/BF00385059 – ident: e_1_2_7_45_1 doi: 10.1111/j.1744-7429.1999.tb00141.x – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2311.1983.tb00490.x – ident: e_1_2_7_27_1 doi: 10.1046/j.1365-2435.1998.00158.x – ident: e_1_2_7_28_1 doi: 10.1007/s001140050589 – ident: e_1_2_7_29_1 doi: 10.1007/s001140050778 – ident: e_1_2_7_49_1 doi: 10.2307/2387840 – ident: e_1_2_7_58_1 doi: 10.1007/BF00317792 – ident: e_1_2_7_43_1 doi: 10.1111/j.1570-7458.2007.00594.x – volume: 22 start-page: 71 year: 2000 ident: e_1_2_7_50_1 article-title: Leonardoxa africana (Leguminoase: Caesalpinioideae): a complex of mostly allopatric subspecies publication-title: Adansonia – ident: e_1_2_7_23_1 doi: 10.1006/pmpp.1999.0215 – ident: e_1_2_7_30_1 doi: 10.1007/s004420000532 – ident: e_1_2_7_31_1 doi: 10.1007/s004420000534 – ident: e_1_2_7_7_1 doi: 10.1104/pp.126.3.1105 – ident: e_1_2_7_6_1 doi: 10.1017/CBO9780511721878 – volume: 20 start-page: 89 year: 1967 ident: e_1_2_7_72_1 article-title: Studies in Macaranga, an easy genus of Malayan wayside trees publication-title: Malayan Nat. J. – ident: e_1_2_7_32_1 doi: 10.1073/pnas.98.3.1083 – ident: e_1_2_7_21_1 doi: 10.1007/s004420050302 – ident: e_1_2_7_4_1 doi: 10.1016/B978-012083490-7/50002-5 – ident: e_1_2_7_14_1 doi: 10.1111/j.0014-3820.2001.tb00674.x – ident: e_1_2_7_5_1 doi: 10.2307/1310178 – ident: e_1_2_7_44_1 doi: 10.1890/0012-9658(1998)079[0593:ASBAFP]2.0.CO;2 – ident: e_1_2_7_18_1 doi: 10.1007/BF00940397 – ident: e_1_2_7_25_1 doi: 10.1016/S1360-1385(01)02186-0 – ident: e_1_2_7_26_1 doi: 10.2307/2960606 – ident: e_1_2_7_42_1 doi: 10.2307/3546567 – volume: 12 start-page: 157 year: 1998 ident: e_1_2_7_66_1 article-title: A key to the Macaranga Thou. and Mallotus Lour. (Euphorbiaceae) species of east Kalimantan (Indonesia) publication-title: Flora Malesiana Bull. – ident: e_1_2_7_2_1 doi: 10.1007/s002650050538 – ident: e_1_2_7_54_1 doi: 10.1016/S0377-8401(01)00227-9 – ident: e_1_2_7_37_1 doi: 10.2307/1933414 – ident: e_1_2_7_61_1 doi: 10.2307/3761383 – ident: e_1_2_7_53_1 doi: 10.1007/BF00385058 – ident: e_1_2_7_22_1 doi: 10.1038/361153a0 – ident: e_1_2_7_70_1 doi: 10.1515/9780691228198 – volume: 47 start-page: 315 year: 1967 ident: e_1_2_7_38_1 article-title: Interaction of the bull's‐horn acacia (Acacia cornigera L.) with an ant inhabitant (Pseudomyrmex ferruginea F. Smith) in eastern Mexico publication-title: Kansas Univ. Sci. Bull. – volume-title: Plant physiology year: 1998 ident: e_1_2_7_69_1 – ident: e_1_2_7_62_1 doi: 10.2307/3671484 – volume-title: Monograph of Leucaena (Leguminosae‐Mimosoidaeae) year: 1998 ident: e_1_2_7_35_1 – start-page: 55 volume-title: Herbivores: their interactions with secondary plant metabolites year: 1979 ident: e_1_2_7_48_1 – ident: e_1_2_7_36_1 doi: 10.1111/j.1558-5646.1966.tb03364.x – volume: 104 start-page: 588 year: 1997 ident: e_1_2_7_55_1 article-title: Evaluation of Trichoderma harzianum and Gliocladium roseum in controlling leaf blotch of wheat (Septoria tritici) under in vitro and greenhouse conditions publication-title: Z. Pflanzenkrankheiten und Pflanzenschutz – J. Plant Diseases and Protection – ident: e_1_2_7_63_1 doi: 10.2307/2399983 – ident: e_1_2_7_11_1 doi: 10.2307/1942495 – start-page: 105 volume-title: Tree Flora of Malaya year: 1973 ident: e_1_2_7_73_1 – ident: e_1_2_7_74_1 doi: 10.1080/07060669709500518 – ident: e_1_2_7_68_1 doi: 10.2307/3565666 – ident: e_1_2_7_39_1 doi: 10.2307/1934677 – ident: e_1_2_7_65_1 doi: 10.1016/0169-5347(90)90094-T – ident: e_1_2_7_34_1 doi: 10.1111/j.1442-9993.2000.tb00071.x – ident: e_1_2_7_12_1 doi: 10.1126/science.230.4728.895 – ident: e_1_2_7_46_1 doi: 10.1007/BF00378394 – ident: e_1_2_7_8_1 doi: 10.1006/mpev.2001.0941 – ident: e_1_2_7_60_1 doi: 10.1016/S0377-8401(01)00228-0 – ident: e_1_2_7_71_1 doi: 10.1016/S0021-9673(01)93963-9 – ident: e_1_2_7_33_1 doi: 10.1086/417659 – start-page: 257 year: 1966 ident: e_1_2_7_59_1 article-title: Acacia cochliacantha or Acacia cymbispina in Mexico? publication-title: Leaflets of Western Botany |
SSID | ssj0007774 |
Score | 1.9896312 |
Snippet | Since its original formulation by Janzen in 1966, the hypothesis that obligate ant-plants (myrmecophytes) defended effectively against herbivores by resident... Since its original formulation by Janzen in 1966, the hypothesis that obligate ant‐plants (myrmecophytes) defended effectively against herbivores by resident... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 457 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Ants Autoecology Biological and medical sciences Caterpillars Flavonoids Fundamental and applied biological sciences. Psychology Fungal spores Herbivores Leaves Phytophagous insects Plants Plants and fungi Species Tannins |
Title | Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis |
URI | https://api.istex.fr/ark:/67375/WNG-9WCX8M1L-W/fulltext.pdf https://www.jstor.org/stable/3547834 https://onlinelibrary.wiley.com/doi/abs/10.1034%2Fj.1600-0706.2002.11954.x https://www.proquest.com/docview/18676689 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBLnwl1H6kOpTdv_ZSsUwlh0_SRFELD7k3I0oiEDd5lvUuzPfUn9Df2l1Qjy7vdQiGU3oTtkaXxjDyyv_mGkFfM6LJmRsUmF-A2KMLGda10bHjFKlGA5Z6B7-SUHZ8XH8blOOCfMBem44dYf3BDz_DrNTq4qtuQJl50Ts4wK5onHdJg4MnLBhhPInQL46OzDZMU54GQOUcwghAB1OO6evO3jrbeVLdR6dc9aBERlKp1SrRd9Yut8PT3INe_pY7uk0k_vw6cMhksF_VAf_uD-vH_KOABuReCWXrQWd9DcguaR-ROV95y5VpDHVp7w00-nRMIC0r7mJgzpI4FQ3UgLqAGLJ6jlw11D_3n9x-zK4TqvKUHVIeyDHQO7viGp5xOLVX0KxJ2rajSCNRxPV6sZphd1l62u-T8aPjl8DgOhR9ijQSBcQkCRK1VqdzmMU9qw32kmJhSVQoyN5AEhNBMGVZZq5PcrSMqy0QF2kLNbb5HdpppA08I5Uo7K0yzFDQragEVJFDpwmZIXKgYRIT3D1nqwIqOxTmupP87nxe4O3JqlqhmrNmZSa9meR2RdC0565hBbiDz2tvRWkDNJ4is46Ucnb6TYnQ4rk7ST3IUkV1vaOsLc-Rdy4uI7G8Z3ubOhYt7Sy4i8rK3ROkWCvz7oxqYLluJzIXM-Z-bsbeqGw9afn7_0Tef_rPkM3K3r6KTpM_JzmK-hBcumFvU-95NfwGwejvh |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVggu5dWKFGj3ANwc_F7vAaGqTUnIA6lqldyW9XotqlZJFCdqwomfwP_hr3DilzCzXicECalC6oHbys7Ym52HZ-1vviHkZZypKI0z6WQB17BB4bmTplI5GUvihIc6Z4aBr9uLm-fhh0E02CDfq1qYkh9i-cINPcPEa3RwfCFt68TD0stjLItmbgk1qBv2svrcIizbenEN-7fibesYlP3K908aZ0dNx7YYcBRS0TmR5pqnSkYStimBm2bM5CRuFslEaj_Tuas5V7HM4iTPlRuAxUrf54lWuU5ZHsB175AtbCiOxP3HpyvuKsYsBXSA8AfOLYwI5v7mbzNfezZuoZrnFUwSMZuyALXlZb-NtYT497TaPBdPHpAf1YqWcJjL-mya1tWXP8gm_9Mlf0i2bb5OD0sHe0Q29PAxuVt28FzAqKHsaLexKhkEARsziyckO0V2XJ1RZbkZKNwcz9GLIQW7_vn12_gK0Ujv6CFVtvMEnWg4vqJip6OcSnqNnGQLKhVikeCKnxdjLKArLoodcn4rq7BLNoejoX5KKJMKHM3zPa3iMOU60a5OVJj7yM0oY10jrLIqoSzxO_YfuRIGgBCEuAEEtQpUK7Yl9YVRq5jXiLeUHJfkJzeQeW0MdykgJ5cIHmSR6PfeC94_GiRdryP6NbJjLHv5wwCp5YKwRvbXLH115xBS-4jxGjmoTF9ALMQPXHKoR7NCIDljDCEG_rEx4xtPWnxstc1w758lD8i95lm3IzqtXvsZuV81DXK952RzOpnpF5C7TtN9EyMo-XTbHvIL4TecBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKKxAbnq0Ij9YLYDdhMg97vECoahIa0gZUUSU74_FDVK2SKJOoCSs-ge_hV9jxJfh6PAlBQqqQumBnJbkex_cx1zPnnovQc6JkmhMlAhUzbQ8ozAR5LmSgaEYylmhDHQPfcY8cnibvBulgA32vamFKfojlAzfwDBevwcHHyvgy8aR0cgJV0TQskQZ1R15Wn3uAZVcvLu3xrXjdaVpdv4iiduvjwWHgOwwEEpjoglQzzXIpUmFPKXGYK-pSklClIhM6UtqEmjFJhCKZMTKMrcGKKGKZlkbn1MR23htoKyEhg7YRzZMVdRWlngE6BvQDYx5FZNf-6m8rX7s1boGW5xVKEiCborBaM2W7jbV8-Pes2t0W23fRj2pDSzTMeX02zevyyx9ck__njt9Dd3y2jvdL97qPNvTwAbpZ9u9c2FFL-tFOa1UwaAV8xCweInUC3LhaYemZGbC9OHyHz4bYWvXPr9_GF4BFeoP3sfR9J_BE289XROx4ZLDAl8BItsBCAhLJzvh5MYbyueKs2Ean17ILO2hzOBrqRwhTIa2bNaKGliTJmc50qDOZmAiYGQXRNUQro-LS075D95EL7uAHcQLHP6tWDmqFpqQRd2rl8xpqLCXHJfXJFWReOrtdCojJOUAHacr7vbec9Q8G2XHjiPdraNsZ9vKHMRDLxUkN7a4Z-urKiU3sU8pqaK-yfG4jIbzeEkM9mhUcqBmJDTD2HzsrvvKi-ftO1w0f_7PkHrr1odnmR51e9wm6XXUMChtP0eZ0MtPPbOI6zXddhMDo03U7yC9ZeJq1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+chemical+defence+in+ant-plants%3F+A+critical+re-evaluation+of+a+widely+accepted+hypothesis&rft.jtitle=Oikos&rft.au=Heil%2C+Martin&rft.au=Delsinne%2C+Thibaut&rft.au=Hilpert%2C+Andrea&rft.au=Sch%C3%BCrkens%2C+Steffen&rft.date=2002-12-01&rft.pub=Munksgaard+International+Publishers&rft.issn=0030-1299&rft.eissn=1600-0706&rft.volume=99&rft.issue=3&rft.spage=457&rft.epage=468&rft_id=info:doi/10.1034%2Fj.1600-0706.2002.11954.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9WCX8M1L_W |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-1299&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-1299&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-1299&client=summon |