Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review

The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important line of research is the use of machine learning (ML) to understand and fight COVID-19. This is currently an active research field. Although...

Full description

Saved in:
Bibliographic Details
Published inInformatics in medicine unlocked Vol. 24; p. 100564
Main Authors Alballa, Norah, Al-Turaiki, Isra
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 2021
The Author(s). Published by Elsevier Ltd
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important line of research is the use of machine learning (ML) to understand and fight COVID-19. This is currently an active research field. Although there are already many surveys in the literature, there is a need to keep up with the rapidly growing number of publications on COVID-19-related applications of ML. This paper presents a review of recent reports on ML algorithms used in relation to COVID-19. We focus on the potential of ML for two main applications: diagnosis of COVID-19 and prediction of mortality risk and severity, using readily available clinical and laboratory data. Aspects related to algorithm types, training data sets, and feature selection are discussed. As we cover work published between January 2020 and January 2021, a few key points have come to light. The bulk of the machine learning algorithms used in these two applications are supervised learning algorithms. The established models are yet to be used in real-world implementations, and much of the associated research is experimental. The diagnostic and prognostic features discovered by ML models are consistent with results presented in the medical literature. A limitation of the existing applications is the use of imbalanced data sets that are prone to selection bias. •Machine learning is used for COVID-19 diagnosis and prediction of mortality/severity.•Supervised learning is most often used for diagnostic and prognostic prediction.•Imbalanced data sets and selection bias are limitations of existing COVID-19 data.•The results of machine learning models are consistent with those of medical studies.
AbstractList The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important line of research is the use of machine learning (ML) to understand and fight COVID-19. This is currently an active research field. Although there are already many surveys in the literature, there is a need to keep up with the rapidly growing number of publications on COVID-19-related applications of ML. This paper presents a review of recent reports on ML algorithms used in relation to COVID-19. We focus on the potential of ML for two main applications: diagnosis of COVID-19 and prediction of mortality risk and severity, using readily available clinical and laboratory data. Aspects related to algorithm types, training data sets, and feature selection are discussed. As we cover work published between January 2020 and January 2021, a few key points have come to light. The bulk of the machine learning algorithms used in these two applications are supervised learning algorithms. The established models are yet to be used in real-world implementations, and much of the associated research is experimental. The diagnostic and prognostic features discovered by ML models are consistent with results presented in the medical literature. A limitation of the existing applications is the use of imbalanced data sets that are prone to selection bias.
The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important line of research is the use of machine learning (ML) to understand and fight COVID-19. This is currently an active research field. Although there are already many surveys in the literature, there is a need to keep up with the rapidly growing number of publications on COVID-19-related applications of ML. This paper presents a review of recent reports on ML algorithms used in relation to COVID-19. We focus on the potential of ML for two main applications: diagnosis of COVID-19 and prediction of mortality risk and severity, using readily available clinical and laboratory data. Aspects related to algorithm types, training data sets, and feature selection are discussed. As we cover work published between January 2020 and January 2021, a few key points have come to light. The bulk of the machine learning algorithms used in these two applications are supervised learning algorithms. The established models are yet to be used in real-world implementations, and much of the associated research is experimental. The diagnostic and prognostic features discovered by ML models are consistent with results presented in the medical literature. A limitation of the existing applications is the use of imbalanced data sets that are prone to selection bias. •Machine learning is used for COVID-19 diagnosis and prediction of mortality/severity.•Supervised learning is most often used for diagnostic and prognostic prediction.•Imbalanced data sets and selection bias are limitations of existing COVID-19 data.•The results of machine learning models are consistent with those of medical studies.
The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important line of research is the use of machine learning (ML) to understand and fight COVID-19. This is currently an active research field. Although there are already many surveys in the literature, there is a need to keep up with the rapidly growing number of publications on COVID-19-related applications of ML. This paper presents a review of recent reports on ML algorithms used in relation to COVID-19. We focus on the potential of ML for two main applications: diagnosis of COVID-19 and prediction of mortality risk and severity, using readily available clinical and laboratory data. Aspects related to algorithm types, training data sets, and feature selection are discussed. As we cover work published between January 2020 and January 2021, a few key points have come to light. The bulk of the machine learning algorithms used in these two applications are supervised learning algorithms. The established models are yet to be used in real-world implementations, and much of the associated research is experimental. The diagnostic and prognostic features discovered by ML models are consistent with results presented in the medical literature. A limitation of the existing applications is the use of imbalanced data sets that are prone to selection bias.
The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important line of research is the use of (ML) to understand and fight COVID-19. This is currently an active research field. Although there are already many surveys in the literature, there is a need to keep up with the rapidly growing number of publications on COVID-19-related applications of ML. This paper presents a review of recent reports on ML algorithms used in relation to COVID-19. We focus on the potential of ML for two main applications: diagnosis of COVID-19 and prediction of mortality risk and severity, using readily available clinical and laboratory data. Aspects related to algorithm types, training data sets, and feature selection are discussed. As we cover work published between January 2020 and January 2021, a few key points have come to light. The bulk of the machine learning algorithms used in these two applications are supervised learning algorithms. The established models are yet to be used in real-world implementations, and much of the associated research is experimental. The diagnostic and prognostic features discovered by ML models are consistent with results presented in the medical literature. A limitation of the existing applications is the use of imbalanced data sets that are prone to selection bias.
ArticleNumber 100564
Author Alballa, Norah
Al-Turaiki, Isra
Author_xml – sequence: 1
  givenname: Norah
  surname: Alballa
  fullname: Alballa, Norah
  email: nalballa@ksu.edu.sa
  organization: Computer Science Department, College of Computer and Information Sciences, King Saud University, Saudi Arabia
– sequence: 2
  givenname: Isra
  orcidid: 0000-0003-0550-5115
  surname: Al-Turaiki
  fullname: Al-Turaiki, Isra
  email: ialturaiki@ksu.edu.sa
  organization: Information Technology Department, College of Computer and Information Sciences, King Saud University, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33842685$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURiNUREvpD2CDvGTRDH7GCUhI1fAaqagbYGv5cTP1kNjBzgzqv8clpWo3rGxff_fYuud5dRRigKp6SfCKYNK82a38uF9RTEk5Y9HwJ9UJZYLWHeHt0YP9cXWW8w5jTGTDhBTPqmPGWk6bVpxU7qu21z4AGkCn4MMW6WlKsRQhIx_Q-urH5kNNOuS83oaYfT5HY0yzHvx8c450cCjDAVI5oeTzTzQlcN7OPoa36AIlOHj4_aJ62ushw9ndelp9__Tx2_pLfXn1ebO-uKwtZ5TXvJGYaUcdd66T1JCWM-dAatoRTY0hnNvedLxriXFSN5g70_RE9EL01jXATqvNwnVR79SU_KjTjYraq7-FmLZKp9nbARQ1ukCFazjjBSjbVmqDHZFCd13PTWG9X1jT3ozgLIQ56eER9PFN8NdqGw-qxaTtcFMAr-8AKf7aQ57V6LOFYdAB4j4rKkgJSkZZiZIlalPMOUF__wzB6la22qkiW93KVovs0vPq4f_uO_6pLYF3SwDKxIuFpLL1EGzRk8DOZST-P_g_Oa679w
CitedBy_id crossref_primary_10_3390_idr14060090
crossref_primary_10_1002_hsr2_1257
crossref_primary_10_1016_j_compbiomed_2021_104738
crossref_primary_10_1016_j_ijmedinf_2023_105210
crossref_primary_10_3390_app122110766
crossref_primary_10_1007_s11739_022_03101_x
crossref_primary_10_1186_s12911_022_02057_4
crossref_primary_10_1145_3567431
crossref_primary_10_1155_2022_6902321
crossref_primary_10_1016_j_fmre_2024_04_021
crossref_primary_10_2196_29544
crossref_primary_10_52831_kjhs_1117894
crossref_primary_10_52831_kjhs_1340717
crossref_primary_10_3390_bdcc6030098
crossref_primary_10_4018_IJDST_321648
crossref_primary_10_1007_s00521_022_07325_y
crossref_primary_10_1016_j_ibmed_2022_100065
crossref_primary_10_1038_s41598_023_31251_1
crossref_primary_10_3390_s23010527
crossref_primary_10_1016_j_eswa_2022_118935
crossref_primary_10_3390_jpm11100993
crossref_primary_10_1186_s12911_023_02237_w
crossref_primary_10_1016_j_retram_2021_103319
crossref_primary_10_3390_healthcare12100979
crossref_primary_10_2298_TSCI22S1261A
crossref_primary_10_2478_pjmpe_2022_0003
crossref_primary_10_3390_app122110869
crossref_primary_10_1145_3492855
crossref_primary_10_1016_j_jclinepi_2024_111264
crossref_primary_10_1007_s43657_022_00058_x
crossref_primary_10_1038_s41598_022_20419_w
crossref_primary_10_3390_s21238045
crossref_primary_10_19161_etd_1037482
crossref_primary_10_1186_s40537_021_00557_0
crossref_primary_10_1007_s11227_023_05881_1
crossref_primary_10_3390_bios12050299
crossref_primary_10_1097_CCM_0000000000005758
crossref_primary_10_1186_s12911_022_01934_2
crossref_primary_10_7759_cureus_50212
crossref_primary_10_1038_s41598_023_45532_2
crossref_primary_10_1016_j_imu_2023_101351
crossref_primary_10_1016_j_jbusres_2023_113806
crossref_primary_10_1186_s12890_023_02421_8
crossref_primary_10_1007_s11517_022_02543_x
crossref_primary_10_3389_fpubh_2023_1183725
crossref_primary_10_4103_jehp_jehp_20_22
crossref_primary_10_1016_j_amjms_2023_03_001
crossref_primary_10_61506_01_00114
crossref_primary_10_1007_s11042_023_15848_2
crossref_primary_10_1016_j_heliyon_2024_e26694
crossref_primary_10_3389_fpubh_2022_869238
crossref_primary_10_1016_j_imu_2023_101188
crossref_primary_10_1007_s12539_021_00499_4
crossref_primary_10_3390_healthcare11121713
crossref_primary_10_1016_j_ijmedinf_2023_105090
crossref_primary_10_2139_ssrn_4636627
crossref_primary_10_1016_j_array_2022_100271
crossref_primary_10_21076_vizyoner_1074212
crossref_primary_10_1016_j_jth_2022_101526
crossref_primary_10_3390_ijerph18168660
crossref_primary_10_3390_vaccines11020374
crossref_primary_10_1155_2022_6093613
crossref_primary_10_1007_s00521_023_08258_w
crossref_primary_10_46871_eams_1497329
crossref_primary_10_3390_bioengineering10040439
crossref_primary_10_1038_s41598_023_37512_3
crossref_primary_10_3389_fneph_2023_1179342
crossref_primary_10_3390_diagnostics13101749
crossref_primary_10_3389_fpubh_2022_912099
crossref_primary_10_1186_s12884_023_05679_2
crossref_primary_10_3389_fcimb_2022_838749
crossref_primary_10_3389_fdata_2021_675882
crossref_primary_10_3389_fdata_2023_1241899
crossref_primary_10_1007_s12065_022_00744_9
crossref_primary_10_1016_j_jbi_2022_104178
crossref_primary_10_3390_app122010228
crossref_primary_10_1080_01621459_2023_2270657
crossref_primary_10_3390_jpm11111103
crossref_primary_10_1038_s41598_024_60637_y
crossref_primary_10_3389_fmed_2023_1230733
crossref_primary_10_1007_s42979_022_01150_9
crossref_primary_10_3389_fdata_2023_1291329
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1007_s10729_023_09647_2
crossref_primary_10_3390_electronics12183878
crossref_primary_10_1016_j_imu_2023_101428
crossref_primary_10_1002_cpe_7393
crossref_primary_10_1177_15501329221105159
crossref_primary_10_1371_journal_pone_0284150
crossref_primary_10_1016_j_isci_2021_102752
crossref_primary_10_3390_jpm12060955
crossref_primary_10_7759_cureus_50932
crossref_primary_10_1007_s41133_021_00048_0
crossref_primary_10_1038_s41598_023_50075_7
crossref_primary_10_1186_s12863_023_01133_6
crossref_primary_10_61506_01_00308
crossref_primary_10_3934_mbe_2022285
crossref_primary_10_1016_j_rinp_2021_104462
crossref_primary_10_1055_a_1423_8039
crossref_primary_10_1016_j_imu_2023_101391
Cites_doi 10.1056/NEJMp1702071
10.1017/S0950268820001442
10.3389/fcell.2020.00683
10.3390/ijerph17197080
10.1007/s10916-020-01582-x
10.1016/j.imu.2020.100449
10.1109/TSM.2019.2904306
10.1016/j.chaos.2020.109947
10.1016/S0140-6736(20)30183-5
10.1007/s10994-006-6226-1
10.1109/ACCESS.2019.2912012
10.1093/ije/dyaa171
10.1056/NEJMcp2009249
10.1016/j.neucom.2017.11.077
10.1007/s11831-019-09344-w
10.1001/jama.2020.0757
10.1214/aos/1013203451
10.1056/NEJMoa1306742
10.3390/ijerph17155330
10.1007/s10916-020-01597-4
10.1080/07853890.2020.1868564
10.1371/journal.pone.0239474
10.2196/21980
10.1186/s12911-020-01266-z
10.1056/NEJMra1814259
10.1001/jama.2020.1585
10.7717/peerj.10083
10.1016/j.ijid.2020.04.041
10.3390/pathogens9110880
10.3233/XST-200831
10.3389/fnbot.2013.00021
10.1371/journal.pone.0243262
10.1016/j.medj.2020.10.002
10.1016/j.patter.2020.100074
10.1001/jamainternmed.2020.2033
10.1007/s00134-020-05991-x
10.1016/j.jcv.2020.104502
10.1016/j.eswa.2017.04.006
10.1109/ACCESS.2018.2866049
10.1038/s41467-020-18684-2
10.2196/21801
10.1056/NEJMoa2002032
10.1006/jcss.1997.1504
10.1016/j.chaos.2020.110059
10.1080/00031305.1992.10475879
10.1016/S0140-6736(20)30566-3
10.1016/S0140-6736(03)14630-2
10.1016/j.ijid.2020.06.038
10.1038/s41598-020-78392-1
10.1016/S0020-7373(87)80053-6
10.32604/cmc.2020.010691
10.1109/34.709601
10.3389/fpubh.2020.587937
10.1109/TITS.2018.2815678
10.1001/jama.2020.2648
10.1016/j.jcv.2020.104431
10.7150/ijms.47193
10.1016/S0140-6736(19)30037-6
10.1007/s00521-018-3699-3
10.1007/BF00994018
10.1016/j.adro.2020.04.015
10.1007/s11427-020-1661-4
10.1093/labmed/lmaa111
10.1172/jci.insight.139024
10.1016/j.chaos.2020.110120
10.3389/fmed.2020.557453
10.2807/1560-7917.ES.2020.25.3.2000045
10.1093/infdis/jiaa119
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.imu.2021.100564
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2352-9148
EndPage 100564
ExternalDocumentID oai_doaj_org_article_2ba91a5d64344987887ab0d175a99f4b
10_1016_j_imu_2021_100564
33842685
S235291482100054X
Genre Journal Article
Review
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
ADVLN
AFJKZ
AKRWK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4324-46703ad2d4dd972b1843dde7a291a2bb144cfb94981bd7a604db6f15f55fcd6e3
IEDL.DBID DOA
ISSN 2352-9148
IngestDate Tue Oct 22 15:12:59 EDT 2024
Tue Sep 17 21:27:49 EDT 2024
Sat Oct 26 00:10:44 EDT 2024
Thu Sep 26 20:36:36 EDT 2024
Sat Sep 28 08:14:50 EDT 2024
Tue Jul 25 20:58:03 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Feature selection
Prognosis
Diagnosis
Artificial intelligence
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Author(s).
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4324-46703ad2d4dd972b1843dde7a291a2bb144cfb94981bd7a604db6f15f55fcd6e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-0550-5115
OpenAccessLink https://doaj.org/article/2ba91a5d64344987887ab0d175a99f4b
PMID 33842685
PQID 2511897323
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_2ba91a5d64344987887ab0d175a99f4b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8018906
proquest_miscellaneous_2511897323
crossref_primary_10_1016_j_imu_2021_100564
pubmed_primary_33842685
elsevier_sciencedirect_doi_10_1016_j_imu_2021_100564
PublicationCentury 2000
PublicationDate 2021
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Informatics in medicine unlocked
PublicationTitleAlternate Inform Med Unlocked
PublicationYear 2021
Publisher Elsevier Ltd
The Author(s). Published by Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: The Author(s). Published by Elsevier Ltd
– name: Elsevier
References Cabitza, Campagner, Ferrari, Di Resta, Ceriotti, Sabetta, Colombini, De Vecchi, Banfi, Locatelli (bib19) 2020
Doanvo, Qian, Ramjee, Piontkivska, Desai, Majumder (bib113) 2020
Friedman (bib29) 2001; 29
Goodman-Meza, Rudas, Chiang, Adamson, Ebinger, Sun, Botting, Fulcher, Saab, Brook, Eskin, An, Kordi, Jew, Balliu, Chen, Hill, Rahmani, Halperin, Manuel (bib59) 2020; 15
Albahri, Hamid, Alwan, Al-qays, Zaidan, Zaidan, Albahri, AlAmoodi, Khlaf, Almahdi, Thabet, Hadi, Mohammed, Alsalem, Al-Obaidi, Madhloom (bib13) 2020; 44
Saqlain, Jargalsaikhan, Lee (bib34) 2019; 32
Ruan, Yang, Wang, Jiang, Song (bib111) 2020; 46
Li, Ma, Shende, Castaneda, Chakladar, Tsai, Apostol, Honda, Xu, Wong, Zhang, Lee, Gnanasekar, Honda, Kuo, Yu, Chang, Rajasekaran, Ongkeko (bib46) 2020; 20
(bib44) 2020
Guan, Zhang, Fu, Li, Yuan, Zhu, Peng, Guo, Lu (bib72) 2021; 53
Kukar, Gunčar, Vovko, Podnar, Černelč, Brvar, Zalaznik, Notar, Moškon, Notar (bib49) 2020
Joshi, Pejaver, Hammarlund, Sung, Lee, Furmanchuk, Lee, Scott, Gombar, Shah, Shen, Nassiri, Schneider, Ahmad, Liebovitz, Kho, Mooney, Pinsky, Banaei (bib53) 2020; 129
Alakus, Turkoglu (bib58) 2020; 140
Tordjman, Mekki, Mali, Saab, Chassagnon, Guillo, Burns, Eshagh, Beaune, Madelin (bib55) 2020
Barboza, Kimura, Altman (bib33) 2017; 83
Bullock, Luccioni, Pham, Lam, Luengo-Oroz (bib11) 2020
Wang, Liu, Liu, Wang, Luo, Li (bib100) 2020; 221
Gandhi, Lynch, del Rio (bib5) 2020; 383
Soares, Villavicencio, Anzanello, Fogliatto, Idiart, Stevenson (bib62) 2020
Cortes, Vapnik (bib23) 1995; 20
Zhou, Yang, Guo, Geng, Gao, Ye, Hu, Wang (bib81) 2020
Geurts, Ernst, Wehenkel (bib30) 2006; 63
Shishvan, Zois, Soyata (bib8) 2018; 6
Naudé (bib12) 2020
Eltoukhy, Shaban, Chan, Abdel-Aal (bib98) 2020; 17
Pollack (bib65) 2016; 17
Guan, Ni, Hu, Liang, Ou, He, Liu, Shan, Lei, Hui (bib105) 2020; 382
Corman, Landt, Kaiser, Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt, Mulders, Haagmans, van der Veer, van den Brink, Wijsman, Goderski, Romette, Ellis, Zambon, Peiris, Goossens, Reusken, Koopmans, Drosten (bib38) 2020; 25
Zhu, Yu, Wang, Ning, Tang (bib35) 2019; 20
Rajkomar, Dean, Kohane (bib21) 2019; 380
Shaverdian, Shepherd, Rimner, Wu, Simone (bib43) 2020; 5
Cohen, Blau (bib101) 2020
Merad, Martin (bib108) 2020
Dargan, Kumar, Ayyagari, Kumar (bib7) 2020; 27
Wang, Zuo, Liu, Zhang, Zhao, Xie, Zhang, Chen, Liu (bib69) 2020
Samin, Azim (bib36) 2019; 7
Quinlan (bib24) 1987; 27
(bib9) 2019; 18
(bib26) 1998; 20
Booth, Abels, McCaffrey (bib73) 2020
Hu, Liu, Jiang, Shi, Zhang, Xu (bib77) 2020; 49
Vaid, Somani, Russak, De Freitas, Chaudhry, Paranjpe (bib66) 2020; 49
Frost, Bradley, Tharmaratnam, Wootton (bib63) 2020
Sun, Song, Shi, Liu, Li, Li, Zhang, Jiang, Zhang, Sun, Chen, Shi (bib74) 2020; 128
Bai, Tu, Wei, Xiao, Jin, Zhang, Song, Liu, Zhu, Yang (bib96) 2020
Gong, Ou, Qiu, Jie, Chen, Yuan, Cao, Tan, Xu, Zheng (bib83) 2020
Ji, Zhang, Xu, Chen, Yang, Zhao, Chen, Cheng, Wang, Bi (bib112) 2020
Izquierdo, Ancochea, Soriano (bib90) 2020; 22
Shoer, Karady, Keshet, Shilo, Rossman, Gavrieli (bib54) 2020; 2
Xie, Hungerford, Chen, Abrams, Li, Wang, Wang, Kang, Bonnett, Zheng (bib80) 2020
Feng, Huang, Wang, Chen, Zhai, Zhu, Chen, Wang, Su, Huang (bib61) 2020
Zhong, Zheng, Li, Poon, Xie, Chan, Li, Tan, Chang, Xie (bib3) 2003; 362
Satici, Demirkol, Sargin Altunok, Gursoy, Alkan, Kamat, Demirok, Surmeli, Calik, Cavus, Esatoglu (bib64) 2020; 98
Collins, Moons (bib37) 2019; 393
Liu, Song, Zheng, Li, Li (bib85) 2020; 148
Wu, Wang, Nicholas, Maitland, Fan (bib17) 2020; 22
Zhao, Chen, Hou, Graham, Li, Richman, Thode, Singer, Duong (bib78) 2020; 15
Hao, Li (bib41) 2020
Zhao, Bai, Wang, Zhong, Lu, Tian, Cai, Jin (bib76) 2021; 18
Wu, McGoogan (bib110) 2020; 323
(bib6) 2021
Cai, Luo, Wang, Yang (bib103) 2018; 300
Swapnarekha, Behera, Nayak, Naik (bib14) 2020; 138
Gao, Cai, Fang, Li, Wang, Chen, Yu, Liu, Xu, Cui, Zeng, Feng, Yu, Wang, Yuan, Jiao, Chi, Liu, Li, Zheng, Song, Jin, Gong, Liu, Huang, Tian, Li, Xing, Ma, Li, Ye, Gao (bib20) 2020; 11
Soltan, Kouchaki, Zhu, Kiyasseh, Taylor, Hussain, Peto, Brent, Eyre, Clifton (bib56) 2020
Zhu, Cai, Fan, Lou, Hua, Huang, Gao (bib82) 2020; 95
Li, Horowitz, Liu, Chew, Lan, Liu, Sha, Yang (bib88) 2020; 8
Han, Zhang, Mu, Wei, Jin, Xue, Tong, Zha, Song, Gu (bib87) 2020
Cai, Luo, Wang, Yang (bib102) 2018; 300
Surkova, Nikolayevskyy, Drobniewski (bib39) 2020; 8
Yao, Zhang, Zhang, Duan, Xie, Pan, Peng, Huang, Zhang, Xu (bib75) 2020; 8
Yan, Zhang, Xiao, Wang, Sun, Liang, Li, Zhang, Guo, Xiao (bib67) 2020
de Moraes Batista, Miraglia, Donato, Chiavegatto Filho (bib57) 2020
Jiang, Coffee, Bari, Wang, Jiang, Huang, Shi, Dai, Cai, Zhang, Wu, He, Huang (bib104) 2020; 63
Schwab, Schütte, Dietz, Bauer (bib95) 2020
Freund, Schapire (bib27) 1997; 55
Assiri, McGeer, Perl, Price, Al Rabeeah, Cummings, Alabdullatif, Assad, Almulhim, Makhdoom (bib4) 2013; 369
Wang, Hu, Hu, Zhu, Liu, Zhang, Wang, Xiang, Cheng, Xiong (bib107) 2020; 323
Lalmuanawma, Hussain, Chhakchhuak (bib15) 2020; 139
Nemati, Ansary, Nemati (bib93) 2020; 1
Geurts, Louppe (bib32) 2011
Bayat, Phelps, Ryono, Lee, Parekh, Mewton (bib48) 2020
Altman (bib28) 1992; 46
Chen, Asch (bib22) 2017; 376
Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bib109) 2020; 395
Zhou, Yu, Du, Fan, Liu, Liu (bib106) 2020
Levy, Richardson, Coppa, Barnaby, McGinn, Becker, Davidson, Cohen, Hirsch, Zanos (bib92) 2020
Paules, Marston, Fauci (bib2) 2020; 323
AlJame, Ahmad, Imtiaz, Mohammed (bib60) 2020; 21
Tayarani-N (bib16) 2020
Wu, Zhang, Zhang, Meng, Li, Tong, Li, Cai, Yang, Zhu, Zhao, Huang, Xie, Li (bib50) 2020
Rechtman, Curtin, Navarro, Nirenberg, Horton (bib70) 2020; 10
Bertsimas, Lukin, Mingardi, Nohadani, Orfanoudaki, Stellato, Wiberg, Gonzalez-Garcia, Parra-Calderon, Robinson (bib71) 2020; 15
Yan, Zhang, Goncalves, Xiao, Wang, Guo, Sun, Tang, Jin, Zhang (bib68) 2020
(bib1) 2020
Yang, Hou, Vasovic, Steel, Chadburn, Racine-Brzostek (bib45) 2020; 66
Brinati, Campagner, Ferrari, Locatelli, Banfi, Cabitza (bib51) 2020; 44
Frank, Hall, Witten (bib18) 2016
Agbehadji, Awuzie, Ngowi, Millham (bib10) 2020; 17
Huang, Cai, Li, Li, Fan, Li, Lei, Tang, Hu, Li, Deng (bib79) 2020; 7
Tschoellitsch, Dünser, Böck, Schwarzbauer, Meier (bib52) 2020; 52
Luo, Liu, Jiang, Yue, Liu, Wei (bib86) 2020; 5
Das, Mishra, Gopalan (bib97) 2020; 8
Hu, Song, Xu, Jin, Chen, Xu, Ma, Chen, Lin, Zheng (bib99) 2020; 63
Rezaeijo, Ghorvei, Alaei (bib40) 2020
West, Montori, Sampathkumar (bib47) 2020; vol. 95
Han, Kamber (bib25) 2011
Rezaeijo, Abedi-Firouzjah, Ghorvei, Sarnameh (bib42) 2021; 29
de Terwangne, Laouni, Jouffe, Lechien, Bouillon, Place, Capulzini, Machayekhi, Ceccarelli, Saussez (bib89) 2020; 9
Natekin, Knoll (bib31) 2013; 7
Liang, Liang, Ou, Chen, Chen, Li (bib91) 2020; 180
Li, Lin, Zhu, Fan, Xu, Qiu, Chen, Li, Wang, Yan (bib94) 2020
Aloisio, Chibireva, Serafini, Pasqualetti, Falvella, Dolci, Panteghini (bib84) 2020
Booth (10.1016/j.imu.2021.100564_bib73) 2020
Natekin (10.1016/j.imu.2021.100564_bib31) 2013; 7
Agbehadji (10.1016/j.imu.2021.100564_bib10) 2020; 17
Shoer (10.1016/j.imu.2021.100564_bib54) 2020; 2
Xie (10.1016/j.imu.2021.100564_bib80) 2020
Dargan (10.1016/j.imu.2021.100564_bib7) 2020; 27
Assiri (10.1016/j.imu.2021.100564_bib4) 2013; 369
Rajkomar (10.1016/j.imu.2021.100564_bib21) 2019; 380
Rezaeijo (10.1016/j.imu.2021.100564_bib42) 2021; 29
Zhu (10.1016/j.imu.2021.100564_bib82) 2020; 95
Wu (10.1016/j.imu.2021.100564_bib17) 2020; 22
Aloisio (10.1016/j.imu.2021.100564_bib84) 2020
Tschoellitsch (10.1016/j.imu.2021.100564_bib52) 2020; 52
Swapnarekha (10.1016/j.imu.2021.100564_bib14) 2020; 138
Bai (10.1016/j.imu.2021.100564_bib96) 2020
Doanvo (10.1016/j.imu.2021.100564_bib113) 2020
Rezaeijo (10.1016/j.imu.2021.100564_bib40) 2020
Cortes (10.1016/j.imu.2021.100564_bib23) 1995; 20
Eltoukhy (10.1016/j.imu.2021.100564_bib98) 2020; 17
Lalmuanawma (10.1016/j.imu.2021.100564_bib15) 2020; 139
Izquierdo (10.1016/j.imu.2021.100564_bib90) 2020; 22
Han (10.1016/j.imu.2021.100564_bib25) 2011
Zhao (10.1016/j.imu.2021.100564_bib78) 2020; 15
Feng (10.1016/j.imu.2021.100564_bib61) 2020
Frost (10.1016/j.imu.2021.100564_bib63) 2020
AlJame (10.1016/j.imu.2021.100564_bib60) 2020; 21
Brinati (10.1016/j.imu.2021.100564_bib51) 2020; 44
Cohen (10.1016/j.imu.2021.100564_bib101) 2020
Corman (10.1016/j.imu.2021.100564_bib38) 2020; 25
Hao (10.1016/j.imu.2021.100564_bib41) 2020
Cai (10.1016/j.imu.2021.100564_bib102) 2018; 300
Pollack (10.1016/j.imu.2021.100564_bib65) 2016; 17
Joshi (10.1016/j.imu.2021.100564_bib53) 2020; 129
Merad (10.1016/j.imu.2021.100564_bib108) 2020
Soares (10.1016/j.imu.2021.100564_bib62) 2020
Vaid (10.1016/j.imu.2021.100564_bib66) 2020; 49
Yan (10.1016/j.imu.2021.100564_bib68) 2020
Goodman-Meza (10.1016/j.imu.2021.100564_bib59) 2020; 15
Barboza (10.1016/j.imu.2021.100564_bib33) 2017; 83
de Moraes Batista (10.1016/j.imu.2021.100564_bib57) 2020
Wang (10.1016/j.imu.2021.100564_bib100) 2020; 221
Bullock (10.1016/j.imu.2021.100564_bib11) 2020
Geurts (10.1016/j.imu.2021.100564_bib32) 2011
Guan (10.1016/j.imu.2021.100564_bib72) 2021; 53
Li (10.1016/j.imu.2021.100564_bib46) 2020; 20
Cabitza (10.1016/j.imu.2021.100564_bib19) 2020
Chen (10.1016/j.imu.2021.100564_bib22) 2017; 376
Zhou (10.1016/j.imu.2021.100564_bib81) 2020
Yan (10.1016/j.imu.2021.100564_bib67) 2020
Huang (10.1016/j.imu.2021.100564_bib109) 2020; 395
Collins (10.1016/j.imu.2021.100564_bib37) 2019; 393
Hu (10.1016/j.imu.2021.100564_bib77) 2020; 49
Tordjman (10.1016/j.imu.2021.100564_bib55) 2020
Samin (10.1016/j.imu.2021.100564_bib36) 2019; 7
Alakus (10.1016/j.imu.2021.100564_bib58) 2020; 140
Paules (10.1016/j.imu.2021.100564_bib2) 2020; 323
Ruan (10.1016/j.imu.2021.100564_bib111) 2020; 46
Cai (10.1016/j.imu.2021.100564_bib103) 2018; 300
Jiang (10.1016/j.imu.2021.100564_bib104) 2020; 63
Gandhi (10.1016/j.imu.2021.100564_bib5) 2020; 383
Freund (10.1016/j.imu.2021.100564_bib27) 1997; 55
Satici (10.1016/j.imu.2021.100564_bib64) 2020; 98
Wu (10.1016/j.imu.2021.100564_bib110) 2020; 323
Das (10.1016/j.imu.2021.100564_bib97) 2020; 8
Hu (10.1016/j.imu.2021.100564_bib99) 2020; 63
Yao (10.1016/j.imu.2021.100564_bib75) 2020; 8
Li (10.1016/j.imu.2021.100564_bib94) 2020
Gong (10.1016/j.imu.2021.100564_bib83) 2020
Gao (10.1016/j.imu.2021.100564_bib20) 2020; 11
Zhu (10.1016/j.imu.2021.100564_bib35) 2019; 20
Zhao (10.1016/j.imu.2021.100564_bib76) 2021; 18
(10.1016/j.imu.2021.100564_bib26) 1998; 20
Li (10.1016/j.imu.2021.100564_bib88) 2020; 8
Nemati (10.1016/j.imu.2021.100564_bib93) 2020; 1
Kukar (10.1016/j.imu.2021.100564_bib49) 2020
Soltan (10.1016/j.imu.2021.100564_bib56) 2020
Wu (10.1016/j.imu.2021.100564_bib50) 2020
(10.1016/j.imu.2021.100564_bib1) 2020
Sun (10.1016/j.imu.2021.100564_bib74) 2020; 128
Zhou (10.1016/j.imu.2021.100564_bib106) 2020
Zhong (10.1016/j.imu.2021.100564_bib3) 2003; 362
Ji (10.1016/j.imu.2021.100564_bib112) 2020
Rechtman (10.1016/j.imu.2021.100564_bib70) 2020; 10
Han (10.1016/j.imu.2021.100564_bib87) 2020
Altman (10.1016/j.imu.2021.100564_bib28) 1992; 46
Liu (10.1016/j.imu.2021.100564_bib85) 2020; 148
de Terwangne (10.1016/j.imu.2021.100564_bib89) 2020; 9
Naudé (10.1016/j.imu.2021.100564_bib12) 2020
Shaverdian (10.1016/j.imu.2021.100564_bib43) 2020; 5
Yang (10.1016/j.imu.2021.100564_bib45) 2020; 66
Luo (10.1016/j.imu.2021.100564_bib86) 2020; 5
Geurts (10.1016/j.imu.2021.100564_bib30) 2006; 63
Schwab (10.1016/j.imu.2021.100564_bib95) 2020
Quinlan (10.1016/j.imu.2021.100564_bib24) 1987; 27
Huang (10.1016/j.imu.2021.100564_bib79) 2020; 7
Liang (10.1016/j.imu.2021.100564_bib91) 2020; 180
Guan (10.1016/j.imu.2021.100564_bib105) 2020; 382
Frank (10.1016/j.imu.2021.100564_bib18) 2016
Wang (10.1016/j.imu.2021.100564_bib107) 2020; 323
Saqlain (10.1016/j.imu.2021.100564_bib34) 2019; 32
Friedman (10.1016/j.imu.2021.100564_bib29) 2001; 29
Tayarani-N (10.1016/j.imu.2021.100564_bib16) 2020
Shishvan (10.1016/j.imu.2021.100564_bib8) 2018; 6
Albahri (10.1016/j.imu.2021.100564_bib13) 2020; 44
Bertsimas (10.1016/j.imu.2021.100564_bib71) 2020; 15
West (10.1016/j.imu.2021.100564_bib47) 2020; vol. 95
Surkova (10.1016/j.imu.2021.100564_bib39) 2020; 8
Bayat (10.1016/j.imu.2021.100564_bib48) 2020
Wang (10.1016/j.imu.2021.100564_bib69) 2020
(10.1016/j.imu.2021.100564_bib9) 2019; 18
Levy (10.1016/j.imu.2021.100564_bib92) 2020
References_xml – year: 2020
  ident: bib62
  article-title: A novel high specificity covid-19 screening method based on simple blood exams and artificial intelligence
  publication-title: medRxiv
  contributor:
    fullname: Stevenson
– volume: 49
  start-page: 1918
  year: 2020
  end-page: 1929
  ident: bib77
  article-title: Early prediction of mortality risk among patients with severe COVID-19, using machine learning
  publication-title: Int J Epidemiol
  contributor:
    fullname: Xu
– volume: 5
  year: 2020
  ident: bib86
  article-title: Il-6 and cd8+ t cell counts combined are an early predictor of in-hospital mortality of patients with covid-19
  publication-title: JCI Insight
  contributor:
    fullname: Wei
– volume: 22
  year: 2020
  ident: bib17
  article-title: Application of big data technology for COVID-19 prevention and control in China: lessons and recommendations
  publication-title: J Med Internet Res
  contributor:
    fullname: Fan
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  ident: bib21
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  contributor:
    fullname: Kohane
– volume: 8
  start-page: 683
  year: 2020
  ident: bib75
  article-title: Severity detection for the coronavirus disease 2019 (covid-19) patients using a machine learning model based on the blood and urine tests
  publication-title: Frontiers in cell and developmental biology
  contributor:
    fullname: Xu
– year: 2020
  ident: bib11
  article-title: Mapping the landscape of artificial intelligence applications against COVID-19
  publication-title: arXiv:2003.11336 [cs]
  contributor:
    fullname: Luengo-Oroz
– volume: 128
  start-page: 104431
  year: 2020
  ident: bib74
  article-title: Combination of four clinical indicators predicts the severe/critical symptom of patients infected covid-19
  publication-title: J Clin Virol
  contributor:
    fullname: Shi
– volume: 323
  start-page: 1061
  year: 2020
  end-page: 1069
  ident: bib107
  article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, China
  publication-title: Jama
  contributor:
    fullname: Xiong
– year: 2020
  ident: bib95
  article-title: predcovid-19: a systematic study of clinical predictive models for coronavirus disease 2019
  contributor:
    fullname: Bauer
– volume: 63
  start-page: 706
  year: 2020
  end-page: 711
  ident: bib99
  article-title: Clinical characteristics of 24 asymptomatic infections with covid-19 screened among close contacts in nanjing, China
  publication-title: Sci China Life Sci
  contributor:
    fullname: Zheng
– volume: 98
  start-page: 84
  year: 2020
  end-page: 89
  ident: bib64
  article-title: Performance of pneumonia severity index and curb-65 in predicting 30-day mortality in patients with covid-19
  publication-title: Int J Infect Dis
  contributor:
    fullname: Esatoglu
– volume: 27
  start-page: 1071
  year: 2020
  end-page: 1092
  ident: bib7
  article-title: A survey of deep learning and its applications: a new paradigm to machine learning
  publication-title: Arch Comput Methods Eng
  contributor:
    fullname: Kumar
– volume: 369
  start-page: 407
  year: 2013
  end-page: 416
  ident: bib4
  article-title: Hospital outbreak of middle east respiratory syndrome coronavirus
  publication-title: N Engl J Med
  contributor:
    fullname: Makhdoom
– volume: 362
  start-page: 1353
  year: 2003
  end-page: 1358
  ident: bib3
  article-title: Epidemiology and cause of severe acute respiratory syndrome (sars) in guangdong, people's Republic of China, in february, 2003
  publication-title: Lancet
  contributor:
    fullname: Xie
– year: 2020
  ident: bib49
  article-title: Covid-19 diagnosis by routine blood tests using machine learning
  contributor:
    fullname: Notar
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib108
  article-title: Pathological inflammation in patients with covid-19: a key role for monocytes and macrophages
  publication-title: Nat Rev Immunol
  contributor:
    fullname: Martin
– start-page: 49
  year: 2011
  end-page: 61
  ident: bib32
  article-title: Learning to rank with extremely randomized trees, volume 14 of
  contributor:
    fullname: Louppe
– volume: 140
  start-page: 110120
  year: 2020
  ident: bib58
  article-title: Comparison of deep learning approaches to predict covid-19 infection
  publication-title: Chaos, Solit Fractals
  contributor:
    fullname: Turkoglu
– volume: 7
  year: 2013
  ident: bib31
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front Neurorob
  contributor:
    fullname: Knoll
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bib28
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am Statistician
  contributor:
    fullname: Altman
– year: 2020
  ident: bib63
  article-title: The utility of established prognostic scores in covid-19 hospital admissions: a multicentre prospective evaluation of curb-65, news2, and qsofa
  contributor:
    fullname: Wootton
– volume: 148
  start-page: e129
  year: 2020
  ident: bib85
  article-title: Laboratory findings and a combined multifactorial approach to predict death in critically ill patients with covid-19: a retrospective study
  publication-title: Epidemiol Infect
  contributor:
    fullname: Li
– year: 2020
  ident: bib69
  article-title: Clinical and laboratory predictors of in-hospital mortality in patients with coronavirus disease-2019: a cohort study in wuhan, China
  contributor:
    fullname: Liu
– year: 2020
  ident: bib19
  article-title: Development, evaluation, and validation of machine learning models for covid-19 detection based on routine blood tests
  contributor:
    fullname: Locatelli
– volume: 8
  start-page: 566
  year: 2020
  ident: bib88
  article-title: Individual-level fatality prediction of covid-19 patients using ai methods
  publication-title: Frontiers in Public Health
  contributor:
    fullname: Yang
– volume: 8
  year: 2020
  ident: bib97
  article-title: Predicting covid-19 community mortality risk using machine learning and development of an online prognostic tool
  publication-title: PeerJ
  contributor:
    fullname: Gopalan
– year: 2020
  ident: bib1
  publication-title: Common human coronaviruses
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: bib24
  article-title: Simplifying decision trees
  publication-title: Int J Man Mach Stud
  contributor:
    fullname: Quinlan
– start-page: 1
  year: 2020
  ident: bib12
  article-title: Artificial intelligence vs covid-19: limitations, constraints and pitfalls
  publication-title: AI Soc
  contributor:
    fullname: Naudé
– start-page: ciaa1175
  year: 2020
  ident: bib48
  article-title: A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prediction model from standard laboratory tests
  publication-title: Clin Infect Dis
  contributor:
    fullname: Mewton
– year: 2021
  ident: bib6
  article-title: Who coronavirus disease (covid-19) dashboard
– year: 2020
  ident: bib50
  article-title: Rapid and accurate identification of covid-19 infection through machine learning based on clinical available blood test results
  publication-title: medRxiv
  contributor:
    fullname: Li
– volume: 2
  start-page: 196
  year: 2020
  end-page: 208
  ident: bib54
  article-title: A prediction model to prioritize individuals for sars-cov-2 test built from national symptom surveys
  publication-title: Med
  contributor:
    fullname: Gavrieli
– year: 2020
  ident: bib101
  article-title: Coronavirus disease 2019 (covid-19): outpatient evaluation and management in adults
  contributor:
    fullname: Blau
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib30
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  contributor:
    fullname: Wehenkel
– volume: 138
  start-page: 109947
  year: 2020
  ident: bib14
  article-title: Role of intelligent computing in COVID-19 prognosis: a state-of-the-art review
  publication-title: Chaos, Solit Fractals
  contributor:
    fullname: Naik
– volume: 20
  start-page: 247
  year: 2020
  ident: bib46
  article-title: Using machine learning of clinical data to diagnose covid-19: a systematic review and meta-analysis
  publication-title: BMC Med Inf Decis Making
  contributor:
    fullname: Ongkeko
– volume: vol. 95
  start-page: 1127
  year: 2020
  end-page: 1129
  ident: bib47
  article-title: Covid-19 testing: the threat of false-negative results
  publication-title: Mayo clinic proceedings
  contributor:
    fullname: Sampathkumar
– volume: 32
  start-page: 171
  year: 2019
  end-page: 182
  ident: bib34
  article-title: A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing
  publication-title: IEEE Trans Semicond Manuf
  contributor:
    fullname: Lee
– volume: 49
  start-page: 1918
  year: 2020
  end-page: 1929
  ident: bib66
  article-title: Machine learning to predict mortality and critical events in covid-19 positive New York city patients: a cohort study
  publication-title: J Med Internet Res
  contributor:
    fullname: Paranjpe
– year: 2020
  ident: bib81
  article-title: A new predictor of disease severity in patients with covid-19 in wuhan, China
  contributor:
    fullname: Wang
– volume: 300
  start-page: 70
  year: 2018
  end-page: 79
  ident: bib102
  article-title: Feature selection in machine learning: a new perspective
  publication-title: Neurocomputing
  contributor:
    fullname: Yang
– year: 2020
  ident: bib56
  article-title: Artificial intelligence driven assessment of routinely collected healthcare data is an effective screening test for covid-19 in patients presenting to hospital
  contributor:
    fullname: Clifton
– volume: 180
  start-page: 1081
  year: 2020
  end-page: 1089
  ident: bib91
  article-title: Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with covid-19
  publication-title: JAMA Internal Medicine
  contributor:
    fullname: Li
– year: 2020
  ident: bib68
  article-title: A machine learning-based model for survival prediction in patients with severe covid-19 infection
  contributor:
    fullname: Zhang
– volume: 376
  start-page: 2507
  year: 2017
  ident: bib22
  article-title: Machine learning and prediction in medicine—beyond the peak of inflated expectations
  publication-title: N Engl J Med
  contributor:
    fullname: Asch
– volume: 10
  start-page: 1
  year: 2020
  end-page: 6
  ident: bib70
  article-title: Vital signs assessed in initial clinical encounters predict covid-19 mortality in an nyc hospital system
  publication-title: Sci Rep
  contributor:
    fullname: Horton
– year: 2020
  ident: bib112
  article-title: Prediction for progression risk in patients with covid-19 pneumonia: the call score
  contributor:
    fullname: Bi
– volume: 17
  start-page: 583
  year: 2016
  ident: bib65
  article-title: Severity of illness confusion, pediatric critical care medicine
  publication-title: a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
  contributor:
    fullname: Pollack
– start-page: 100123
  year: 2020
  ident: bib113
  article-title: Machine learning maps research needs in covid-19 literature
  contributor:
    fullname: Majumder
– volume: 18
  start-page: 120
  year: 2021
  end-page: 127
  ident: bib76
  article-title: Risk factors related to the severity of covid-19 in wuhan
  publication-title: Int J Med Sci
  contributor:
    fullname: Jin
– year: 2020
  ident: bib61
  article-title: A novel triage tool of artificial intelligence assisted diagnosis aid system for suspected covid-19 pneumonia in fever clinics
  contributor:
    fullname: Huang
– volume: 9
  start-page: 880
  year: 2020
  ident: bib89
  article-title: Predictive accuracy of covid-19 world health organization (who) severity classification and comparison with a bayesian-method-based severity score (epi-score)
  publication-title: Pathogens
  contributor:
    fullname: Saussez
– volume: 83
  start-page: 405
  year: 2017
  end-page: 417
  ident: bib33
  article-title: Machine learning models and bankruptcy prediction
  publication-title: Expert Syst Appl
  contributor:
    fullname: Altman
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib23
  article-title: Support-vector networks
  publication-title: Mach Learn
  contributor:
    fullname: Vapnik
– volume: 221
  start-page: 1770
  year: 2020
  end-page: 1774
  ident: bib100
  article-title: Clinical outcomes in 55 patients with severe acute respiratory syndrome coronavirus 2 who were asymptomatic at hospital admission in shenzhen, China
  publication-title: J Infect Dis
  contributor:
    fullname: Li
– volume: 22
  year: 2020
  ident: bib90
  article-title: Clinical characteristics and prognostic factors for intensive care unit admission of patients with covid-19: retrospective study using machine learning and natural language processing
  publication-title: J Med Internet Res
  contributor:
    fullname: Soriano
– volume: 25
  year: 2020
  ident: bib38
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Euro Surveill
  contributor:
    fullname: Drosten
– volume: 20
  start-page: 383
  year: 2019
  end-page: 398
  ident: bib35
  article-title: Big data analytics in intelligent transportation systems: a survey
  publication-title: IEEE Trans Intell Transport Syst
  contributor:
    fullname: Tang
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: bib109
  article-title: Clinical features of patients infected with 2019 novel coronavirus in wuhan, China
  publication-title: The lancet
  contributor:
    fullname: Gu
– volume: 21
  start-page: 100449
  year: 2020
  ident: bib60
  article-title: Ensemble learning model for diagnosing COVID-19 from routine blood tests
  publication-title: Inform Med Unlocked
  contributor:
    fullname: Mohammed
– start-page: 1
  year: 2020
  end-page: 10
  ident: bib73
  article-title: Development of a prognostic model for mortality in covid-19 infection using machine learning
  publication-title: Mod Pathol
  contributor:
    fullname: McCaffrey
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib40
  article-title: A machine learning method based on lesion segmentation for quantitative analysis of ct radiomics to detect covid-19
  publication-title: 2020 6th Iranian conference on signal processing and intelligent systems (ICSPIS)
  contributor:
    fullname: Alaei
– volume: 1
  start-page: 100074
  year: 2020
  ident: bib93
  article-title: Machine-learning approaches in covid-19 survival analysis and discharge-time likelihood prediction using clinical data
  publication-title: Patterns
  contributor:
    fullname: Nemati
– volume: 95
  start-page: 332
  year: 2020
  end-page: 339
  ident: bib82
  article-title: Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019
  publication-title: Int J Infect Dis
  contributor:
    fullname: Gao
– start-page: 110338
  year: 2020
  ident: bib16
  article-title: Applications of artificial intelligence in battling against covid-19: a literature review
  publication-title: Chaos, Solit Fractals
  contributor:
    fullname: Tayarani-N
– year: 2011
  ident: bib25
  article-title: Data mining: concepts and techniques, the morgan kaufmann series in data management systems
  contributor:
    fullname: Kamber
– volume: 15
  year: 2020
  ident: bib59
  article-title: A machine learning algorithm to increase COVID-19 inpatient diagnostic capacity
  publication-title: PloS One
  contributor:
    fullname: Manuel
– volume: 300
  start-page: 70
  year: 2018
  end-page: 79
  ident: bib103
  article-title: Feature selection in machine learning: a new perspective
  publication-title: Neurocomputing
  contributor:
    fullname: Yang
– volume: 15
  year: 2020
  ident: bib78
  article-title: Prediction model and risk scores of icu admission and mortality in covid-19
  publication-title: PloS One
  contributor:
    fullname: Duong
– year: 2020
  ident: bib44
  article-title: Acr recommendations for the use of chest radiography and computed tomography (ct) for suspected covid-19 infection
– year: 2020
  ident: bib80
  article-title: Development and external validation of a prognostic multivariable model on admission for hospitalized patients with covid-19
  contributor:
    fullname: Zheng
– volume: 29
  start-page: 229
  year: 2021
  end-page: 243
  ident: bib42
  article-title: Screening of covid-19 based on the extracted radiomics features from chest ct images
  publication-title: J X Ray Sci Technol
  contributor:
    fullname: Sarnameh
– volume: 393
  start-page: 1577
  year: 2019
  end-page: 1579
  ident: bib37
  article-title: Reporting of artificial intelligence prediction models
  publication-title: Lancet
  contributor:
    fullname: Moons
– year: 2020
  ident: bib83
  article-title: A tool to early predict severe corona virus disease 2019 (covid-19): a multicenter study using the risk nomogram in wuhan and guangdong, China
  contributor:
    fullname: Zheng
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: bib26
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 323
  start-page: 707
  year: 2020
  end-page: 708
  ident: bib2
  article-title: Coronavirus infections—more than just the common cold
  publication-title: J Am Med Assoc
  contributor:
    fullname: Fauci
– volume: 44
  start-page: 135
  year: 2020
  ident: bib51
  article-title: Detection of COVID-19 infection from routine blood exams with machine learning: a feasibility study
  publication-title: J Med Syst
  contributor:
    fullname: Cabitza
– year: 2020
  ident: bib87
  article-title: Lactate dehydrogenase, a risk factor of severe covid-19 patients
  publication-title: medRxiv
  contributor:
    fullname: Gu
– volume: 11
  start-page: 5033
  year: 2020
  ident: bib20
  article-title: Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
  publication-title: Nat Commun
  contributor:
    fullname: Gao
– volume: 383
  start-page: 1757
  year: 2020
  end-page: 1766
  ident: bib5
  article-title: Mild or moderate covid-19
  publication-title: N Engl J Med
  contributor:
    fullname: del Rio
– volume: 15
  year: 2020
  ident: bib71
  article-title: Covid-19 mortality risk assessment: an international multi-center study
  publication-title: PloS One
  contributor:
    fullname: Robinson
– volume: 46
  start-page: 846
  year: 2020
  end-page: 848
  ident: bib111
  article-title: Clinical predictors of mortality due to covid-19 based on an analysis of data of 150 patients from wuhan, China
  publication-title: Intensive Care Med
  contributor:
    fullname: Song
– volume: 129
  start-page: 104502
  year: 2020
  ident: bib53
  article-title: A predictive tool for identification of sars-cov-2 pcr-negative emergency department patients using routine test results
  publication-title: J Clin Virol
  contributor:
    fullname: Banaei
– year: 2020
  ident: bib55
  article-title: Pre-test probability for sars-cov-2-related infection score: the paris score
  contributor:
    fullname: Madelin
– year: 2016
  ident: bib18
  article-title: The WEKA workbench
  contributor:
    fullname: Witten
– volume: 5
  start-page: 617
  year: 2020
  end-page: 620
  ident: bib43
  article-title: Need for caution in the diagnosis of radiation pneumonitis during the covid-19 pandemic
  publication-title: Advances in radiation oncology
  contributor:
    fullname: Simone
– volume: 17
  start-page: 5330
  year: 2020
  ident: bib10
  article-title: Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing
  publication-title: Int J Environ Res Publ Health
  contributor:
    fullname: Millham
– volume: 382
  start-page: 1708
  year: 2020
  end-page: 1720
  ident: bib105
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: N Engl J Med
  contributor:
    fullname: Hui
– year: 2020
  ident: bib92
  article-title: Development and validation of a survival calculator for hospitalized patients with covid-19
  contributor:
    fullname: Zanos
– volume: 139
  start-page: 110059
  year: 2020
  ident: bib15
  article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review
  publication-title: Chaos, Solit Fractals
  contributor:
    fullname: Chhakchhuak
– volume: 66
  start-page: 1396
  year: 2020
  end-page: 1404
  ident: bib45
  article-title: Routine laboratory blood tests predict sars-cov-2 infection using machine learning
  publication-title: medRxiv
  contributor:
    fullname: Racine-Brzostek
– year: 2020
  ident: bib96
  article-title: Clinical and laboratory factors predicting the prognosis of patients with covid-19: an analysis of 127 patients in wuhan, China
  contributor:
    fullname: Yang
– year: 2020
  ident: bib84
  article-title: A comprehensive appraisal of laboratory biochemistry tests as major predictors of COVID-19 severity
  contributor:
    fullname: Panteghini
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib27
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  contributor:
    fullname: Schapire
– volume: 17
  start-page: 7080
  year: 2020
  ident: bib98
  article-title: Data analytics for predicting covid-19 cases in top affected countries: observations and recommendations
  publication-title: Int J Environ Res Publ Health
  contributor:
    fullname: Abdel-Aal
– volume: 52
  start-page: 146
  year: 2020
  end-page: 149
  ident: bib52
  article-title: Machine learning prediction of sars-cov-2 polymerase chain reaction results with routine blood tests
  publication-title: Lab Med
  contributor:
    fullname: Meier
– volume: 63
  start-page: 537
  year: 2020
  end-page: 551
  ident: bib104
  article-title: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity
  publication-title: Comput Mater Continua (CMC)
  contributor:
    fullname: Huang
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib29
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  contributor:
    fullname: Friedman
– year: 2020
  ident: bib67
  article-title: Prediction of criticality in patients with severe covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in wuhan
  contributor:
    fullname: Xiao
– volume: 53
  start-page: 257
  year: 2021
  end-page: 266
  ident: bib72
  article-title: Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized covid-19 patients: results from a retrospective cohort study
  publication-title: Ann Med
  contributor:
    fullname: Lu
– volume: 323
  start-page: 1239
  year: 2020
  end-page: 1242
  ident: bib110
  article-title: Characteristics of and important lessons from the coronavirus disease 2019 (covid-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention
  publication-title: Jama
  contributor:
    fullname: McGoogan
– volume: 7
  start-page: 67081
  year: 2019
  end-page: 67093
  ident: bib36
  article-title: Knowledge based recommender system for academia using machine learning: a case study on higher education landscape of Pakistan
  publication-title: IEEE Access
  contributor:
    fullname: Azim
– volume: 8
  start-page: 1167
  year: 2020
  end-page: 1168
  ident: bib39
  article-title: False-positive COVID-19 results: hidden problems and costs, the Lancet
  publication-title: Respir Med
  contributor:
    fullname: Drobniewski
– volume: 6
  start-page: 46419
  year: 2018
  end-page: 46494
  ident: bib8
  article-title: Machine intelligence in healthcare and medical cyber physical systems: a survey
  publication-title: IEEE Access
  contributor:
    fullname: Soyata
– year: 2020
  ident: bib106
  article-title: Clinical course and risk factors for mortality of adult inpatients with covid-19 in wuhan, China: a retrospective cohort study
  publication-title: The lancet
  contributor:
    fullname: Liu
– volume: 7
  start-page: 643
  year: 2020
  ident: bib79
  article-title: Prognostic factors for covid-19 pneumonia progression to severe symptoms based on earlier clinical features: a retrospective analysis
  publication-title: Front Med
  contributor:
    fullname: Deng
– volume: 44
  year: 2020
  ident: bib13
  article-title: Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review
  publication-title: J Med Syst
  contributor:
    fullname: Madhloom
– start-page: 1
  year: 2020
  end-page: 10
  ident: bib94
  article-title: Development and external evaluation of predictions models for mortality of covid-19 patients using machine learning method
  publication-title: Neural Comput Appl
  contributor:
    fullname: Yan
– volume: 18
  year: 2019
  ident: bib9
  article-title: Ascent of machine learning in medicine
  publication-title: Nat Mater
– year: 2020
  ident: bib57
  article-title: Covid-19 diagnosis prediction in emergency care patients: a machine learning approach
  contributor:
    fullname: Chiavegatto Filho
– year: 2020
  ident: bib41
  article-title: Clinical diagnostic value of ct imaging in covid-19 with multiple negative rt-pcr testing, Travel medicine and infectious disease
  contributor:
    fullname: Li
– volume: 376
  start-page: 2507
  year: 2017
  ident: 10.1016/j.imu.2021.100564_bib22
  article-title: Machine learning and prediction in medicine—beyond the peak of inflated expectations
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1702071
  contributor:
    fullname: Chen
– volume: 148
  start-page: e129
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib85
  article-title: Laboratory findings and a combined multifactorial approach to predict death in critically ill patients with covid-19: a retrospective study
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268820001442
  contributor:
    fullname: Liu
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib57
  contributor:
    fullname: de Moraes Batista
– volume: 8
  start-page: 683
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib75
  article-title: Severity detection for the coronavirus disease 2019 (covid-19) patients using a machine learning model based on the blood and urine tests
  publication-title: Frontiers in cell and developmental biology
  doi: 10.3389/fcell.2020.00683
  contributor:
    fullname: Yao
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib84
  contributor:
    fullname: Aloisio
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib55
  contributor:
    fullname: Tordjman
– volume: 15
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib78
  article-title: Prediction model and risk scores of icu admission and mortality in covid-19
  publication-title: PloS One
  contributor:
    fullname: Zhao
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib69
  contributor:
    fullname: Wang
– year: 2016
  ident: 10.1016/j.imu.2021.100564_bib18
  contributor:
    fullname: Frank
– start-page: 49
  year: 2011
  ident: 10.1016/j.imu.2021.100564_bib32
  contributor:
    fullname: Geurts
– volume: 66
  start-page: 1396
  issue: 11
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib45
  article-title: Routine laboratory blood tests predict sars-cov-2 infection using machine learning
  publication-title: medRxiv
  contributor:
    fullname: Yang
– volume: 17
  start-page: 7080
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib98
  article-title: Data analytics for predicting covid-19 cases in top affected countries: observations and recommendations
  publication-title: Int J Environ Res Publ Health
  doi: 10.3390/ijerph17197080
  contributor:
    fullname: Eltoukhy
– volume: 44
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib13
  article-title: Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review
  publication-title: J Med Syst
  doi: 10.1007/s10916-020-01582-x
  contributor:
    fullname: Albahri
– volume: 21
  start-page: 100449
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib60
  article-title: Ensemble learning model for diagnosing COVID-19 from routine blood tests
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100449
  contributor:
    fullname: AlJame
– volume: 32
  start-page: 171
  year: 2019
  ident: 10.1016/j.imu.2021.100564_bib34
  article-title: A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing
  publication-title: IEEE Trans Semicond Manuf
  doi: 10.1109/TSM.2019.2904306
  contributor:
    fullname: Saqlain
– volume: 138
  start-page: 109947
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib14
  article-title: Role of intelligent computing in COVID-19 prognosis: a state-of-the-art review
  publication-title: Chaos, Solit Fractals
  doi: 10.1016/j.chaos.2020.109947
  contributor:
    fullname: Swapnarekha
– volume: 395
  start-page: 497
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib109
  article-title: Clinical features of patients infected with 2019 novel coronavirus in wuhan, China
  publication-title: The lancet
  doi: 10.1016/S0140-6736(20)30183-5
  contributor:
    fullname: Huang
– volume: 63
  start-page: 3
  year: 2006
  ident: 10.1016/j.imu.2021.100564_bib30
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
  contributor:
    fullname: Geurts
– volume: 7
  start-page: 67081
  year: 2019
  ident: 10.1016/j.imu.2021.100564_bib36
  article-title: Knowledge based recommender system for academia using machine learning: a case study on higher education landscape of Pakistan
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912012
  contributor:
    fullname: Samin
– volume: 8
  start-page: 1167
  issue: 12
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib39
  article-title: False-positive COVID-19 results: hidden problems and costs, the Lancet
  publication-title: Respir Med
  contributor:
    fullname: Surkova
– start-page: 100123
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib113
  contributor:
    fullname: Doanvo
– start-page: ciaa1175
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib48
  article-title: A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prediction model from standard laboratory tests
  publication-title: Clin Infect Dis
  contributor:
    fullname: Bayat
– volume: 49
  start-page: 1918
  issue: 6
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib77
  article-title: Early prediction of mortality risk among patients with severe COVID-19, using machine learning
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyaa171
  contributor:
    fullname: Hu
– volume: 383
  start-page: 1757
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib5
  article-title: Mild or moderate covid-19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp2009249
  contributor:
    fullname: Gandhi
– start-page: 1
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib12
  article-title: Artificial intelligence vs covid-19: limitations, constraints and pitfalls
  publication-title: AI Soc
  contributor:
    fullname: Naudé
– volume: 300
  start-page: 70
  year: 2018
  ident: 10.1016/j.imu.2021.100564_bib102
  article-title: Feature selection in machine learning: a new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
  contributor:
    fullname: Cai
– volume: 27
  start-page: 1071
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib7
  article-title: A survey of deep learning and its applications: a new paradigm to machine learning
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09344-w
  contributor:
    fullname: Dargan
– start-page: 1
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib40
  article-title: A machine learning method based on lesion segmentation for quantitative analysis of ct radiomics to detect covid-19
  contributor:
    fullname: Rezaeijo
– volume: 323
  start-page: 707
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib2
  article-title: Coronavirus infections—more than just the common cold
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.2020.0757
  contributor:
    fullname: Paules
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.imu.2021.100564_bib29
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
  contributor:
    fullname: Friedman
– volume: 369
  start-page: 407
  year: 2013
  ident: 10.1016/j.imu.2021.100564_bib4
  article-title: Hospital outbreak of middle east respiratory syndrome coronavirus
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1306742
  contributor:
    fullname: Assiri
– volume: 17
  start-page: 5330
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib10
  article-title: Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing
  publication-title: Int J Environ Res Publ Health
  doi: 10.3390/ijerph17155330
  contributor:
    fullname: Agbehadji
– volume: 44
  start-page: 135
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib51
  article-title: Detection of COVID-19 infection from routine blood exams with machine learning: a feasibility study
  publication-title: J Med Syst
  doi: 10.1007/s10916-020-01597-4
  contributor:
    fullname: Brinati
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib61
  contributor:
    fullname: Feng
– volume: 53
  start-page: 257
  year: 2021
  ident: 10.1016/j.imu.2021.100564_bib72
  article-title: Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized covid-19 patients: results from a retrospective cohort study
  publication-title: Ann Med
  doi: 10.1080/07853890.2020.1868564
  contributor:
    fullname: Guan
– volume: 15
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib59
  article-title: A machine learning algorithm to increase COVID-19 inpatient diagnostic capacity
  publication-title: PloS One
  doi: 10.1371/journal.pone.0239474
  contributor:
    fullname: Goodman-Meza
– volume: 22
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib17
  article-title: Application of big data technology for COVID-19 prevention and control in China: lessons and recommendations
  publication-title: J Med Internet Res
  doi: 10.2196/21980
  contributor:
    fullname: Wu
– volume: 20
  start-page: 247
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib46
  article-title: Using machine learning of clinical data to diagnose covid-19: a systematic review and meta-analysis
  publication-title: BMC Med Inf Decis Making
  doi: 10.1186/s12911-020-01266-z
  contributor:
    fullname: Li
– volume: 380
  start-page: 1347
  year: 2019
  ident: 10.1016/j.imu.2021.100564_bib21
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
  contributor:
    fullname: Rajkomar
– volume: 323
  start-page: 1061
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib107
  article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, China
  publication-title: Jama
  doi: 10.1001/jama.2020.1585
  contributor:
    fullname: Wang
– volume: 8
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib97
  article-title: Predicting covid-19 community mortality risk using machine learning and development of an online prognostic tool
  publication-title: PeerJ
  doi: 10.7717/peerj.10083
  contributor:
    fullname: Das
– volume: 95
  start-page: 332
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib82
  article-title: Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2020.04.041
  contributor:
    fullname: Zhu
– volume: 9
  start-page: 880
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib89
  article-title: Predictive accuracy of covid-19 world health organization (who) severity classification and comparison with a bayesian-method-based severity score (epi-score)
  publication-title: Pathogens
  doi: 10.3390/pathogens9110880
  contributor:
    fullname: de Terwangne
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib96
  contributor:
    fullname: Bai
– volume: 29
  start-page: 229
  issue: 2
  year: 2021
  ident: 10.1016/j.imu.2021.100564_bib42
  article-title: Screening of covid-19 based on the extracted radiomics features from chest ct images
  publication-title: J X Ray Sci Technol
  doi: 10.3233/XST-200831
  contributor:
    fullname: Rezaeijo
– volume: 7
  year: 2013
  ident: 10.1016/j.imu.2021.100564_bib31
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front Neurorob
  doi: 10.3389/fnbot.2013.00021
  contributor:
    fullname: Natekin
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib92
  contributor:
    fullname: Levy
– volume: 15
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib71
  article-title: Covid-19 mortality risk assessment: an international multi-center study
  publication-title: PloS One
  doi: 10.1371/journal.pone.0243262
  contributor:
    fullname: Bertsimas
– volume: 2
  start-page: 196
  issue: 2
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib54
  article-title: A prediction model to prioritize individuals for sars-cov-2 test built from national symptom surveys
  publication-title: Med
  doi: 10.1016/j.medj.2020.10.002
  contributor:
    fullname: Shoer
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib87
  article-title: Lactate dehydrogenase, a risk factor of severe covid-19 patients
  publication-title: medRxiv
  contributor:
    fullname: Han
– volume: 1
  start-page: 100074
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib93
  article-title: Machine-learning approaches in covid-19 survival analysis and discharge-time likelihood prediction using clinical data
  publication-title: Patterns
  doi: 10.1016/j.patter.2020.100074
  contributor:
    fullname: Nemati
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib49
  contributor:
    fullname: Kukar
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib101
  contributor:
    fullname: Cohen
– volume: 180
  start-page: 1081
  issue: 8
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib91
  article-title: Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with covid-19
  publication-title: JAMA Internal Medicine
  doi: 10.1001/jamainternmed.2020.2033
  contributor:
    fullname: Liang
– volume: 46
  start-page: 846
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib111
  article-title: Clinical predictors of mortality due to covid-19 based on an analysis of data of 150 patients from wuhan, China
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-020-05991-x
  contributor:
    fullname: Ruan
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib81
  contributor:
    fullname: Zhou
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib112
  contributor:
    fullname: Ji
– volume: 49
  start-page: 1918
  issue: 6
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib66
  article-title: Machine learning to predict mortality and critical events in covid-19 positive New York city patients: a cohort study
  publication-title: J Med Internet Res
  contributor:
    fullname: Vaid
– volume: 129
  start-page: 104502
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib53
  article-title: A predictive tool for identification of sars-cov-2 pcr-negative emergency department patients using routine test results
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2020.104502
  contributor:
    fullname: Joshi
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib83
  contributor:
    fullname: Gong
– volume: vol. 95
  start-page: 1127
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib47
  article-title: Covid-19 testing: the threat of false-negative results
  contributor:
    fullname: West
– volume: 83
  start-page: 405
  year: 2017
  ident: 10.1016/j.imu.2021.100564_bib33
  article-title: Machine learning models and bankruptcy prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.006
  contributor:
    fullname: Barboza
– start-page: 110338
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib16
  article-title: Applications of artificial intelligence in battling against covid-19: a literature review
  publication-title: Chaos, Solit Fractals
  contributor:
    fullname: Tayarani-N
– start-page: 1
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib108
  article-title: Pathological inflammation in patients with covid-19: a key role for monocytes and macrophages
  publication-title: Nat Rev Immunol
  contributor:
    fullname: Merad
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib56
  contributor:
    fullname: Soltan
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib95
  contributor:
    fullname: Schwab
– volume: 6
  start-page: 46419
  year: 2018
  ident: 10.1016/j.imu.2021.100564_bib8
  article-title: Machine intelligence in healthcare and medical cyber physical systems: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2866049
  contributor:
    fullname: Shishvan
– volume: 11
  start-page: 5033
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib20
  article-title: Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18684-2
  contributor:
    fullname: Gao
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib62
  article-title: A novel high specificity covid-19 screening method based on simple blood exams and artificial intelligence
  publication-title: medRxiv
  contributor:
    fullname: Soares
– volume: 22
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib90
  article-title: Clinical characteristics and prognostic factors for intensive care unit admission of patients with covid-19: retrospective study using machine learning and natural language processing
  publication-title: J Med Internet Res
  doi: 10.2196/21801
  contributor:
    fullname: Izquierdo
– volume: 382
  start-page: 1708
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib105
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2002032
  contributor:
    fullname: Guan
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.imu.2021.100564_bib27
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
  contributor:
    fullname: Freund
– volume: 139
  start-page: 110059
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib15
  article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review
  publication-title: Chaos, Solit Fractals
  doi: 10.1016/j.chaos.2020.110059
  contributor:
    fullname: Lalmuanawma
– volume: 46
  start-page: 175
  year: 1992
  ident: 10.1016/j.imu.2021.100564_bib28
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am Statistician
  doi: 10.1080/00031305.1992.10475879
  contributor:
    fullname: Altman
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib11
  article-title: Mapping the landscape of artificial intelligence applications against COVID-19
  publication-title: arXiv:2003.11336 [cs]
  contributor:
    fullname: Bullock
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib106
  article-title: Clinical course and risk factors for mortality of adult inpatients with covid-19 in wuhan, China: a retrospective cohort study
  publication-title: The lancet
  doi: 10.1016/S0140-6736(20)30566-3
  contributor:
    fullname: Zhou
– volume: 362
  start-page: 1353
  year: 2003
  ident: 10.1016/j.imu.2021.100564_bib3
  article-title: Epidemiology and cause of severe acute respiratory syndrome (sars) in guangdong, people's Republic of China, in february, 2003
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14630-2
  contributor:
    fullname: Zhong
– volume: 98
  start-page: 84
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib64
  article-title: Performance of pneumonia severity index and curb-65 in predicting 30-day mortality in patients with covid-19
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2020.06.038
  contributor:
    fullname: Satici
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib68
  contributor:
    fullname: Yan
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib1
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib67
  contributor:
    fullname: Yan
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib19
  contributor:
    fullname: Cabitza
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib41
  contributor:
    fullname: Hao
– volume: 17
  start-page: 583
  year: 2016
  ident: 10.1016/j.imu.2021.100564_bib65
  article-title: Severity of illness confusion, pediatric critical care medicine
  publication-title: a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
  contributor:
    fullname: Pollack
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib70
  article-title: Vital signs assessed in initial clinical encounters predict covid-19 mortality in an nyc hospital system
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78392-1
  contributor:
    fullname: Rechtman
– volume: 27
  start-page: 221
  year: 1987
  ident: 10.1016/j.imu.2021.100564_bib24
  article-title: Simplifying decision trees
  publication-title: Int J Man Mach Stud
  doi: 10.1016/S0020-7373(87)80053-6
  contributor:
    fullname: Quinlan
– volume: 63
  start-page: 537
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib104
  article-title: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity
  publication-title: Comput Mater Continua (CMC)
  doi: 10.32604/cmc.2020.010691
  contributor:
    fullname: Jiang
– volume: 20
  start-page: 832
  year: 1998
  ident: 10.1016/j.imu.2021.100564_bib26
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– volume: 8
  start-page: 566
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib88
  article-title: Individual-level fatality prediction of covid-19 patients using ai methods
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2020.587937
  contributor:
    fullname: Li
– volume: 20
  start-page: 383
  year: 2019
  ident: 10.1016/j.imu.2021.100564_bib35
  article-title: Big data analytics in intelligent transportation systems: a survey
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2018.2815678
  contributor:
    fullname: Zhu
– volume: 323
  start-page: 1239
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib110
  article-title: Characteristics of and important lessons from the coronavirus disease 2019 (covid-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention
  publication-title: Jama
  doi: 10.1001/jama.2020.2648
  contributor:
    fullname: Wu
– volume: 128
  start-page: 104431
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib74
  article-title: Combination of four clinical indicators predicts the severe/critical symptom of patients infected covid-19
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2020.104431
  contributor:
    fullname: Sun
– volume: 18
  start-page: 120
  year: 2021
  ident: 10.1016/j.imu.2021.100564_bib76
  article-title: Risk factors related to the severity of covid-19 in wuhan
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.47193
  contributor:
    fullname: Zhao
– volume: 393
  start-page: 1577
  year: 2019
  ident: 10.1016/j.imu.2021.100564_bib37
  article-title: Reporting of artificial intelligence prediction models
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)30037-6
  contributor:
    fullname: Collins
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib80
  contributor:
    fullname: Xie
– volume: 300
  start-page: 70
  year: 2018
  ident: 10.1016/j.imu.2021.100564_bib103
  article-title: Feature selection in machine learning: a new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
  contributor:
    fullname: Cai
– start-page: 1
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib94
  article-title: Development and external evaluation of predictions models for mortality of covid-19 patients using machine learning method
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3699-3
  contributor:
    fullname: Li
– start-page: 1
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib73
  article-title: Development of a prognostic model for mortality in covid-19 infection using machine learning
  publication-title: Mod Pathol
  contributor:
    fullname: Booth
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.imu.2021.100564_bib23
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
  contributor:
    fullname: Cortes
– volume: 5
  start-page: 617
  issue: 4
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib43
  article-title: Need for caution in the diagnosis of radiation pneumonitis during the covid-19 pandemic
  publication-title: Advances in radiation oncology
  doi: 10.1016/j.adro.2020.04.015
  contributor:
    fullname: Shaverdian
– volume: 18
  year: 2019
  ident: 10.1016/j.imu.2021.100564_bib9
  article-title: Ascent of machine learning in medicine
  publication-title: Nat Mater
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib63
  contributor:
    fullname: Frost
– volume: 63
  start-page: 706
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib99
  article-title: Clinical characteristics of 24 asymptomatic infections with covid-19 screened among close contacts in nanjing, China
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-020-1661-4
  contributor:
    fullname: Hu
– volume: 52
  start-page: 146
  issue: 2
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib52
  article-title: Machine learning prediction of sars-cov-2 polymerase chain reaction results with routine blood tests
  publication-title: Lab Med
  doi: 10.1093/labmed/lmaa111
  contributor:
    fullname: Tschoellitsch
– volume: 5
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib86
  article-title: Il-6 and cd8+ t cell counts combined are an early predictor of in-hospital mortality of patients with covid-19
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.139024
  contributor:
    fullname: Luo
– volume: 140
  start-page: 110120
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib58
  article-title: Comparison of deep learning approaches to predict covid-19 infection
  publication-title: Chaos, Solit Fractals
  doi: 10.1016/j.chaos.2020.110120
  contributor:
    fullname: Alakus
– year: 2020
  ident: 10.1016/j.imu.2021.100564_bib50
  article-title: Rapid and accurate identification of covid-19 infection through machine learning based on clinical available blood test results
  publication-title: medRxiv
  contributor:
    fullname: Wu
– volume: 7
  start-page: 643
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib79
  article-title: Prognostic factors for covid-19 pneumonia progression to severe symptoms based on earlier clinical features: a retrospective analysis
  publication-title: Front Med
  doi: 10.3389/fmed.2020.557453
  contributor:
    fullname: Huang
– year: 2011
  ident: 10.1016/j.imu.2021.100564_bib25
  contributor:
    fullname: Han
– volume: 25
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib38
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES.2020.25.3.2000045
  contributor:
    fullname: Corman
– volume: 221
  start-page: 1770
  year: 2020
  ident: 10.1016/j.imu.2021.100564_bib100
  article-title: Clinical outcomes in 55 patients with severe acute respiratory syndrome coronavirus 2 who were asymptomatic at hospital admission in shenzhen, China
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiaa119
  contributor:
    fullname: Wang
SSID ssj0001763575
Score 2.5489283
SecondaryResourceType review_article
Snippet The existence of widespread COVID-19 infections has prompted worldwide efforts to control and manage the virus, and hopefully curb it completely. One important...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100564
SubjectTerms Artificial intelligence
COVID-19
Diagnosis
Feature selection
Machine learning
Prognosis
Title Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review
URI https://dx.doi.org/10.1016/j.imu.2021.100564
https://www.ncbi.nlm.nih.gov/pubmed/33842685
https://search.proquest.com/docview/2511897323
https://pubmed.ncbi.nlm.nih.gov/PMC8018906
https://doaj.org/article/2ba91a5d64344987887ab0d175a99f4b
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4QwEG3MevFiNH7hV2riyUgEtgXqTVc3aqJe1Gy8NNNtUUyW3bju_3faglk00YtXIEDfTJk37fCGkEMeAQfNediFVIUsS0yoIAP0ZaEBDMcMxK533N6lV4_sZsAHc62-bE2Ylwf2wJ0kCkQMXGPkZAwTZJwUoCKNUQ-EKJhyX99IzCVTbnXF6axx11mOJzijWd5sabrirnI0w9wwiW2RAE9ZKyg57f5WbPrJPb-XUM7FpP4KWa7JJD3zg1glC6ZaI_rW1UcaWjeEeKGNbriZ0rKivfun64swFlT7KrtyekxHjoQjIT-mUGmKb2RsUztqC8_p5N1u5lgDntIz6v91WSeP_cuH3lVY91IIh1ZzL0TIoy7oRDOtRZYo2-YFv2wZJIhuohTmVcNCCUQ4VjqDNGL2_7yYF5wXQ52a7gbpVOPKbBHKIedo2FzrAslWAcJokSLNhJwJfFYWkKMGTDnxkhmyqSV7k4i8tMhLj3xAzi3cXxdatWt3AH1A1j4g__KBgLDGWLImDp4Q4K3K35590BhW4qSyOyVQmfFsKl3eZXWMugHZ9Ib-ekPM6ZHV5DwgWcsFWkNon6nKVyfcjWwgF1G6_R9j3iFLdih-NWiXdD7eZ2YP-dGH2ndTYZ8s3vUG98-fbSYNSQ
link.rule.ids 230,315,783,787,867,888,2109,4031,27935,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approaches+in+COVID-19+diagnosis%2C+mortality%2C+and+severity+risk+prediction%3A+A+review&rft.jtitle=Informatics+in+medicine+unlocked&rft.au=Alballa%2C+Norah&rft.au=Al-Turaiki%2C+Isra&rft.date=2021&rft.issn=2352-9148&rft.eissn=2352-9148&rft.volume=24&rft.spage=100564&rft_id=info:doi/10.1016%2Fj.imu.2021.100564&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imu_2021_100564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9148&client=summon