Microscopic characteristics of water invasion and residual gas distribution in carbonate gas reservoirs

We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir. The T2 spectra obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence were applied to characterize the invasion water...

Full description

Saved in:
Bibliographic Details
Published inEnergy science & engineering Vol. 9; no. 11; pp. 2151 - 2164
Main Authors Chen, Pengyu, Liu, Huiqing, Zhao, Hailong, Guo, Chunqiu, Xing, Yuzhong, Cheng, Muwei, Shi, Haidong, Zhang, Liangjie, Li, Yunzhu, Su, Penghui
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.11.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir. The T2 spectra obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence were applied to characterize the invasion water and residual gas distribution. The results showed that (a) in the pore‐type gas reservoir, the water first invades the meso–macropores and then the small pores as the pressure decreases further. The fracture distribution in a fracture‐pore‐type gas reservoir has an effect on the water invasion mode. The water can enter the pores through the fracture wall after the water invades the fracture. (b) In the pore‐type gas reservoir, 37.7% of the residual gas resides in the small pores, while the rest resides in the macropores. While in the fracture‐pore‐type gas reservoir, 4.8% ~ 26.8% of the residual gas is in the smaller pores and 69.2% ~ 95.7% in the macropores. Barely, any residual gas resides in the fractures. The residual gas in the small pores is difficult to produce. (c) The residual gas is controlled by the fracture penetration, amount of bottom water, fracture width, and production rate. It is suggested the production rate decreased to induce the water to invade the meso–macropores after the gas well begins to produce water to reduce the amount of residual gas in the meso–macropores. The nuclear magnetic resonance online detection method was used to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir, and theT2 spectra were obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence to characterize the intrusive water distribution
AbstractList We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir. The T2 spectra obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence were applied to characterize the invasion water and residual gas distribution. The results showed that (a) in the pore‐type gas reservoir, the water first invades the meso–macropores and then the small pores as the pressure decreases further. The fracture distribution in a fracture‐pore‐type gas reservoir has an effect on the water invasion mode. The water can enter the pores through the fracture wall after the water invades the fracture. (b) In the pore‐type gas reservoir, 37.7% of the residual gas resides in the small pores, while the rest resides in the macropores. While in the fracture‐pore‐type gas reservoir, 4.8% ~ 26.8% of the residual gas is in the smaller pores and 69.2% ~ 95.7% in the macropores. Barely, any residual gas resides in the fractures. The residual gas in the small pores is difficult to produce. (c) The residual gas is controlled by the fracture penetration, amount of bottom water, fracture width, and production rate. It is suggested the production rate decreased to induce the water to invade the meso–macropores after the gas well begins to produce water to reduce the amount of residual gas in the meso–macropores. The nuclear magnetic resonance online detection method was used to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir, and theT2 spectra were obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence to characterize the intrusive water distribution
Abstract We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir. The T2 spectra obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence were applied to characterize the invasion water and residual gas distribution. The results showed that (a) in the pore‐type gas reservoir, the water first invades the meso–macropores and then the small pores as the pressure decreases further. The fracture distribution in a fracture‐pore‐type gas reservoir has an effect on the water invasion mode. The water can enter the pores through the fracture wall after the water invades the fracture. (b) In the pore‐type gas reservoir, 37.7% of the residual gas resides in the small pores, while the rest resides in the macropores. While in the fracture‐pore‐type gas reservoir, 4.8% ~ 26.8% of the residual gas is in the smaller pores and 69.2% ~ 95.7% in the macropores. Barely, any residual gas resides in the fractures. The residual gas in the small pores is difficult to produce. (c) The residual gas is controlled by the fracture penetration, amount of bottom water, fracture width, and production rate. It is suggested the production rate decreased to induce the water to invade the meso–macropores after the gas well begins to produce water to reduce the amount of residual gas in the meso–macropores.
We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir. The T2 spectra obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence were applied to characterize the invasion water and residual gas distribution. The results showed that (a) in the pore‐type gas reservoir, the water first invades the meso–macropores and then the small pores as the pressure decreases further. The fracture distribution in a fracture‐pore‐type gas reservoir has an effect on the water invasion mode. The water can enter the pores through the fracture wall after the water invades the fracture. (b) In the pore‐type gas reservoir, 37.7% of the residual gas resides in the small pores, while the rest resides in the macropores. While in the fracture‐pore‐type gas reservoir, 4.8% ~ 26.8% of the residual gas is in the smaller pores and 69.2% ~ 95.7% in the macropores. Barely, any residual gas resides in the fractures. The residual gas in the small pores is difficult to produce. (c) The residual gas is controlled by the fracture penetration, amount of bottom water, fracture width, and production rate. It is suggested the production rate decreased to induce the water to invade the meso–macropores after the gas well begins to produce water to reduce the amount of residual gas in the meso–macropores.
Abstract We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas reservoir. The T 2 spectra obtained by using the Carr‐Purcell‐Meiboom‐Gill (CPMG) pulse sequence were applied to characterize the invasion water and residual gas distribution. The results showed that (a) in the pore‐type gas reservoir, the water first invades the meso–macropores and then the small pores as the pressure decreases further. The fracture distribution in a fracture‐pore‐type gas reservoir has an effect on the water invasion mode. The water can enter the pores through the fracture wall after the water invades the fracture. (b) In the pore‐type gas reservoir, 37.7% of the residual gas resides in the small pores, while the rest resides in the macropores. While in the fracture‐pore‐type gas reservoir, 4.8% ~ 26.8% of the residual gas is in the smaller pores and 69.2% ~ 95.7% in the macropores. Barely, any residual gas resides in the fractures. The residual gas in the small pores is difficult to produce. (c) The residual gas is controlled by the fracture penetration, amount of bottom water, fracture width, and production rate. It is suggested the production rate decreased to induce the water to invade the meso–macropores after the gas well begins to produce water to reduce the amount of residual gas in the meso–macropores.
Author Su, Penghui
Guo, Chunqiu
Cheng, Muwei
Chen, Pengyu
Li, Yunzhu
Liu, Huiqing
Zhao, Hailong
Xing, Yuzhong
Shi, Haidong
Zhang, Liangjie
Author_xml – sequence: 1
  givenname: Pengyu
  surname: Chen
  fullname: Chen, Pengyu
  email: chenpengyu@petrochina.com.cn
  organization: CNPC Research Institute of Petroleum Exploration & Development
– sequence: 2
  givenname: Huiqing
  surname: Liu
  fullname: Liu, Huiqing
  email: liuhq@cup.edu.cn
  organization: China University of Petroleum
– sequence: 3
  givenname: Hailong
  orcidid: 0000-0001-8760-3944
  surname: Zhao
  fullname: Zhao, Hailong
  email: chenpengyu@petrochina.com.cn, liuhq@cup.edu.cn, zhl@upc.edu.cn
  organization: Ministry of Education
– sequence: 4
  givenname: Chunqiu
  surname: Guo
  fullname: Guo, Chunqiu
  organization: CNPC Research Institute of Petroleum Exploration & Development
– sequence: 5
  givenname: Yuzhong
  surname: Xing
  fullname: Xing, Yuzhong
  organization: CNPC Research Institute of Petroleum Exploration & Development
– sequence: 6
  givenname: Muwei
  surname: Cheng
  fullname: Cheng, Muwei
  organization: CNPC Research Institute of Petroleum Exploration & Development
– sequence: 7
  givenname: Haidong
  surname: Shi
  fullname: Shi, Haidong
  organization: CNPC Research Institute of Petroleum Exploration & Development
– sequence: 8
  givenname: Liangjie
  surname: Zhang
  fullname: Zhang, Liangjie
  organization: CNPC Research Institute of Petroleum Exploration & Development
– sequence: 9
  givenname: Yunzhu
  surname: Li
  fullname: Li, Yunzhu
  organization: Chuanqing Drilling Engineering Company, PetroChina
– sequence: 10
  givenname: Penghui
  surname: Su
  fullname: Su, Penghui
  organization: CNPC Research Institute of Petroleum Exploration & Development
BookMark eNp1kU1PHDEMhiNEJShF6k-I1EsvA558TCbHCi0fEogD9Bx5Es82q-1km-yC-PdkWIS49BDFsR-_cfJ-ZYdTmoix7y2ctQDinArJM2vEATsWoKGpSx9-io_YaSkrAGhVqyy0x2x5F31OxadN9Nz_wYx-SzmWbfSFp5E_Yz3yOD1hiWniOAWeqcSwwzVfYuGhojkOu-1cjRP3mIc01aa3akUpP6WYyzf2ZcR1odP3_YT9vlw8Xlw3t_dXNxe_bhuvpBCNNiN6RUIaCkLWAEXotJdyIKVHY3HsoOulxdAqg8F0ylpvbQeqJ1LCyhN2s9cNCVduk-NfzC8uYXRviZSXDnN93JocSQHSSiPF0CutzQC9RQk0-tD2RvdV68dea5PTvx2VrVulXZ7q-E5oC30PSkGlfu6p-R9LpvHj1hbc7IqbXXHVlYo2e_Q5runlv5xbPCzkzL8Cu8SPKw
CitedBy_id crossref_primary_10_1016_j_geoen_2024_212881
crossref_primary_10_1016_j_compag_2022_107188
crossref_primary_10_1016_j_energy_2024_131305
Cites_doi 10.1016/S1876-3804(14)60057-4
10.1016/S1876-3804(17)30093-9
10.3390/en13225952
10.1016/j.ngib.2020.06.003
10.1016/j.petrol.2012.04.002
10.3390/en13184645
10.1016/S1876-3804(16)30016-7
10.1007/s13202-018-0487-7
10.1016/j.jngse.2017.11.010
10.1016/S1876-3804(18)30074-0
10.1016/j.jngse.2017.04.027
10.1016/S1876-3804(17)30031-9
10.1016/S1876-3804(14)60094-X
10.1016/S1876-3804(17)30110-6
10.1016/S1876-3804(17)30041-1
10.1016/S1876-3804(18)30011-9
10.1016/S1876-3804(17)30070-8
10.3390/en14061734
10.1016/S1876-3804(17)30011-3
10.1016/j.ngib.2019.01.002
ContentType Journal Article
Copyright 2021 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/ese3.972
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Free Archive
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 2164
ExternalDocumentID oai_doaj_org_article_e320393732b84557b089a30efcd18758
10_1002_ese3_972
ESE3972
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 18CX02027A
– fundername: National Science and Technology Major Project of China
  funderid: 2017ZX05030003‐003‐002
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAYXX
CITATION
ITC
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KR7
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4322-57fac4e237ed234e2a2d65c33be45f79af606839ad147ad76499c996048ee4293
IEDL.DBID 8FG
ISSN 2050-0505
IngestDate Fri Oct 04 13:06:16 EDT 2024
Tue Sep 24 23:41:12 EDT 2024
Thu Sep 26 18:41:01 EDT 2024
Sat Aug 24 01:34:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4322-57fac4e237ed234e2a2d65c33be45f79af606839ad147ad76499c996048ee4293
Notes Funding information
National Science and Technology Major Project of China, grant number 2017ZX05030003‐003‐002;Fundamental Research Funds for the Central Universities, grant number 18CX02027A
ORCID 0000-0001-8760-3944
OpenAccessLink https://www.proquest.com/docview/2590880440/abstract/?pq-origsite=%requestingapplication%
PQID 2590880440
PQPubID 2034362
PageCount 1973
ParticipantIDs doaj_primary_oai_doaj_org_article_e320393732b84557b089a30efcd18758
proquest_journals_2590880440
crossref_primary_10_1002_ese3_972
wiley_primary_10_1002_ese3_972_ESE3972
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 14
2021; 8
2015; 26
2010; 21
2018; 39
2015; 36
2019; 9
2019; 6
2002; 29
2019; 62
2021; 11
2017; 44
2017; 24
2002; 22
2016; 43
2008; 15
2020; 13
2018; 45
2014; 41
2016; 27
2012; 88
2018; 49
2016; 44
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
Zhong X (e_1_2_9_19_1) 2008; 15
e_1_2_9_13_1
Sheng J (e_1_2_9_18_1) 2015; 26
e_1_2_9_32_1
e_1_2_9_12_1
Sun Z (e_1_2_9_31_1) 2002; 29
e_1_2_9_16_1
Xu X (e_1_2_9_9_1) 2021; 11
Yao Y (e_1_2_9_34_1) 2016; 44
e_1_2_9_22_1
Hu S (e_1_2_9_20_1) 2017; 24
e_1_2_9_21_1
Wang L (e_1_2_9_15_1) 2018; 39
e_1_2_9_24_1
Fang F (e_1_2_9_14_1) 2016; 27
e_1_2_9_23_1
e_1_2_9_8_1
Wu Z (e_1_2_9_17_1) 2015; 36
Liang C (e_1_2_9_33_1) 2019; 62
e_1_2_9_6_1
Luo T (e_1_2_9_25_1) 2002; 22
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Zhang Y (e_1_2_9_26_1) 2010; 21
e_1_2_9_2_1
Dai J (e_1_2_9_7_1) 2014; 41
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 44
  start-page: 89
  issue: 1
  year: 2017
  end-page: 96
  article-title: Water producing mechanisms of carbonate reservoirs gas wells: A case study of the Right Bank Field of Amu Darya, Turkmenistan
  publication-title: Petrol Explor Dev
– volume: 44
  start-page: 280
  issue: 2
  year: 2017
  end-page: 285
  article-title: Productivity analysis method for gas‐water wells in abnormal overpressure gas reservoirs
  publication-title: Petrol Explor Dev
– volume: 15
  start-page: 12
  issue: 6
  year: 2008
  end-page: 23
  article-title: Research progress of water lock effect in low permeability gas reservoir
  publication-title: Spec Oil Gas Reservoirs
– volume: 44
  start-page: 824
  issue: 5
  year: 2017
  end-page: 833
  article-title: Experiments on gas supply capability of commingled production in a fracture‐cavity carbonate gas reservoir
  publication-title: Petrol Explor Dev
– volume: 29
  start-page: 2
  issue: 4
  year: 2002
  article-title: Production characteristics and the optimization of development schemes of fractured gas reservoir with edge or bottom water
  publication-title: Nat Gas Ind B
– volume: 21
  start-page: 863
  issue: 5
  year: 2010
  end-page: 867
  article-title: Application of three‐dimensional geological modeling and numerical simulation in exploitation of fractured water‐gas reservoir
  publication-title: Nat Gas Geosci
– volume: 62
  start-page: 4472
  issue: 11
  year: 2019
  end-page: 4481
  article-title: Nuclear magnetic resonance characterizes rock wettability: preliminary experimental results
  publication-title: Chinese J Geophys
– volume: 44
  start-page: 347
  issue: 3
  year: 2017
  end-page: 357
  article-title: Gas exploration potential of tight carbonate reservoirs: A case study of Ordovician Majiagou Formation in the eastern Yi‐Shan slope, Ordos Basin, NW China
  publication-title: Petrol Explor Dev
– volume: 26
  start-page: 1972
  issue: 10
  year: 2015
  end-page: 1978
  article-title: Water lock effect mechanism of tight sand‐stone gas reservoir: An example of the He 8 reservoir of the Upper Paleozoic in the southeast region of Sulige Gasfield
  publication-title: Nat Gas Geosci
– volume: 8
  start-page: 57
  issue: 1
  year: 2021
  end-page: 66
  article-title: Change laws of water invasion performance in fractured–porous water‐bearing gas reservoirs and key parameter calculation methods
  publication-title: Natural Gas Industry B
– volume: 41
  start-page: 790
  issue: 6
  year: 2014
  end-page: 793
  article-title: Varying law of water saturation in the depletion‐drive development of sandstone gas reservoirs
  publication-title: Petrol Explor Dev
– volume: 43
  start-page: 138
  issue: 1
  year: 2016
  end-page: 142
  article-title: Downhole inflow‐performance forecast for underground gas storage based on gas reservoir development data
  publication-title: Petrol Explor Dev
– volume: 45
  start-page: 118
  issue: 1
  year: 2018
  end-page: 126
  article-title: Efficient development strategies for large ultra‐deep structural gas fields in China
  publication-title: Petrol Explor Dev
– volume: 13
  start-page: 4645
  year: 2020
  article-title: Study of the effect of movable water saturation on gas production in tight sandstone gas reservoirs
  publication-title: Energies
– volume: 36
  start-page: 1421
  issue: 11
  year: 2015
  end-page: 1426
  article-title: A visible experiment on adoption of high‐temperature gel for improving the development effect of steam flooding in heavy oil reservoirs
  publication-title: Acta Petrolei Sinica
– volume: 27
  start-page: 2246
  issue: 12
  year: 2016
  end-page: 2252
  article-title: Visual simulation experimental study on water invasion rules of gas reservoir with edge and bottom water
  publication-title: Nat Gas Geosci
– volume: 44
  start-page: 14
  issue: 6
  year: 2016
  end-page: 22
  article-title: Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis
  publication-title: Coal Sci Technol
– volume: 9
  start-page: 525
  issue: 1
  year: 2019
  end-page: 541
  article-title: A case study of gas‐condensate reservoir performance under bottom water drive mechanism
  publication-title: J Pet Explor Prod Technol
– volume: 44
  start-page: 96
  year: 2017
  end-page: 108
  article-title: The material balance equation for fractured vuggy gas reservoirs with bottom water‐drive combining stress and gravity effects
  publication-title: J Nat Gas Sci Eng
– volume: 13
  start-page: 5952
  year: 2020
  article-title: Pressure Performance of Highly Deviated Well in Low Permeability Carbonate Gas Reservoir Using a Composite Model
  publication-title: Energies
– volume: 6
  start-page: 7
  issue: 1
  year: 2019
  end-page: 15
  article-title: Influence of reservoir heterogeneity on water invasion differentiation in carbonate gas reservoirs
  publication-title: Nat Gas Ind B
– volume: 49
  start-page: 213
  year: 2018
  end-page: 226
  article-title: An improved visual investigation on gas–water flow characteristics and trapped gas formation mechanism of fracture–cavity carbonate gas reservoir
  publication-title: J. Nat Gas Sci Eng
– volume: 41
  start-page: 2
  issue: 1
  year: 2014
  article-title: Geological and geochemical characteristics of large gas fields in China
  publication-title: Petrol Explor Dev+
– volume: 22
  start-page: 95
  year: 2002
  end-page: 97
  article-title: Research on individual well numerical simulation of fracture water breakthrough gas reservoir
  publication-title: Nat Gas Ind B
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 24
  article-title: Physical simulation for water invasion and water control optimization in water drive gas reservoirs
  publication-title: Sci Rep
– volume: 41
  start-page: 500
  issue: 4
  year: 2014
  end-page: 503
  article-title: Evaluation of gas well productivity in low permeability gas reservoirs based on a modified back‐pressure test method
  publication-title: Petrol Explor Dev
– volume: 45
  start-page: 669
  issue: 4
  year: 2018
  end-page: 678
  article-title: Theories and practices of carbonate reservoirs development in China
  publication-title: Petrol Explor Dev
– volume: 44
  start-page: 983
  issue: 6
  year: 2017
  end-page: 992
  article-title: Experiment on gas‐water two‐phase seepage and inflow performance curves of gas wells in carbonate reservoirs: A case study of Longwangmiao Formation and Dengying Formation in Gaoshiti‐Moxi block, Sichuan Basin, SW China
  publication-title: Petrol Explor Dev
– volume: 14
  start-page: 1734
  year: 2021
  article-title: Predicting the Performance of Undeveloped Multi‐Fractured Marcellus Gas Wells Using an Analytical Flow‐Cell Model (FCM)
  publication-title: Energies
– volume: 88
  start-page: 100
  year: 2012
  end-page: 106
  article-title: Water blocking damage in hydraulically fractured tight sand gas reservoirs: An example from Perth Basin, Western Australia
  publication-title: J. Pet. Sci. Eng
– volume: 39
  start-page: 686
  issue: 6
  year: 2018
  end-page: 696
  article-title: Visual experiments on the occurrence characteristics of multi‐type reservoir water in fracture‐cavity carbonate gas reservoir
  publication-title: Acta Petrolei Sinica
– volume: 24
  start-page: 146
  issue: 5
  year: 2017
  article-title: Experimental Study on Dynamic Reserves Loss by Water Invasion in Water‐driven Gas Reservoirs
  publication-title: Spec Oil Gas Reservoirs
– volume: 44
  start-page: 615
  issue: 4
  year: 2017
  end-page: 624
  article-title: Technical measures of deliverability enhancement for mature gas fields: A case study of Carboniferous reservoirs in Wubaiti gas field, eastern Sichuan Basin, SW China
  publication-title: Petrol Explor Dev
– volume: 39
  start-page: 686
  issue: 6
  year: 2018
  ident: e_1_2_9_15_1
  article-title: Visual experiments on the occurrence characteristics of multi‐type reservoir water in fracture‐cavity carbonate gas reservoir
  publication-title: Acta Petrolei Sinica
  contributor:
    fullname: Wang L
– ident: e_1_2_9_21_1
  doi: 10.1016/S1876-3804(14)60057-4
– ident: e_1_2_9_16_1
  doi: 10.1016/S1876-3804(17)30093-9
– ident: e_1_2_9_3_1
  doi: 10.3390/en13225952
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ngib.2020.06.003
– ident: e_1_2_9_24_1
  doi: 10.1016/j.petrol.2012.04.002
– ident: e_1_2_9_5_1
  doi: 10.3390/en13184645
– ident: e_1_2_9_27_1
  doi: 10.1016/S1876-3804(16)30016-7
– volume: 22
  start-page: 95
  year: 2002
  ident: e_1_2_9_25_1
  article-title: Research on individual well numerical simulation of fracture water breakthrough gas reservoir
  publication-title: Nat Gas Ind B
  contributor:
    fullname: Luo T
– volume: 36
  start-page: 1421
  issue: 11
  year: 2015
  ident: e_1_2_9_17_1
  article-title: A visible experiment on adoption of high‐temperature gel for improving the development effect of steam flooding in heavy oil reservoirs
  publication-title: Acta Petrolei Sinica
  contributor:
    fullname: Wu Z
– ident: e_1_2_9_29_1
  doi: 10.1007/s13202-018-0487-7
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jngse.2017.11.010
– volume: 44
  start-page: 14
  issue: 6
  year: 2016
  ident: e_1_2_9_34_1
  article-title: Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis
  publication-title: Coal Sci Technol
  contributor:
    fullname: Yao Y
– volume: 27
  start-page: 2246
  issue: 12
  year: 2016
  ident: e_1_2_9_14_1
  article-title: Visual simulation experimental study on water invasion rules of gas reservoir with edge and bottom water
  publication-title: Nat Gas Geosci
  contributor:
    fullname: Fang F
– ident: e_1_2_9_4_1
  doi: 10.1016/S1876-3804(18)30074-0
– volume: 62
  start-page: 4472
  issue: 11
  year: 2019
  ident: e_1_2_9_33_1
  article-title: Nuclear magnetic resonance characterizes rock wettability: preliminary experimental results
  publication-title: Chinese J Geophys
  contributor:
    fullname: Liang C
– volume: 41
  start-page: 2
  issue: 1
  year: 2014
  ident: e_1_2_9_7_1
  article-title: Geological and geochemical characteristics of large gas fields in China
  publication-title: Petrol Explor Dev+
  contributor:
    fullname: Dai J
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jngse.2017.04.027
– ident: e_1_2_9_22_1
  doi: 10.1016/S1876-3804(17)30031-9
– volume: 24
  start-page: 146
  issue: 5
  year: 2017
  ident: e_1_2_9_20_1
  article-title: Experimental Study on Dynamic Reserves Loss by Water Invasion in Water‐driven Gas Reservoirs
  publication-title: Spec Oil Gas Reservoirs
  contributor:
    fullname: Hu S
– ident: e_1_2_9_13_1
  doi: 10.1016/S1876-3804(14)60094-X
– volume: 29
  start-page: 2
  issue: 4
  year: 2002
  ident: e_1_2_9_31_1
  article-title: Production characteristics and the optimization of development schemes of fractured gas reservoir with edge or bottom water
  publication-title: Nat Gas Ind B
  contributor:
    fullname: Sun Z
– ident: e_1_2_9_11_1
  doi: 10.1016/S1876-3804(17)30110-6
– ident: e_1_2_9_12_1
  doi: 10.1016/S1876-3804(17)30041-1
– volume: 26
  start-page: 1972
  issue: 10
  year: 2015
  ident: e_1_2_9_18_1
  article-title: Water lock effect mechanism of tight sand‐stone gas reservoir: An example of the He 8 reservoir of the Upper Paleozoic in the southeast region of Sulige Gasfield
  publication-title: Nat Gas Geosci
  contributor:
    fullname: Sheng J
– ident: e_1_2_9_10_1
  doi: 10.1016/S1876-3804(18)30011-9
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_9_9_1
  article-title: Physical simulation for water invasion and water control optimization in water drive gas reservoirs
  publication-title: Sci Rep
  contributor:
    fullname: Xu X
– volume: 15
  start-page: 12
  issue: 6
  year: 2008
  ident: e_1_2_9_19_1
  article-title: Research progress of water lock effect in low permeability gas reservoir
  publication-title: Spec Oil Gas Reservoirs
  contributor:
    fullname: Zhong X
– ident: e_1_2_9_32_1
  doi: 10.1016/S1876-3804(17)30070-8
– ident: e_1_2_9_8_1
  doi: 10.3390/en14061734
– volume: 21
  start-page: 863
  issue: 5
  year: 2010
  ident: e_1_2_9_26_1
  article-title: Application of three‐dimensional geological modeling and numerical simulation in exploitation of fractured water‐gas reservoir
  publication-title: Nat Gas Geosci
  contributor:
    fullname: Zhang Y
– ident: e_1_2_9_30_1
  doi: 10.1016/S1876-3804(17)30011-3
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ngib.2019.01.002
SSID ssj0001414901
Score 2.2466938
Snippet We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate rock gas...
Abstract We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate...
Abstract We used the nuclear magnetic resonance online detection method to analyze the water invasion mechanism and residual gas distribution of a carbonate...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 2151
SubjectTerms Bottom water
carbonate gas reservoir
Carbonate rocks
displacement experiment
Experiments
Fractures
Gas wells
Magnetic fields
meso‐macropores
NMR
Nuclear magnetic resonance
Permeability
Pores
Reservoirs
Residual gas
residual gas distribution
Statistical analysis
water invasion mechanism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7En1idEkG81bVJ07RHlY0hzIsOdgtJmo5dOunm_Pd9L-2kO4gXb6VpS3iv7fu-kO97hNxxBz-8ODYhMzwJ0dErNIZlIZROm2ZQoCRHvfPkNR1Pk5eZmHVafeGesMYeuAncwHGG8lHJmckSIaSJslzzyJW2iAFrNzLfWHTIlF9dSQD5R_HWbTZiA7dy_CGXbKf-eJv-HWzZRai-xIyOyGGLDeljM6djsueqE3LQcQw8JfMJbqBDKcnCUrtrtkyXJf0C6FjTRbXRuApGdVVQ4NNecEXnekUL9MltW1zBZdTq2uD6ufOjKEWqN8tFvToj09Hw_Xkctr0SQpt4PilLbRPHuHQF43CgWZEKy7lxiShlrktgKgCGdBEnUhcyBaZjvTNL5hzUJH5OetWycheECgkkJmeFEwzvLbUEmgLP1kznmbB5QG63EVQfjSWGasyPmcIoK4hyQJ4wtD_jaGLtT0BqVZta9VdqA9LfJka1X9ZKMWzSnmGj7IDc-2T9Ogk1fBsC3GKX_zGZK7LPcDuLlyH2SW9df7prwCNrc-NfvW_mrtuH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz2IT1xfRBBv1e4k2aRHlRURFEEFbyFJ02UvXWlX_fvOZLvqHgRvpUlKmWQy30wy3zB2KiJueP2-z8ALmRGjV-Y9mAxNZxgYNFBaUL7z_cPg9kXevarX7lYl5cLM-CG-A26kGWm_JgV3vr34IQ2NbRTnhcbtdwVRjaEVDfLxJ74iEfun6seQKzrvzdWcezaHi_ngBWuUSPsXkOZvvJoMzs0GW--QIr-cTe0mW4r1Flv7xR-4zUb3dJ2OEkvGgYdF6mU-qfgnAsmGj-sPRzEx7uqSo3ed0q_4yLW8JNbcruAVduPBNZ6i6TG1UmJS8zEZN-0Oe7kZPl_fZl3lhCzI5F3qygUZQehYgsAHB-VABSF8lKrShavQb0Fo5Mq-1K7UA_R7QuJpMTGihRK7bLme1HGPcaXRpSmgjApobOU0Oi34bQeuMCoUPXYyl6B9mxFk2BkVMliSskUp99gVifa7nSit04tJM7KdhtgogPKEtQBvpFLa56ZwIo9VKPvoVJkeO5xPjO30rLVAJdsNlc3usbM0WX_-hB0-DRF8wf5_Ox6wVaALLCnx8JAtT5v3eIQIZOqP01L7AkXZ1bE
  priority: 102
  providerName: Wiley-Blackwell
Title Microscopic characteristics of water invasion and residual gas distribution in carbonate gas reservoirs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.972
https://www.proquest.com/docview/2590880440/abstract/
https://doaj.org/article/e320393732b84557b089a30efcd18758
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB71cYED4ikCJVokxM0knl1n7ROiKCFCalUBlXpb7ctRLnZxQvv3O7OxaXOAm-W1V9bsY-Yb7_cNwAcZacPLc5ehkypjRa_MOSwzcp1-VpKD0pL5zmfns-Wl-n5VXB3AcuDC8LHKYU9MG3VoPefIJ8jFuUsukDyxjrMAfjv5fP074_pR_J-1L6ZxCMc5a-IxZ3zx7T7boggJTPNBfXaKk7iJ8lOlcc8fJdn-vVjzYcSaXM7iKTzpY0XxZTe4z-AgNs_h8QMFwRewOuMDdUwtWXvh98WXRVuLWwolO7FubixnxYRtgiB8nQhYYmU3IrBubl_yih4T3naO8-kxtTI1qbtp193mJVwu5r--LrO-dkLmVcKXurZeRZQ6BpR0YTHMCi-li6qodWVrQi4UHNmQK22DnhHy8UmppYyRfJR8BUdN28TXIApNoKbCEAvkd2urCbZQ3xZtVRa-GsH7wYLmeieRYXZiyGjYyoasPIJTNu3fdha1TjfabmX6NWKiRGYKa4muVEWh3bSsrJzG2oecYFU5gpNhYEy_0jbmfl6M4GMarH9-hJn_nFP4hW_-389beIR8cCURDk_gaNv9ie8o8ti6MRyiuhinqTWG49P5-cWPcULxdy05234
link.rule.ids 315,786,790,870,2115,11589,12792,21416,27957,27958,33408,33779,43635,43840,46087,46511,50849,50958,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VeigcKkpBbMvDSFVvgY3trJMTArTLtmW5FCRull9Z7SWBhMLfZ8abLewBblGcWNH4Md838XwD8EME3PDS1CbcCpmQoldiLc8TdJ1ukKODUoLynSdXg_GN_H2b3XYBt7Y7VrnYE-NG7WtHMfJjTsW5cyqQfHJ3n1DVKPq72pXQWIGPUqDrpEzx0cVLjEUi_u-nC83ZPj8ObRBHheJLXiiK9S8hzNc4NTqa0QZ87hAiO50P6Rf4EKpNWH-lG_gVphM6RkcJJTPH3LLkMqtL9oQAsmGz6tFQLIyZyjNk1THtik1Nyzyp5XaFrvAx5kxjKYoeYislJDWP9axpt-BmNLw-HyddxYTEycgqVWmcDFyo4LnAC8P9IHNC2CCzUhWmRL6CkMj4VCrj1QD5jov6LHkI6JnENqxWdRV2gGUKqUzBfcg4vVsahWQF-zbcFHnmih4cLiyo7-bCGHougcw1WVmjlXtwRqb9305S1vFG3Ux1tzJ0EJzyg5XgNpdZpmw_L4zoh9L5FMlU3oPdxcDobn21-mU29OBnHKw3P0IP_w4RdPFv7_dzAJ_G15NLffnr6s93WON0dCWmHO7C6kPzL-wh9niw-3GCPQPzTddG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BkRAcKp5qSlsWCXEziXft7PqEKE1oC62QoFJvq305ysUOdhr-fmc2G9oc4GZ57ZU1-5jvW898A_BeBNzw8txm3IoiI0WvzFquMnSdbqzQQUlB-c4Xl-PTq-L8urxO8U99Cqvc7Ilxo_atozPyIafi3IoKJA_rFBbx42T6afE7owpS9Kc1ldN4CI8IZFM1AzX9enfeUiAXGOUb_dkRH4Y-iI-V5FseKQr3b6HN-5g1Op3pM9hNaJF9Xg_vc3gQmhfw9J6G4EuYXVBIHSWXzB1z2_LLrK3ZHwSTHZs3K0PnYsw0niHDjilYbGZ65kk5NxW9wseYM52lE_UQWyk5qVu1865_BVfTya8vp1mqnpC5IjJMWRtXBC5k8FzgheF-XDohbCjKWlamRu6C8Mj4vJDGyzFyHxe1WlQI6KXEa9hp2ibsASsl0pqK-1Byerc2EokL9m24qVTpqgG821hQL9YiGXoth8w1WVmjlQdwTKb9206y1vFG2810WiU6CE65wlJwq4qylHakKiNGoXY-R2KlBnCwGRid1lqv72bGAD7EwfrnR-jJzwkCML7__37ewmOcW_r72eW3N_CEUxRLzD48gJ1ldxMOEYYs7VGcX7fi7dt7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscopic+characteristics+of+water+invasion+and+residual+gas+distribution+in+carbonate+gas+reservoirs&rft.jtitle=Energy+science+%26+engineering&rft.au=Chen%2C+Pengyu&rft.au=Liu%2C+Huiqing&rft.au=Zhao%2C+Hailong&rft.au=Guo%2C+Chunqiu&rft.date=2021-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-0505&rft.volume=9&rft.issue=11&rft.spage=2151&rft.epage=2164&rft_id=info:doi/10.1002%2Fese3.972&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon