Frequencies of gap- and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss

Mutations in genes encoding gap‐ and tight‐junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin 26 (Cx26)] mutation spectrum in 60 index patients from mostly large Turkish families with autosomal‐recessive inherited non‐syndromic sensori...

Full description

Saved in:
Bibliographic Details
Published inClinical genetics Vol. 64; no. 1; pp. 65 - 69
Main Authors Uyguner, O, Emiroglu, M, Uzumcu, A, Hafiz, G, Ghanbari, A, Baserer, N, Yuksel-Apak, M, Wollnik, B
Format Journal Article
LanguageEnglish
Published Oxford, UK Munksgaard International Publishers 01.07.2003
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutations in genes encoding gap‐ and tight‐junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin 26 (Cx26)] mutation spectrum in 60 index patients from mostly large Turkish families with autosomal‐recessive inherited non‐syndromic sensorineural hearing loss (NSSHL). GJB2 mutations were found in 31.7% of the families, and the GJB2–35delG mutation accounted for 73.6% of all GJB2 mutations. The carrier frequency of GJB2–35delG in the normal Turkish population was found to be 1.17% (five in 429). In addition to the described W24X, 233delC, 120delE and R127H mutations, we also identified a novel mutation, Q80R, in the GJB2 gene. Interestingly, the Q80R allele was inherited on the same haplotype as V27I and E114G polymorphisms. As little is known about the mutation frequencies of most other recently identified gap‐ and tight‐junction genes as a cause for hearing loss, we further screened our patients for mutations in GJB3 (Cx31), GJA1 (Cx43), ΔGJB6–D13S1830 (Cx30) and the gene encoding the tight‐junction protein, claudin 14 (CLDN14). Several novel polymorphisms, but no disease‐associated mutations, were identified in the CLND14 and GJA1 genes, and we were unable to detect the ΔGJB6–D13S1830 deletion. A novel putative mutation, P223T, was found in the GJB3 gene in heterozygous form in a family with two affected children. Our data shows that the frequency of GJB2 mutations in Turkish patients with autosomal‐recessive NSSHL and the carrier rate of the GJB2–35delG mutation in the Turkish population, is much lower than described for other Mediterranean countries. Furthermore, mutations in other gap‐ and tight‐junction proteins are not a frequent cause of hearing loss in Turkey.
AbstractList Mutations in genes encoding gap‐ and tight‐junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin 26 (Cx26)] mutation spectrum in 60 index patients from mostly large Turkish families with autosomal‐recessive inherited non‐syndromic sensorineural hearing loss (NSSHL). GJB2 mutations were found in 31.7% of the families, and the GJB2–35delG mutation accounted for 73.6% of all GJB2 mutations. The carrier frequency of GJB2–35delG in the normal Turkish population was found to be 1.17% (five in 429). In addition to the described W24X, 233delC, 120delE and R127H mutations, we also identified a novel mutation, Q80R, in the GJB2 gene. Interestingly, the Q80R allele was inherited on the same haplotype as V27I and E114G polymorphisms. As little is known about the mutation frequencies of most other recently identified gap‐ and tight‐junction genes as a cause for hearing loss, we further screened our patients for mutations in GJB3 (Cx31), GJA1 (Cx43), ΔGJB6–D13S1830 (Cx30) and the gene encoding the tight‐junction protein, claudin 14 (CLDN14). Several novel polymorphisms, but no disease‐associated mutations, were identified in the CLND14 and GJA1 genes, and we were unable to detect the ΔGJB6–D13S1830 deletion. A novel putative mutation, P223T, was found in the GJB3 gene in heterozygous form in a family with two affected children. Our data shows that the frequency of GJB2 mutations in Turkish patients with autosomal‐recessive NSSHL and the carrier rate of the GJB2–35delG mutation in the Turkish population, is much lower than described for other Mediterranean countries. Furthermore, mutations in other gap‐ and tight‐junction proteins are not a frequent cause of hearing loss in Turkey.
Mutations in genes encoding gap‐ and tight‐junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2 [connexin 26 (Cx26)] mutation spectrum in 60 index patients from mostly large Turkish families with autosomal‐recessive inherited non‐syndromic sensorineural hearing loss (NSSHL). GJB2 mutations were found in 31.7% of the families, and the GJB2– 35delG mutation accounted for 73.6% of all GJB2 mutations. The carrier frequency of GJB2– 35delG in the normal Turkish population was found to be 1.17% (five in 429). In addition to the described W24X, 233delC, 120delE and R127H mutations, we also identified a novel mutation, Q80R, in the GJB2 gene. Interestingly, the Q80R allele was inherited on the same haplotype as V27I and E114G polymorphisms. As little is known about the mutation frequencies of most other recently identified gap‐ and tight‐junction genes as a cause for hearing loss, we further screened our patients for mutations in GJB3 (Cx31), GJA1 (Cx43), Δ GJB6 –D13S1830 (Cx30) and the gene encoding the tight‐junction protein, claudin 14 ( CLDN14 ). Several novel polymorphisms, but no disease‐associated mutations, were identified in the CLND14 and GJA1 genes, and we were unable to detect the Δ GJB6 –D13S1830 deletion. A novel putative mutation, P223T, was found in the GJB3 gene in heterozygous form in a family with two affected children. Our data shows that the frequency of GJB2 mutations in Turkish patients with autosomal‐recessive NSSHL and the carrier rate of the GJB2– 35delG mutation in the Turkish population, is much lower than described for other Mediterranean countries. Furthermore, mutations in other gap‐ and tight‐junction proteins are not a frequent cause of hearing loss in Turkey.
Mutations in genes encoding gap- and tight-junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin 26 (Cx26)] mutation spectrum in 60 index patients from mostly large Turkish families with autosomal-recessive inherited non-syndromic sensorineural hearing loss (NSSHL). GJB2 mutations were found in 31.7% of the families, and the GJB2-35delG mutation accounted for 73.6% of all GJB2 mutations. The carrier frequency of GJB2-35delG in the normal Turkish population was found to be 1.17% (five in 429). In addition to the described W24X, 233delC, 120delE and R127H mutations, we also identified a novel mutation, Q80R, in the GJB2 gene. Interestingly, the Q80R allele was inherited on the same haplotype as V27I and E114G polymorphisms. As little is known about the mutation frequencies of most other recently identified gap- and tight-junction genes as a cause for hearing loss, we further screened our patients for mutations in GJB3 (Cx31), GJA1 (Cx43), DeltaGJB6-D13S1830 (Cx30) and the gene encoding the tight-junction protein, claudin 14 (CLDN14). Several novel polymorphisms, but no disease-associated mutations, were identified in the CLND14 and GJA1 genes, and we were unable to detect the DeltaGJB6-D13S1830 deletion. A novel putative mutation, P223T, was found in the GJB3 gene in heterozygous form in a family with two affected children. Our data shows that the frequency of GJB2 mutations in Turkish patients with autosomal-recessive NSSHL and the carrier rate of the GJB2-35delG mutation in the Turkish population, is much lower than described for other Mediterranean countries. Furthermore, mutations in other gap- and tight-junction proteins are not a frequent cause of hearing loss in Turkey.
Author Uzumcu, A
Uyguner, O
Emiroglu, M
Baserer, N
Wollnik, B
Hafiz, G
Ghanbari, A
Yuksel-Apak, M
Author_xml – sequence: 1
  givenname: O
  surname: Uyguner
  fullname: Uyguner, O
  organization: Division of Medical Genetics, Child Health Institute, Istanbul University, Istanbul, Turkey
– sequence: 2
  givenname: M
  surname: Emiroglu
  fullname: Emiroglu, M
  organization: Burcin-Engin Inan Diagnosis and Training Center for Hearing Impaired Children, Ear, Nose, and Throat Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
– sequence: 3
  givenname: A
  surname: Uzumcu
  fullname: Uzumcu, A
  organization: Division of Medical Genetics, Child Health Institute, Istanbul University, Istanbul, Turkey
– sequence: 4
  givenname: G
  surname: Hafiz
  fullname: Hafiz, G
  organization: Burcin-Engin Inan Diagnosis and Training Center for Hearing Impaired Children, Ear, Nose, and Throat Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
– sequence: 5
  givenname: A
  surname: Ghanbari
  fullname: Ghanbari, A
  organization: Division of Medical Genetics, Child Health Institute, Istanbul University, Istanbul, Turkey
– sequence: 6
  givenname: N
  surname: Baserer
  fullname: Baserer, N
  organization: Burcin-Engin Inan Diagnosis and Training Center for Hearing Impaired Children, Ear, Nose, and Throat Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
– sequence: 7
  givenname: M
  surname: Yuksel-Apak
  fullname: Yuksel-Apak, M
  organization: Division of Medical Genetics, Child Health Institute, Istanbul University, Istanbul, Turkey
– sequence: 8
  givenname: B
  surname: Wollnik
  fullname: Wollnik, B
  email: wollnik@superonline.com
  organization: Division of Medical Genetics, Child Health Institute, Istanbul University, Istanbul, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14863106$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12791041$$D View this record in MEDLINE/PubMed
BookMark eNqNkEFv2yAUx9HUaU27fYWJy3bDBWMbW9plitq0Uru1U6YeEYbnhNTGGdhr8u2Ll6i97sRD_P68935n6MT1DhDCjCaM8uxikzBeVYRSmiUppTyhlFGW7N6h2evDCZrFoyIVK_gpOgthE69c5NUHdMpSUTGasRnaXXn4M4LTFgLuG7xSW4KVM3iwq_VANqPTg-0d7sZBTUXA1uHl6J9sWONGdbadgs92WGM1Dn3oO9USDxpCsH8Bx7lJ2Dvj-85qvAblrVvhtg_hI3rfqDbAp-N5jn5fXS7n1-T25-Jm_v2W6IynjIiUaq3KNM1NLQwFndV1WqmyhlI3rBTGAFcCUl4WBac0L3RWlcqUFOqcm7jwOfp6-Hfr-7hoGGRng4a2VQ76MUjBo5PYKoLlAdQ-juehkVtvO-X3klE5WZcbOcmVk1w5WZf_rMtdjH4-9hjrDsxb8Kg5Al-OgApatY1XUXh447Ky4IwWkft24J5tC_v_HkDOF5exiHFyiNswwO41rvyTLERcUz7-WMj88e5O3D8s5S_-ApCgsG4
CODEN CLGNAY
CitedBy_id crossref_primary_10_1007_s00439_005_1332_x
crossref_primary_10_1111_j_1399_0004_2004_00334_x
crossref_primary_10_1038_jhg_2010_104
crossref_primary_10_1007_s00439_008_0602_9
crossref_primary_10_1016_S1672_2930_06_50001_7
crossref_primary_10_1002_lary_24249
crossref_primary_10_1046_j_1529_8817_2003_00120_x
crossref_primary_10_1080_15513815_2019_1627625
crossref_primary_10_1017_S0016672309000032
crossref_primary_10_1016_j_ijporl_2015_01_033
crossref_primary_10_1089_omi_2013_0166
crossref_primary_10_1242_jcs_01235
crossref_primary_10_1016_j_ijporl_2010_12_003
crossref_primary_10_34087_cbusbed_698933
crossref_primary_10_1002_ajmg_a_34407
crossref_primary_10_3389_fgene_2019_01087
crossref_primary_10_1002_ajmg_a_30884
crossref_primary_10_1016_j_ijporl_2006_03_015
crossref_primary_10_1016_j_ijporl_2005_07_013
crossref_primary_10_1007_s10528_009_9314_7
crossref_primary_10_1007_s12041_014_0365_0
crossref_primary_10_1111_j_1365_2230_2010_03986_x
crossref_primary_10_1016_j_ijporl_2011_10_007
crossref_primary_10_1016_j_heares_2004_07_001
crossref_primary_10_1016_j_mgene_2016_10_006
crossref_primary_10_1089_gtmb_2010_0145
crossref_primary_10_1016_j_ijporl_2009_12_015
crossref_primary_10_1515_rrlm_2017_0004
crossref_primary_10_1016_j_ijporl_2011_01_029
crossref_primary_10_1080_14992020802607449
crossref_primary_10_1590_1678_4324_2016150046
crossref_primary_10_1007_s11033_014_3488_8
crossref_primary_10_3389_fgene_2021_637096
crossref_primary_10_1016_j_ijporl_2008_10_002
crossref_primary_10_1371_journal_pone_0268078
crossref_primary_10_1002_ajmg_a_30576
crossref_primary_10_1016_j_ijporl_2007_02_005
crossref_primary_10_1016_j_arcped_2006_12_004
crossref_primary_10_1089_gtmb_2009_0026
crossref_primary_10_1089_gtmb_2009_0103
crossref_primary_10_1016_j_ijporl_2007_02_007
crossref_primary_10_1016_j_bbrc_2009_02_125
crossref_primary_10_1007_s12041_008_0007_5
crossref_primary_10_1089_gte_2006_10_285
crossref_primary_10_1111_j_1399_0004_2006_00613_x
crossref_primary_10_1111_ahg_12213
crossref_primary_10_1038_jhg_2009_4
crossref_primary_10_1159_000502201
crossref_primary_10_1186_1479_5876_8_127
crossref_primary_10_1016_j_brainres_2009_02_008
crossref_primary_10_1016_j_gene_2013_03_123
crossref_primary_10_1038_ng_404
crossref_primary_10_1007_s12070_023_03672_x
crossref_primary_10_1002_humu_20172
crossref_primary_10_1002_lary_24697
crossref_primary_10_1002_lary_24332
crossref_primary_10_1016_j_ijporl_2008_07_015
crossref_primary_10_1007_s00439_010_0856_x
crossref_primary_10_1111_j_1399_0004_2004_00262_x
crossref_primary_10_3389_fnmol_2017_00428
crossref_primary_10_1089_gte_2007_0106
crossref_primary_10_1016_j_ijporl_2011_11_018
crossref_primary_10_1016_j_ijporl_2017_11_016
crossref_primary_10_1017_S0022215112002587
crossref_primary_10_3390_genes11101233
crossref_primary_10_1242_jcs_214635
crossref_primary_10_1053_j_gastro_2010_08_006
crossref_primary_10_1002_ajmg_a_30907
crossref_primary_10_1016_j_ijporl_2007_04_019
crossref_primary_10_1016_j_ijporl_2014_08_036
crossref_primary_10_1007_BF02935334
crossref_primary_10_1016_j_heares_2004_11_022
Cites_doi 10.1016/S0962-8924(98)01372-5
10.1093/hmg/9.1.63
10.1016/S0140-6736(97)11124-2
10.1073/pnas.96.2.511
10.1002/(SICI)1098-1004(1999)14:3<263::AID-HUMU10>3.0.CO;2-X
10.1002/humu.1222
10.1038/3845
10.1093/hmg/10.25.2945
10.1093/hmg/6.12.2173
10.1038/387080a0
10.1038/sj.ejhg.5200406
10.1093/hmg/8.7.1237
10.1016/S0140-6736(01)06186-4
10.1086/346090
10.1034/j.1399-0004.2002.620409.x
10.1038/12612
10.1016/S0092-8674(01)00200-8
10.1056/NEJMoa012052
10.1136/jmg.38.10.e36
10.1146/annurev.genet.35.102401.091224
10.1093/hmg/6.9.1605
10.1016/S0165-0173(99)00076-4
10.1007/BF01181652
10.1007/s004390100507
10.1034/j.1399-0004.2001.600608.x
10.1007/s004390050839
10.1038/sj.ejhg.5200762
10.1002/1098-1004(200007)16:1<7::AID-HUMU2>3.0.CO;2-A
10.1007/s004390050683
10.1086/339986
10.1136/jmg.37.11.e39
ContentType Journal Article
Copyright 2003 INIST-CNRS
Copyright_xml – notice: 2003 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1034/j.1399-0004.2003.00101.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1399-0004
EndPage 69
ExternalDocumentID 10_1034_j_1399_0004_2003_00101_x
12791041
14863106
CGE101
ark_67375_WNG_5WMM7PQT_R
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Asia
Turkey
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29B
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AAQQT
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
08R
AAJUZ
AAPBV
AAVGM
ABCVL
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4321-720cca8225db7d0ec4bb29a8be8cf187dde3a7e2386630056c498ad80eb53d003
IEDL.DBID DR2
ISSN 0009-9163
IngestDate Fri Aug 16 09:07:32 EDT 2024
Fri Aug 23 03:50:45 EDT 2024
Sat Sep 28 08:38:10 EDT 2024
Sun Oct 22 16:05:05 EDT 2023
Sat Aug 24 01:16:34 EDT 2024
Wed Oct 30 09:54:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Family study
Auditory disorder
Gap junction
Genetic disease
Hearing loss
Connexin
gap-junction
Autosomal character
mutation analysis
tight- junction
ENT disease
Recessive character
Frequency
Mutation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4321-720cca8225db7d0ec4bb29a8be8cf187dde3a7e2386630056c498ad80eb53d003
Notes istex:BE90745590CBB472A1DE53A6CDBE41025C709BEF
ark:/67375/WNG-5WMM7PQT-R
ArticleID:CGE101
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12791041
PQID 73375432
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_73375432
crossref_primary_10_1034_j_1399_0004_2003_00101_x
pubmed_primary_12791041
pascalfrancis_primary_14863106
wiley_primary_10_1034_j_1399_0004_2003_00101_x_CGE101
istex_primary_ark_67375_WNG_5WMM7PQT_R
PublicationCentury 2000
PublicationDate July 2003
PublicationDateYYYYMMDD 2003-07-01
PublicationDate_xml – month: 07
  year: 2003
  text: July 2003
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: Denmark
PublicationTitle Clinical genetics
PublicationTitleAlternate Clin Genet
PublicationYear 2003
Publisher Munksgaard International Publishers
Blackwell
Publisher_xml – name: Munksgaard International Publishers
– name: Blackwell
References Xia JH, Liu CY, Tang BS et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 1998: 20: 370-373.
Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 1999: 96: 511-516.
Baris I, Kilinc MO, Tolun A. Frequency of the 35delG mutation in the connexin 26 gene in Turkish hearing-impaired patients. Clin Genet 2001: 60: 452-455.
Estivil X, Fortina P, Surrey S et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 1998: 351: 394-398.
Zelante L, Gasparini P, Estivill X et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 1997: 6: 1605-1609.
Kelsell DP, Dunlop J, Stevens HP et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997: 387: 80-83.
Storm K, Willcocx S, Flothmann K, Van Camp G. Determination of the carrier frequency of the common GJB2 (Connexin 26), 35delG mutation in the Belgian population using an easy and reliable screening method. Hum Mut 1999: 14: 263-266.
Antoniadi T, Gronskov K, Sand A, Pampanos A, Brondum-Nielsen K, Petersen MB. Mutation analysis of the GJB2 (connexin 26) gene by DGGE in Greek patients with sensorineural deafness. Hum Mutat 2000: 16: 7-12.
Del Castillo I, Villamar M, Moreno-Pelayo MA et al. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 2002: 346: 243-249.
Gasparini P, Rabionet R, Barbujani G et al. Genetic analysis consortium of GJB2 35delG. High carrier frequency of the 35delG deafness mutation in European populations. Eur J Hum Genet 2000: 8: 19-23.
Uyguner O, Tukel T, Baykal C et al. The novel R75Q mutation in the GJB2 gene causes autosomal dominant hearing loss and palmoplantar keratoderma in a Turkish family. Clin Genet 2002: 62: 306-309.
Richard G, White TW, Smith LE et al. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum Genet 1998: 103: 393-399.
Petit C, Levilliers J, Hardelin JP. Molecular genetics of hearing loss. Annu Rev Genet 2001: 35: 589-646.
Mustapha M, Salem N, Delague V et al. Autosomal recessive non-syndromic hearing loss in the Lebanese population: prevalence of the 30delG mutation and report of two novel mutations in the connexin 26 (GJB2) gene. J Med Genet 2001: 38: E36.
Liu XZ, Xia XJ, Xu LR et al. Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 2000: 9: 63-67.
Grifa A, Wagner CA, D'Ambrosio L et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 1999: 23: 16-18.
Liu XZ, Xia XJ, Adams J et al. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 2001: 10: 2945-2951.
Denoyelle F, Weil D, Maw MA et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 1997: 6: 2173-2177.
Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC. Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 2000: 32: 163-166.
Maestrini E, Korge BP, Ocana-Sierra J et al. A missense mutation in connexin 26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Hum Mol Genet 1999: 8: 1237-1243.
Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF. A large deletion including most of GJB6 in recessive non-syndromic deafness: a digenic effect? Eur J Hum Genet 2002: 10: 72-76.
Masmoudi S, Elgaied-Boulila A, Kassab I et al. Determination of the frequency of connexin26 mutations in inherited sensorineural deafness and carrier rates in the Tunisian population using DGGE. J Med Genet 2000: 37: E39.
Anderson JM. Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 2001: 16: 126-130.
Paznekas WA, Boyadjiev SA, Shapiro RE et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 2003: 72: 408-418.
Simon AM, Goodenough DA. Diverse functions of vertebrate gap junctions. Trends Cell Biol 1998: 8: 477-483.
Gulley RL, Reese TS. Intercellular junctions in the reticular lamina of the organ of Corti. J Neurocytol 1976: 5: 479-507.
Tekin M, Arnos KS, Pandya A. Advances in hereditary deafness. Lancet 2001: 358: 1082-1090.
Richard G, Rouan F, Willoughby CE et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet 2002: 70: 1341-1348.
Onay T, Topaloglu O, Zielenski J et al. Analysis of the CFTR gene in Turkish cystic fibrosis patients: identification of three novel mutations (3172delAC, P1013L and M1028I). Hum Genet 1998: 102: 224-230.
Wilcox ER, Burton QL, Naz S et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 2001: 104 (1): 165-172.
Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D. A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: a novel founder mutation in Ashkenazi Jews. Hum Mutat 2001: 18: 460.
Tekin M, Akar N, Cin S et al. Connexin 26 (GJB2) mutations in the Turkish population: implications for the origin and high frequency of the 35delG mutation in Caucasians. Hum Genet 2001: 108: 385-389.
2000; 9
2000; 8
2002; 10
July 2002
1999; 23
1999; 8
2001; 108
1997; 6
2003; 72
1998; 20
2001; 104
1998; 351
1976; 5
2001; 60
2000; 16
2000; 37
2002; 62
2000; 32
1997; 387
1999; 14
2002; 346
2002; 70
1998; 103
2001; 16
1999; 96
2001; 38
2001; 18
2001; 35
1998; 102
2001; 358
2001; 10
1998; 8
e_1_2_5_26_2
e_1_2_5_27_2
e_1_2_5_24_2
e_1_2_5_25_2
e_1_2_5_22_2
e_1_2_5_20_2
e_1_2_5_21_2
e_1_2_5_28_2
e_1_2_5_29_2
e_1_2_5_14_2
e_1_2_5_13_2
Anderson JM. (e_1_2_5_23_2) 2001; 16
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_34_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
e_1_2_5_19_2
e_1_2_5_30_2
References_xml – year: July 2002
– volume: 10
  start-page: 72
  year: 2002
  end-page: 76
  article-title: A large deletion including most of GJB6 in recessive non‐syndromic deafness: a digenic effect?
  publication-title: Eur J Hum Genet
– volume: 387
  start-page: 80
  year: 1997
  end-page: 83
  article-title: Connexin 26 mutations in hereditary non‐syndromic sensorineural deafness
  publication-title: Nature
– volume: 32
  start-page: 163
  year: 2000
  end-page: 166
  article-title: Gap junction systems in the mammalian cochlea
  publication-title: Brain Res Brain Res Rev
– volume: 14
  start-page: 263
  year: 1999
  end-page: 266
  article-title: Determination of the carrier frequency of the common GJB2 (Connexin 26), 35delG mutation in the Belgian population using an easy and reliable screening method
  publication-title: Hum Mut
– volume: 6
  start-page: 1605
  year: 1997
  end-page: 1609
  article-title: Connexin26 mutations associated with the most common form of non‐syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans
  publication-title: Hum Mol Genet
– volume: 5
  start-page: 479
  year: 1976
  end-page: 507
  article-title: Intercellular junctions in the reticular lamina of the organ of Corti
  publication-title: J Neurocytol
– volume: 72
  start-page: 408
  year: 2003
  end-page: 418
  article-title: Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia
  publication-title: Am J Hum Genet
– volume: 10
  start-page: 2945
  year: 2001
  end-page: 2951
  article-title: Mutations in GJA1 (connexin 43) are associated with non‐syndromic autosomal recessive deafness
  publication-title: Hum Mol Genet
– volume: 38
  start-page: E36
  year: 2001
  article-title: Autosomal recessive non‐syndromic hearing loss in the Lebanese population: prevalence of the 30delG mutation and report of two novel mutations in the connexin 26 (GJB2) gene
  publication-title: J Med Genet
– volume: 6
  start-page: 2173
  year: 1997
  end-page: 2177
  article-title: Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene
  publication-title: Hum Mol Genet
– volume: 351
  start-page: 394
  year: 1998
  end-page: 398
  article-title: Connexin‐26 mutations in sporadic and inherited sensorineural deafness
  publication-title: Lancet
– volume: 8
  start-page: 19
  year: 2000
  end-page: 23
  article-title: Genetic analysis consortium of GJB2 35delG. High carrier frequency of the 35delG deafness mutation in European populations
  publication-title: Eur J Hum Genet
– volume: 16
  start-page: 7
  year: 2000
  end-page: 12
  article-title: Mutation analysis of the GJB2 (connexin 26) gene by DGGE in Greek patients with sensorineural deafness
  publication-title: Hum Mutat
– volume: 23
  start-page: 16
  year: 1999
  end-page: 18
  article-title: Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus
  publication-title: Nat Genet
– volume: 9
  start-page: 63
  year: 2000
  end-page: 67
  article-title: Mutations in connexin31 underlie recessive as well as dominant non‐syndromic hearing loss
  publication-title: Hum Mol Genet
– volume: 37
  start-page: E39
  year: 2000
  article-title: Determination of the frequency of connexin26 mutations in inherited sensorineural deafness and carrier rates in the Tunisian population using DGGE
  publication-title: J Med Genet
– volume: 103
  start-page: 393
  year: 1998
  end-page: 399
  article-title: Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf‐mutism and palmoplantar keratoderma
  publication-title: Hum Genet
– volume: 108
  start-page: 385
  year: 2001
  end-page: 389
  article-title: Connexin 26 (GJB2) mutations in the Turkish population: implications for the origin and high frequency of the 35delG mutation in Caucasians
  publication-title: Hum Genet
– volume: 8
  start-page: 1237
  year: 1999
  end-page: 1243
  article-title: A missense mutation in connexin 26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families
  publication-title: Hum Mol Genet
– volume: 70
  start-page: 1341
  year: 2002
  end-page: 1348
  article-title: Missense mutations in GJB2 encoding connexin‐26 cause the ectodermal dysplasia keratitis–ichthyosis–deafness syndrome
  publication-title: Am J Hum Genet
– volume: 102
  start-page: 224
  year: 1998
  end-page: 230
  article-title: Analysis of the CFTR gene in Turkish cystic fibrosis patients: identification of three novel mutations (3172delAC, P1013L and M1028I)
  publication-title: Hum Genet
– volume: 60
  start-page: 452
  year: 2001
  end-page: 455
  article-title: Frequency of the 35delG mutation in the connexin 26 gene in Turkish hearing‐impaired patients
  publication-title: Clin Genet
– volume: 358
  start-page: 1082
  year: 2001
  end-page: 1090
  article-title: Advances in hereditary deafness
  publication-title: Lancet
– volume: 346
  start-page: 243
  year: 2002
  end-page: 249
  article-title: A deletion involving the connexin 30 gene in nonsyndromic hearing impairment
  publication-title: N Engl J Med
– volume: 35
  start-page: 589
  year: 2001
  end-page: 646
  article-title: Molecular genetics of hearing loss
  publication-title: Annu Rev Genet
– volume: 62
  start-page: 306
  year: 2002
  end-page: 309
  article-title: The novel R75Q mutation in the gene causes autosomal dominant hearing loss and palmoplantar keratoderma in a Turkish family
  publication-title: Clin Genet
– volume: 20
  start-page: 370
  year: 1998
  end-page: 373
  article-title: Mutations in the gene encoding gap junction protein beta‐3 associated with autosomal dominant hearing impairment
  publication-title: Nat Genet
– volume: 96
  start-page: 511
  year: 1999
  end-page: 516
  article-title: Claudin multigene family encoding four‐transmembrane domain protein components of tight junction strands
  publication-title: Proc Natl Acad Sci USA
– volume: 18
  start-page: 460
  year: 2001
  article-title: A deletion mutation in GJB6 cooperating with a GJB2 mutation in non‐syndromic deafness: a novel founder mutation in Ashkenazi Jews
  publication-title: Hum Mutat
– volume: 8
  start-page: 477
  year: 1998
  end-page: 483
  article-title: Diverse functions of vertebrate gap junctions
  publication-title: Trends Cell Biol
– volume: 104
  start-page: 165
  issue: 1
  year: 2001
  end-page: 172
  article-title: Mutations in the gene encoding tight junction claudin‐14 cause autosomal recessive deafness DFNB29
  publication-title: Cell
– volume: 16
  start-page: 126
  year: 2001
  end-page: 130
  article-title: Molecular structure of tight junctions and their role in epithelial transport
  publication-title: News Physiol Sci
– ident: e_1_2_5_20_2
  doi: 10.1016/S0962-8924(98)01372-5
– ident: e_1_2_5_14_2
  doi: 10.1093/hmg/9.1.63
– ident: e_1_2_5_8_2
  doi: 10.1016/S0140-6736(97)11124-2
– ident: e_1_2_5_24_2
  doi: 10.1073/pnas.96.2.511
– ident: e_1_2_5_5_2
– ident: e_1_2_5_26_2
  doi: 10.1002/(SICI)1098-1004(1999)14:3<263::AID-HUMU10>3.0.CO;2-X
– ident: e_1_2_5_18_2
  doi: 10.1002/humu.1222
– volume: 16
  start-page: 126
  year: 2001
  ident: e_1_2_5_23_2
  article-title: Molecular structure of tight junctions and their role in epithelial transport
  publication-title: News Physiol Sci
  contributor:
    fullname: Anderson JM.
– ident: e_1_2_5_13_2
  doi: 10.1038/3845
– ident: e_1_2_5_16_2
  doi: 10.1093/hmg/10.25.2945
– ident: e_1_2_5_6_2
  doi: 10.1093/hmg/6.12.2173
– ident: e_1_2_5_4_2
  doi: 10.1038/387080a0
– ident: e_1_2_5_7_2
  doi: 10.1038/sj.ejhg.5200406
– ident: e_1_2_5_11_2
  doi: 10.1093/hmg/8.7.1237
– ident: e_1_2_5_3_2
  doi: 10.1016/S0140-6736(01)06186-4
– ident: e_1_2_5_34_2
  doi: 10.1086/346090
– ident: e_1_2_5_10_2
  doi: 10.1034/j.1399-0004.2002.620409.x
– ident: e_1_2_5_15_2
  doi: 10.1038/12612
– ident: e_1_2_5_25_2
  doi: 10.1016/S0092-8674(01)00200-8
– ident: e_1_2_5_17_2
  doi: 10.1056/NEJMoa012052
– ident: e_1_2_5_29_2
  doi: 10.1136/jmg.38.10.e36
– ident: e_1_2_5_2_2
  doi: 10.1146/annurev.genet.35.102401.091224
– ident: e_1_2_5_27_2
  doi: 10.1093/hmg/6.9.1605
– ident: e_1_2_5_21_2
  doi: 10.1016/S0165-0173(99)00076-4
– ident: e_1_2_5_22_2
  doi: 10.1007/BF01181652
– ident: e_1_2_5_32_2
  doi: 10.1007/s004390100507
– ident: e_1_2_5_33_2
  doi: 10.1034/j.1399-0004.2001.600608.x
– ident: e_1_2_5_9_2
  doi: 10.1007/s004390050839
– ident: e_1_2_5_19_2
  doi: 10.1038/sj.ejhg.5200762
– ident: e_1_2_5_28_2
  doi: 10.1002/1098-1004(200007)16:1<7::AID-HUMU2>3.0.CO;2-A
– ident: e_1_2_5_31_2
  doi: 10.1007/s004390050683
– ident: e_1_2_5_12_2
  doi: 10.1086/339986
– ident: e_1_2_5_30_2
  doi: 10.1136/jmg.37.11.e39
SSID ssj0003759
Score 2.0556228
Snippet Mutations in genes encoding gap‐ and tight‐junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin...
Mutations in genes encoding gap- and tight-junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin...
Mutations in genes encoding gap‐ and tight‐junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2 [connexin...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 65
SubjectTerms Amino Acid Substitution
Biological and medical sciences
connexin
Connexin 26
Connexins - genetics
Connexins - metabolism
DNA Mutational Analysis
Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology
Female
Gap Junctions - genetics
Gap Junctions - metabolism
gap-junction
Gene Frequency
hearing loss
Hearing Loss - genetics
Hearing Loss - metabolism
Humans
Male
Medical sciences
Mutation
mutation analysis
Non tumoral diseases
Otorhinolaryngology. Stomatology
Pedigree
Tight Junctions - genetics
Tight Junctions - metabolism
tight-junction
Turkey
Title Frequencies of gap- and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss
URI https://api.istex.fr/ark:/67375/WNG-5WMM7PQT-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1034%2Fj.1399-0004.2003.00101.x
https://www.ncbi.nlm.nih.gov/pubmed/12791041
https://search.proquest.com/docview/73375432
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQEYgLj_IKj-ID4pZlYztxckSl2wppK6i2am-WndhQtk2qTYIKp_4EfiO_hBk729UikBDitJvDJLuTbzyf7c8zhLx0mqWVkyxmGIUiz3RcVDyLhWNOm0RDWsKDwtP9bO9QvDtOjwf9E56FCfUhrhbcMDL8eI0Brk07HBMXIcg5nqCHt-zLeo58ubQR8smES1R3vT1YVZLiMi2WTdWAEfFB1AO3ev2nG61lquvo9AtUTuoWnOdC14vf0dJ1luvT1OQOmS__YFCnzEd9Z0blt19qP_4fD9wltwc2S98E-N0j12y9SW6E_pZfN8nN6bBzf59cThZBtA0zc9o4-lGf_7j8TnVd0Q7XB-DiM6RYhAk964M-oKUnNZ31C-C4n6hfiUFjXDmmuu-atjnTp2AHYzZqeb9YWjc1XA9FGE5Kit26ITXTU_DvA3I42Zlt78VD94e4FJwlsWRjQBfwl7QyshrbUhjDCp0bm5cuySWMy1xLC5Qjw7JhaVaKItdVPrYm5RW44yHZgMfax4QWGtCYyazUJdAtIQ0zmU1cBZM5-BQuIsnyTavzUORD-c15LnByBE7GPXqBLTu58k5WFxF55SFxZaAXcxTJyVQd7e-q9Gg6le8_zNRBRLbWMLN6AkQGkOssIi-WIFIQ27hho2vb9K2SHBsUcxaRRwFbK1smgeeJJCKpR8hf_2y1vbsDX578o91TcsurGb1e-RnZ6Ba9fQ6srDNbPt5-AglRLUs
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKx4XHoVCeLQ-IG5ZNrYTZ4-odLtAs4Jqq_Zm2YkDpduk2k1Q4dSfwG_klzBjZ7taBBJCnLI5TJydfOP5PB7PEPK81CwuSslChlYo0kSHg4InoShZqU2kwS3hQeFsnIwOxdvj-LhrB4RnYXx9iKuAG1qGm6_RwDEg3Z0TF97KOR6hh8_s6nr2XL20HhDKdRiXo5W-PljWkuIyHizaqgEn4l1aDzzr5Z-etOKr1lHtF5g7qeegvtL3vfgdMV3luc5RDe-Q6eIv-vyU017bmF7-7Zfqj_9JB3fJ7Y7Q0lcegffINVttkOu-xeXXDXIj6zbv75PL4cznbcPinNYl_ajPf1x-p7oqaIMhArj5DF4WkULPWp8iMKcnFZ20M6C5n6gLxqAwBo-pbpt6Xp_pKcjBtI3pvF8sreoK7rs6DCc5xYbd4J3pFBT8gBwOdyc7o7BrABHmgrMolKwPAAMKExdGFn2bC2PYQKfGpnkZpRKmZq6lBdaRYOWwOMnFINVF2rcm5gWoY5OswbD2EaEDDYBMZJLrHBiXkIaZxEZlAes5uIoyINHiU6tzX-dDuf15LnB9BErGbXqBXTu5ckpWFwF54TBxJaBnp5gnJ2N1NN5T8VGWyfcfJuogIFsroFmOAMYB_DoJyPYCRQrMG_dsdGXrdq4kxx7FnAXkoQfXUpZJoHoiCkjsIPLXr6129nbhx-N_lNsmN0eTbF_tvxm_e0JuueRGl778lKw1s9Y-A5LWmC1nfD8Bvq4xZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJiZeuAwY4bL5AfGW0sSOnTyisW5cWo2p0_Zm2UkMo1tStQkaPO0n8Bv5JZxjp6uKQEKIpzYPJ2lPvuPz2f58DiHPrY6Twso4jDEKeSp0mBVMhNzGVptIQ1rCg8LDkTg45m9Pk9NO_4RnYXx9iOsFN4wMN15jgE8L2x0T5z7IGZ6gh7fsynr2XLm0HvDJdS4AuUiQjpalpJhMskVXNaBErFP1wL1e_ulOK6lqHb1-idJJPQfvWd_24ne8dJXmujw1uEMmi3_o5SmTXtuYXv7tl-KP_8cFd8ntjs7SVx5_98iNstokN32Dy6-bZGPYbd3fJ1eDmVdtw9Sc1pZ-1NMfV9-prgra4AIBXHyGHIs4oRetFwjM6VlFx-0MSO4n6pZi0BiXjqlum3peX-hzsINBG8W8X0pa1RVcd1UYznKK7bohN9Nz8O8DcjzYG-8ehF37hzDnLI5CGfcBXkBgksLIol_m3Jg406kp09xGqYSBmWlZAucQWDcsETnPUl2k_dIkrAB3PCRr8NjyEaGZBjgKKXKdA9_i0sRGlJEtYDYHn9wGJFq8aTX1VT6U251nHGdH4GTcpOfYs5Mp52R1GZAXDhLXBno2QZWcTNTJaF8lJ8OhPPwwVkcB2V7BzPIJEBrArkVAdhYgUhDcuGOjq7Ju50oy7FDM4oBseWwtbWMJRI9HAUkcQv76Z6vd_T348vgf7XbIxuHrgXr_ZvTuCbnllI1Ou_yUrDWztnwGDK0x2y70fgIB2zAT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequencies+of+gap-+and+tight-junction+mutations+in+Turkish+families+with+autosomal-recessive+non-syndromic+hearing+loss&rft.jtitle=Clinical+genetics&rft.au=Uyguner%2C+O&rft.au=Emiroglu%2C+M&rft.au=Uzumcu%2C+A&rft.au=Hafiz%2C+G&rft.date=2003-07-01&rft.issn=0009-9163&rft.volume=64&rft.issue=1&rft.spage=65&rft.epage=69&rft_id=info:doi/10.1034%2Fj.1399-0004.2003.00101.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9163&client=summon