Does reduced intraspecific competition of the dominant species in intercrops allow for a higher population density?

Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow cultivating the dominant species at an increased density in intercropping to obtain greater yield. However, experimental results are inconclusive whe...

Full description

Saved in:
Bibliographic Details
Published inFood and energy security Vol. 10; no. 2; pp. 285 - 298
Main Authors Wang, Qi, Bai, Wei, Sun, Zhanxiang, Zhang, Dongsheng, Zhang, Yue, Wang, Ruonan, Evers, Jochem B., Stomph, Tjeerd‐Jan, Werf, Wopke, Feng, Chen, Zhang, Lizhen
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.05.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow cultivating the dominant species at an increased density in intercropping to obtain greater yield. However, experimental results are inconclusive when the optimal within row density in the sole crop is not well established. Here, we conducted a two‐year experiment to test the hypothesis that optimal within row plant density of dominant species in intercropping would be higher in the intercrop than in the sole crop. We tested three maize densities (3, 4.5, and 6 plants m−1) in both sole maize and two replacement designed intercrops. The row configurations of two intercrops are two rows maize intercropped with four rows peanut (M2P4) and four rows maize intercropped with four rows peanut (M4P4). Peanut was grown at the same plant density of 12 plants m−1 row in both sole crop and intercrops. The results indicated that increasing maize density from the optimal density in monoculture is not worthy of promotion to improve yield in intercropping, which denied our hypothesis. The land equivalent ratios (LER) in the dry year (2017) were higher than the wet year (2016). Maize yields per unit area of the whole intercropping system were highest with densities of 4.5 and 6 plants m−1 row, with no significant difference between these two densities. Maximum maize yields in sole cropping were obtained with maize densities of 6 plants m−1 row. Intercropping provided higher yields at low and intermediate sole crop maize densities, but not at high sole crop maize density. Average land equivalent ratios at 3, 4.5, and 6 plants m−1 of maize were 1.09, 1.04, and 0.95 in 2016, and 1.07, 1.10, and 1.02 in 2017. Our results suggest that intercropping performs better at conditions with less resources than adequate resources. The current study explored whether intercropping allows increasing the density of the dominant species in terms of plants per meter row above what is optimal in sole cropping. The results demonstrating a different maize yield‐density response in intercropping with sole maize and contradict the notion that the optimal density of a dominant species is higher in intercropping than in sole cropping.
AbstractList Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow cultivating the dominant species at an increased density in intercropping to obtain greater yield. However, experimental results are inconclusive when the optimal within row density in the sole crop is not well established. Here, we conducted a two‐year experiment to test the hypothesis that optimal within row plant density of dominant species in intercropping would be higher in the intercrop than in the sole crop. We tested three maize densities (3, 4.5, and 6 plants m−1) in both sole maize and two replacement designed intercrops. The row configurations of two intercrops are two rows maize intercropped with four rows peanut (M2P4) and four rows maize intercropped with four rows peanut (M4P4). Peanut was grown at the same plant density of 12 plants m−1 row in both sole crop and intercrops. The results indicated that increasing maize density from the optimal density in monoculture is not worthy of promotion to improve yield in intercropping, which denied our hypothesis. The land equivalent ratios (LER) in the dry year (2017) were higher than the wet year (2016). Maize yields per unit area of the whole intercropping system were highest with densities of 4.5 and 6 plants m−1 row, with no significant difference between these two densities. Maximum maize yields in sole cropping were obtained with maize densities of 6 plants m−1 row. Intercropping provided higher yields at low and intermediate sole crop maize densities, but not at high sole crop maize density. Average land equivalent ratios at 3, 4.5, and 6 plants m−1 of maize were 1.09, 1.04, and 0.95 in 2016, and 1.07, 1.10, and 1.02 in 2017. Our results suggest that intercropping performs better at conditions with less resources than adequate resources.
Abstract Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow cultivating the dominant species at an increased density in intercropping to obtain greater yield. However, experimental results are inconclusive when the optimal within row density in the sole crop is not well established. Here, we conducted a two‐year experiment to test the hypothesis that optimal within row plant density of dominant species in intercropping would be higher in the intercrop than in the sole crop. We tested three maize densities (3, 4.5, and 6 plants m−1) in both sole maize and two replacement designed intercrops. The row configurations of two intercrops are two rows maize intercropped with four rows peanut (M2P4) and four rows maize intercropped with four rows peanut (M4P4). Peanut was grown at the same plant density of 12 plants m−1 row in both sole crop and intercrops. The results indicated that increasing maize density from the optimal density in monoculture is not worthy of promotion to improve yield in intercropping, which denied our hypothesis. The land equivalent ratios (LER) in the dry year (2017) were higher than the wet year (2016). Maize yields per unit area of the whole intercropping system were highest with densities of 4.5 and 6 plants m−1 row, with no significant difference between these two densities. Maximum maize yields in sole cropping were obtained with maize densities of 6 plants m−1 row. Intercropping provided higher yields at low and intermediate sole crop maize densities, but not at high sole crop maize density. Average land equivalent ratios at 3, 4.5, and 6 plants m−1 of maize were 1.09, 1.04, and 0.95 in 2016, and 1.07, 1.10, and 1.02 in 2017. Our results suggest that intercropping performs better at conditions with less resources than adequate resources.
Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow cultivating the dominant species at an increased density in intercropping to obtain greater yield. However, experimental results are inconclusive when the optimal within row density in the sole crop is not well established. Here, we conducted a two‐year experiment to test the hypothesis that optimal within row plant density of dominant species in intercropping would be higher in the intercrop than in the sole crop. We tested three maize densities (3, 4.5, and 6 plants m −1 ) in both sole maize and two replacement designed intercrops. The row configurations of two intercrops are two rows maize intercropped with four rows peanut (M2P4) and four rows maize intercropped with four rows peanut (M4P4). Peanut was grown at the same plant density of 12 plants m −1 row in both sole crop and intercrops. The results indicated that increasing maize density from the optimal density in monoculture is not worthy of promotion to improve yield in intercropping, which denied our hypothesis. The land equivalent ratios (LER) in the dry year (2017) were higher than the wet year (2016). Maize yields per unit area of the whole intercropping system were highest with densities of 4.5 and 6 plants m −1 row, with no significant difference between these two densities. Maximum maize yields in sole cropping were obtained with maize densities of 6 plants m −1 row. Intercropping provided higher yields at low and intermediate sole crop maize densities, but not at high sole crop maize density. Average land equivalent ratios at 3, 4.5, and 6 plants m −1 of maize were 1.09, 1.04, and 0.95 in 2016, and 1.07, 1.10, and 1.02 in 2017. Our results suggest that intercropping performs better at conditions with less resources than adequate resources.
Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow cultivating the dominant species at an increased density in intercropping to obtain greater yield. However, experimental results are inconclusive when the optimal within row density in the sole crop is not well established. Here, we conducted a two‐year experiment to test the hypothesis that optimal within row plant density of dominant species in intercropping would be higher in the intercrop than in the sole crop. We tested three maize densities (3, 4.5, and 6 plants m−1) in both sole maize and two replacement designed intercrops. The row configurations of two intercrops are two rows maize intercropped with four rows peanut (M2P4) and four rows maize intercropped with four rows peanut (M4P4). Peanut was grown at the same plant density of 12 plants m−1 row in both sole crop and intercrops. The results indicated that increasing maize density from the optimal density in monoculture is not worthy of promotion to improve yield in intercropping, which denied our hypothesis. The land equivalent ratios (LER) in the dry year (2017) were higher than the wet year (2016). Maize yields per unit area of the whole intercropping system were highest with densities of 4.5 and 6 plants m−1 row, with no significant difference between these two densities. Maximum maize yields in sole cropping were obtained with maize densities of 6 plants m−1 row. Intercropping provided higher yields at low and intermediate sole crop maize densities, but not at high sole crop maize density. Average land equivalent ratios at 3, 4.5, and 6 plants m−1 of maize were 1.09, 1.04, and 0.95 in 2016, and 1.07, 1.10, and 1.02 in 2017. Our results suggest that intercropping performs better at conditions with less resources than adequate resources. The current study explored whether intercropping allows increasing the density of the dominant species in terms of plants per meter row above what is optimal in sole cropping. The results demonstrating a different maize yield‐density response in intercropping with sole maize and contradict the notion that the optimal density of a dominant species is higher in intercropping than in sole cropping.
Author Stomph, Tjeerd‐Jan
Zhang, Lizhen
Werf, Wopke
Zhang, Yue
Evers, Jochem B.
Wang, Qi
Zhang, Dongsheng
Feng, Chen
Sun, Zhanxiang
Wang, Ruonan
Bai, Wei
Author_xml – sequence: 1
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Wageningen University
– sequence: 2
  givenname: Wei
  surname: Bai
  fullname: Bai, Wei
  organization: Liaoning Academy of Agricultural Sciences
– sequence: 3
  givenname: Zhanxiang
  surname: Sun
  fullname: Sun, Zhanxiang
  organization: Liaoning Academy of Agricultural Sciences
– sequence: 4
  givenname: Dongsheng
  surname: Zhang
  fullname: Zhang, Dongsheng
  organization: Shanxi Agricultural University
– sequence: 5
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: China Agricultural University
– sequence: 6
  givenname: Ruonan
  surname: Wang
  fullname: Wang, Ruonan
  organization: China Agricultural University
– sequence: 7
  givenname: Jochem B.
  surname: Evers
  fullname: Evers, Jochem B.
  organization: Wageningen University
– sequence: 8
  givenname: Tjeerd‐Jan
  surname: Stomph
  fullname: Stomph, Tjeerd‐Jan
  organization: Wageningen University
– sequence: 9
  givenname: Wopke
  surname: Werf
  fullname: Werf, Wopke
  organization: Wageningen University
– sequence: 10
  givenname: Chen
  surname: Feng
  fullname: Feng, Chen
  organization: Liaoning Academy of Agricultural Sciences
– sequence: 11
  givenname: Lizhen
  orcidid: 0000-0003-1606-6824
  surname: Zhang
  fullname: Zhang, Lizhen
  email: zhanglizhen@cau.edu.cn
  organization: China Agricultural University
BookMark eNp1kU9rGzEQxUVJIakT6EcQ9NLLOvrv3VMpadIGAj0kd6GVRrHMWtpKMsHfvrKdQinpXDSI33vMzPuAzmKKgNBHSpaUEHbtofAlW5F36IIR0XdcDeLsr_4cXZWyIa16pegwXKDyLUHBGdzOgsMh1mzKDDb4YLFN2xlqqCFFnDyua8AubUM0seIj1JQhHkSQbU5zwWaa0gv2KWOD1-F5DRnPad5N5ujhIJZQ918u0XtvpgJXr-8CPd3dPt386B5-fr-_-frQWcEZ6SyzaqUGL4UVYDlfrSio0RA3Dr1ho7C9G0ag0htpvDPGMOmp47wnznogfIHuT7YumY2ec9iavNfJBH38SPlZm1yDnUAzD4pxKkYrieAKBiM985I1VypYM12gTyevOadfOyhVb9Iuxza9ZpJJpRTvWaOWJ6pdo5QMXttQj7u3s4ZJU6IPMelDTLrF1ASf_xH8GfMNtDuhL2GC_X85fXf7yA_8byE8pTo
CitedBy_id crossref_primary_10_1007_s42729_024_01708_x
crossref_primary_10_1016_j_cj_2021_09_010
crossref_primary_10_1155_aia_8847195
crossref_primary_10_1073_pnas_2201886120
crossref_primary_10_1002_fes3_364
crossref_primary_10_3390_agronomy11061225
crossref_primary_10_1016_j_fcr_2024_109647
crossref_primary_10_1016_j_jafr_2022_100404
crossref_primary_10_1016_j_fcr_2024_109513
crossref_primary_10_1002_agj2_20828
crossref_primary_10_59983_s2024020403
crossref_primary_10_1016_j_fcr_2025_109833
crossref_primary_10_1016_j_scitotenv_2022_157970
crossref_primary_10_1002_fes3_319
crossref_primary_10_1016_j_agsy_2022_103584
crossref_primary_10_3390_plants13223193
crossref_primary_10_1016_j_jafr_2024_101229
crossref_primary_10_1016_j_cj_2024_10_010
crossref_primary_10_3390_agronomy14030527
crossref_primary_10_3389_fpls_2024_1344110
Cites_doi 10.1016/j.scitotenv.2018.11.376
10.1023/A:1011909414400
10.1016/j.fcr.2020.107926
10.1016/S0378-4290(01)00126-5
10.2307/1941795
10.1023/A:1004724219988
10.1016/j.eja.2017.09.008
10.1016/j.agwat.2009.09.011
10.2134/agronj2011.0205
10.1017/CBO9780511623523
10.1016/S0378-3774(02)00177-4
10.1016/S1161-0301(00)00080-0
10.1016/j.scitotenv.2017.10.024
10.1007/s13593-014-0277-7
10.1016/j.fcr.2011.01.011
10.2307/2403711
10.5194/hess-11-1633-2007
10.2134/agronj2003.0241
10.1016/0022-5193(80)90297-0
10.1016/j.agwat.2018.09.001
10.1016/j.fcr.2017.12.010
10.1016/j.fcr.2010.11.006
10.1016/j.fcr.2017.09.023
10.1046/j.1365-2745.2003.00805.x
10.1016/j.fcr.2019.107661
10.1016/j.fcr.2019.107613
10.1016/bs.agron.2019.10.002
10.2135/cropsci2016.02.0083
10.1016/j.eja.2011.02.007
10.1038/srep17592
10.2134/agronj2018.04.0275
10.1016/j.fcr.2020.107819
10.1023/A:1022352229863
10.2134/agronj2003.1475
10.1016/j.eja.2016.05.009
10.1016/j.jplph.2007.01.016
10.1016/S0167-8809(01)00278-X
10.1111/gcb.12738
10.3390/agronomy9030150
10.2134/agronj14.0263
10.1016/j.fcr.2012.09.019
10.1093/oxfordjournals.aob.a086699
10.1079/9780851994178.0000
10.1016/S0378-4290(02)00124-7
10.1146/annurev-phyto-082712-102246
10.1016/0169-5347(90)90095-U
10.1016/B978-0-12-384719-5.00363-4
10.1017/S0014479700010796
10.1016/j.fcr.2015.09.010
10.1007/s11258-016-0616-7
10.1016/S0378-4290(01)00156-3
10.1007/s00442-009-1333-x
10.1038/188342a0
10.1007/BF01867035
10.1007/s11104-015-2619-x
10.5194/bg-14-3851-2017
10.2134/agronj2006.0205
10.1007/s11269-008-9383-0
10.1007/s10658-019-01711-4
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7QH
7ST
7UA
7X2
8FE
8FG
8FH
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
F1W
GNUQQ
H97
HCIFZ
L.G
L6V
M0K
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.1002/fes3.270
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Agricultural Science Database
ProQuest Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2048-3694
EndPage 298
ExternalDocumentID oai_doaj_org_article_2fe62314bc50436e9a5f2f52daa1421d
10_1002_fes3_270
FES3270
Genre article
GrantInformation_xml – fundername: China Institute of Water Resources and Hydropower Research Team Construction and Talent Development Project
  funderid: JZ0145B752017
– fundername: China Scholarship Council
  funderid: 201706350221
– fundername: International Cooperation and Exchange of the National Science Foundation of China
  funderid: 31461143025
– fundername: National Key R&D Program of China
  funderid: 2016YFD0300202
– fundername: European Union’s Horizon 2020 Programme for Research and Innovation
  funderid: 727217
GroupedDBID 0R~
1OC
24P
31~
5VS
7X2
7XC
8-0
8-1
8FE
8FG
8FH
AAFWJ
AAHBH
AAHHS
AAZKR
ABDBF
ABJCF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
D-8
D-9
EBS
ECGQY
EJD
ESX
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ITC
KQ8
L6V
M0K
M7S
M~E
O9-
OK1
PATMY
PIMPY
PROAC
PTHSS
PYCSY
WIN
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
3V.
7QH
7ST
7UA
8FK
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
F1W
GNUQQ
H97
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c4320-c2c6769f54c4ec33771e6ba0db98a2b4c8d9be15fa5afdaaa25f1d3380dcfe03
IEDL.DBID BENPR
ISSN 2048-3694
IngestDate Wed Aug 27 01:31:28 EDT 2025
Wed Aug 13 08:53:20 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Tue Jul 01 02:56:15 EDT 2025
Wed Jan 22 16:29:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4320-c2c6769f54c4ec33771e6ba0db98a2b4c8d9be15fa5afdaaa25f1d3380dcfe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1606-6824
OpenAccessLink https://www.proquest.com/docview/2525666382?pq-origsite=%requestingapplication%
PQID 2525666382
PQPubID 2032546
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_2fe62314bc50436e9a5f2f52daa1421d
proquest_journals_2525666382
crossref_citationtrail_10_1002_fes3_270
crossref_primary_10_1002_fes3_270
wiley_primary_10_1002_fes3_270_FES3270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Food and energy security
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 35
2015; 184
2010; 97
2013; 2
2009; 160
1980; 83
2001b; 236
1983; 7
2020; 160
2020; 246
2015; 107
2003; 95
1993; 3
2016; 79
2001; 87
1984; 53
2003; 91
2003; 248
2001
2015; 379
2020; 253
2018; 217
2013; 51
2001a; 70
2018; 615
2020; 257
2012; 138
2001; 14
2019; 111
2011; 121
1989
2011; 120
2019; 154
2009; 23
2001; 71
2019; 9
2015; 5
2011; 1
2002; 79
2007
2011; 34
1989; 26
2012; 104
2008; 165
2007; 11
2007; 99
2017; 214
1980; 16
2017; 91
2017; 17
2016; 217
2017; 57
1960; 188
2015; 21
1956; 7
2005; 97
2019; 212
2015
2000; 220
2019; 657
2003; 61
1990; 5
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
FAO (e_1_2_7_15_1) 2015
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Yahuza I. (e_1_2_7_53_1) 2011; 1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Bolker B. (e_1_2_7_7_1) 2007
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
Shinozaki K. (e_1_2_7_37_1) 1956; 7
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 35
  start-page: 911
  year: 2015
  end-page: 935
  article-title: Ecological principles underlying the increase of productivity achieved by cereal‐grain legume intercrops in organic farming. A review
  publication-title: Agronomy for Sustainable Development
– volume: 246
  year: 2020
  article-title: Modelling water use in wheat‐maize relay strip intercropping: Model description, calibration and testing
  publication-title: Field Crops Research
– volume: 1
  start-page: 1
  year: 2011
  end-page: 17
  article-title: Yield‐density equations and their application for agronomic research: A review
  publication-title: International Journal of Biosciences
– volume: 5
  start-page: 360
  year: 1990
  end-page: 364
  article-title: Asymmetric competition in plant populations
  publication-title: Trends in Ecology & Evolution
– year: 2001
– volume: 87
  start-page: 191
  year: 2001
  end-page: 207
  article-title: The information content of indicators in intercropping research
  publication-title: Agriculture, Ecosystems & Environment
– year: 1989
– volume: 236
  start-page: 63
  year: 2001b
  end-page: 74
  article-title: Temporal and spatial distribution of roots and competition for nitrogen in pea‐barley intercrops‐a field study employing P‐32 technique
  publication-title: Plant and Soil
– volume: 2
  start-page: 382
  year: 2013
  end-page: 395
– volume: 160
  start-page: 747
  year: 2009
  end-page: 755
  article-title: Competition, traits and resource depletion in plant communities
  publication-title: Oecologia
– volume: 61
  start-page: 1
  year: 2003
  end-page: 12
  article-title: Measurement of evapotranspiration of irrigated spring wheat and maize in a semi‐arid region of north China
  publication-title: Agricultural Water Management
– volume: 214
  start-page: 283
  year: 2017
  end-page: 290
  article-title: Does maize hybrid intercropping increase yield due to border effects?
  publication-title: Field Crops Research
– volume: 5
  start-page: 17592
  issue: 1
  year: 2015
  article-title: Effects of Long‐term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion
  publication-title: Scientific Reports
– volume: 97
  start-page: 215
  year: 2010
  end-page: 223
  article-title: Water requirements of maize in the middle Heihe River basin, China
  publication-title: Agricultural Water Management
– volume: 16
  start-page: 105
  issue: 2
  year: 1980
  end-page: 116
  article-title: Evaluation of Yield Stability in Intercropping: Studies on Sorghum/Pigeonpea
  publication-title: Experimental Agriculture
– volume: 91
  start-page: 707
  year: 2003
  end-page: 720
  article-title: Indices of plant competition
  publication-title: Journal of Ecology
– volume: 165
  start-page: 490
  year: 2008
  end-page: 503
  article-title: Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline‐sodic‐boron toxic soil
  publication-title: Journal of Plant Physiology
– volume: 188
  start-page: 342
  year: 1960
  article-title: Plant population and crop yield
  publication-title: Nature
– volume: 91
  start-page: 34
  year: 2017
  end-page: 43
  article-title: Plant growth regulator and its interactions with environment and genotype affect maize optimal plant density and yield
  publication-title: European Journal of Agronomy
– volume: 51
  start-page: 499
  year: 2013
  end-page: 519
  article-title: Disease in intercropping systems
  publication-title: Annual Review of Phytopathology
– volume: 7
  start-page: 9
  year: 1983
  end-page: 14
  article-title: Intercropping as cultural pest control: Prospects and limitations
  publication-title: Environmental Management
– volume: 11
  start-page: 1633
  year: 2007
  end-page: 1644
  article-title: Updated world map of the Köppen‐ Geiger climate classification
  publication-title: Hydrology and Earth System Sciences
– volume: 34
  start-page: 287
  year: 2011
  end-page: 294
  article-title: Dry matter yield, nitrogen content, and competition in pea‐cereal intercropping systems
  publication-title: European Journal of Agronomy
– volume: 21
  start-page: 1715
  year: 2015
  end-page: 1726
  article-title: Intercropping enhances soil carbon and nitrogen
  publication-title: Global Change Biology
– volume: 257
  year: 2020
  article-title: Maize plant density affects yield, growth and source‐sink relationship of crops in maize/peanut intercropping
  publication-title: Field Crops Research
– volume: 17
  start-page: 3851
  year: 2017
  end-page: 3858
  article-title: Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize
  publication-title: Biogeosciences
– volume: 53
  start-page: 349
  year: 1984
  end-page: 362
  article-title: Competition within stands of and
  publication-title: Annals of Botany
– volume: 248
  start-page: 305
  year: 2003
  end-page: 312
  article-title: Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient‐use efficiency
  publication-title: Plant and Soil
– volume: 120
  start-page: 345
  year: 2011
  end-page: 351
  article-title: Maize hybrids less dependent on high plant densities improve resource‐use efficiency in rainfed and irrigated conditions
  publication-title: Field Crops Research
– year: 2015
– volume: 3
  start-page: 92
  year: 1993
  end-page: 122
  article-title: Crop rotation and intercropping strategies for weed management
  publication-title: Ecological Applications
– volume: 379
  start-page: 227
  year: 2015
  end-page: 238
  article-title: Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping
  publication-title: Plant and Soil
– volume: 7
  start-page: 35
  year: 1956
  end-page: 72
  article-title: Intraspecific competition among higher plants VII. Logistic theory of the C‐D effect
  publication-title: Journal of the Institute of Polytechnics, Osaka City University. Ser. D, Biology
– volume: 99
  start-page: 984
  year: 2007
  end-page: 991
  article-title: Why do maize hybrids respond differently to variations in plant density?
  publication-title: Agronomy Journal
– volume: 212
  start-page: 203
  year: 2019
  end-page: 210
  article-title: Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain‐fed spring maize in a semi‐arid climate
  publication-title: Agricultural Water Management
– volume: 246
  year: 2020
  article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use. A meta‐analysis
  publication-title: Field Crops Research
– volume: 615
  start-page: 767
  year: 2018
  end-page: 772
  article-title: The new green revolution: Sustainable intensification of agriculture by intercropping
  publication-title: Science of the Total Environment
– volume: 138
  start-page: 11
  year: 2012
  end-page: 20
  article-title: Yield advantage and water saving in maize/pea intercrop
  publication-title: Field Crops Research
– year: 2007
– volume: 79
  start-page: 39
  year: 2002
  end-page: 51
  article-title: Response of Brazilian maize hybrids from different eras to changes in plant density
  publication-title: Field Crops Research
– volume: 57
  start-page: 32
  year: 2017
  end-page: 39
  article-title: Maize stand density yield response of parental inbred lines and derived hybrids
  publication-title: Crop Science
– volume: 97
  start-page: 839
  year: 2005
  end-page: 846
  article-title: Yield response of corn to crowding stress
  publication-title: Agronomy Journal
– volume: 71
  start-page: 123
  year: 2001
  end-page: 137
  article-title: Wheat/maize or wheat/soybean strip intercropping. Ⅰ. Yield advantage and interspecific interactions on nutrients
  publication-title: Field Crops Research
– volume: 657
  start-page: 987
  year: 2019
  end-page: 999
  article-title: Yield advantage and nitrogen fate in an additive maize‐soybean relay intercropping system
  publication-title: Science of the Total Environment
– volume: 23
  start-page: 2317
  year: 2009
  end-page: 2342
  article-title: Comparative assessment of new design criteria for irrigation improvement in Egypt
  publication-title: Water Resources Management
– volume: 217
  start-page: 913
  year: 2016
  end-page: 922
  article-title: Yield‐density relationships of above‐ and belowground organs in var. populations
  publication-title: Plant Ecology
– volume: 79
  start-page: 58
  year: 2016
  end-page: 65
  article-title: Density responses and spatial distribution of cotton yield and yield components in jujube ( )/cotton ( ) agroforestry
  publication-title: European Journal of Agronomy
– volume: 220
  start-page: 13
  year: 2000
  end-page: 25
  article-title: Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil
  publication-title: Plant and Soil
– volume: 107
  start-page: 296
  year: 2015
  end-page: 305
  article-title: Yield response to different planting geometries in maize‐soybean relay strip intercropping systems
  publication-title: Agronomy Journal
– volume: 160
  start-page: 1
  year: 2020
  end-page: 50
  article-title: Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles
  publication-title: Advances in Agronomy
– volume: 253
  year: 2020
  article-title: Border‐row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping
  publication-title: Field Crops Research
– volume: 83
  start-page: 345
  year: 1980
  end-page: 357
  article-title: Density‐dependence in single‐species populations of plants
  publication-title: Journal of Theoretical Biology
– volume: 217
  start-page: 125
  year: 2018
  end-page: 133
  article-title: Optimised sowing date enhances crop resilience towards size‐asymmetric competition and reduces the yield difference between intercropped and sole maize
  publication-title: Field Crops Research
– volume: 9
  year: 2019
  article-title: Impact of increasing maize densities on agronomic performances and the community stability of productivity of maize/peanut intercropping systems
  publication-title: Agronomy
– volume: 184
  start-page: 133
  year: 2015
  end-page: 144
  article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta‐analysis
  publication-title: Field Crops Research
– volume: 121
  start-page: 423
  year: 2011
  end-page: 429
  article-title: Yield response to plant density of maize and sunflower intercropped with soybean
  publication-title: Field Crops Research
– volume: 14
  start-page: 1
  issue: 1
  year: 2001
  end-page: 12
  article-title: Nitrogen fixation by common bean ( L.) in pure and mixed stands in semi‐arid south‐east Kenya
  publication-title: European Journal of Agronomy
– volume: 154
  start-page: 931
  year: 2019
  end-page: 942
  article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer in put; a meta‐analysis
  publication-title: European Journal of Plant Pathology
– volume: 70
  start-page: 101
  year: 2001a
  end-page: 109
  article-title: Interspecific competition N use and interference with weeds in pea‐barley intercropping
  publication-title: Field Crops Research
– volume: 111
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Use of EDAH improves maize morphological and mechanical traits related to lodging
  publication-title: Agronomy Journal
– volume: 95
  start-page: 1475
  year: 2003
  end-page: 1482
  article-title: Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency
  publication-title: Agronomy Journal
– volume: 104
  start-page: 331
  year: 2012
  end-page: 336
  article-title: Density dependence rather than maturity determines hybrid selection in dryland maize production
  publication-title: Agronomy Journal
– volume: 26
  start-page: 1043
  year: 1989
  end-page: 1057
  article-title: Bivariate diagrams for plant competition data: Modifications and interpretation
  publication-title: Journal of Applied Ecology
– ident: e_1_2_7_11_1
  doi: 10.1016/j.scitotenv.2018.11.376
– ident: e_1_2_7_19_1
  doi: 10.1023/A:1011909414400
– ident: e_1_2_7_57_1
  doi: 10.1016/j.fcr.2020.107926
– ident: e_1_2_7_18_1
  doi: 10.1016/S0378-4290(01)00126-5
– ident: e_1_2_7_27_1
  doi: 10.2307/1941795
– ident: e_1_2_7_64_1
  doi: 10.1023/A:1004724219988
– volume: 7
  start-page: 35
  year: 1956
  ident: e_1_2_7_37_1
  article-title: Intraspecific competition among higher plants VII. Logistic theory of the C‐D effect
  publication-title: Journal of the Institute of Polytechnics, Osaka City University. Ser. D, Biology
– ident: e_1_2_7_61_1
  doi: 10.1016/j.eja.2017.09.008
– ident: e_1_2_7_63_1
  doi: 10.1016/j.agwat.2009.09.011
– ident: e_1_2_7_5_1
  doi: 10.2134/agronj2011.0205
– volume-title: World reference base for soil resources 2014: International soil classification systems for naming soil and creating legends for soil maps
  year: 2015
  ident: e_1_2_7_15_1
– ident: e_1_2_7_43_1
  doi: 10.1017/CBO9780511623523
– ident: e_1_2_7_25_1
  doi: 10.1016/S0378-3774(02)00177-4
– ident: e_1_2_7_29_1
  doi: 10.1016/S1161-0301(00)00080-0
– ident: e_1_2_7_31_1
  doi: 10.1016/j.scitotenv.2017.10.024
– ident: e_1_2_7_4_1
  doi: 10.1007/s13593-014-0277-7
– ident: e_1_2_7_14_1
  doi: 10.1016/j.fcr.2011.01.011
– ident: e_1_2_7_38_1
  doi: 10.2307/2403711
– ident: e_1_2_7_32_1
  doi: 10.5194/hess-11-1633-2007
– ident: e_1_2_7_17_1
  doi: 10.2134/agronj2003.0241
– ident: e_1_2_7_48_1
  doi: 10.1016/0022-5193(80)90297-0
– ident: e_1_2_7_62_1
  doi: 10.1016/j.agwat.2018.09.001
– ident: e_1_2_7_20_1
  doi: 10.1016/j.fcr.2017.12.010
– ident: e_1_2_7_42_1
  doi: 10.1016/j.fcr.2010.11.006
– volume: 1
  start-page: 1
  year: 2011
  ident: e_1_2_7_53_1
  article-title: Yield‐density equations and their application for agronomic research: A review
  publication-title: International Journal of Biosciences
– ident: e_1_2_7_47_1
  doi: 10.1016/j.fcr.2017.09.023
– ident: e_1_2_7_49_1
  doi: 10.1046/j.1365-2745.2003.00805.x
– ident: e_1_2_7_52_1
  doi: 10.1016/j.fcr.2019.107661
– ident: e_1_2_7_41_1
  doi: 10.1016/j.fcr.2019.107613
– ident: e_1_2_7_39_1
  doi: 10.1016/bs.agron.2019.10.002
– ident: e_1_2_7_3_1
  doi: 10.2135/cropsci2016.02.0083
– ident: e_1_2_7_28_1
  doi: 10.1016/j.eja.2011.02.007
– ident: e_1_2_7_40_1
  doi: 10.1038/srep17592
– ident: e_1_2_7_59_1
  doi: 10.2134/agronj2018.04.0275
– ident: e_1_2_7_46_1
  doi: 10.1016/j.fcr.2020.107819
– ident: e_1_2_7_58_1
  doi: 10.1023/A:1022352229863
– ident: e_1_2_7_2_1
  doi: 10.2134/agronj2003.1475
– ident: e_1_2_7_45_1
  doi: 10.1016/j.eja.2016.05.009
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jplph.2007.01.016
– ident: e_1_2_7_13_1
  doi: 10.1016/S0167-8809(01)00278-X
– ident: e_1_2_7_12_1
  doi: 10.1111/gcb.12738
– ident: e_1_2_7_51_1
  doi: 10.3390/agronomy9030150
– ident: e_1_2_7_54_1
  doi: 10.2134/agronj14.0263
– ident: e_1_2_7_30_1
  doi: 10.1016/j.fcr.2012.09.019
– volume-title: Ecological models and data in R
  year: 2007
  ident: e_1_2_7_7_1
– ident: e_1_2_7_10_1
  doi: 10.1093/oxfordjournals.aob.a086699
– ident: e_1_2_7_16_1
  doi: 10.1079/9780851994178.0000
– ident: e_1_2_7_35_1
  doi: 10.1016/S0378-4290(02)00124-7
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev-phyto-082712-102246
– ident: e_1_2_7_50_1
  doi: 10.1016/0169-5347(90)90095-U
– ident: e_1_2_7_26_1
  doi: 10.1016/B978-0-12-384719-5.00363-4
– ident: e_1_2_7_33_1
  doi: 10.1017/S0014479700010796
– ident: e_1_2_7_55_1
  doi: 10.1016/j.fcr.2015.09.010
– ident: e_1_2_7_24_1
  doi: 10.1007/s11258-016-0616-7
– ident: e_1_2_7_23_1
  doi: 10.1016/S0378-4290(01)00156-3
– ident: e_1_2_7_44_1
  doi: 10.1007/s00442-009-1333-x
– ident: e_1_2_7_6_1
  doi: 10.1038/188342a0
– ident: e_1_2_7_34_1
  doi: 10.1007/BF01867035
– ident: e_1_2_7_60_1
  doi: 10.1007/s11104-015-2619-x
– ident: e_1_2_7_9_1
  doi: 10.5194/bg-14-3851-2017
– ident: e_1_2_7_36_1
  doi: 10.2134/agronj2006.0205
– ident: e_1_2_7_22_1
  doi: 10.1007/s11269-008-9383-0
– ident: e_1_2_7_56_1
  doi: 10.1007/s10658-019-01711-4
SSID ssj0000866199
Score 2.3159568
Snippet Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow...
Abstract Dominant species in intercropping experience less resource competition compared with its monoculture. This reduced competition for resources may allow...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 285
SubjectTerms Agricultural practices
Agricultural production
Biological competition
Cereal crops
Competition
Corn
Crop yield
Crops
density
Dominant species
Equivalence
Experiments
Hypotheses
Intercropping
intraspecific competition
land equivalent ratio
Land use
Legumes
Monoculture
Monoculture (aquaculture)
Nitrogen
Peanuts
Planting density
Population density
Ratios
Resources
row configuration
Sole cropping
yield
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXEURP1TaPbnsSX4sIelHBW0iTiQqyu2xXxH_vTNpdVlC8eCqkCYSZaeZL8-Ubxg4AgkuLUieQ-yJRkNukEl4l3gU6PnRSKboofHuXXz-qmyf9NFPqizhhjTxwY7gTEQAzdKYqR1pbOZRWBxG08NZmSmSeVl_MeTObqbgGF5h3ynKiNpuKkwC1PBZUk3gm_0SZ_m_YchahxhTTW2ZLLTbkZ82cVtgc9FfZ4tnzqNXHgDVWXw6g5iPSWwXPX-nPLN2VJL4PdxECRwoWHwSOyI77QcN04bETjnzt0yAYUeGumtOh-wdH2Motf4mEDz6cFvTinrjt48_TdfbQu3q4uE7augmJU3Qh2glHxNWglVPgpOx2M8grm_qqLKyolCt8WUGmg9U2oB2t0CHzuFdN0UOQyg023x_0YZNxX2hs8KQ32lWl7RbS-9Rp5xB2Salshx1NjGlcqylOpS3eTKOGLAyZ3aDZO2x_2nPY6Gj80Oec_DF9T8rXsQHjwbTxYP6Khw7bmXjTtJ9jbYRGZIfYqhAddhg9_OskTO_qXuJz6z8ms80WBHFgIkFyh82PR--wiyBmXO3FeP0CjVnypA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8UwEA6iFz2IKz43Ioieqm2WLidxe4igCCp4C2kyUUFepX0i_nszaV9VUPBUSCfQZjrNl-SbbwjZBXAmzgsZQWrzSECqo5JZEVnj8PjQcCEwUfjqOr24F5cP8qFjVWIuTKsP0W-4YWSE_zUGuC6bwy_RUAcNP2CZX67PYGYt0vmYuOn3VzxUT9vykShNG_G0EBPt2ZgdTjr_mI2CaP8PpPkdr4YJZ7hA5jukSI9b1y6SKRgtkbnjx7pTy4Bl0pxV0NAa1VfB0mfcp8XMSWT_UBMAcSBk0cpRj_OorVreCw1GvufzCDtBjWW8GopH8O_Ug1iq6VOgf9DXvrwXtch0H38crZC74fnd6UXUVVGIjMD0aMMM0lidFEaA4TzLEkhLHduyyDUrhcltUUIinZbaWa01ky6xfuUae39BzFfJ9KgawRqhNpe-waL6aCYKneXc2thIYzwI41zoAdmfDKYyncI4Frp4Ua02MlM47MoP-4Ds9JavrarGLzYn6I_-Pupgh4aqflRdWCnmwOO3RJQGldhSKLR0zEnm3yMRLLEDsjnxpuqCs1FMepznkVbOBmQvePjPh1DD81vur-v_NdwgswxZL4ESuUmmx_UbbHnYMi63w_f5CX6Z63U
  priority: 102
  providerName: Wiley-Blackwell
Title Does reduced intraspecific competition of the dominant species in intercrops allow for a higher population density?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffes3.270
https://www.proquest.com/docview/2525666382
https://doaj.org/article/2fe62314bc50436e9a5f2f52daa1421d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOFU-xUFZGQnAKTfzIOqeqhV0qJKoKitSb5djjthLabJNFiH-Px-tdigRcEsmxo8Tjx-fx528AXiEGV-pGFVh7XUisbdFyLwvvAm0fOiElHRT-dFqffJUfL9RFdrgNmVa5GRPTQO07Rz7yA67i5BynR80PlzcFRY2i3dUcQmMHduMQrPUIdo9np2eft16WCNjjCqHZqM6W_CDgIN5yik18ax5Kcv1_YMzbSDVNNfP7sJcxIjtaG_UB3MHFQ7h3dNlnnQx8BMP7DgfWk-4qenZNHlo6M0m8H-YSFE5ULNYFFhEe892a8cJSpljyekGFsKcAXgOjzfcfLMJXZtlVIn6w5TawF_PEcV_9PHwM5_PZ-buTIsdPKJykg9GOOyKwBiWdRCfEdFph3drSt422vJVO-6bFSgWrbPDWWq5C5eOatYyWwlI8gdGiW-BTYF6rmOBJd3QqGzvVwvvSKeci_BJC2jG82VSmcVlbnEJcfDNrVWRuqNpNrPYxvNzmXK71NP6S55jssX1OCtgpoesvTe5QhgeMyK2SrSMNthobqwIPisf_qCSv_Bj2N9Y0uVsO5ncjGsPrZOF_foSZz76IeH_2__c8h7ucWC6JArkPo1X_HV9EmLJqJ7DD5Vm86vmHSW6Xk7Tk_wUHL-5Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNsKWAkHqfQxI9sckBVoV229HFhkXqzHHtcKqHNNllU9UfxH5lxkqVIwK2nSI5tJX7NZ_ubbxh7BRBcWpQ6gdwXiYLcJpXwKvEu0PWhk0qRo_DRcT79qj6f6JM19nPwhSFa5bAmxoXa147OyLeERuOM5rEQ24vzhKJG0e3qEEKjGxYHcHmBW7b2_f4u9u9rISZ7s4_TpI8qkDhF7sJOOKJ1Bq2cAifleJxBXtnUV2VhRaVc4csKMh2stsFba4UOmcedXIrfD6nEam-wm0qiISfH9Mmn1ZEO7g5wO1IOErep2ArQyneCAiFfMXoxNsAfgPYqLI52bXKP3e0BKd_pRtB9tgbzB-zOzmnTi3LAQ9bu1tDyhkRewfMzOg4mB00iGXEXcXfkffE6cIST3NcdvYbHTFjybE6FoKFoYS2nm_4LjliZW_4tskz4YhVFjHsi1C8vtx-x2XU062O2Pq_n8IRxX2hM8CRyOlalHRfS-9Rp5xDrSansiL0dGtO4Xsic4ml8N50EszDU7AabfcRernIuOvGOv-T5QP2xek9y2zGhbk5NP3uNCIAwMVOVI8G3HEqrgwha4H9kSmR-xDaH3jT9GtCa3yN2xN7EHv7nR5jJ3heJz43_1_OC3ZrOjg7N4f7xwVN2WxC9JnIvN9n6svkBzxAfLavncVRyZq55FvwCO1EohQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7ULYg-iFdcrRrBy9PYmUwylwcprbtLa3UpWqFvIZNLLcjOOrNS-tP8d56TmVkrqG99GsgkIfd8J_nyHYAXznkTF6WMXGaLSLhMRxW3IrLG0_WhSYWgh8If59n-F_H-RJ5swM_hLQzRKoc1MSzUtjZ0Rr7NJW7OuD0WfNv3tIijyWxn-T0iD1J00zq40-iGyKG7OEfzrX17MMG-fsn5bHr8bj_qPQxERtDTYcMNUTy9FEY4k6Z5nris0rGtykLzSpjClpVLpNdSe6u15tInFq26GOvi4hSzvQabORlFI9jcm86PPq0PeNBWQOOkHARvYyy3a9M3nNwiX9oCg6eAP-DtZZAcdrnZbbjVw1O2242nO7DhFnfh5u5p00t0uHvQTmrXsoYkX51lZ3Q4TM81iXLETEDhgQXGas8QXDJbd2QbFiJhyrMFJXIN-Q5rGd37nzNEzkyzr4FzwpZrn2LMEr1-dbFzH46vomEfwGhRL9xDYLaQGGBJ8jQXpc6L1NrYSGMQ-aWp0GN4PTSmMr2sOXnX-KY6QWauqNkVNvsYnq9jLjspj7_E2aP-WP8n8e0QUDenqp_LinuHoDERlSH5t8yVWnruJcd6JIIndgxbQ2-qfkVo1e_xO4ZXoYf_WQg1m35O8fvo__k8g-s4A9SHg_nhY7jBiWsTiJhbMFo1P9wTBEur6mk_LBmoK54IvwCLay4X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+reduced+intraspecific+competition+of+the+dominant+species+in+intercrops+allow+for+a+higher+population+density%3F&rft.jtitle=Food+and+energy+security&rft.au=Wang%2C+Qi&rft.au=Bai%2C+Wei&rft.au=Sun%2C+Zhanxiang&rft.au=Zhang%2C+Dongsheng&rft.date=2021-05-01&rft.issn=2048-3694&rft.eissn=2048-3694&rft.volume=10&rft.issue=2&rft.spage=285&rft.epage=298&rft_id=info:doi/10.1002%2Ffes3.270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_fes3_270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2048-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2048-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2048-3694&client=summon