Alzheimer’s Disease Detection from Fused PET and MRI Modalities Using an Ensemble Classifier

Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques f...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 5; no. 2; pp. 512 - 538
Main Authors Shukla, Amar, Tiwari, Rajeev, Tiwari, Shamik
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2023
Subjects
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make5020031

Cover

Loading…
Abstract Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques for the detection of AD and its stages still require a greater extent of research. In this study, a multimodal image-fusion method is initially proposed for the fusion of two different modalities, i.e., PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Further, the features obtained from fused and non-fused biomarkers are passed to the ensemble classifier with a Random Forest-based feature selection strategy. Three classes of Alzheimer’s disease are used in this work, namely AD, MCI (Mild Cognitive Impairment) and CN (Cognitive Normal). In the resulting analysis, the Binary classifications, i.e., AD vs. CN and MCI vs. CN, attained an accuracy (Acc) of 99% in both cases. The class AD vs. MCI detection achieved an adequate accuracy (Acc) of 91%. Furthermore, the Multi Class classification, i.e., AD vs. MCI vs. CN, achieved 96% (Acc).
AbstractList Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques for the detection of AD and its stages still require a greater extent of research. In this study, a multimodal image-fusion method is initially proposed for the fusion of two different modalities, i.e., PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Further, the features obtained from fused and non-fused biomarkers are passed to the ensemble classifier with a Random Forest-based feature selection strategy. Three classes of Alzheimer’s disease are used in this work, namely AD, MCI (Mild Cognitive Impairment) and CN (Cognitive Normal). In the resulting analysis, the Binary classifications, i.e., AD vs. CN and MCI vs. CN, attained an accuracy (Acc) of 99% in both cases. The class AD vs. MCI detection achieved an adequate accuracy (Acc) of 91%. Furthermore, the Multi Class classification, i.e., AD vs. MCI vs. CN, achieved 96% (Acc).
Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques for the detection of AD and its stages still require a greater extent of research. In this study, a multimodal image-fusion method is initially proposed for the fusion of two different modalities, i.e., PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Further, the features obtained from fused and non-fused biomarkers are passed to the ensemble classifier with a Random Forest-based feature selection strategy. Three classes of Alzheimer’s disease are used in this work, namely AD, MCI (Mild Cognitive Impairment) and CN (Cognitive Normal). In the resulting analysis, the Binary classifications, i.e., AD vs. CN and MCI vs. CN, attained an accuracy (A[sub.cc] ) of 99% in both cases. The class AD vs. MCI detection achieved an adequate accuracy (A[sub.cc] ) of 91%. Furthermore, the Multi Class classification, i.e., AD vs. MCI vs. CN, achieved 96% (A[sub.cc] ).
Audience Academic
Author Tiwari, Shamik
Shukla, Amar
Tiwari, Rajeev
Author_xml – sequence: 1
  givenname: Amar
  surname: Shukla
  fullname: Shukla, Amar
– sequence: 2
  givenname: Rajeev
  orcidid: 0000-0002-8245-4748
  surname: Tiwari
  fullname: Tiwari, Rajeev
– sequence: 3
  givenname: Shamik
  orcidid: 0000-0002-5987-7101
  surname: Tiwari
  fullname: Tiwari, Shamik
BookMark eNptkcFuEzEQhleoSJTSEy9giSNKGdvr9foYpSmN1AqE2ivWxB4Hh911sTcHOPEafT2ehA1BUFDlg63x9_8zo_95dTSkgarqJYczKQ286fEzKRAAkj-pjoWCelYbA0cP3s-q01K2ACC0qTnUx9XHefftE8We8o_v94Wdx0JYiJ3TSG6MaWAhp55d7Ap59n55w3Dw7PrDil0nj10cIxV2W-KwmT7YcijUrztiiw5LiSFSflE9DdgVOv19n1S3F8ubxeXs6t3b1WJ-NXO15OMs-EaD0SYg6rZxOgApvnYugObgJJhGe-GcEi0F11DbYk1GEmjyREJweVKtDr4-4dbe5dhj_moTRvurkPLGYh6j68iuhQwAyjRerWstAQMGFTyha5tmHfZerw5edzl92VEZ7Tbt8jCNb0UrTCsVl-IvtcHJNA4hjRldH4uzc61a2XJQ9USdPUJNx1Mf3ZRfiFP9H8Hrg8DlVEqm8GcZDnYfs30Q80Tz_2gXR9znNrWJ3aOan_lTq6A
CitedBy_id crossref_primary_10_1186_s12938_024_01204_4
crossref_primary_10_2196_57830
crossref_primary_10_1002_ima_23158
crossref_primary_10_3390_jpm13101496
crossref_primary_10_1007_s42979_024_03486_w
crossref_primary_10_1002_ima_22967
crossref_primary_10_3389_fphys_2024_1380459
crossref_primary_10_1080_14737175_2024_2415985
crossref_primary_10_1007_s42452_024_06440_w
crossref_primary_10_1109_ACCESS_2025_3526684
crossref_primary_10_1016_j_bspc_2023_105407
crossref_primary_10_1016_j_media_2024_103448
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_32628_CSEIT24103123
Cites_doi 10.1016/j.compbiomed.2021.104678
10.3389/fnins.2020.00259
10.1016/j.neuroimage.2014.10.002
10.1016/j.knosys.2020.106688
10.1016/j.neucom.2019.04.093
10.1246/bcsj.20190356
10.1007/s10489-022-04255-z
10.1109/JBHI.2020.2973324
10.1007/978-3-030-59713-9_67
10.1016/j.simpat.2019.102023
10.1016/j.neuroscience.2014.02.017
10.1148/radiol.2018170575
10.1016/j.cmpb.2022.106676
10.21437/Interspeech.2020-2721
10.1109/JBHI.2023.3242354
10.1016/j.neuroimage.2012.01.055
10.1016/j.conb.2021.07.007
10.3390/electronics10030249
10.1038/s41598-020-74399-w
10.1016/j.neuron.2004.09.006
10.1016/j.media.2016.11.002
10.1109/ACCESS.2022.3218621
10.1016/j.jneumeth.2020.108669
10.1109/ICACCS48705.2020.9074248
10.2174/138920210793360943
10.1109/ICC.2016.7510831
10.3389/fdgth.2021.637386
10.1016/j.neurobiolaging.2006.11.010
10.1016/j.neuroimage.2011.10.003
10.3390/diagnostics11112103
10.1007/s12530-022-09467-9
10.1007/s11517-019-01974-3
10.1155/2021/6626728
10.1109/ACCESS.2020.3043715
10.1109/TMI.2021.3077079
10.1016/j.neuroimage.2011.01.008
10.3390/s22197661
10.1038/s41467-022-31037-5
10.3233/JAD-2010-091504
10.1016/j.compmedimag.2019.01.005
10.3390/electronics12051218
10.1212/WNL.0b013e3181c3f293
10.1016/j.neucom.2020.05.087
10.1126/science.7058341
10.1016/j.jbi.2021.103863
10.3390/diagnostics11081473
10.1038/s41598-018-37769-z
10.1016/j.bios.2021.113730
10.1007/978-3-030-88010-1_40
10.1016/j.bspc.2021.103293
10.1016/j.bspc.2022.103500
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/make5020031
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 538
ExternalDocumentID oai_doaj_org_article_b23f00596d5b4730afaf5fdeac866bf1
A758381054
10_3390_make5020031
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PMFND
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c431t-fd670979faa786c7f0e51bccf0710c30967d2cc528efc6e88a4e93e07edee2213
IEDL.DBID DOA
ISSN 2504-4990
IngestDate Wed Aug 27 01:31:36 EDT 2025
Sun Jul 13 04:01:29 EDT 2025
Tue Jun 17 21:39:42 EDT 2025
Tue Jun 10 21:33:56 EDT 2025
Thu Apr 24 23:14:52 EDT 2025
Tue Jul 01 03:11:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-fd670979faa786c7f0e51bccf0710c30967d2cc528efc6e88a4e93e07edee2213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8245-4748
0000-0002-5987-7101
OpenAccessLink https://doaj.org/article/b23f00596d5b4730afaf5fdeac866bf1
PQID 2829835132
PQPubID 5046881
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_b23f00596d5b4730afaf5fdeac866bf1
proquest_journals_2829835132
gale_infotracmisc_A758381054
gale_infotracacademiconefile_A758381054
crossref_primary_10_3390_make5020031
crossref_citationtrail_10_3390_make5020031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 20230501
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Syed (ref_11) 2020; 8
ref_14
Abdelaziz (ref_1) 2021; 121
Abuhmed (ref_37) 2020; 412
ref_57
ref_12
Zhu (ref_15) 2021; 40
ref_54
ref_51
Arora (ref_2) 2020; 93
Alonso (ref_45) 2021; 11
Kang (ref_10) 2021; 136
Liu (ref_41) 2012; 60
Zhang (ref_23) 2011; 55
Zhang (ref_50) 2022; 217
Moons (ref_34) 2022; 72
Zhang (ref_49) 2019; 361
Gamal (ref_44) 2022; 10
Whitehouse (ref_40) 1982; 215
Goenka (ref_8) 2022; 74
ref_29
Moradi (ref_27) 2015; 104
Song (ref_52) 2021; 3
Wang (ref_21) 2010; 11
Buckner (ref_18) 2004; 44
Bi (ref_25) 2020; 24
Wang (ref_56) 2021; 2021
Qiu (ref_33) 2022; 13
Li (ref_24) 2019; 57
ref_36
ref_35
Davatzikos (ref_19) 2008; 29
(ref_42) 2020; 8
Cui (ref_53) 2019; 73
Lee (ref_30) 2019; 9
Liu (ref_26) 2016; 36
Hao (ref_28) 2021; 196
Raji (ref_17) 2009; 73
Riederer (ref_22) 2018; 288
Mirzaei (ref_32) 2022; 72
Mosconi (ref_20) 2010; 20
Liu (ref_31) 2020; 99
ref_47
ref_43
Amlien (ref_16) 2014; 276
Venugopalan (ref_39) 2021; 11
Abuhmed (ref_55) 2021; 213
Ashraf (ref_3) 2014; 13
Pan (ref_13) 2020; 14
ref_48
ref_9
Saleh (ref_46) 2020; 115
Dai (ref_5) 2012; 59
ref_4
Uysal (ref_38) 2020; 337
ref_7
ref_6
References_xml – volume: 136
  start-page: 104678
  year: 2021
  ident: ref_10
  article-title: Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104678
– volume: 14
  start-page: 259
  year: 2020
  ident: ref_13
  article-title: Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00259
– volume: 104
  start-page: 398
  year: 2015
  ident: ref_27
  article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 213
  start-page: 106688
  year: 2021
  ident: ref_55
  article-title: Robust hybrid deep learning models for Alzheimer’s progression detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106688
– volume: 361
  start-page: 185
  year: 2019
  ident: ref_49
  article-title: Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.093
– volume: 93
  start-page: 507
  year: 2020
  ident: ref_2
  article-title: Molecular tools to detect alloforms of A$β$ and Tau: Implications for multiplexing and multimodal diagnosis of Alzheimer’s disease
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20190356
– ident: ref_47
  doi: 10.1007/s10489-022-04255-z
– volume: 24
  start-page: 2973
  year: 2020
  ident: ref_25
  article-title: Multimodal Data Analysis of Alzheimer’s Disease Based on Clustering Evolutionary Random Forest
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2973324
– ident: ref_14
  doi: 10.1007/978-3-030-59713-9_67
– volume: 99
  start-page: 102023
  year: 2020
  ident: ref_31
  article-title: A new machine learning method for identifying Alzheimer’s disease
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2019.102023
– volume: 276
  start-page: 206
  year: 2014
  ident: ref_16
  article-title: Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.02.017
– volume: 288
  start-page: 198
  year: 2018
  ident: ref_22
  article-title: Alzheimer Disease and Mild Cognitive Impairment: Integrated Pulsed Arterial Spin-Labeling MRI and 18F-FDG PET
  publication-title: Radiology
  doi: 10.1148/radiol.2018170575
– volume: 217
  start-page: 106676
  year: 2022
  ident: ref_50
  article-title: BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106676
– ident: ref_57
  doi: 10.21437/Interspeech.2020-2721
– ident: ref_7
  doi: 10.1109/JBHI.2023.3242354
– volume: 60
  start-page: 1106
  year: 2012
  ident: ref_41
  article-title: Ensemble sparse classification of Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.055
– volume: 72
  start-page: 1
  year: 2022
  ident: ref_34
  article-title: Multimodal retinal imaging to detect and understand Alzheimer’s and Parkinson’s disease
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2021.07.007
– volume: 13
  start-page: 1280
  year: 2014
  ident: ref_3
  article-title: Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus
  publication-title: CNS Neurol. Disord.-Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.)
– ident: ref_12
  doi: 10.3390/electronics10030249
– volume: 11
  start-page: 3254
  year: 2021
  ident: ref_39
  article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74399-w
– ident: ref_48
– volume: 44
  start-page: 195
  year: 2004
  ident: ref_18
  article-title: Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.09.006
– volume: 36
  start-page: 123
  year: 2016
  ident: ref_26
  article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.002
– volume: 10
  start-page: 115974
  year: 2022
  ident: ref_44
  article-title: Automatic Early Diagnosis of Alzheimer’s Disease Using 3D Deep Ensemble Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3218621
– volume: 337
  start-page: 108669
  year: 2020
  ident: ref_38
  article-title: Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108669
– ident: ref_35
  doi: 10.1109/ICACCS48705.2020.9074248
– volume: 11
  start-page: 618
  year: 2010
  ident: ref_21
  article-title: Functional genomics of brain aging and Alzheimer’s disease: Focus on selective neuronal vulnerability
  publication-title: Curr. Genom.
  doi: 10.2174/138920210793360943
– ident: ref_54
  doi: 10.1109/ICC.2016.7510831
– volume: 3
  start-page: 637386
  year: 2021
  ident: ref_52
  article-title: An effective multimodal image fusion method using MRI and PET for Alzheimer’s disease diagnosis
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2021.637386
– volume: 29
  start-page: 514
  year: 2008
  ident: ref_19
  article-title: Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.11.010
– volume: 59
  start-page: 2187
  year: 2012
  ident: ref_5
  article-title: Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.003
– ident: ref_4
  doi: 10.3390/diagnostics11112103
– ident: ref_9
  doi: 10.1007/s12530-022-09467-9
– volume: 57
  start-page: 1605
  year: 2019
  ident: ref_24
  article-title: Learning using privileged information improves neuroimaging-based CAD of Alzheimer’s disease: A comparative study
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-01974-3
– volume: 2021
  start-page: 6626728
  year: 2021
  ident: ref_56
  article-title: Assisted Diagnosis of Alzheimer’s Disease Based on Deep Learning and Multimodal Feature Fusion
  publication-title: Complexity
  doi: 10.1155/2021/6626728
– volume: 8
  start-page: 222126
  year: 2020
  ident: ref_11
  article-title: An Ensemble-Learning Based Application to Predict the Earlier Stages of Alzheimer’s Disease (AD)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3043715
– volume: 115
  start-page: 680
  year: 2020
  ident: ref_46
  article-title: Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data
  publication-title: Futur. Gener. Comput. Syst.
– volume: 40
  start-page: 2354
  year: 2021
  ident: ref_15
  article-title: Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077079
– volume: 55
  start-page: 856
  year: 2011
  ident: ref_23
  article-title: The Alzheimer’s Disease Neuroimaging Initiative. Multimodal classification of Alzheimer’s disease and mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: ref_43
  doi: 10.3390/s22197661
– volume: 13
  start-page: 3404
  year: 2022
  ident: ref_33
  article-title: Multimodal deep learning for Alzheimer’s disease dementia assessment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31037-5
– volume: 20
  start-page: 843
  year: 2010
  ident: ref_20
  article-title: Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-2010-091504
– volume: 8
  start-page: 132
  year: 2020
  ident: ref_42
  article-title: Improvement of Alzheimer disease diagnosis (Acc) using ensemble methods
  publication-title: Indones. J. Electr. Eng. Inform. (IJEEI)
– volume: 73
  start-page: 1
  year: 2019
  ident: ref_53
  article-title: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.01.005
– ident: ref_36
  doi: 10.3390/electronics12051218
– volume: 73
  start-page: 1899
  year: 2009
  ident: ref_17
  article-title: Age, Alzheimer disease, and brain structure
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181c3f293
– volume: 412
  start-page: 197
  year: 2020
  ident: ref_37
  article-title: Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.087
– ident: ref_29
– volume: 215
  start-page: 1237
  year: 1982
  ident: ref_40
  article-title: Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain
  publication-title: Science
  doi: 10.1126/science.7058341
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_45
  article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease
  publication-title: Sci. Rep.
– volume: 121
  start-page: 103863
  year: 2021
  ident: ref_1
  article-title: Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2021.103863
– ident: ref_6
  doi: 10.3390/diagnostics11081473
– volume: 9
  start-page: 1952
  year: 2019
  ident: ref_30
  article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37769-z
– volume: 196
  start-page: 113730
  year: 2021
  ident: ref_28
  article-title: Acoustofluidic multimodal diagnostic system for Alzheimer’s disease
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113730
– ident: ref_51
  doi: 10.1007/978-3-030-88010-1_40
– volume: 72
  start-page: 103293
  year: 2022
  ident: ref_32
  article-title: Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103293
– volume: 74
  start-page: 103500
  year: 2022
  ident: ref_8
  article-title: AlzVNet: A volumetric convolutional neural network for (MC) of Alzheimer’s disease through multiple neuroimaging computational approaches
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103500
SSID ssj0002794104
Score 2.373728
Snippet Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 512
SubjectTerms Algorithms
Alzheimer's disease
Artificial intelligence
Automatic classification
Biomarkers
Classification
Classifiers
Cognition & reasoning
Cognitive ability
Diagnosis
ensemble learning
feature-level fusion
Glucose
image fusion
Machine learning
Magnetic resonance imaging
Medical imaging
Metabolism
Methods
multimodality
Neuroimaging
Neurological disorders
PET imaging
Positron emission
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEF5BuPSCqKAiLaA9ICEhWcT2ru2cUIBEgBSEEEicutqf2RaRODQOF068Bq_XJ-mMvUmJ1HL1jix7dmfmm50_xvaFjxEng4yMtS4SXrtIo1mJOiZGdCyctIZqh4dX2fmduLyX9-HCrQpplXOdWCtqN7F0R35EET9EC-g8HT_9imhqFEVXwwiNVbaGKriQLbZ20r-6vlncsiR43NDhaArzUvTvj8b6EWSHUrLiJVNUd-z_n16ujc1gg60HlMh7zbZ-ZitQbrLvvdHLT3gYw_T361vFz5rQCj-DWZ1OVXIqFeGD5wocv-7fcl06Pry54MOJI7CNLjGvEwRwgffLCsZmBLweivng0ThusbtB__b0PArjESKLVn8WeUe91_Ku1zovMpv7DsgYWe4JNdgUfZPcJdbKpABvMygKLaCbQicHB5AkcfqFtcpJCduMI4qROstAOsRX3nW7wtnU6DjXWrg01W12OOeUsqF3OI2wGCn0IYit6h1b22x_QfzUtMz4N9kJsXxBQn2u6weT6Q8VxEaZJPX1hCAnjUBlpL320ju0FkWWGY8vOaANUySN-EFWh6IC_C3qa6V6OYWFEUOKNttZokQpssvL8y1XQYor9ffMff14-Rv7RGPom0TIHdaaTZ9hF8HKzOyFE_kH6pvrQw
  priority: 102
  providerName: ProQuest
Title Alzheimer’s Disease Detection from Fused PET and MRI Modalities Using an Ensemble Classifier
URI https://www.proquest.com/docview/2829835132
https://doaj.org/article/b23f00596d5b4730afaf5fdeac866bf1
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6iuXgRJRHX6NIHIRAY3JnpnsdxNzsbFVZEFDzZ9KMajbtjcNeLB8nfyN_LL7GqZ5RdMHjJZQ4zdeip6u76PurF2L7wMeJkkJGx1kXCaxdpdCtRz8SIjoWT1lDt8PgkO7wQx5fycmHUF-WENe2BG8UdmCT1YUaMk0bgdtRee-kd3hdFlhkfiA_6vAUy9TOE00qBRKMpyEuR1x9M9S3IHqVixUsuKHTq_9d9HJzMaIOtt-iQ95tVbbIPUH9iV_3J4zXcTOH-7-8_Mz5sQip8CPOQRlVzKhHho4cZOH5anXNdOz4-O-LjO0cgG6kwD4kB-IFX9QymZgI8DMO88egUP7OLUXX-_TBqxyJEFr39PPKOeq7lpdc6LzKb-x7IGFXtCS3YFDlJ7hJrZVKAtxkUhRZQptDLwQEkSZxusdX6roZtxhG9SJ1lIB3iKu_KUjibGh3nWguXprrDvr1oStm2ZziNrpgo5A6kVrWg1g7bfxX-1bTKeFtsQCp_FaH-1uEFWl21VlfvWb3DvpLBFJ1CXJDVbTEB_hb1s1L9nMLBiB1Fh-0uSeLpscufX0yu2tM7UxRdRmSKRH3nfyz2C1ujIfVNmuQuW53fP8AeQpm56bKVYvSjyz4OqpPTs27Yw_gcP1XP8m_3PQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKe4ALAgEipYAPRUhIq-6u1_tzQCgliRLaRFWVSj1hvPYYKpJNyaZCcOI1eAkeiidhZn8CkYBbr2vL8o5nPN94_hjbj1yAOBmklxtjvchp62lUK56fB4iOIytNTrnD40k8PIvenMvzLfajzYWhsMr2Tqwuarsw9EZ-QB4_RAtoPL26_ORR1yjyrrYtNGq2OIIvn9FkK1-Oeni-z8Jw0J--HnpNVwHPoLJcec5SybIkc1onaWwS54MMcKeOlK0RCOkTGxojwxSciSFNdQSZAD8BCxCGgcB1b7AdhBkZStHOYX9ycrp-1QmRvdHAqRMBhcj8g7n-CNKnELBgQ_VVHQL-pQcq5Ta4w243qJR3aza6y7aguMfedmdfP8DFHJY_v30vea925fAerKrwrYJTagofXJVg-Ul_ynVh-fh0xMcLS-AeTXBeBSTgAO8XJczzGfCqCeeFQ2V8n51dC-EesO1iUcBDxhE1SR3HIC3iOWezLLJG5DpItI6sELrDXrSUUqapVU4tM2YKbRYiq_qDrB22v558WZfo-Pu0QyL5egrV1a4-LJbvVSOmKg-FqzoSWZlHePlpp510FrVTGse5w0We04Epkn7ckNFNEgP-FtXRUt2E3NCIWaMO29uYiVJrNofbI1fNrVGq3zy--__hp-zmcDo-VsejydEjditE4FUHYe6x7dXyCh4jUFrlTxru5OzddQvEL2pXKUU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiEuCASIQAEfipCQVtldr_fngFBKEjWURFHVSj1hvPYYKpJNyaZCcOI1eBUehydhZn8CkYBbr2vL2h2P5_tmPT-M7UcuQJ4M0suNsV7ktPU0worn5wGy48hKk1Pu8GQaH55Gr8_k2Q770ebCUFhlaxMrQ22Xhv6R9-jGD9kCOk8914RFzAajlxefPOogRTetbTuNWkWO4MtndN_KF-MB7vXTMBwNT14dek2HAc8gcK49Z6l8WZI5rZM0NonzQQb41o6A1wik94kNjZFhCs7EkKY6gkyAn4AFCMNA4LrX2G6CqJh22O7BcDo73vzhCVHV0dmpkwKFyPzeQn8E6VM4WLAFg1W3gH9hQgV0o1vsZsNQeb9WqdtsB4o77G1__vUDnC9g9fPb95IP6msdPoB1FcpVcEpT4aPLEiyfDU-4LiyfHI_5ZGmJ6KM7zqvgBBzgw6KERT4HXjXkPHcIzHfZ6ZUI7h7rFMsC7jOODErqOAZpkds5m2WRNSLXQaJ1ZIXQXfa8lZQyTd1yap8xV-i_kFjVH2Ltsv3N5Iu6XMffpx2QyDdTqMZ29WC5eq-aI6vyULiqO5GVeYSGUDvtpLOIVGkc5w4XeUYbpsgS4AsZ3SQ04GdRTS3VT-hKGvlr1GV7WzPxBJvt4XbLVWNBSvVb3x_8f_gJu44HQb0ZT48eshshcrA6HnOPddarS3iEnGmdP26Uk7N3V30efgHcci1x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s+Disease+Detection+from+Fused+PET+and+MRI+Modalities+Using+an+Ensemble+Classifier&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Shukla%2C+Amar&rft.au=Tiwari%2C+Rajeev&rft.au=Tiwari%2C+Shamik&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=5&rft.issue=2&rft_id=info:doi/10.3390%2Fmake5020031&rft.externalDocID=A758381054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon