Alzheimer’s Disease Detection from Fused PET and MRI Modalities Using an Ensemble Classifier
Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques f...
Saved in:
Published in | Machine learning and knowledge extraction Vol. 5; no. 2; pp. 512 - 538 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-4990 2504-4990 |
DOI | 10.3390/make5020031 |
Cover
Loading…
Abstract | Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques for the detection of AD and its stages still require a greater extent of research. In this study, a multimodal image-fusion method is initially proposed for the fusion of two different modalities, i.e., PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Further, the features obtained from fused and non-fused biomarkers are passed to the ensemble classifier with a Random Forest-based feature selection strategy. Three classes of Alzheimer’s disease are used in this work, namely AD, MCI (Mild Cognitive Impairment) and CN (Cognitive Normal). In the resulting analysis, the Binary classifications, i.e., AD vs. CN and MCI vs. CN, attained an accuracy (Acc) of 99% in both cases. The class AD vs. MCI detection achieved an adequate accuracy (Acc) of 91%. Furthermore, the Multi Class classification, i.e., AD vs. MCI vs. CN, achieved 96% (Acc). |
---|---|
AbstractList | Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques for the detection of AD and its stages still require a greater extent of research. In this study, a multimodal image-fusion method is initially proposed for the fusion of two different modalities, i.e., PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Further, the features obtained from fused and non-fused biomarkers are passed to the ensemble classifier with a Random Forest-based feature selection strategy. Three classes of Alzheimer’s disease are used in this work, namely AD, MCI (Mild Cognitive Impairment) and CN (Cognitive Normal). In the resulting analysis, the Binary classifications, i.e., AD vs. CN and MCI vs. CN, attained an accuracy (Acc) of 99% in both cases. The class AD vs. MCI detection achieved an adequate accuracy (Acc) of 91%. Furthermore, the Multi Class classification, i.e., AD vs. MCI vs. CN, achieved 96% (Acc). Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the detection of AD and its stages has new advancements in terms of single-modality and multimodality approaches. However, sustainable techniques for the detection of AD and its stages still require a greater extent of research. In this study, a multimodal image-fusion method is initially proposed for the fusion of two different modalities, i.e., PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Further, the features obtained from fused and non-fused biomarkers are passed to the ensemble classifier with a Random Forest-based feature selection strategy. Three classes of Alzheimer’s disease are used in this work, namely AD, MCI (Mild Cognitive Impairment) and CN (Cognitive Normal). In the resulting analysis, the Binary classifications, i.e., AD vs. CN and MCI vs. CN, attained an accuracy (A[sub.cc] ) of 99% in both cases. The class AD vs. MCI detection achieved an adequate accuracy (A[sub.cc] ) of 91%. Furthermore, the Multi Class classification, i.e., AD vs. MCI vs. CN, achieved 96% (A[sub.cc] ). |
Audience | Academic |
Author | Tiwari, Shamik Shukla, Amar Tiwari, Rajeev |
Author_xml | – sequence: 1 givenname: Amar surname: Shukla fullname: Shukla, Amar – sequence: 2 givenname: Rajeev orcidid: 0000-0002-8245-4748 surname: Tiwari fullname: Tiwari, Rajeev – sequence: 3 givenname: Shamik orcidid: 0000-0002-5987-7101 surname: Tiwari fullname: Tiwari, Shamik |
BookMark | eNptkcFuEzEQhleoSJTSEy9giSNKGdvr9foYpSmN1AqE2ivWxB4Hh911sTcHOPEafT2ehA1BUFDlg63x9_8zo_95dTSkgarqJYczKQ286fEzKRAAkj-pjoWCelYbA0cP3s-q01K2ACC0qTnUx9XHefftE8We8o_v94Wdx0JYiJ3TSG6MaWAhp55d7Ap59n55w3Dw7PrDil0nj10cIxV2W-KwmT7YcijUrztiiw5LiSFSflE9DdgVOv19n1S3F8ubxeXs6t3b1WJ-NXO15OMs-EaD0SYg6rZxOgApvnYugObgJJhGe-GcEi0F11DbYk1GEmjyREJweVKtDr4-4dbe5dhj_moTRvurkPLGYh6j68iuhQwAyjRerWstAQMGFTyha5tmHfZerw5edzl92VEZ7Tbt8jCNb0UrTCsVl-IvtcHJNA4hjRldH4uzc61a2XJQ9USdPUJNx1Mf3ZRfiFP9H8Hrg8DlVEqm8GcZDnYfs30Q80Tz_2gXR9znNrWJ3aOan_lTq6A |
CitedBy_id | crossref_primary_10_1186_s12938_024_01204_4 crossref_primary_10_2196_57830 crossref_primary_10_1002_ima_23158 crossref_primary_10_3390_jpm13101496 crossref_primary_10_1007_s42979_024_03486_w crossref_primary_10_1002_ima_22967 crossref_primary_10_3389_fphys_2024_1380459 crossref_primary_10_1080_14737175_2024_2415985 crossref_primary_10_1007_s42452_024_06440_w crossref_primary_10_1109_ACCESS_2025_3526684 crossref_primary_10_1016_j_bspc_2023_105407 crossref_primary_10_1016_j_media_2024_103448 crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_32628_CSEIT24103123 |
Cites_doi | 10.1016/j.compbiomed.2021.104678 10.3389/fnins.2020.00259 10.1016/j.neuroimage.2014.10.002 10.1016/j.knosys.2020.106688 10.1016/j.neucom.2019.04.093 10.1246/bcsj.20190356 10.1007/s10489-022-04255-z 10.1109/JBHI.2020.2973324 10.1007/978-3-030-59713-9_67 10.1016/j.simpat.2019.102023 10.1016/j.neuroscience.2014.02.017 10.1148/radiol.2018170575 10.1016/j.cmpb.2022.106676 10.21437/Interspeech.2020-2721 10.1109/JBHI.2023.3242354 10.1016/j.neuroimage.2012.01.055 10.1016/j.conb.2021.07.007 10.3390/electronics10030249 10.1038/s41598-020-74399-w 10.1016/j.neuron.2004.09.006 10.1016/j.media.2016.11.002 10.1109/ACCESS.2022.3218621 10.1016/j.jneumeth.2020.108669 10.1109/ICACCS48705.2020.9074248 10.2174/138920210793360943 10.1109/ICC.2016.7510831 10.3389/fdgth.2021.637386 10.1016/j.neurobiolaging.2006.11.010 10.1016/j.neuroimage.2011.10.003 10.3390/diagnostics11112103 10.1007/s12530-022-09467-9 10.1007/s11517-019-01974-3 10.1155/2021/6626728 10.1109/ACCESS.2020.3043715 10.1109/TMI.2021.3077079 10.1016/j.neuroimage.2011.01.008 10.3390/s22197661 10.1038/s41467-022-31037-5 10.3233/JAD-2010-091504 10.1016/j.compmedimag.2019.01.005 10.3390/electronics12051218 10.1212/WNL.0b013e3181c3f293 10.1016/j.neucom.2020.05.087 10.1126/science.7058341 10.1016/j.jbi.2021.103863 10.3390/diagnostics11081473 10.1038/s41598-018-37769-z 10.1016/j.bios.2021.113730 10.1007/978-3-030-88010-1_40 10.1016/j.bspc.2021.103293 10.1016/j.bspc.2022.103500 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/make5020031 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-4990 |
EndPage | 538 |
ExternalDocumentID | oai_doaj_org_article_b23f00596d5b4730afaf5fdeac866bf1 A758381054 10_3390_make5020031 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC K7- MODMG M~E OK1 PHGZM PHGZT PIMPY PMFND 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c431t-fd670979faa786c7f0e51bccf0710c30967d2cc528efc6e88a4e93e07edee2213 |
IEDL.DBID | DOA |
ISSN | 2504-4990 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Sun Jul 13 04:01:29 EDT 2025 Tue Jun 17 21:39:42 EDT 2025 Tue Jun 10 21:33:56 EDT 2025 Thu Apr 24 23:14:52 EDT 2025 Tue Jul 01 03:11:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-fd670979faa786c7f0e51bccf0710c30967d2cc528efc6e88a4e93e07edee2213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8245-4748 0000-0002-5987-7101 |
OpenAccessLink | https://doaj.org/article/b23f00596d5b4730afaf5fdeac866bf1 |
PQID | 2829835132 |
PQPubID | 5046881 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b23f00596d5b4730afaf5fdeac866bf1 proquest_journals_2829835132 gale_infotracmisc_A758381054 gale_infotracacademiconefile_A758381054 crossref_primary_10_3390_make5020031 crossref_citationtrail_10_3390_make5020031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 20230501 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machine learning and knowledge extraction |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Syed (ref_11) 2020; 8 ref_14 Abdelaziz (ref_1) 2021; 121 Abuhmed (ref_37) 2020; 412 ref_57 ref_12 Zhu (ref_15) 2021; 40 ref_54 ref_51 Arora (ref_2) 2020; 93 Alonso (ref_45) 2021; 11 Kang (ref_10) 2021; 136 Liu (ref_41) 2012; 60 Zhang (ref_23) 2011; 55 Zhang (ref_50) 2022; 217 Moons (ref_34) 2022; 72 Zhang (ref_49) 2019; 361 Gamal (ref_44) 2022; 10 Whitehouse (ref_40) 1982; 215 Goenka (ref_8) 2022; 74 ref_29 Moradi (ref_27) 2015; 104 Song (ref_52) 2021; 3 Wang (ref_21) 2010; 11 Buckner (ref_18) 2004; 44 Bi (ref_25) 2020; 24 Wang (ref_56) 2021; 2021 Qiu (ref_33) 2022; 13 Li (ref_24) 2019; 57 ref_36 ref_35 Davatzikos (ref_19) 2008; 29 (ref_42) 2020; 8 Cui (ref_53) 2019; 73 Lee (ref_30) 2019; 9 Liu (ref_26) 2016; 36 Hao (ref_28) 2021; 196 Raji (ref_17) 2009; 73 Riederer (ref_22) 2018; 288 Mirzaei (ref_32) 2022; 72 Mosconi (ref_20) 2010; 20 Liu (ref_31) 2020; 99 ref_47 ref_43 Amlien (ref_16) 2014; 276 Venugopalan (ref_39) 2021; 11 Abuhmed (ref_55) 2021; 213 Ashraf (ref_3) 2014; 13 Pan (ref_13) 2020; 14 ref_48 ref_9 Saleh (ref_46) 2020; 115 Dai (ref_5) 2012; 59 ref_4 Uysal (ref_38) 2020; 337 ref_7 ref_6 |
References_xml | – volume: 136 start-page: 104678 year: 2021 ident: ref_10 article-title: Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104678 – volume: 14 start-page: 259 year: 2020 ident: ref_13 article-title: Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00259 – volume: 104 start-page: 398 year: 2015 ident: ref_27 article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 213 start-page: 106688 year: 2021 ident: ref_55 article-title: Robust hybrid deep learning models for Alzheimer’s progression detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106688 – volume: 361 start-page: 185 year: 2019 ident: ref_49 article-title: Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.093 – volume: 93 start-page: 507 year: 2020 ident: ref_2 article-title: Molecular tools to detect alloforms of A$β$ and Tau: Implications for multiplexing and multimodal diagnosis of Alzheimer’s disease publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20190356 – ident: ref_47 doi: 10.1007/s10489-022-04255-z – volume: 24 start-page: 2973 year: 2020 ident: ref_25 article-title: Multimodal Data Analysis of Alzheimer’s Disease Based on Clustering Evolutionary Random Forest publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2973324 – ident: ref_14 doi: 10.1007/978-3-030-59713-9_67 – volume: 99 start-page: 102023 year: 2020 ident: ref_31 article-title: A new machine learning method for identifying Alzheimer’s disease publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.102023 – volume: 276 start-page: 206 year: 2014 ident: ref_16 article-title: Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.02.017 – volume: 288 start-page: 198 year: 2018 ident: ref_22 article-title: Alzheimer Disease and Mild Cognitive Impairment: Integrated Pulsed Arterial Spin-Labeling MRI and 18F-FDG PET publication-title: Radiology doi: 10.1148/radiol.2018170575 – volume: 217 start-page: 106676 year: 2022 ident: ref_50 article-title: BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.106676 – ident: ref_57 doi: 10.21437/Interspeech.2020-2721 – ident: ref_7 doi: 10.1109/JBHI.2023.3242354 – volume: 60 start-page: 1106 year: 2012 ident: ref_41 article-title: Ensemble sparse classification of Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.055 – volume: 72 start-page: 1 year: 2022 ident: ref_34 article-title: Multimodal retinal imaging to detect and understand Alzheimer’s and Parkinson’s disease publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2021.07.007 – volume: 13 start-page: 1280 year: 2014 ident: ref_3 article-title: Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus publication-title: CNS Neurol. Disord.-Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.) – ident: ref_12 doi: 10.3390/electronics10030249 – volume: 11 start-page: 3254 year: 2021 ident: ref_39 article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage publication-title: Sci. Rep. doi: 10.1038/s41598-020-74399-w – ident: ref_48 – volume: 44 start-page: 195 year: 2004 ident: ref_18 article-title: Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate publication-title: Neuron doi: 10.1016/j.neuron.2004.09.006 – volume: 36 start-page: 123 year: 2016 ident: ref_26 article-title: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.002 – volume: 10 start-page: 115974 year: 2022 ident: ref_44 article-title: Automatic Early Diagnosis of Alzheimer’s Disease Using 3D Deep Ensemble Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3218621 – volume: 337 start-page: 108669 year: 2020 ident: ref_38 article-title: Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108669 – ident: ref_35 doi: 10.1109/ICACCS48705.2020.9074248 – volume: 11 start-page: 618 year: 2010 ident: ref_21 article-title: Functional genomics of brain aging and Alzheimer’s disease: Focus on selective neuronal vulnerability publication-title: Curr. Genom. doi: 10.2174/138920210793360943 – ident: ref_54 doi: 10.1109/ICC.2016.7510831 – volume: 3 start-page: 637386 year: 2021 ident: ref_52 article-title: An effective multimodal image fusion method using MRI and PET for Alzheimer’s disease diagnosis publication-title: Front. Digit. Health doi: 10.3389/fdgth.2021.637386 – volume: 29 start-page: 514 year: 2008 ident: ref_19 article-title: Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.11.010 – volume: 59 start-page: 2187 year: 2012 ident: ref_5 article-title: Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.003 – ident: ref_4 doi: 10.3390/diagnostics11112103 – ident: ref_9 doi: 10.1007/s12530-022-09467-9 – volume: 57 start-page: 1605 year: 2019 ident: ref_24 article-title: Learning using privileged information improves neuroimaging-based CAD of Alzheimer’s disease: A comparative study publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-01974-3 – volume: 2021 start-page: 6626728 year: 2021 ident: ref_56 article-title: Assisted Diagnosis of Alzheimer’s Disease Based on Deep Learning and Multimodal Feature Fusion publication-title: Complexity doi: 10.1155/2021/6626728 – volume: 8 start-page: 222126 year: 2020 ident: ref_11 article-title: An Ensemble-Learning Based Application to Predict the Earlier Stages of Alzheimer’s Disease (AD) publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3043715 – volume: 115 start-page: 680 year: 2020 ident: ref_46 article-title: Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data publication-title: Futur. Gener. Comput. Syst. – volume: 40 start-page: 2354 year: 2021 ident: ref_15 article-title: Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3077079 – volume: 55 start-page: 856 year: 2011 ident: ref_23 article-title: The Alzheimer’s Disease Neuroimaging Initiative. Multimodal classification of Alzheimer’s disease and mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.008 – ident: ref_43 doi: 10.3390/s22197661 – volume: 13 start-page: 3404 year: 2022 ident: ref_33 article-title: Multimodal deep learning for Alzheimer’s disease dementia assessment publication-title: Nat. Commun. doi: 10.1038/s41467-022-31037-5 – volume: 20 start-page: 843 year: 2010 ident: ref_20 article-title: Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-2010-091504 – volume: 8 start-page: 132 year: 2020 ident: ref_42 article-title: Improvement of Alzheimer disease diagnosis (Acc) using ensemble methods publication-title: Indones. J. Electr. Eng. Inform. (IJEEI) – volume: 73 start-page: 1 year: 2019 ident: ref_53 article-title: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.01.005 – ident: ref_36 doi: 10.3390/electronics12051218 – volume: 73 start-page: 1899 year: 2009 ident: ref_17 article-title: Age, Alzheimer disease, and brain structure publication-title: Neurology doi: 10.1212/WNL.0b013e3181c3f293 – volume: 412 start-page: 197 year: 2020 ident: ref_37 article-title: Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.087 – ident: ref_29 – volume: 215 start-page: 1237 year: 1982 ident: ref_40 article-title: Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain publication-title: Science doi: 10.1126/science.7058341 – volume: 11 start-page: 1 year: 2021 ident: ref_45 article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease publication-title: Sci. Rep. – volume: 121 start-page: 103863 year: 2021 ident: ref_1 article-title: Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2021.103863 – ident: ref_6 doi: 10.3390/diagnostics11081473 – volume: 9 start-page: 1952 year: 2019 ident: ref_30 article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach publication-title: Sci. Rep. doi: 10.1038/s41598-018-37769-z – volume: 196 start-page: 113730 year: 2021 ident: ref_28 article-title: Acoustofluidic multimodal diagnostic system for Alzheimer’s disease publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113730 – ident: ref_51 doi: 10.1007/978-3-030-88010-1_40 – volume: 72 start-page: 103293 year: 2022 ident: ref_32 article-title: Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103293 – volume: 74 start-page: 103500 year: 2022 ident: ref_8 article-title: AlzVNet: A volumetric convolutional neural network for (MC) of Alzheimer’s disease through multiple neuroimaging computational approaches publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103500 |
SSID | ssj0002794104 |
Score | 2.373728 |
Snippet | Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly affects the different regions of the brain. The research into the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 512 |
SubjectTerms | Algorithms Alzheimer's disease Artificial intelligence Automatic classification Biomarkers Classification Classifiers Cognition & reasoning Cognitive ability Diagnosis ensemble learning feature-level fusion Glucose image fusion Machine learning Magnetic resonance imaging Medical imaging Metabolism Methods multimodality Neuroimaging Neurological disorders PET imaging Positron emission |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEF5BuPSCqKAiLaA9ICEhWcT2ru2cUIBEgBSEEEicutqf2RaRODQOF068Bq_XJ-mMvUmJ1HL1jix7dmfmm50_xvaFjxEng4yMtS4SXrtIo1mJOiZGdCyctIZqh4dX2fmduLyX9-HCrQpplXOdWCtqN7F0R35EET9EC-g8HT_9imhqFEVXwwiNVbaGKriQLbZ20r-6vlncsiR43NDhaArzUvTvj8b6EWSHUrLiJVNUd-z_n16ujc1gg60HlMh7zbZ-ZitQbrLvvdHLT3gYw_T361vFz5rQCj-DWZ1OVXIqFeGD5wocv-7fcl06Pry54MOJI7CNLjGvEwRwgffLCsZmBLweivng0ThusbtB__b0PArjESKLVn8WeUe91_Ku1zovMpv7DsgYWe4JNdgUfZPcJdbKpABvMygKLaCbQicHB5AkcfqFtcpJCduMI4qROstAOsRX3nW7wtnU6DjXWrg01W12OOeUsqF3OI2wGCn0IYit6h1b22x_QfzUtMz4N9kJsXxBQn2u6weT6Q8VxEaZJPX1hCAnjUBlpL320ju0FkWWGY8vOaANUySN-EFWh6IC_C3qa6V6OYWFEUOKNttZokQpssvL8y1XQYor9ffMff14-Rv7RGPom0TIHdaaTZ9hF8HKzOyFE_kH6pvrQw priority: 102 providerName: ProQuest |
Title | Alzheimer’s Disease Detection from Fused PET and MRI Modalities Using an Ensemble Classifier |
URI | https://www.proquest.com/docview/2829835132 https://doaj.org/article/b23f00596d5b4730afaf5fdeac866bf1 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6iuXgRJRHX6NIHIRAY3JnpnsdxNzsbFVZEFDzZ9KMajbtjcNeLB8nfyN_LL7GqZ5RdMHjJZQ4zdeip6u76PurF2L7wMeJkkJGx1kXCaxdpdCtRz8SIjoWT1lDt8PgkO7wQx5fycmHUF-WENe2BG8UdmCT1YUaMk0bgdtRee-kd3hdFlhkfiA_6vAUy9TOE00qBRKMpyEuR1x9M9S3IHqVixUsuKHTq_9d9HJzMaIOtt-iQ95tVbbIPUH9iV_3J4zXcTOH-7-8_Mz5sQip8CPOQRlVzKhHho4cZOH5anXNdOz4-O-LjO0cgG6kwD4kB-IFX9QymZgI8DMO88egUP7OLUXX-_TBqxyJEFr39PPKOeq7lpdc6LzKb-x7IGFXtCS3YFDlJ7hJrZVKAtxkUhRZQptDLwQEkSZxusdX6roZtxhG9SJ1lIB3iKu_KUjibGh3nWguXprrDvr1oStm2ZziNrpgo5A6kVrWg1g7bfxX-1bTKeFtsQCp_FaH-1uEFWl21VlfvWb3DvpLBFJ1CXJDVbTEB_hb1s1L9nMLBiB1Fh-0uSeLpscufX0yu2tM7UxRdRmSKRH3nfyz2C1ujIfVNmuQuW53fP8AeQpm56bKVYvSjyz4OqpPTs27Yw_gcP1XP8m_3PQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKe4ALAgEipYAPRUhIq-6u1_tzQCgliRLaRFWVSj1hvPYYKpJNyaZCcOI1eAkeiidhZn8CkYBbr2vL8o5nPN94_hjbj1yAOBmklxtjvchp62lUK56fB4iOIytNTrnD40k8PIvenMvzLfajzYWhsMr2Tqwuarsw9EZ-QB4_RAtoPL26_ORR1yjyrrYtNGq2OIIvn9FkK1-Oeni-z8Jw0J--HnpNVwHPoLJcec5SybIkc1onaWwS54MMcKeOlK0RCOkTGxojwxSciSFNdQSZAD8BCxCGgcB1b7AdhBkZStHOYX9ycrp-1QmRvdHAqRMBhcj8g7n-CNKnELBgQ_VVHQL-pQcq5Ta4w243qJR3aza6y7aguMfedmdfP8DFHJY_v30vea925fAerKrwrYJTagofXJVg-Ul_ynVh-fh0xMcLS-AeTXBeBSTgAO8XJczzGfCqCeeFQ2V8n51dC-EesO1iUcBDxhE1SR3HIC3iOWezLLJG5DpItI6sELrDXrSUUqapVU4tM2YKbRYiq_qDrB22v558WZfo-Pu0QyL5egrV1a4-LJbvVSOmKg-FqzoSWZlHePlpp510FrVTGse5w0We04Epkn7ckNFNEgP-FtXRUt2E3NCIWaMO29uYiVJrNofbI1fNrVGq3zy--__hp-zmcDo-VsejydEjditE4FUHYe6x7dXyCh4jUFrlTxru5OzddQvEL2pXKUU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiEuCASIQAEfipCQVtldr_fngFBKEjWURFHVSj1hvPYYKpJNyaZCcOI1eBUehydhZn8CkYBbr2vL2h2P5_tmPT-M7UcuQJ4M0suNsV7ktPU0worn5wGy48hKk1Pu8GQaH55Gr8_k2Q770ebCUFhlaxMrQ22Xhv6R9-jGD9kCOk8914RFzAajlxefPOogRTetbTuNWkWO4MtndN_KF-MB7vXTMBwNT14dek2HAc8gcK49Z6l8WZI5rZM0NonzQQb41o6A1wik94kNjZFhCs7EkKY6gkyAn4AFCMNA4LrX2G6CqJh22O7BcDo73vzhCVHV0dmpkwKFyPzeQn8E6VM4WLAFg1W3gH9hQgV0o1vsZsNQeb9WqdtsB4o77G1__vUDnC9g9fPb95IP6msdPoB1FcpVcEpT4aPLEiyfDU-4LiyfHI_5ZGmJ6KM7zqvgBBzgw6KERT4HXjXkPHcIzHfZ6ZUI7h7rFMsC7jOODErqOAZpkds5m2WRNSLXQaJ1ZIXQXfa8lZQyTd1yap8xV-i_kFjVH2Ltsv3N5Iu6XMffpx2QyDdTqMZ29WC5eq-aI6vyULiqO5GVeYSGUDvtpLOIVGkc5w4XeUYbpsgS4AsZ3SQ04GdRTS3VT-hKGvlr1GV7WzPxBJvt4XbLVWNBSvVb3x_8f_gJu44HQb0ZT48eshshcrA6HnOPddarS3iEnGmdP26Uk7N3V30efgHcci1x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s+Disease+Detection+from+Fused+PET+and+MRI+Modalities+Using+an+Ensemble+Classifier&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Shukla%2C+Amar&rft.au=Tiwari%2C+Rajeev&rft.au=Tiwari%2C+Shamik&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=5&rft.issue=2&rft_id=info:doi/10.3390%2Fmake5020031&rft.externalDocID=A758381054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |