Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals
The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size rang...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 7; no. 17; p. 3204 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2005
|
Subjects | |
Online Access | Get more information |
ISSN | 1463-9076 |
DOI | 10.1039/b508268b |
Cover
Loading…
Abstract | The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the semiconducting and the conducting states with no change in the oxidation state of the nanocrystal. The newly developed system offers therefore the possibility of an electrical addressing of individual nanocrystals via the conducting ligands. |
---|---|
AbstractList | The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the semiconducting and the conducting states with no change in the oxidation state of the nanocrystal. The newly developed system offers therefore the possibility of an electrical addressing of individual nanocrystals via the conducting ligands. |
Author | Reiss, Peter Sadki, Said Zagorska, Malgorzata Querner, Claudia Pron, Adam |
Author_xml | – sequence: 1 givenname: Claudia surname: Querner fullname: Querner, Claudia organization: DRFMC, UMR 5819 SPrAM (CEA-CNRS-Université J. Fourier Grenoble I), Laboratoire Electronique Moléculaire, Organique et Hybride, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France – sequence: 2 givenname: Peter surname: Reiss fullname: Reiss, Peter – sequence: 3 givenname: Said surname: Sadki fullname: Sadki, Said – sequence: 4 givenname: Malgorzata surname: Zagorska fullname: Zagorska, Malgorzata – sequence: 5 givenname: Adam surname: Pron fullname: Pron, Adam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16240033$$D View this record in MEDLINE/PubMed |
BookMark | eNpdj8tOwzAQRb0oog-Q-ALkHwiMH_FjiSKgSJVYFNaV44xJUOJEcViUrycU2LA6mrl3ru6sySL2EQm5YnDDQNjbMgfDlSkXZMWkEpkFrZZkndI7ALCciXOyZIpLACFWpN43n0hdrGjbvH0DQ0A_JdpHOtVIsZ2nsfc1do137cmZhtPuvzRiGvqYcL4NtKj2SKOLvR-PaXJtuiBnYQZe_nJDXh_uX4pttnt-fCrudpmXgk1ZEN7mAWGuYZAHadAxa0uoghGgeQBhFKuctS54bbWUuS6lFsxYoUEywzfk-id3-Cg7rA7D2HRuPB7-XuZfzlRYfA |
CitedBy_id | crossref_primary_10_1016_j_physe_2005_12_154 crossref_primary_10_1007_s10008_016_3442_x crossref_primary_10_1039_c1jm10538h crossref_primary_10_1039_c3nr03949h crossref_primary_10_3390_ma3010614 crossref_primary_10_1002_adfm_200600955 crossref_primary_10_1016_j_heliyon_2019_e02031 crossref_primary_10_1007_s12274_017_1613_4 crossref_primary_10_1039_C5CP01831E crossref_primary_10_1021_acs_chemmater_6b03493 crossref_primary_10_1021_acs_chemmater_0c03146 crossref_primary_10_1021_acs_inorgchem_0c02468 crossref_primary_10_1002_adma_201201196 crossref_primary_10_1016_j_jics_2025_101633 crossref_primary_10_1039_C5RA16898H crossref_primary_10_1021_ja403701p crossref_primary_10_1039_C0NR00403K crossref_primary_10_1039_C6CC01341D crossref_primary_10_1155_2020_5056875 crossref_primary_10_1002_chem_200800078 crossref_primary_10_1039_c2cs35117j crossref_primary_10_1021_acs_nanolett_4c01790 crossref_primary_10_1021_jacs_2c04680 crossref_primary_10_1039_C8CP06847J crossref_primary_10_1021_jacs_6b00936 crossref_primary_10_1021_jp404556b crossref_primary_10_1021_acs_chemmater_5b04521 crossref_primary_10_1021_nl0732171 crossref_primary_10_1039_b803029d crossref_primary_10_1002_cphc_201100300 crossref_primary_10_1039_C4NR06883A crossref_primary_10_1002_cphc_201001069 crossref_primary_10_1016_j_solmat_2007_11_012 crossref_primary_10_1021_jp8074817 crossref_primary_10_1016_j_saa_2018_01_012 crossref_primary_10_1039_c1jm12557e crossref_primary_10_1007_s10904_013_9914_x crossref_primary_10_1149_2_064302jes crossref_primary_10_1016_j_cocom_2024_e00917 crossref_primary_10_1016_j_nantod_2016_04_005 crossref_primary_10_1007_s12274_023_5688_9 crossref_primary_10_1021_acsenergylett_1c02554 crossref_primary_10_1016_j_synthmet_2017_05_018 crossref_primary_10_1021_acs_jpclett_0c01417 crossref_primary_10_1007_s10895_007_0163_7 crossref_primary_10_1016_j_synthmet_2016_06_013 crossref_primary_10_1002_chem_201101697 crossref_primary_10_1021_nn401274e crossref_primary_10_1155_2019_7516890 crossref_primary_10_1143_JJAP_51_10NE27 crossref_primary_10_1016_j_ccr_2013_07_005 crossref_primary_10_1002_cphc_201501026 crossref_primary_10_1021_nn400826h crossref_primary_10_1002_cphc_200800482 crossref_primary_10_1007_s10895_013_1212_z crossref_primary_10_1155_2013_146582 crossref_primary_10_1021_jacs_6b04888 crossref_primary_10_1039_C4CP00727A crossref_primary_10_1039_D3CP03842D crossref_primary_10_1021_acs_jpcc_8b10318 crossref_primary_10_1155_2019_6095863 crossref_primary_10_1088_2516_1075_ac23a3 crossref_primary_10_1002_sdtp_10949 crossref_primary_10_1039_b921239f crossref_primary_10_1039_C6CP01887D crossref_primary_10_1002_smll_200600581 crossref_primary_10_1007_s00604_007_0899_4 crossref_primary_10_1088_0957_4484_17_15_030 crossref_primary_10_1021_jp111463f crossref_primary_10_1142_S1793984421500021 crossref_primary_10_1016_j_matchemphys_2010_05_054 crossref_primary_10_1016_j_solmat_2011_06_015 crossref_primary_10_1021_cm061105p crossref_primary_10_1016_j_omx_2021_100126 crossref_primary_10_1021_jp403164w crossref_primary_10_1039_C9TC03875B crossref_primary_10_1016_j_matchemphys_2016_04_076 crossref_primary_10_1016_j_jallcom_2015_12_181 crossref_primary_10_1109_JSTQE_2009_2034387 crossref_primary_10_1134_S0018143918010022 crossref_primary_10_1680_jnaen_23_00110 crossref_primary_10_1016_j_jallcom_2023_172315 crossref_primary_10_1039_c3cp50980j crossref_primary_10_1021_nn3007509 crossref_primary_10_1016_j_physb_2017_11_046 crossref_primary_10_1016_j_cplett_2015_05_006 crossref_primary_10_1039_C1JM14829J crossref_primary_10_1016_j_synthmet_2013_10_029 crossref_primary_10_1021_acs_jpclett_8b00109 crossref_primary_10_1021_acs_chemrev_6b00102 crossref_primary_10_1021_acs_jpcc_6b09814 crossref_primary_10_1002_smll_200600089 crossref_primary_10_1007_s11814_013_0029_4 crossref_primary_10_1021_la501533t crossref_primary_10_1039_c0cp02647f crossref_primary_10_1039_c3cp55226h crossref_primary_10_1016_j_jphotochemrev_2014_05_001 crossref_primary_10_1016_j_matchemphys_2014_06_061 crossref_primary_10_1021_jp808351h crossref_primary_10_1039_C6NR03091B crossref_primary_10_7567_JJAP_51_10NE27 crossref_primary_10_1109_TED_2022_3227896 crossref_primary_10_1021_acs_jpcc_5b02402 crossref_primary_10_1088_0957_4484_21_28_285703 crossref_primary_10_1039_b9pp00115h crossref_primary_10_1021_jp510276c crossref_primary_10_1021_jp103300v crossref_primary_10_1016_j_electacta_2017_04_023 crossref_primary_10_1021_jp508315m crossref_primary_10_1016_j_matlet_2014_02_071 crossref_primary_10_1016_j_ica_2008_02_048 crossref_primary_10_1002_ijch_201900028 crossref_primary_10_1021_jp1021032 crossref_primary_10_1021_jp4007747 crossref_primary_10_1021_nl0714583 crossref_primary_10_1007_s11458_009_0112_x crossref_primary_10_1021_mz500645c crossref_primary_10_1021_acs_jpcc_6b09443 crossref_primary_10_1039_b616017d crossref_primary_10_1007_s00604_007_0735_x crossref_primary_10_1007_s40710_018_0337_0 crossref_primary_10_1021_nn201681s crossref_primary_10_1021_ct400485s |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1039/b508268b |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 16240033 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K AAEMU AAMEH AANOJ AAXHV AAXPP ABASK ABEMK ABJNI ABPDG ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AESAV AETIL AFFNX AGKEF AGRSR AGSTE AHGXI ALMA_UNASSIGNED_HOLDINGS ALSGL ANLMG ANUXI ASPBG AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CGR COF CS3 CUY CVF D0L DU5 EBS ECM EE0 EEHRC EF- EIF EJD F5P FEDTE GNO H13 HVGLF HZ~ H~9 H~N IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB NPM O9- OK1 P2P R56 R7B RAOCF RCLXC RCNCU RNS ROL RPMJG RRA RRC SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 XJT XOL YNT ZCG |
ID | FETCH-LOGICAL-c431t-f3c95fe0eff8e2f48ea199b0df83072f03861da99afc7974457b4731893704182 |
ISSN | 1463-9076 |
IngestDate | Wed Feb 19 01:42:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c431t-f3c95fe0eff8e2f48ea199b0df83072f03861da99afc7974457b4731893704182 |
PMID | 16240033 |
ParticipantIDs | pubmed_primary_16240033 |
PublicationCentury | 2000 |
PublicationDate | 2005-01-01 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – month: 01 year: 2005 text: 2005-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2005 |
SSID | ssj0001513 |
Score | 2.1900003 |
Snippet | The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3204 |
SubjectTerms | Aniline Compounds - chemistry Cadmium Compounds - chemistry Crystallization Electric Conductivity Electrochemistry - methods Ligands Luminescent Measurements Nanostructures Nanotechnology Oxidation-Reduction Polymers - chemistry Selenium Compounds - chemistry Semiconductors Spectrum Analysis - methods |
Title | Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16240033 |
Volume | 7 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FeqCXij4pULSH3pCL7d2svQcOyGqFkIpoAxLqBa33ARHBRk5yIL-lP7azHtuYlFa0FyfxRuus5_POI_PNEPJRaKbB8IwCeBp0wFMZBjmPZBA7mRh4-GTOPMH567E4PONH58PzweBnL2tpPss_6cWjvJL_kSqcA7l6luw_SLabFE7Ae5AvHEHCcHySjEfjBUb_J-NL_9IlZ2DuYtPiRvdrAtTMyqpcHqowVRYr0GZmZHcLVZS6ugPjcTLtW7AnrWB12yput5sFwyTTOsxwkmUddezb3FYNsSabqLkZd7rgux1j1_YHecIjZbCb9ki1Cffz_R_qsqym1woZRhP4sEBe3X3UYtiLWuBGywULwDEX_Z046QMu6W2rLMYexb_t9yHz5VJzsDJjkT5QCbDS25ta7pHwebJYbuPvo0uVt9uhFbICPohvquojQY2WB0uJIXMN19EWNmZyr_05viBtM8WS01IbL6fr5EXjddADhNBLMrDFK7KWtRJ8Ta48lCgAhCKUaAMlWhYUoESX8FJ_83Eo0Q5KtHTUQ4n2ofSGnH35fJodBk0TjkCDbTkLHNNy6GwIl01t7HhqVSRlHhqXgnqIXchSERklpXI6AeeUD5OcJ6ApwO4NOXivb8lqURZ2g1D_H7yB6XwZRO4pf9K4mKcmFcIJMLzfk3d4ky5usdLKRXv7Nv84skWe38NrmzxzsBL7AezEWb5TC-wXQHtpdw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+and+ligand+effects+on+the+electrochemical+and+spectroelectrochemical+responses+of+CdSe+nanocrystals&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Querner%2C+Claudia&rft.au=Reiss%2C+Peter&rft.au=Sadki%2C+Said&rft.au=Zagorska%2C+Malgorzata&rft.date=2005-01-01&rft.issn=1463-9076&rft.volume=7&rft.issue=17&rft.spage=3204&rft_id=info:doi/10.1039%2Fb508268b&rft_id=info%3Apmid%2F16240033&rft_id=info%3Apmid%2F16240033&rft.externalDocID=16240033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |