Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals

The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size rang...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 7; no. 17; p. 3204
Main Authors Querner, Claudia, Reiss, Peter, Sadki, Said, Zagorska, Malgorzata, Pron, Adam
Format Journal Article
LanguageEnglish
Published England 01.01.2005
Subjects
Online AccessGet more information
ISSN1463-9076
DOI10.1039/b508268b

Cover

Loading…
Abstract The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the semiconducting and the conducting states with no change in the oxidation state of the nanocrystal. The newly developed system offers therefore the possibility of an electrical addressing of individual nanocrystals via the conducting ligands.
AbstractList The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the semiconducting and the conducting states with no change in the oxidation state of the nanocrystal. The newly developed system offers therefore the possibility of an electrical addressing of individual nanocrystals via the conducting ligands.
Author Reiss, Peter
Sadki, Said
Zagorska, Malgorzata
Querner, Claudia
Pron, Adam
Author_xml – sequence: 1
  givenname: Claudia
  surname: Querner
  fullname: Querner, Claudia
  organization: DRFMC, UMR 5819 SPrAM (CEA-CNRS-Université J. Fourier Grenoble I), Laboratoire Electronique Moléculaire, Organique et Hybride, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
– sequence: 2
  givenname: Peter
  surname: Reiss
  fullname: Reiss, Peter
– sequence: 3
  givenname: Said
  surname: Sadki
  fullname: Sadki, Said
– sequence: 4
  givenname: Malgorzata
  surname: Zagorska
  fullname: Zagorska, Malgorzata
– sequence: 5
  givenname: Adam
  surname: Pron
  fullname: Pron, Adam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16240033$$D View this record in MEDLINE/PubMed
BookMark eNpdj8tOwzAQRb0oog-Q-ALkHwiMH_FjiSKgSJVYFNaV44xJUOJEcViUrycU2LA6mrl3ru6sySL2EQm5YnDDQNjbMgfDlSkXZMWkEpkFrZZkndI7ALCciXOyZIpLACFWpN43n0hdrGjbvH0DQ0A_JdpHOtVIsZ2nsfc1do137cmZhtPuvzRiGvqYcL4NtKj2SKOLvR-PaXJtuiBnYQZe_nJDXh_uX4pttnt-fCrudpmXgk1ZEN7mAWGuYZAHadAxa0uoghGgeQBhFKuctS54bbWUuS6lFsxYoUEywzfk-id3-Cg7rA7D2HRuPB7-XuZfzlRYfA
CitedBy_id crossref_primary_10_1016_j_physe_2005_12_154
crossref_primary_10_1007_s10008_016_3442_x
crossref_primary_10_1039_c1jm10538h
crossref_primary_10_1039_c3nr03949h
crossref_primary_10_3390_ma3010614
crossref_primary_10_1002_adfm_200600955
crossref_primary_10_1016_j_heliyon_2019_e02031
crossref_primary_10_1007_s12274_017_1613_4
crossref_primary_10_1039_C5CP01831E
crossref_primary_10_1021_acs_chemmater_6b03493
crossref_primary_10_1021_acs_chemmater_0c03146
crossref_primary_10_1021_acs_inorgchem_0c02468
crossref_primary_10_1002_adma_201201196
crossref_primary_10_1016_j_jics_2025_101633
crossref_primary_10_1039_C5RA16898H
crossref_primary_10_1021_ja403701p
crossref_primary_10_1039_C0NR00403K
crossref_primary_10_1039_C6CC01341D
crossref_primary_10_1155_2020_5056875
crossref_primary_10_1002_chem_200800078
crossref_primary_10_1039_c2cs35117j
crossref_primary_10_1021_acs_nanolett_4c01790
crossref_primary_10_1021_jacs_2c04680
crossref_primary_10_1039_C8CP06847J
crossref_primary_10_1021_jacs_6b00936
crossref_primary_10_1021_jp404556b
crossref_primary_10_1021_acs_chemmater_5b04521
crossref_primary_10_1021_nl0732171
crossref_primary_10_1039_b803029d
crossref_primary_10_1002_cphc_201100300
crossref_primary_10_1039_C4NR06883A
crossref_primary_10_1002_cphc_201001069
crossref_primary_10_1016_j_solmat_2007_11_012
crossref_primary_10_1021_jp8074817
crossref_primary_10_1016_j_saa_2018_01_012
crossref_primary_10_1039_c1jm12557e
crossref_primary_10_1007_s10904_013_9914_x
crossref_primary_10_1149_2_064302jes
crossref_primary_10_1016_j_cocom_2024_e00917
crossref_primary_10_1016_j_nantod_2016_04_005
crossref_primary_10_1007_s12274_023_5688_9
crossref_primary_10_1021_acsenergylett_1c02554
crossref_primary_10_1016_j_synthmet_2017_05_018
crossref_primary_10_1021_acs_jpclett_0c01417
crossref_primary_10_1007_s10895_007_0163_7
crossref_primary_10_1016_j_synthmet_2016_06_013
crossref_primary_10_1002_chem_201101697
crossref_primary_10_1021_nn401274e
crossref_primary_10_1155_2019_7516890
crossref_primary_10_1143_JJAP_51_10NE27
crossref_primary_10_1016_j_ccr_2013_07_005
crossref_primary_10_1002_cphc_201501026
crossref_primary_10_1021_nn400826h
crossref_primary_10_1002_cphc_200800482
crossref_primary_10_1007_s10895_013_1212_z
crossref_primary_10_1155_2013_146582
crossref_primary_10_1021_jacs_6b04888
crossref_primary_10_1039_C4CP00727A
crossref_primary_10_1039_D3CP03842D
crossref_primary_10_1021_acs_jpcc_8b10318
crossref_primary_10_1155_2019_6095863
crossref_primary_10_1088_2516_1075_ac23a3
crossref_primary_10_1002_sdtp_10949
crossref_primary_10_1039_b921239f
crossref_primary_10_1039_C6CP01887D
crossref_primary_10_1002_smll_200600581
crossref_primary_10_1007_s00604_007_0899_4
crossref_primary_10_1088_0957_4484_17_15_030
crossref_primary_10_1021_jp111463f
crossref_primary_10_1142_S1793984421500021
crossref_primary_10_1016_j_matchemphys_2010_05_054
crossref_primary_10_1016_j_solmat_2011_06_015
crossref_primary_10_1021_cm061105p
crossref_primary_10_1016_j_omx_2021_100126
crossref_primary_10_1021_jp403164w
crossref_primary_10_1039_C9TC03875B
crossref_primary_10_1016_j_matchemphys_2016_04_076
crossref_primary_10_1016_j_jallcom_2015_12_181
crossref_primary_10_1109_JSTQE_2009_2034387
crossref_primary_10_1134_S0018143918010022
crossref_primary_10_1680_jnaen_23_00110
crossref_primary_10_1016_j_jallcom_2023_172315
crossref_primary_10_1039_c3cp50980j
crossref_primary_10_1021_nn3007509
crossref_primary_10_1016_j_physb_2017_11_046
crossref_primary_10_1016_j_cplett_2015_05_006
crossref_primary_10_1039_C1JM14829J
crossref_primary_10_1016_j_synthmet_2013_10_029
crossref_primary_10_1021_acs_jpclett_8b00109
crossref_primary_10_1021_acs_chemrev_6b00102
crossref_primary_10_1021_acs_jpcc_6b09814
crossref_primary_10_1002_smll_200600089
crossref_primary_10_1007_s11814_013_0029_4
crossref_primary_10_1021_la501533t
crossref_primary_10_1039_c0cp02647f
crossref_primary_10_1039_c3cp55226h
crossref_primary_10_1016_j_jphotochemrev_2014_05_001
crossref_primary_10_1016_j_matchemphys_2014_06_061
crossref_primary_10_1021_jp808351h
crossref_primary_10_1039_C6NR03091B
crossref_primary_10_7567_JJAP_51_10NE27
crossref_primary_10_1109_TED_2022_3227896
crossref_primary_10_1021_acs_jpcc_5b02402
crossref_primary_10_1088_0957_4484_21_28_285703
crossref_primary_10_1039_b9pp00115h
crossref_primary_10_1021_jp510276c
crossref_primary_10_1021_jp103300v
crossref_primary_10_1016_j_electacta_2017_04_023
crossref_primary_10_1021_jp508315m
crossref_primary_10_1016_j_matlet_2014_02_071
crossref_primary_10_1016_j_ica_2008_02_048
crossref_primary_10_1002_ijch_201900028
crossref_primary_10_1021_jp1021032
crossref_primary_10_1021_jp4007747
crossref_primary_10_1021_nl0714583
crossref_primary_10_1007_s11458_009_0112_x
crossref_primary_10_1021_mz500645c
crossref_primary_10_1021_acs_jpcc_6b09443
crossref_primary_10_1039_b616017d
crossref_primary_10_1007_s00604_007_0735_x
crossref_primary_10_1007_s40710_018_0337_0
crossref_primary_10_1021_nn201681s
crossref_primary_10_1021_ct400485s
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1039/b508268b
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 16240033
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
AAEMU
AAMEH
AANOJ
AAXHV
AAXPP
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AESAV
AETIL
AFFNX
AGKEF
AGRSR
AGSTE
AHGXI
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANLMG
ANUXI
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CGR
COF
CS3
CUY
CVF
D0L
DU5
EBS
ECM
EE0
EEHRC
EF-
EIF
EJD
F5P
FEDTE
GNO
H13
HVGLF
HZ~
H~9
H~N
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
NPM
O9-
OK1
P2P
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
ID FETCH-LOGICAL-c431t-f3c95fe0eff8e2f48ea199b0df83072f03861da99afc7974457b4731893704182
ISSN 1463-9076
IngestDate Wed Feb 19 01:42:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-f3c95fe0eff8e2f48ea199b0df83072f03861da99afc7974457b4731893704182
PMID 16240033
ParticipantIDs pubmed_primary_16240033
PublicationCentury 2000
PublicationDate 2005-01-01
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – month: 01
  year: 2005
  text: 2005-01-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2005
SSID ssj0001513
Score 2.1900003
Snippet The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the...
SourceID pubmed
SourceType Index Database
StartPage 3204
SubjectTerms Aniline Compounds - chemistry
Cadmium Compounds - chemistry
Crystallization
Electric Conductivity
Electrochemistry - methods
Ligands
Luminescent Measurements
Nanostructures
Nanotechnology
Oxidation-Reduction
Polymers - chemistry
Selenium Compounds - chemistry
Semiconductors
Spectrum Analysis - methods
Title Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals
URI https://www.ncbi.nlm.nih.gov/pubmed/16240033
Volume 7
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FeqCXij4pULSH3pCL7d2svQcOyGqFkIpoAxLqBa33ARHBRk5yIL-lP7azHtuYlFa0FyfxRuus5_POI_PNEPJRaKbB8IwCeBp0wFMZBjmPZBA7mRh4-GTOPMH567E4PONH58PzweBnL2tpPss_6cWjvJL_kSqcA7l6luw_SLabFE7Ae5AvHEHCcHySjEfjBUb_J-NL_9IlZ2DuYtPiRvdrAtTMyqpcHqowVRYr0GZmZHcLVZS6ugPjcTLtW7AnrWB12yput5sFwyTTOsxwkmUddezb3FYNsSabqLkZd7rgux1j1_YHecIjZbCb9ki1Cffz_R_qsqym1woZRhP4sEBe3X3UYtiLWuBGywULwDEX_Z046QMu6W2rLMYexb_t9yHz5VJzsDJjkT5QCbDS25ta7pHwebJYbuPvo0uVt9uhFbICPohvquojQY2WB0uJIXMN19EWNmZyr_05viBtM8WS01IbL6fr5EXjddADhNBLMrDFK7KWtRJ8Ta48lCgAhCKUaAMlWhYUoESX8FJ_83Eo0Q5KtHTUQ4n2ofSGnH35fJodBk0TjkCDbTkLHNNy6GwIl01t7HhqVSRlHhqXgnqIXchSERklpXI6AeeUD5OcJ6ApwO4NOXivb8lqURZ2g1D_H7yB6XwZRO4pf9K4mKcmFcIJMLzfk3d4ky5usdLKRXv7Nv84skWe38NrmzxzsBL7AezEWb5TC-wXQHtpdw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+and+ligand+effects+on+the+electrochemical+and+spectroelectrochemical+responses+of+CdSe+nanocrystals&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Querner%2C+Claudia&rft.au=Reiss%2C+Peter&rft.au=Sadki%2C+Said&rft.au=Zagorska%2C+Malgorzata&rft.date=2005-01-01&rft.issn=1463-9076&rft.volume=7&rft.issue=17&rft.spage=3204&rft_id=info:doi/10.1039%2Fb508268b&rft_id=info%3Apmid%2F16240033&rft_id=info%3Apmid%2F16240033&rft.externalDocID=16240033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon