Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation
Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set, CNN features are much more discriminative and accurate than the handcrafted features. Moreover, CNN features are also transferable among diff...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 27; no. 6; pp. 1263 - 1274 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set, CNN features are much more discriminative and accurate than the handcrafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionary-based features (such as BoW and spatial pyramid matching) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionary-based models for scene recognition and visual domain adaptation (DA). Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely, mid-level local representation (MLR) and convolutional Fisher vector (CFV) representation. In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a class-specific part dictionary. After that, the part dictionary is used to operate with the multiscale image inputs for generating mid-level representation. In CFV, a multiscale and scale-proportional Gaussian mixture model training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV, and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and DA problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary to GoogLeNet and/or VGG-11 (trained on Place205) greatly. |
---|---|
AbstractList | Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set, CNN features are much more discriminative and accurate than the handcrafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionary-based features (such as BoW and spatial pyramid matching) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionary-based models for scene recognition and visual domain adaptation (DA). Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely, mid-level local representation (MLR) and convolutional Fisher vector (CFV) representation. In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a class-specific part dictionary. After that, the part dictionary is used to operate with the multiscale image inputs for generating mid-level representation. In CFV, a multiscale and scale-proportional Gaussian mixture model training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV, and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and DA problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary to GoogLeNet and/or VGG-11 (trained on Place205) greatly. |
Author | Shuicheng Yan Xu-Yao Zhang Cheng-Lin Liu Guo-Sen Xie |
Author_xml | – sequence: 1 givenname: Guo-Sen surname: Xie fullname: Xie, Guo-Sen – sequence: 2 givenname: Xu-Yao surname: Zhang fullname: Zhang, Xu-Yao – sequence: 3 givenname: Shuicheng surname: Yan fullname: Yan, Shuicheng – sequence: 4 givenname: Cheng-Lin surname: Liu fullname: Liu, Cheng-Lin |
BookMark | eNp9kE1PwzAMhiM0JLbBH4BLJc4ddtL04zjKx5DGkLbBtUqTFGXampF2h_17Ujpx4MDJlvU-tvyMyKC2tSbkGmGCCNndOl99rCcUkE8oR-QROyND5DwNKQU-8D1wDFOK_IKMmmYDgFEaJUOynB1LZ1SQLxaBqFXwYGRrbC3cMbwXjVbBq1V62wSVdcFK6loHSy3tZ226VE_YnTB1MFVi34pueknOK7Ft9NWpjsn70-M6n4Xzt-eXfDoPZcSwDStW0oopFKWIWIYyk5ClQKtMJYkC0BBLxf2YxZGIMuC0LCvIeKSoqlIUyMbktt-7d_broJu22NiDq_3JAn0-QYAs9inap6SzTeN0Veyd2fn_CoSic1f8uCs6d8XJnYfSP5A0_XOtE2b7P3rTo0Zr_XsrYbF3H7NvcFh9dA |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2022_3208071 crossref_primary_10_1371_journal_pone_0298228 crossref_primary_10_3389_frobt_2019_00031 crossref_primary_10_3390_app13010481 crossref_primary_10_32604_cmes_2021_014522 crossref_primary_10_1109_LGRS_2017_2781741 crossref_primary_10_1016_j_jvcir_2020_102846 crossref_primary_10_1109_LSP_2017_2737650 crossref_primary_10_1109_TNNLS_2021_3129227 crossref_primary_10_1109_TIE_2017_2764861 crossref_primary_10_1109_TIP_2017_2704661 crossref_primary_10_1109_TCSVT_2022_3230963 crossref_primary_10_3390_jimaging8100256 crossref_primary_10_1109_TCSVT_2018_2848543 crossref_primary_10_34133_plantphenomics_0054 crossref_primary_10_1109_TIP_2023_3321475 crossref_primary_10_1109_ACCESS_2020_3012152 crossref_primary_10_1109_TGRS_2022_3185612 crossref_primary_10_1007_s10489_023_04963_0 crossref_primary_10_1145_3231738 crossref_primary_10_1016_j_neunet_2021_02_005 crossref_primary_10_1109_TCSVT_2023_3242614 crossref_primary_10_1016_j_autcon_2020_103133 crossref_primary_10_3390_f14061211 crossref_primary_10_1007_s11227_024_06792_5 crossref_primary_10_1016_j_eswa_2022_118016 crossref_primary_10_1016_j_patcog_2020_107256 crossref_primary_10_1016_j_asoc_2025_112868 crossref_primary_10_1016_j_patcog_2022_108589 crossref_primary_10_1109_TCYB_2020_3029787 crossref_primary_10_1145_3436494 crossref_primary_10_1109_TGRS_2021_3075679 crossref_primary_10_1007_s00371_023_03162_9 crossref_primary_10_1109_TCSVT_2017_2711015 crossref_primary_10_1109_TGRS_2022_3189746 crossref_primary_10_1109_TGRS_2021_3131381 crossref_primary_10_1117_1_JEI_31_4_043048 crossref_primary_10_1016_j_asoc_2024_112439 crossref_primary_10_1109_TNNLS_2022_3201052 crossref_primary_10_1109_TCSVT_2019_2963318 crossref_primary_10_1109_TIFS_2018_2876752 crossref_primary_10_1109_TNNLS_2019_2953675 crossref_primary_10_1109_TIP_2017_2686017 crossref_primary_10_3390_a17050189 crossref_primary_10_1007_s11042_021_10589_6 crossref_primary_10_3389_fphy_2022_1063709 crossref_primary_10_1109_TCSVT_2021_3056208 crossref_primary_10_1109_TCSVT_2018_2808685 crossref_primary_10_3390_app122312432 crossref_primary_10_1109_TIP_2016_2629443 crossref_primary_10_1109_ACCESS_2018_2853620 crossref_primary_10_1121_1_5065071 crossref_primary_10_1109_TCBB_2020_2994780 crossref_primary_10_1109_TGRS_2021_3057768 crossref_primary_10_1007_s13735_022_00246_5 crossref_primary_10_1109_TIP_2021_3070231 crossref_primary_10_1016_j_asoc_2022_108530 crossref_primary_10_1364_AO_426293 crossref_primary_10_1109_TII_2024_3424197 crossref_primary_10_1134_S1054661821040039 crossref_primary_10_1016_j_neucom_2019_05_059 crossref_primary_10_1109_ACCESS_2019_2921480 crossref_primary_10_1109_TNNLS_2020_2968848 crossref_primary_10_1109_TCSVT_2023_3349202 crossref_primary_10_1080_01431161_2018_1533655 crossref_primary_10_1109_TIFS_2017_2766583 crossref_primary_10_1016_j_patcog_2020_107680 crossref_primary_10_1016_j_patcog_2020_107205 crossref_primary_10_1007_s11042_023_17881_7 crossref_primary_10_1016_j_ins_2022_07_188 crossref_primary_10_1109_TIP_2020_2986599 crossref_primary_10_1142_S0218001422510132 crossref_primary_10_1109_TMM_2019_2942478 crossref_primary_10_1007_s00138_021_01168_8 crossref_primary_10_32628_CSEIT206532 crossref_primary_10_1007_s00530_022_01010_9 crossref_primary_10_1109_TIP_2017_2651396 crossref_primary_10_1016_j_asoc_2020_106808 crossref_primary_10_1016_j_image_2020_115974 crossref_primary_10_1109_TCSVT_2018_2848458 crossref_primary_10_1109_TCSVT_2020_2973301 crossref_primary_10_1007_s10489_021_02609_7 crossref_primary_10_1109_ACCESS_2024_3418348 crossref_primary_10_3233_JIFS_221975 crossref_primary_10_1109_TNNLS_2020_3046924 crossref_primary_10_3390_app122111301 crossref_primary_10_1109_ACCESS_2019_2919342 crossref_primary_10_1109_ACCESS_2020_3033580 crossref_primary_10_1109_TIM_2018_2890329 crossref_primary_10_1016_j_neucom_2020_07_147 crossref_primary_10_1109_TMM_2020_3046877 crossref_primary_10_1016_j_eswa_2019_112847 crossref_primary_10_1109_ACCESS_2018_2888733 crossref_primary_10_1109_TNNLS_2019_2952427 crossref_primary_10_1109_ACCESS_2022_3163256 crossref_primary_10_1016_j_inffus_2020_05_005 crossref_primary_10_1177_0040517518813656 crossref_primary_10_1016_j_neucom_2019_01_090 crossref_primary_10_1109_TMM_2023_3267887 crossref_primary_10_1016_j_rser_2023_113662 crossref_primary_10_1080_01431161_2019_1577580 crossref_primary_10_1109_TCSVT_2019_2942688 crossref_primary_10_1007_s00138_017_0833_7 crossref_primary_10_1109_TCYB_2018_2833843 crossref_primary_10_1016_j_patcog_2024_110725 crossref_primary_10_1109_ACCESS_2020_2989863 crossref_primary_10_1016_j_measen_2023_100966 crossref_primary_10_1016_j_eswa_2022_117505 crossref_primary_10_1109_TCSVT_2022_3191761 crossref_primary_10_1080_2150704X_2017_1415477 crossref_primary_10_1007_s11042_019_07870_0 crossref_primary_10_1109_TCSVT_2016_2606648 |
Cites_doi | 10.1109/CVPR.2010.5540039 10.1006/dspr.1999.0361 10.1007/s11263-013-0636-x 10.1109/ICCV.2011.6126344 10.1109/TCSVT.2015.2392472 10.1109/CVPR.2010.5540018 10.1109/CVPR.2011.5995354 10.1109/CVPR.2013.465 10.1109/TPAMI.2002.1017616 10.1109/ICCV.2015.123 10.1109/CVPR.2015.7299007 10.1109/ICCV.2013.422 10.1109/CVPR.2015.7298965 10.1109/ICCV.2005.66 10.1007/s11263-012-0529-4 10.1109/CVPR.2015.7298854 10.1109/CVPR.2013.124 10.1007/s11263-013-0620-5 10.1109/5.726791 10.1109/ICCV.2011.6126383 10.1109/ICCV.2013.368 10.1109/CVPR.2012.6248001 10.1109/CVPR.2007.383266 10.1109/CVPR.2014.81 10.1109/CVPR.2014.476 10.1109/CVPR.2010.5539970 10.1109/CVPRW.2014.131 10.1109/ICCV.2013.116 10.1093/bioinformatics/btl242 10.1109/CVPR.2006.68 10.1109/TPAMI.2010.224 10.1109/CVPR.2014.49 10.1109/CVPR.2009.5206537 10.1109/CVPR.2015.7298594 10.1109/CVPR.2015.7298780 10.1109/CVPR.2013.115 10.1145/2185520.2185597 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2015.2511543 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1274 |
ExternalDocumentID | 10_1109_TCSVT_2015_2511543 7362156 |
Genre | orig-research |
GrantInformation_xml | – fundername: Strategic Priority Research Program through the Chinese Academy of Sciences grantid: XDA06040102 funderid: 10.13039/501100002367 – fundername: National Natural Science Foundation of China grantid: 61403380 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program) grantid: 2012CB316302 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c431t-f3b2f3d1aba4391c9c09802f9d77d00e06cd51c9364a49052bbf0954d2df81a13 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 04:14:17 EDT 2025 Tue Jul 01 00:41:08 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Tue Aug 26 16:58:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-f3b2f3d1aba4391c9c09802f9d77d00e06cd51c9364a49052bbf0954d2df81a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1905710096 |
PQPubID | 85433 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2015_2511543 proquest_journals_1905710096 ieee_primary_7362156 crossref_citationtrail_10_1109_TCSVT_2015_2511543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref12 ref15 ref53 wang (ref68) 2013 ref11 ref54 krizhevsky (ref2) 2012 ref17 ref18 zhu (ref62) 2010 margolin (ref72) 2014 kwitt (ref71) 2012 ref51 ref48 doersch (ref32) 2013 tzeng (ref45) 2014 kang (ref10) 2014 gong (ref42) 2013 gong (ref24) 2014 zuo (ref23) 2014 ref43 ref49 fan (ref55) 2008; 9 simonyan (ref3) 2015 ref8 ref7 yosinski (ref28) 2014 ref9 ref4 ref6 wang (ref76) 2015 ref40 jia (ref61) 2013 ref35 ref34 zitnick (ref39) 2014 ref36 ref75 ref74 ref30 kavukcuoglu (ref58) 2010 ref33 chen (ref13) 2015 long (ref46) 2015 ref1 zhou (ref20) 2010 liu (ref52) 2014 chopra (ref44) 2013; 2 ref38 sadeghi (ref66) 2012 gong (ref41) 2012 ref70 ref73 xie (ref59) 2014 zheng (ref65) 2012 perronnin (ref19) 2010 ref67 zhao (ref14) 2015 saenko (ref29) 2010 donahue (ref22) 2013 li (ref57) 2010 ref69 ref25 ref64 ref21 yang (ref16) 2009 ref27 cheng (ref37) 2014 yoo (ref50) 2015 ref60 ghifary (ref47) 2014 zhou (ref26) 2014 singh (ref31) 2012 ioffe (ref5) 2015 wu (ref63) 2011; 33 |
References_xml | – ident: ref51 doi: 10.1109/CVPR.2010.5540039 – start-page: 222 year: 2013 ident: ref42 article-title: Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation publication-title: Proc 30th ICML – ident: ref60 doi: 10.1006/dspr.1999.0361 – ident: ref74 doi: 10.1007/s11263-013-0636-x – start-page: 1378 year: 2010 ident: ref57 article-title: Object bank: A high-level image representation for scene classification and semantic feature sparsification publication-title: Proc Adv NIPS – ident: ref40 doi: 10.1109/ICCV.2011.6126344 – year: 2014 ident: ref45 publication-title: Deep domain confusion Maximizing for domain invariance – ident: ref70 doi: 10.1109/TCSVT.2015.2392472 – ident: ref17 doi: 10.1109/CVPR.2010.5540018 – start-page: 1097 year: 2012 ident: ref2 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv NIPS – start-page: 628 year: 2014 ident: ref59 article-title: Efficient feature coding based on auto-encoder network for image classification publication-title: Proc 12th ACCV – start-page: 391 year: 2014 ident: ref39 article-title: Edge boxes: Locating object proposals from edges publication-title: Proc 13th ECCV – ident: ref53 doi: 10.1109/CVPR.2011.5995354 – start-page: 213 year: 2010 ident: ref29 article-title: Adapting visual category models to new domains publication-title: Proc 11th ECCV – start-page: 1090 year: 2010 ident: ref58 article-title: Learning convolutional feature hierarchies for visual recognition publication-title: Proc Adv NIPS – ident: ref8 doi: 10.1109/CVPR.2013.465 – ident: ref56 doi: 10.1109/TPAMI.2002.1017616 – ident: ref6 doi: 10.1109/ICCV.2015.123 – ident: ref27 doi: 10.1109/CVPR.2015.7299007 – start-page: 1556 year: 2015 ident: ref14 article-title: Deep semantic ranking based hashing for multi-label image retrieval publication-title: Proc IEEE Conf CVPR – ident: ref69 doi: 10.1109/ICCV.2013.422 – start-page: 73 year: 2012 ident: ref31 article-title: Unsupervised discovery of mid-level discriminative patches publication-title: Proc 12th ECCV – ident: ref11 doi: 10.1109/CVPR.2015.7298965 – year: 2015 ident: ref13 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs publication-title: Proc ICLR – ident: ref15 doi: 10.1109/ICCV.2005.66 – ident: ref73 doi: 10.1007/s11263-012-0529-4 – volume: 2 start-page: 1 year: 2013 ident: ref44 article-title: DLID: Deep learning for domain adaptation by interpolating between domains publication-title: Proc ICML Workshop on Representation Learning – start-page: 228 year: 2012 ident: ref66 article-title: Latent pyramidal regions for recognizing scenes publication-title: Proc 12th ECCV – ident: ref9 doi: 10.1109/CVPR.2015.7298854 – start-page: 377 year: 2014 ident: ref72 article-title: OTC: A novel local descriptor for scene classification publication-title: Proc 13th ECCV – start-page: 3286 year: 2014 ident: ref37 article-title: BING: Binarized normed gradients for objectness estimation at 300 fps publication-title: Proc IEEE Conf CVPR – ident: ref30 doi: 10.1109/CVPR.2013.124 – ident: ref36 doi: 10.1007/s11263-013-0620-5 – start-page: 359 year: 2012 ident: ref71 article-title: Scene recognition on the semantic manifold publication-title: Proc 12th ECCV – ident: ref1 doi: 10.1109/5.726791 – ident: ref35 doi: 10.1109/ICCV.2011.6126383 – start-page: 846 year: 2013 ident: ref68 article-title: Max-margin multiple-instance dictionary learning publication-title: Proc 30th ICML – start-page: 141 year: 2010 ident: ref20 article-title: Image classification using super-vector coding of local image descriptors publication-title: Proc 11th ECCV – volume: 9 start-page: 1871 year: 2008 ident: ref55 article-title: LIBLINEAR: A library for large linear classification publication-title: J Mach Learn Res – start-page: 1794 year: 2009 ident: ref16 article-title: Linear spatial pyramid matching using sparse coding for image classification publication-title: Proc IEEE Conf CVPR – start-page: 898 year: 2014 ident: ref47 article-title: Domain adaptive neural networks for object recognition publication-title: Proc 13th PRICAI – ident: ref43 doi: 10.1109/ICCV.2013.368 – year: 2015 ident: ref50 article-title: Fisher kernel for deep neural activations publication-title: Proc CVPRW – ident: ref64 doi: 10.1109/CVPR.2012.6248001 – ident: ref18 doi: 10.1109/CVPR.2007.383266 – ident: ref7 doi: 10.1109/CVPR.2014.81 – ident: ref33 doi: 10.1109/CVPR.2014.476 – ident: ref54 doi: 10.1109/CVPR.2010.5539970 – start-page: 143 year: 2010 ident: ref19 article-title: Improving the Fisher kernel for large-scale image classification publication-title: Proc 11th ECCV – start-page: 643 year: 2014 ident: ref52 article-title: Learning a representative and discriminative part model with deep convolutional features for scene recognition publication-title: Proc 12th ACCV – start-page: 448 year: 2015 ident: ref5 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc 32nd ICML – ident: ref21 doi: 10.1109/CVPRW.2014.131 – ident: ref75 doi: 10.1109/ICCV.2013.116 – year: 2013 ident: ref61 publication-title: Caffe An Open Source Convolutional Architecture for Fast Feature Embedding – year: 2015 ident: ref3 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc ICLR – start-page: 2586 year: 2010 ident: ref62 article-title: Large margin learning of upstream scene understanding models publication-title: Proc Adv NIPS – year: 2015 ident: ref76 publication-title: Places205-VGGNet models for scene recognition – ident: ref48 doi: 10.1093/bioinformatics/btl242 – ident: ref49 doi: 10.1109/CVPR.2006.68 – volume: 33 start-page: 1489 year: 2011 ident: ref63 article-title: CENTRIST: A visual descriptor for scene categorization publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.224 – ident: ref38 doi: 10.1109/CVPR.2014.49 – year: 2014 ident: ref10 publication-title: Fully convolutional neural networks for crowd segmentation – start-page: 494 year: 2013 ident: ref32 article-title: Mid-level visual element discovery as discriminative mode seeking publication-title: Proc Adv NIPS – ident: ref25 doi: 10.1109/CVPR.2009.5206537 – ident: ref4 doi: 10.1109/CVPR.2015.7298594 – start-page: 392 year: 2014 ident: ref24 article-title: Multi-scale orderless pooling of deep convolutional activation features publication-title: Proc 13th ECCV – ident: ref12 doi: 10.1109/CVPR.2015.7298780 – start-page: 487 year: 2014 ident: ref26 article-title: Learning deep features for scene recognition using places database publication-title: Proc Adv NIPS – start-page: 552 year: 2014 ident: ref23 article-title: Learning discriminative and shareable features for scene classification publication-title: Proc 13th ECCV – ident: ref67 doi: 10.1109/CVPR.2013.115 – year: 2015 ident: ref46 publication-title: Learning transferable features with deep adaptation networks – start-page: 2066 year: 2012 ident: ref41 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: Proc IEEE Conf CVPR – year: 2013 ident: ref22 publication-title: Decaf A Deep Convolutional Activation Feature for Generic Visual Recognition – ident: ref34 doi: 10.1145/2185520.2185597 – start-page: 3320 year: 2014 ident: ref28 article-title: How transferable are features in deep neural networks? publication-title: Proc Adv NIPS – start-page: 172 year: 2012 ident: ref65 article-title: Learning hybrid part filters for scene recognition publication-title: Proc 12th ECCV |
SSID | ssj0014847 |
Score | 2.5516996 |
Snippet | Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1263 |
SubjectTerms | Adaptation Clustering Construction Convolutional codes Convolutional neural networks (CNNs) Dictionaries dictionary domain adaptation (DA) Fisher vector Matching Neural networks Object oriented modeling part learning Performance enhancement Recognition Representations Scale (ratio) scene recognition Spectra State of the art Training Visual tasks Visualization |
Title | Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation |
URI | https://ieeexplore.ieee.org/document/7362156 https://www.proquest.com/docview/1905710096 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHtggwXEetUcoVBUSHdqC2CLHD6mipFWbDuXXYztJxUuILYp8kuWz776z77sDuKAZNkauFXoGHHMvYiZAoUxpL5Q6kIQTFStLcH7sJd2n6OElflmDqxUXRinlks-Ubz_dW76ciIW9KrtuGWtr4o11WDeBW8nVWr0YRNQ1EzNwIfCoGVUTZDC7HrYHz0ObxRX7FlDHUfjFCbmuKj9MsfMvnW14rGdWppW8-osi88X7t6KN_536DmxVQBPdlDtjF9ZUvgebn8oP7kO_u7R8LdTu9RDPJbobOZIDny29W-PcJLKN0sZzZHAtGghjFFG_Tjea5KXE5I2PcnQj-bR80j-Ap879sN31qh4LnjDQofB0mBEdyoBn3HJwBROYUUw0k62WxFjhRMjY_A6TiEcMxyTLtEFlkSRS04AH4SE08kmujgAJoqlWVHFbkz6UCZUxzxKlKBFYsYQ2IagXPRVVAXLbB2OcukAEs9QpKrWKSitFNeFyJTMty2_8OXrfrvxqZLXoTTitdZtWJ3SeGiAU28pGLDn-XeoENoh14e7G5RQaxWyhzgwAKbJzt_M-APB71ZM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbBBiuPEqT1CAZVHO0BBbJHjh1QBKYJ2KL8e20kqXkJsUWRL1p1999l33x3APsuwNXLNKLDgWAQxtxcUxrUJImVCRQTRVDuCc6ebtO_iywf6MAWHEy6M1tonn-mG-_SxfDWQI_dUdtS01tbeN6Zhxvp9GhZsrUnMIGa-nZgFDGHA7LiKIoP5Ua91e99zeVy04SA1jaMvbsj3VflhjL2HOV-ETrW2IrHksTEaZg35_q1s438XvwQLJdREx8XeWIYpna_A_KcChKtw0x47xhZqdbtI5Aqd9j3NQbyOgxPr3hRyrdKe3pBFtuhWWrOIbqqEo0FezBg8i36OjpV4KYL6a3B3ftZrtYOyy0IgLXgYBibKiIlUKDLhWLiSS8wZJoarZlNhrHEiFbW_oyQWMceUZJmxuCxWRBkWijBah1o-yPUGIEkMM5pp4arSRyphioos0ZoRiTVPWB3CSuipLEuQu04YT6m_imCeekWlTlFpqag6HEzmvBQFOP4cveokPxlZCr0O25Vu0_KMvqUWClFX24gnm7_P2oPZdq9znV5fdK-2YI44h-7fX7ahNnwd6R0LR4bZrt-FH0BB2Nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+CNN+and+Dictionary-Based+Models+for+Scene+Recognition+and+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Xie%2C+Guo-Sen&rft.au=Zhang%2C+Xu-Yao&rft.au=Yan%2C+Shuicheng&rft.au=Liu%2C+Cheng-Lin&rft.date=2017-06-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=27&rft.issue=6&rft.spage=1263&rft.epage=1274&rft_id=info:doi/10.1109%2FTCSVT.2015.2511543&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2015_2511543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |