Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation

Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set, CNN features are much more discriminative and accurate than the handcrafted features. Moreover, CNN features are also transferable among diff...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 27; no. 6; pp. 1263 - 1274
Main Authors Xie, Guo-Sen, Zhang, Xu-Yao, Yan, Shuicheng, Liu, Cheng-Lin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set, CNN features are much more discriminative and accurate than the handcrafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionary-based features (such as BoW and spatial pyramid matching) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionary-based models for scene recognition and visual domain adaptation (DA). Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely, mid-level local representation (MLR) and convolutional Fisher vector (CFV) representation. In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a class-specific part dictionary. After that, the part dictionary is used to operate with the multiscale image inputs for generating mid-level representation. In CFV, a multiscale and scale-proportional Gaussian mixture model training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV, and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and DA problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary to GoogLeNet and/or VGG-11 (trained on Place205) greatly.
AbstractList Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set, CNN features are much more discriminative and accurate than the handcrafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionary-based features (such as BoW and spatial pyramid matching) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionary-based models for scene recognition and visual domain adaptation (DA). Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely, mid-level local representation (MLR) and convolutional Fisher vector (CFV) representation. In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a class-specific part dictionary. After that, the part dictionary is used to operate with the multiscale image inputs for generating mid-level representation. In CFV, a multiscale and scale-proportional Gaussian mixture model training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV, and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and DA problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary to GoogLeNet and/or VGG-11 (trained on Place205) greatly.
Author Shuicheng Yan
Xu-Yao Zhang
Cheng-Lin Liu
Guo-Sen Xie
Author_xml – sequence: 1
  givenname: Guo-Sen
  surname: Xie
  fullname: Xie, Guo-Sen
– sequence: 2
  givenname: Xu-Yao
  surname: Zhang
  fullname: Zhang, Xu-Yao
– sequence: 3
  givenname: Shuicheng
  surname: Yan
  fullname: Yan, Shuicheng
– sequence: 4
  givenname: Cheng-Lin
  surname: Liu
  fullname: Liu, Cheng-Lin
BookMark eNp9kE1PwzAMhiM0JLbBH4BLJc4ddtL04zjKx5DGkLbBtUqTFGXampF2h_17Ujpx4MDJlvU-tvyMyKC2tSbkGmGCCNndOl99rCcUkE8oR-QROyND5DwNKQU-8D1wDFOK_IKMmmYDgFEaJUOynB1LZ1SQLxaBqFXwYGRrbC3cMbwXjVbBq1V62wSVdcFK6loHSy3tZ226VE_YnTB1MFVi34pueknOK7Ft9NWpjsn70-M6n4Xzt-eXfDoPZcSwDStW0oopFKWIWIYyk5ClQKtMJYkC0BBLxf2YxZGIMuC0LCvIeKSoqlIUyMbktt-7d_broJu22NiDq_3JAn0-QYAs9inap6SzTeN0Veyd2fn_CoSic1f8uCs6d8XJnYfSP5A0_XOtE2b7P3rTo0Zr_XsrYbF3H7NvcFh9dA
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2022_3208071
crossref_primary_10_1371_journal_pone_0298228
crossref_primary_10_3389_frobt_2019_00031
crossref_primary_10_3390_app13010481
crossref_primary_10_32604_cmes_2021_014522
crossref_primary_10_1109_LGRS_2017_2781741
crossref_primary_10_1016_j_jvcir_2020_102846
crossref_primary_10_1109_LSP_2017_2737650
crossref_primary_10_1109_TNNLS_2021_3129227
crossref_primary_10_1109_TIE_2017_2764861
crossref_primary_10_1109_TIP_2017_2704661
crossref_primary_10_1109_TCSVT_2022_3230963
crossref_primary_10_3390_jimaging8100256
crossref_primary_10_1109_TCSVT_2018_2848543
crossref_primary_10_34133_plantphenomics_0054
crossref_primary_10_1109_TIP_2023_3321475
crossref_primary_10_1109_ACCESS_2020_3012152
crossref_primary_10_1109_TGRS_2022_3185612
crossref_primary_10_1007_s10489_023_04963_0
crossref_primary_10_1145_3231738
crossref_primary_10_1016_j_neunet_2021_02_005
crossref_primary_10_1109_TCSVT_2023_3242614
crossref_primary_10_1016_j_autcon_2020_103133
crossref_primary_10_3390_f14061211
crossref_primary_10_1007_s11227_024_06792_5
crossref_primary_10_1016_j_eswa_2022_118016
crossref_primary_10_1016_j_patcog_2020_107256
crossref_primary_10_1016_j_asoc_2025_112868
crossref_primary_10_1016_j_patcog_2022_108589
crossref_primary_10_1109_TCYB_2020_3029787
crossref_primary_10_1145_3436494
crossref_primary_10_1109_TGRS_2021_3075679
crossref_primary_10_1007_s00371_023_03162_9
crossref_primary_10_1109_TCSVT_2017_2711015
crossref_primary_10_1109_TGRS_2022_3189746
crossref_primary_10_1109_TGRS_2021_3131381
crossref_primary_10_1117_1_JEI_31_4_043048
crossref_primary_10_1016_j_asoc_2024_112439
crossref_primary_10_1109_TNNLS_2022_3201052
crossref_primary_10_1109_TCSVT_2019_2963318
crossref_primary_10_1109_TIFS_2018_2876752
crossref_primary_10_1109_TNNLS_2019_2953675
crossref_primary_10_1109_TIP_2017_2686017
crossref_primary_10_3390_a17050189
crossref_primary_10_1007_s11042_021_10589_6
crossref_primary_10_3389_fphy_2022_1063709
crossref_primary_10_1109_TCSVT_2021_3056208
crossref_primary_10_1109_TCSVT_2018_2808685
crossref_primary_10_3390_app122312432
crossref_primary_10_1109_TIP_2016_2629443
crossref_primary_10_1109_ACCESS_2018_2853620
crossref_primary_10_1121_1_5065071
crossref_primary_10_1109_TCBB_2020_2994780
crossref_primary_10_1109_TGRS_2021_3057768
crossref_primary_10_1007_s13735_022_00246_5
crossref_primary_10_1109_TIP_2021_3070231
crossref_primary_10_1016_j_asoc_2022_108530
crossref_primary_10_1364_AO_426293
crossref_primary_10_1109_TII_2024_3424197
crossref_primary_10_1134_S1054661821040039
crossref_primary_10_1016_j_neucom_2019_05_059
crossref_primary_10_1109_ACCESS_2019_2921480
crossref_primary_10_1109_TNNLS_2020_2968848
crossref_primary_10_1109_TCSVT_2023_3349202
crossref_primary_10_1080_01431161_2018_1533655
crossref_primary_10_1109_TIFS_2017_2766583
crossref_primary_10_1016_j_patcog_2020_107680
crossref_primary_10_1016_j_patcog_2020_107205
crossref_primary_10_1007_s11042_023_17881_7
crossref_primary_10_1016_j_ins_2022_07_188
crossref_primary_10_1109_TIP_2020_2986599
crossref_primary_10_1142_S0218001422510132
crossref_primary_10_1109_TMM_2019_2942478
crossref_primary_10_1007_s00138_021_01168_8
crossref_primary_10_32628_CSEIT206532
crossref_primary_10_1007_s00530_022_01010_9
crossref_primary_10_1109_TIP_2017_2651396
crossref_primary_10_1016_j_asoc_2020_106808
crossref_primary_10_1016_j_image_2020_115974
crossref_primary_10_1109_TCSVT_2018_2848458
crossref_primary_10_1109_TCSVT_2020_2973301
crossref_primary_10_1007_s10489_021_02609_7
crossref_primary_10_1109_ACCESS_2024_3418348
crossref_primary_10_3233_JIFS_221975
crossref_primary_10_1109_TNNLS_2020_3046924
crossref_primary_10_3390_app122111301
crossref_primary_10_1109_ACCESS_2019_2919342
crossref_primary_10_1109_ACCESS_2020_3033580
crossref_primary_10_1109_TIM_2018_2890329
crossref_primary_10_1016_j_neucom_2020_07_147
crossref_primary_10_1109_TMM_2020_3046877
crossref_primary_10_1016_j_eswa_2019_112847
crossref_primary_10_1109_ACCESS_2018_2888733
crossref_primary_10_1109_TNNLS_2019_2952427
crossref_primary_10_1109_ACCESS_2022_3163256
crossref_primary_10_1016_j_inffus_2020_05_005
crossref_primary_10_1177_0040517518813656
crossref_primary_10_1016_j_neucom_2019_01_090
crossref_primary_10_1109_TMM_2023_3267887
crossref_primary_10_1016_j_rser_2023_113662
crossref_primary_10_1080_01431161_2019_1577580
crossref_primary_10_1109_TCSVT_2019_2942688
crossref_primary_10_1007_s00138_017_0833_7
crossref_primary_10_1109_TCYB_2018_2833843
crossref_primary_10_1016_j_patcog_2024_110725
crossref_primary_10_1109_ACCESS_2020_2989863
crossref_primary_10_1016_j_measen_2023_100966
crossref_primary_10_1016_j_eswa_2022_117505
crossref_primary_10_1109_TCSVT_2022_3191761
crossref_primary_10_1080_2150704X_2017_1415477
crossref_primary_10_1007_s11042_019_07870_0
crossref_primary_10_1109_TCSVT_2016_2606648
Cites_doi 10.1109/CVPR.2010.5540039
10.1006/dspr.1999.0361
10.1007/s11263-013-0636-x
10.1109/ICCV.2011.6126344
10.1109/TCSVT.2015.2392472
10.1109/CVPR.2010.5540018
10.1109/CVPR.2011.5995354
10.1109/CVPR.2013.465
10.1109/TPAMI.2002.1017616
10.1109/ICCV.2015.123
10.1109/CVPR.2015.7299007
10.1109/ICCV.2013.422
10.1109/CVPR.2015.7298965
10.1109/ICCV.2005.66
10.1007/s11263-012-0529-4
10.1109/CVPR.2015.7298854
10.1109/CVPR.2013.124
10.1007/s11263-013-0620-5
10.1109/5.726791
10.1109/ICCV.2011.6126383
10.1109/ICCV.2013.368
10.1109/CVPR.2012.6248001
10.1109/CVPR.2007.383266
10.1109/CVPR.2014.81
10.1109/CVPR.2014.476
10.1109/CVPR.2010.5539970
10.1109/CVPRW.2014.131
10.1109/ICCV.2013.116
10.1093/bioinformatics/btl242
10.1109/CVPR.2006.68
10.1109/TPAMI.2010.224
10.1109/CVPR.2014.49
10.1109/CVPR.2009.5206537
10.1109/CVPR.2015.7298594
10.1109/CVPR.2015.7298780
10.1109/CVPR.2013.115
10.1145/2185520.2185597
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2015.2511543
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1274
ExternalDocumentID 10_1109_TCSVT_2015_2511543
7362156
Genre orig-research
GrantInformation_xml – fundername: Strategic Priority Research Program through the Chinese Academy of Sciences
  grantid: XDA06040102
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 61403380
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2012CB316302
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c431t-f3b2f3d1aba4391c9c09802f9d77d00e06cd51c9364a49052bbf0954d2df81a13
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 04:14:17 EDT 2025
Tue Jul 01 00:41:08 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Tue Aug 26 16:58:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-f3b2f3d1aba4391c9c09802f9d77d00e06cd51c9364a49052bbf0954d2df81a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1905710096
PQPubID 85433
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCSVT_2015_2511543
proquest_journals_1905710096
ieee_primary_7362156
crossref_citationtrail_10_1109_TCSVT_2015_2511543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref12
ref15
ref53
wang (ref68) 2013
ref11
ref54
krizhevsky (ref2) 2012
ref17
ref18
zhu (ref62) 2010
margolin (ref72) 2014
kwitt (ref71) 2012
ref51
ref48
doersch (ref32) 2013
tzeng (ref45) 2014
kang (ref10) 2014
gong (ref42) 2013
gong (ref24) 2014
zuo (ref23) 2014
ref43
ref49
fan (ref55) 2008; 9
simonyan (ref3) 2015
ref8
ref7
yosinski (ref28) 2014
ref9
ref4
ref6
wang (ref76) 2015
ref40
jia (ref61) 2013
ref35
ref34
zitnick (ref39) 2014
ref36
ref75
ref74
ref30
kavukcuoglu (ref58) 2010
ref33
chen (ref13) 2015
long (ref46) 2015
ref1
zhou (ref20) 2010
liu (ref52) 2014
chopra (ref44) 2013; 2
ref38
sadeghi (ref66) 2012
gong (ref41) 2012
ref70
ref73
xie (ref59) 2014
zheng (ref65) 2012
perronnin (ref19) 2010
ref67
zhao (ref14) 2015
saenko (ref29) 2010
donahue (ref22) 2013
li (ref57) 2010
ref69
ref25
ref64
ref21
yang (ref16) 2009
ref27
cheng (ref37) 2014
yoo (ref50) 2015
ref60
ghifary (ref47) 2014
zhou (ref26) 2014
singh (ref31) 2012
ioffe (ref5) 2015
wu (ref63) 2011; 33
References_xml – ident: ref51
  doi: 10.1109/CVPR.2010.5540039
– start-page: 222
  year: 2013
  ident: ref42
  article-title: Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
  publication-title: Proc 30th ICML
– ident: ref60
  doi: 10.1006/dspr.1999.0361
– ident: ref74
  doi: 10.1007/s11263-013-0636-x
– start-page: 1378
  year: 2010
  ident: ref57
  article-title: Object bank: A high-level image representation for scene classification and semantic feature sparsification
  publication-title: Proc Adv NIPS
– ident: ref40
  doi: 10.1109/ICCV.2011.6126344
– year: 2014
  ident: ref45
  publication-title: Deep domain confusion Maximizing for domain invariance
– ident: ref70
  doi: 10.1109/TCSVT.2015.2392472
– ident: ref17
  doi: 10.1109/CVPR.2010.5540018
– start-page: 1097
  year: 2012
  ident: ref2
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv NIPS
– start-page: 628
  year: 2014
  ident: ref59
  article-title: Efficient feature coding based on auto-encoder network for image classification
  publication-title: Proc 12th ACCV
– start-page: 391
  year: 2014
  ident: ref39
  article-title: Edge boxes: Locating object proposals from edges
  publication-title: Proc 13th ECCV
– ident: ref53
  doi: 10.1109/CVPR.2011.5995354
– start-page: 213
  year: 2010
  ident: ref29
  article-title: Adapting visual category models to new domains
  publication-title: Proc 11th ECCV
– start-page: 1090
  year: 2010
  ident: ref58
  article-title: Learning convolutional feature hierarchies for visual recognition
  publication-title: Proc Adv NIPS
– ident: ref8
  doi: 10.1109/CVPR.2013.465
– ident: ref56
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref6
  doi: 10.1109/ICCV.2015.123
– ident: ref27
  doi: 10.1109/CVPR.2015.7299007
– start-page: 1556
  year: 2015
  ident: ref14
  article-title: Deep semantic ranking based hashing for multi-label image retrieval
  publication-title: Proc IEEE Conf CVPR
– ident: ref69
  doi: 10.1109/ICCV.2013.422
– start-page: 73
  year: 2012
  ident: ref31
  article-title: Unsupervised discovery of mid-level discriminative patches
  publication-title: Proc 12th ECCV
– ident: ref11
  doi: 10.1109/CVPR.2015.7298965
– year: 2015
  ident: ref13
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: Proc ICLR
– ident: ref15
  doi: 10.1109/ICCV.2005.66
– ident: ref73
  doi: 10.1007/s11263-012-0529-4
– volume: 2
  start-page: 1
  year: 2013
  ident: ref44
  article-title: DLID: Deep learning for domain adaptation by interpolating between domains
  publication-title: Proc ICML Workshop on Representation Learning
– start-page: 228
  year: 2012
  ident: ref66
  article-title: Latent pyramidal regions for recognizing scenes
  publication-title: Proc 12th ECCV
– ident: ref9
  doi: 10.1109/CVPR.2015.7298854
– start-page: 377
  year: 2014
  ident: ref72
  article-title: OTC: A novel local descriptor for scene classification
  publication-title: Proc 13th ECCV
– start-page: 3286
  year: 2014
  ident: ref37
  article-title: BING: Binarized normed gradients for objectness estimation at 300 fps
  publication-title: Proc IEEE Conf CVPR
– ident: ref30
  doi: 10.1109/CVPR.2013.124
– ident: ref36
  doi: 10.1007/s11263-013-0620-5
– start-page: 359
  year: 2012
  ident: ref71
  article-title: Scene recognition on the semantic manifold
  publication-title: Proc 12th ECCV
– ident: ref1
  doi: 10.1109/5.726791
– ident: ref35
  doi: 10.1109/ICCV.2011.6126383
– start-page: 846
  year: 2013
  ident: ref68
  article-title: Max-margin multiple-instance dictionary learning
  publication-title: Proc 30th ICML
– start-page: 141
  year: 2010
  ident: ref20
  article-title: Image classification using super-vector coding of local image descriptors
  publication-title: Proc 11th ECCV
– volume: 9
  start-page: 1871
  year: 2008
  ident: ref55
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J Mach Learn Res
– start-page: 1794
  year: 2009
  ident: ref16
  article-title: Linear spatial pyramid matching using sparse coding for image classification
  publication-title: Proc IEEE Conf CVPR
– start-page: 898
  year: 2014
  ident: ref47
  article-title: Domain adaptive neural networks for object recognition
  publication-title: Proc 13th PRICAI
– ident: ref43
  doi: 10.1109/ICCV.2013.368
– year: 2015
  ident: ref50
  article-title: Fisher kernel for deep neural activations
  publication-title: Proc CVPRW
– ident: ref64
  doi: 10.1109/CVPR.2012.6248001
– ident: ref18
  doi: 10.1109/CVPR.2007.383266
– ident: ref7
  doi: 10.1109/CVPR.2014.81
– ident: ref33
  doi: 10.1109/CVPR.2014.476
– ident: ref54
  doi: 10.1109/CVPR.2010.5539970
– start-page: 143
  year: 2010
  ident: ref19
  article-title: Improving the Fisher kernel for large-scale image classification
  publication-title: Proc 11th ECCV
– start-page: 643
  year: 2014
  ident: ref52
  article-title: Learning a representative and discriminative part model with deep convolutional features for scene recognition
  publication-title: Proc 12th ACCV
– start-page: 448
  year: 2015
  ident: ref5
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd ICML
– ident: ref21
  doi: 10.1109/CVPRW.2014.131
– ident: ref75
  doi: 10.1109/ICCV.2013.116
– year: 2013
  ident: ref61
  publication-title: Caffe An Open Source Convolutional Architecture for Fast Feature Embedding
– year: 2015
  ident: ref3
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc ICLR
– start-page: 2586
  year: 2010
  ident: ref62
  article-title: Large margin learning of upstream scene understanding models
  publication-title: Proc Adv NIPS
– year: 2015
  ident: ref76
  publication-title: Places205-VGGNet models for scene recognition
– ident: ref48
  doi: 10.1093/bioinformatics/btl242
– ident: ref49
  doi: 10.1109/CVPR.2006.68
– volume: 33
  start-page: 1489
  year: 2011
  ident: ref63
  article-title: CENTRIST: A visual descriptor for scene categorization
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.224
– ident: ref38
  doi: 10.1109/CVPR.2014.49
– year: 2014
  ident: ref10
  publication-title: Fully convolutional neural networks for crowd segmentation
– start-page: 494
  year: 2013
  ident: ref32
  article-title: Mid-level visual element discovery as discriminative mode seeking
  publication-title: Proc Adv NIPS
– ident: ref25
  doi: 10.1109/CVPR.2009.5206537
– ident: ref4
  doi: 10.1109/CVPR.2015.7298594
– start-page: 392
  year: 2014
  ident: ref24
  article-title: Multi-scale orderless pooling of deep convolutional activation features
  publication-title: Proc 13th ECCV
– ident: ref12
  doi: 10.1109/CVPR.2015.7298780
– start-page: 487
  year: 2014
  ident: ref26
  article-title: Learning deep features for scene recognition using places database
  publication-title: Proc Adv NIPS
– start-page: 552
  year: 2014
  ident: ref23
  article-title: Learning discriminative and shareable features for scene classification
  publication-title: Proc 13th ECCV
– ident: ref67
  doi: 10.1109/CVPR.2013.115
– year: 2015
  ident: ref46
  publication-title: Learning transferable features with deep adaptation networks
– start-page: 2066
  year: 2012
  ident: ref41
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf CVPR
– year: 2013
  ident: ref22
  publication-title: Decaf A Deep Convolutional Activation Feature for Generic Visual Recognition
– ident: ref34
  doi: 10.1145/2185520.2185597
– start-page: 3320
  year: 2014
  ident: ref28
  article-title: How transferable are features in deep neural networks?
  publication-title: Proc Adv NIPS
– start-page: 172
  year: 2012
  ident: ref65
  article-title: Learning hybrid part filters for scene recognition
  publication-title: Proc 12th ECCV
SSID ssj0014847
Score 2.5516996
Snippet Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1263
SubjectTerms Adaptation
Clustering
Construction
Convolutional codes
Convolutional neural networks (CNNs)
Dictionaries
dictionary
domain adaptation (DA)
Fisher vector
Matching
Neural networks
Object oriented modeling
part learning
Performance enhancement
Recognition
Representations
Scale (ratio)
scene recognition
Spectra
State of the art
Training
Visual tasks
Visualization
Title Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation
URI https://ieeexplore.ieee.org/document/7362156
https://www.proquest.com/docview/1905710096
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHtggwXEetUcoVBUSHdqC2CLHD6mipFWbDuXXYztJxUuILYp8kuWz776z77sDuKAZNkauFXoGHHMvYiZAoUxpL5Q6kIQTFStLcH7sJd2n6OElflmDqxUXRinlks-Ubz_dW76ciIW9KrtuGWtr4o11WDeBW8nVWr0YRNQ1EzNwIfCoGVUTZDC7HrYHz0ObxRX7FlDHUfjFCbmuKj9MsfMvnW14rGdWppW8-osi88X7t6KN_536DmxVQBPdlDtjF9ZUvgebn8oP7kO_u7R8LdTu9RDPJbobOZIDny29W-PcJLKN0sZzZHAtGghjFFG_Tjea5KXE5I2PcnQj-bR80j-Ap879sN31qh4LnjDQofB0mBEdyoBn3HJwBROYUUw0k62WxFjhRMjY_A6TiEcMxyTLtEFlkSRS04AH4SE08kmujgAJoqlWVHFbkz6UCZUxzxKlKBFYsYQ2IagXPRVVAXLbB2OcukAEs9QpKrWKSitFNeFyJTMty2_8OXrfrvxqZLXoTTitdZtWJ3SeGiAU28pGLDn-XeoENoh14e7G5RQaxWyhzgwAKbJzt_M-APB71ZM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PbBBiuPEqT1CAZVHO0BBbJHjh1QBKYJ2KL8e20kqXkJsUWRL1p1999l33x3APsuwNXLNKLDgWAQxtxcUxrUJImVCRQTRVDuCc6ebtO_iywf6MAWHEy6M1tonn-mG-_SxfDWQI_dUdtS01tbeN6Zhxvp9GhZsrUnMIGa-nZgFDGHA7LiKIoP5Ua91e99zeVy04SA1jaMvbsj3VflhjL2HOV-ETrW2IrHksTEaZg35_q1s438XvwQLJdREx8XeWIYpna_A_KcChKtw0x47xhZqdbtI5Aqd9j3NQbyOgxPr3hRyrdKe3pBFtuhWWrOIbqqEo0FezBg8i36OjpV4KYL6a3B3ftZrtYOyy0IgLXgYBibKiIlUKDLhWLiSS8wZJoarZlNhrHEiFbW_oyQWMceUZJmxuCxWRBkWijBah1o-yPUGIEkMM5pp4arSRyphioos0ZoRiTVPWB3CSuipLEuQu04YT6m_imCeekWlTlFpqag6HEzmvBQFOP4cveokPxlZCr0O25Vu0_KMvqUWClFX24gnm7_P2oPZdq9znV5fdK-2YI44h-7fX7ahNnwd6R0LR4bZrt-FH0BB2Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+CNN+and+Dictionary-Based+Models+for+Scene+Recognition+and+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Xie%2C+Guo-Sen&rft.au=Zhang%2C+Xu-Yao&rft.au=Yan%2C+Shuicheng&rft.au=Liu%2C+Cheng-Lin&rft.date=2017-06-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=27&rft.issue=6&rft.spage=1263&rft.epage=1274&rft_id=info:doi/10.1109%2FTCSVT.2015.2511543&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2015_2511543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon