Lung-Derived Exosomal miR-483-3p Regulates the Innate Immune Response to Influenza Virus Infection
Abstract Exosomes regulate cell–cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at h...
Saved in:
Published in | The Journal of infectious diseases Vol. 217; no. 9; pp. 1372 - 1382 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
11.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Exosomes regulate cell–cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosomes during infection of mice with various strains of influenza virus, and miR-483-3p transfection potentiated gene expression of type I interferon and proinflammatory cytokine upon viral infection of MLE-12 cells. RNF5, a regulator of the RIG-I signaling pathway, was identified as a target gene of miR-483-3p. Moreover, we found that CD81, another miR-483-3p target, functions as a negative regulator of RIG-I signaling in MLE-12 cells. Taken together, this study indicates that BALF exosomal miRNAs may mediate the antiviral and inflammatory response to influenza virus infection.
miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosome in influenza virus–infected mice. miR-483-3p potentiated innate immune response by suppressing negative regulators of RIG-I signaling. BALF exosomal microRNAs may mediate the immune response to influenza virus infection. |
---|---|
AbstractList | Exosomes regulate cell-cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosomes during infection of mice with various strains of influenza virus, and miR-483-3p transfection potentiated gene expression of type I interferon and proinflammatory cytokine upon viral infection of MLE-12 cells. RNF5, a regulator of the RIG-I signaling pathway, was identified as a target gene of miR-483-3p. Moreover, we found that CD81, another miR-483-3p target, functions as a negative regulator of RIG-I signaling in MLE-12 cells. Taken together, this study indicates that BALF exosomal miRNAs may mediate the antiviral and inflammatory response to influenza virus infection. Abstract Exosomes regulate cell–cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosomes during infection of mice with various strains of influenza virus, and miR-483-3p transfection potentiated gene expression of type I interferon and proinflammatory cytokine upon viral infection of MLE-12 cells. RNF5, a regulator of the RIG-I signaling pathway, was identified as a target gene of miR-483-3p. Moreover, we found that CD81, another miR-483-3p target, functions as a negative regulator of RIG-I signaling in MLE-12 cells. Taken together, this study indicates that BALF exosomal miRNAs may mediate the antiviral and inflammatory response to influenza virus infection. miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosome in influenza virus–infected mice. miR-483-3p potentiated innate immune response by suppressing negative regulators of RIG-I signaling. BALF exosomal microRNAs may mediate the immune response to influenza virus infection. Exosomes regulate cell-cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosomes during infection of mice with various strains of influenza virus, and miR-483-3p transfection potentiated gene expression of type I interferon and proinflammatory cytokine upon viral infection of MLE-12 cells. RNF5, a regulator of the RIG-I signaling pathway, was identified as a target gene of miR-483-3p. Moreover, we found that CD81, another miR-483-3p target, functions as a negative regulator of RIG-I signaling in MLE-12 cells. Taken together, this study indicates that BALF exosomal miRNAs may mediate the antiviral and inflammatory response to influenza virus infection.Exosomes regulate cell-cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during influenza virus infection, we characterized lung-derived exosomal microRNAs (miRNAs). Among the detected miRNAs, miR-483-3p was present at high levels in bronchoalveolar lavage fluid (BALF) exosomes during infection of mice with various strains of influenza virus, and miR-483-3p transfection potentiated gene expression of type I interferon and proinflammatory cytokine upon viral infection of MLE-12 cells. RNF5, a regulator of the RIG-I signaling pathway, was identified as a target gene of miR-483-3p. Moreover, we found that CD81, another miR-483-3p target, functions as a negative regulator of RIG-I signaling in MLE-12 cells. Taken together, this study indicates that BALF exosomal miRNAs may mediate the antiviral and inflammatory response to influenza virus infection. |
Author | Nakao, Tomomi Noda, Takeshi Lopes, Tiago J S Kawaoka, Yoshihiro Sugita, Yukihiko Maemura, Tadashi Fukuyama, Satoshi |
Author_xml | – sequence: 1 givenname: Tadashi surname: Maemura fullname: Maemura, Tadashi organization: Division of Virology, Department of Microbiology and Immunology, Japan – sequence: 2 givenname: Satoshi surname: Fukuyama fullname: Fukuyama, Satoshi organization: Division of Virology, Department of Microbiology and Immunology, Japan – sequence: 3 givenname: Yukihiko surname: Sugita fullname: Sugita, Yukihiko organization: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan – sequence: 4 givenname: Tiago J S surname: Lopes fullname: Lopes, Tiago J S organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Japan – sequence: 5 givenname: Tomomi surname: Nakao fullname: Nakao, Tomomi organization: Division of Virology, Department of Microbiology and Immunology, Japan – sequence: 6 givenname: Takeshi surname: Noda fullname: Noda, Takeshi organization: Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan – sequence: 7 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro email: yoshihiro.kawaoka@wisc.edu organization: Division of Virology, Department of Microbiology and Immunology, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29373693$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkFFLwzAQgIMoblMffZU--hKXNFnTPMqcOhgIor6GLL1qRpvUphHnr7ej80UQn-6O--64-ybo0HkHCJ1TckWJZFPrysKG6cZuCZsdoDGdMYGzjLJDNCYkTTHNpRyhSQgbQghnmThGo1QywTLJxmi9iu4V30BrP6BIFp8--FpXSW0fMc8ZZk3yCK-x0h2EpHuDZOlcnyfLuo4O-l5ovAuQdL7vlFUE96WTF9vGsKvBdNa7U3RU6irA2T6eoOfbxdP8Hq8e7pbz6xU2nNEOl6nJjYQZcCNyQtewhlQWlAtSal2yHAhkBU9NVgomJBecawDKRE5FLlNN2Qm6HPY2rX-PEDpV22CgqrQDH4OiUqaE9g6yHr3Yo3FdQ6Ga1ta63aofLz3ABsC0PoQWSmVsp3ffdK22laJE7eyrwb4a7PdT-NfUz-K_-P3FPjb_oN_jiZb8 |
CitedBy_id | crossref_primary_10_1007_s00705_021_05152_5 crossref_primary_10_1016_j_virusres_2018_12_016 crossref_primary_10_3389_fmicb_2020_00144 crossref_primary_10_3390_life11010045 crossref_primary_10_1080_15476286_2021_1872170 crossref_primary_10_1016_j_coviro_2020_07_014 crossref_primary_10_3390_ijms242216139 crossref_primary_10_3389_fmicb_2021_742984 crossref_primary_10_1186_s12929_019_0553_6 crossref_primary_10_1002_wnan_1824 crossref_primary_10_3389_fimmu_2018_01541 crossref_primary_10_3390_v14122690 crossref_primary_10_1016_j_amolm_2023_100004 crossref_primary_10_1016_j_cytogfr_2020_07_004 crossref_primary_10_1590_0074_02760200238 crossref_primary_10_3892_etm_2018_7141 crossref_primary_10_1016_S2095_3119_18_62134_3 crossref_primary_10_1002_jbt_22851 crossref_primary_10_1007_s00705_019_04232_x crossref_primary_10_1186_s12967_021_02861_y crossref_primary_10_3390_v13010002 crossref_primary_10_1002_wrna_1535 crossref_primary_10_1128_jvi_01857_23 crossref_primary_10_1186_s12985_024_02297_y crossref_primary_10_15252_embj_2020105057 crossref_primary_10_1016_j_jaci_2022_09_037 crossref_primary_10_1089_dna_2021_1101 crossref_primary_10_1016_j_biopha_2019_109603 crossref_primary_10_3389_fimmu_2021_711565 crossref_primary_10_1016_j_virusres_2020_197885 crossref_primary_10_3389_fcimb_2020_593170 crossref_primary_10_3389_fphar_2023_1081015 crossref_primary_10_3389_fmolb_2022_814240 crossref_primary_10_1371_journal_ppat_1008366 crossref_primary_10_3389_fimmu_2023_1324516 crossref_primary_10_1002_VIW_20200186 crossref_primary_10_3389_fcimb_2020_00366 crossref_primary_10_1007_s00705_020_04877_z crossref_primary_10_1016_j_addr_2021_05_021 crossref_primary_10_1080_1040841X_2020_1794791 crossref_primary_10_47184_tev_2020_01_02 crossref_primary_10_4103_ecdt_ecdt_12_22 crossref_primary_10_1002_jcp_30553 crossref_primary_10_3390_cancers14184450 crossref_primary_10_1016_j_dci_2022_104497 crossref_primary_10_1016_j_micpath_2019_103919 crossref_primary_10_1016_j_lfs_2021_119484 crossref_primary_10_1016_j_phrs_2022_106509 crossref_primary_10_3390_cells10050965 crossref_primary_10_2217_epi_2019_0192 crossref_primary_10_1016_j_procbio_2023_02_028 crossref_primary_10_1007_s10096_020_04008_1 crossref_primary_10_1007_s11626_024_00929_9 crossref_primary_10_1080_19490976_2020_1771985 crossref_primary_10_3390_v12080887 crossref_primary_10_1111_1440_1681_13241 |
Cites_doi | 10.1093/nar/gkm1012 10.1128/JVI.74.17.7989-7996.2000 10.1016/j.cell.2005.08.012 10.1093/nar/gkl243 10.1093/nar/gkm995 10.1038/nrg3162 10.1080/01926230701302558 10.4049/jimmunol.1500370 10.1016/j.jaci.2012.11.039 10.1002/cyto.a.22012 10.1152/physiol.00015.2005 10.1093/infdis/jis455 10.1371/journal.ppat.1002099 10.1016/j.virusres.2015.02.003 10.1128/JVI.77.24.13257-13266.2003 10.1073/pnas.1304718110 10.1128/JVI.01400-14 10.1038/ni.2647 10.1038/ncomms5816 10.4049/jimmunol.0903748 10.1074/jbc.M801902200 10.1016/j.molmed.2016.11.003 10.1128/JVI.02203-09 10.1016/j.cell.2006.02.015 10.4049/jimmunol.0802797 10.1038/ncb1596 10.1074/jbc.M112.387670 10.1016/j.virol.2011.09.011 10.1093/nar/gks901 10.1093/nar/gkr294 10.1016/j.immuni.2009.01.008 10.1016/j.cell.2006.07.031 10.1083/jcb.201211138 10.1038/ni1243 10.7554/eLife.05005 10.1038/nmeth.3485 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/infdis/jiy035 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1537-6613 |
EndPage | 1382 |
ExternalDocumentID | 29373693 10_1093_infdis_jiy035 10.1093/infdis/jiy035 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Science and Technology Agency funderid: 10.13039/501100002241 – fundername: Japan Agency for Medical Research and Development grantid: JP17am0001007 funderid: 10.13039/100009619 – fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan grantid: 16H06429; 16K21723; 16H06434 |
GroupedDBID | --- -DZ -~X ..I .2P .I3 .XZ .ZR 08P 0R~ 123 1KJ 29K 2AX 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 70D 85S AABZA AACGO AACZT AAHBH AAHTB AAJKP AAJQQ AAMVS AANCE AAOGV AAPNW AAPQZ AAPXW AAQQT AARHZ AASNB AAUAY AAUQX AAVAP AAWTL ABBHK ABEUO ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPEJ ABPLY ABPPZ ABPTD ABQLI ABQNK ABTLG ABWST ABXSQ ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUTJ ACUTO ACYHN ADACV ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFZL AFIYH AFOFC AFXAL AFXEN AGINJ AGKEF AGQXC AGSYK AGUTN AHMBA AHXPO AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BR6 BTRTY BVRKM C45 CDBKE CS3 CZ4 D-I DAKXR DCCCD DIK DILTD DU5 D~K EBS ECGQY EE~ EJD EMOBN ENERS ESX F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KAQDR KBUDW KOP KQ8 KSI KSN L7B LSO LU7 M49 MHKGH MJL ML0 N9A NGC NOMLY NOYVH NU- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TR2 W2D W8F WH7 X7H YAYTL YKOAZ YXANX ZKG ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ADNBA AEMQT AFYAG AGORE AHMMS AJBYB AJNCP ALXQX CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c431t-f2c8c9e5e4c7801bebe29d1470faaf38e0e6d42c6f73794744aee137817892a13 |
ISSN | 0022-1899 1537-6613 |
IngestDate | Thu Jul 10 23:26:37 EDT 2025 Mon Jul 21 05:58:13 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Tue Jul 01 01:31:10 EDT 2025 Wed Sep 11 04:48:10 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | influenza virus microRNA innate immunity exosome |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) https://academic.oup.com/journals/pages/about_us/legal/notices |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c431t-f2c8c9e5e4c7801bebe29d1470faaf38e0e6d42c6f73794744aee137817892a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/jid/article-pdf/217/9/1372/24593299/jiy035.pdf |
PMID | 29373693 |
PQID | 1992010046 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1992010046 pubmed_primary_29373693 crossref_citationtrail_10_1093_infdis_jiy035 crossref_primary_10_1093_infdis_jiy035 oup_primary_10_1093_infdis_jiy035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-11 |
PublicationDateYYYYMMDD | 2018-04-11 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | US |
PublicationPlace_xml | – name: US – name: United States |
PublicationTitle | The Journal of infectious diseases |
PublicationTitleAlternate | J Infect Dis |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Pasquinelli ( key 20180411032425_CIT0031) 2012; 13 Delorme-Axford ( key 20180411032425_CIT0011) 2013; 110 Xu ( key 20180411032425_CIT0033) 2014; 88 Krüger ( key 20180411032425_CIT0024) 2006; 34 Vejnar ( key 20180411032425_CIT0022) 2012; 40 Raposo ( key 20180411032425_CIT0005) 2013; 200 Dweep ( key 20180411032425_CIT0021) 2015; 12 Levänen ( key 20180411032425_CIT0012) 2013; 131 Hutchinson ( key 20180411032425_CIT0014) 2014; 5 Maragkakis ( key 20180411032425_CIT0027) 2011; 39 Li ( key 20180411032425_CIT0008) 2011; 421 Akira ( key 20180411032425_CIT0004) 2006; 124 Zhong ( key 20180411032425_CIT0029) 2009; 30 Suzuki ( key 20180411032425_CIT0036) 2009; 182 Killip ( key 20180411032425_CIT0003) 2015; 209 Zhong ( key 20180411032425_CIT0030) 2010; 184 Valadi ( key 20180411032425_CIT0006) 2007; 9 Seth ( key 20180411032425_CIT0020) 2005; 122 Weinheimer ( key 20180411032425_CIT0001) 2012; 206 Fields ( key 20180411032425_CIT0013) 2007 Agarwal ( key 20180411032425_CIT0025) 2015; 4 Li ( key 20180411032425_CIT0010) 2013; 14 Levy ( key 20180411032425_CIT0035) 2005; 20 van Riel ( key 20180411032425_CIT0002) 2011; 7 Miranda ( key 20180411032425_CIT0023) 2006; 126 Buggele ( key 20180411032425_CIT0009) 2012; 287 Takeda ( key 20180411032425_CIT0037) 2008; 283 Talon ( key 20180411032425_CIT0015) 2000; 74 Buchweitz ( key 20180411032425_CIT0017) 2007; 35 Betel ( key 20180411032425_CIT0028) 2008; 36 Hsu ( key 20180411032425_CIT0026) 2008; 36 Trobaugh ( key 20180411032425_CIT0032) 2017; 23 Li ( key 20180411032425_CIT0007) 2010; 84 Donelan ( key 20180411032425_CIT0016) 2003; 77 Rose ( key 20180411032425_CIT0018) 2012; 81 Kawai ( key 20180411032425_CIT0019) 2005; 6 Zhu ( key 20180411032425_CIT0034) 2015; 195 |
References_xml | – volume: 36 start-page: D165 year: 2008 ident: key 20180411032425_CIT0026 article-title: miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm1012 – volume: 74 start-page: 7989 year: 2000 ident: key 20180411032425_CIT0015 article-title: Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein publication-title: J Virol doi: 10.1128/JVI.74.17.7989-7996.2000 – volume: 122 start-page: 669 year: 2005 ident: key 20180411032425_CIT0020 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 – volume: 34 start-page: W451 year: 2006 ident: key 20180411032425_CIT0024 article-title: RNAhybrid: microRNA target prediction easy, fast and flexible publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl243 – volume: 36 start-page: D149 year: 2008 ident: key 20180411032425_CIT0028 article-title: The microRNA.org resource: targets and expression publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm995 – volume: 13 start-page: 271 year: 2012 ident: key 20180411032425_CIT0031 article-title: MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship publication-title: Nat Rev Genet doi: 10.1038/nrg3162 – volume: 35 start-page: 424 year: 2007 ident: key 20180411032425_CIT0017 article-title: Time-dependent airway epithelial and inflammatory cell responses induced by influenza virus A/PR/8/34 in C57BL/6 mice publication-title: Toxicol Pathol doi: 10.1080/01926230701302558 – volume: 195 start-page: 2251 year: 2015 ident: key 20180411032425_CIT0034 article-title: MicroRNA-15b modulates Japanese encephalitis virus-mediated inflammation via targeting RNF125 publication-title: J Immunol doi: 10.4049/jimmunol.1500370 – volume: 131 start-page: 894 year: 2013 ident: key 20180411032425_CIT0012 article-title: Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2012.11.039 – volume: 81 start-page: 343 year: 2012 ident: key 20180411032425_CIT0018 article-title: A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment publication-title: Cytometry A doi: 10.1002/cyto.a.22012 – volume: 20 start-page: 218 year: 2005 ident: key 20180411032425_CIT0035 article-title: Protein-protein interactions in the tetraspanin web publication-title: Physiology doi: 10.1152/physiol.00015.2005 – volume: 206 start-page: 1685 year: 2012 ident: key 20180411032425_CIT0001 article-title: Influenza A viruses target type II pneumocytes in the human lung publication-title: J Infect Dis doi: 10.1093/infdis/jis455 – volume: 7 start-page: e1002099 year: 2011 ident: key 20180411032425_CIT0002 article-title: Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-alpha induction publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002099 – volume: 209 start-page: 11 year: 2015 ident: key 20180411032425_CIT0003 article-title: Influenza virus activation of the interferon system publication-title: Virus Res doi: 10.1016/j.virusres.2015.02.003 – volume: 77 start-page: 13257 year: 2003 ident: key 20180411032425_CIT0016 article-title: A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice publication-title: J Virol doi: 10.1128/JVI.77.24.13257-13266.2003 – volume: 110 start-page: 12048 year: 2013 ident: key 20180411032425_CIT0011 article-title: Human placental trophoblasts confer viral resistance to recipient cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1304718110 – volume: 88 start-page: 11356 year: 2014 ident: key 20180411032425_CIT0033 article-title: Downregulation of microRNA miR-526a by enterovirus inhibits RIG-I-dependent innate immune response publication-title: J Virol doi: 10.1128/JVI.01400-14 – volume: 14 start-page: 793 year: 2013 ident: key 20180411032425_CIT0010 article-title: Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity publication-title: Nat Immunol doi: 10.1038/ni.2647 – volume: 5 start-page: 4816 year: 2014 ident: key 20180411032425_CIT0014 article-title: Conserved and host-specific features of influenza virion architecture publication-title: Nat Commun doi: 10.1038/ncomms5816 – volume: 184 start-page: 6249 year: 2010 ident: key 20180411032425_CIT0030 article-title: The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation publication-title: J Immunol doi: 10.4049/jimmunol.0903748 – volume: 283 start-page: 26089 year: 2008 ident: key 20180411032425_CIT0037 article-title: Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice publication-title: J Biol Chem doi: 10.1074/jbc.M801902200 – volume: 23 start-page: 80 year: 2017 ident: key 20180411032425_CIT0032 article-title: MicroRNA regulation of RNA virus replication and pathogenesis publication-title: Trends Mol Med doi: 10.1016/j.molmed.2016.11.003 – volume: 84 start-page: 3023 year: 2010 ident: key 20180411032425_CIT0007 article-title: MicroRNA expression and virulence in pandemic influenza virus-infected mice publication-title: J Virol doi: 10.1128/JVI.02203-09 – volume-title: Fields’ virology year: 2007 ident: key 20180411032425_CIT0013 – volume: 124 start-page: 783 year: 2006 ident: key 20180411032425_CIT0004 article-title: Pathogen recognition and innate immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.015 – volume: 182 start-page: 6485 year: 2009 ident: key 20180411032425_CIT0036 article-title: Tetraspanin CD9 negatively regulates lipopolysaccharide-induced macrophage activation and lung inflammation publication-title: J Immunol doi: 10.4049/jimmunol.0802797 – volume: 9 start-page: 654 year: 2007 ident: key 20180411032425_CIT0006 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat Cell Biol doi: 10.1038/ncb1596 – volume: 287 start-page: 31027 year: 2012 ident: key 20180411032425_CIT0009 article-title: Influenza A virus infection of human respiratory cells induces primary microRNA expression publication-title: J Biol Chem doi: 10.1074/jbc.M112.387670 – volume: 421 start-page: 105 year: 2011 ident: key 20180411032425_CIT0008 article-title: Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses publication-title: Virology doi: 10.1016/j.virol.2011.09.011 – volume: 40 start-page: 11673 year: 2012 ident: key 20180411032425_CIT0022 article-title: MiRmap: comprehensive prediction of microRNA target repression strength publication-title: Nucleic Acids Res doi: 10.1093/nar/gks901 – volume: 39 start-page: W145 year: 2011 ident: key 20180411032425_CIT0027 article-title: DIANA-microT Web server upgrade supports fly and worm miRNA target prediction and bibliographic miRNA to disease association publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr294 – volume: 30 start-page: 397 year: 2009 ident: key 20180411032425_CIT0029 article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA publication-title: Immunity doi: 10.1016/j.immuni.2009.01.008 – volume: 126 start-page: 1203 year: 2006 ident: key 20180411032425_CIT0023 article-title: A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes publication-title: Cell doi: 10.1016/j.cell.2006.07.031 – volume: 200 start-page: 373 year: 2013 ident: key 20180411032425_CIT0005 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J Cell Biol doi: 10.1083/jcb.201211138 – volume: 6 start-page: 981 year: 2005 ident: key 20180411032425_CIT0019 article-title: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction publication-title: Nat Immunol doi: 10.1038/ni1243 – volume: 4 year: 2015 ident: key 20180411032425_CIT0025 article-title: Predicting effective microRNA target sites in mammalian mRNAs publication-title: eLife doi: 10.7554/eLife.05005 – volume: 12 start-page: 697 year: 2015 ident: key 20180411032425_CIT0021 article-title: miRWalk2.0: a comprehensive atlas of microRNA-target interactions publication-title: Nat Methods doi: 10.1038/nmeth.3485 |
SSID | ssj0004367 |
Score | 2.4873338 |
Snippet | Abstract
Exosomes regulate cell–cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during... Exosomes regulate cell-cell communication by transferring functional proteins and RNAs between cells. Here, to clarify the function of exosomes during... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1372 |
SubjectTerms | Animals Bronchoalveolar Lavage Fluid Cell Line Female Gene Expression Regulation - immunology Immunity, Innate - physiology Lung - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Inbred C57BL MicroRNAs - genetics MicroRNAs - metabolism NF-kappa B Orthomyxoviridae - immunology Orthomyxoviridae Infections - immunology Orthomyxoviridae Infections - virology Tetraspanin 28 - genetics Tetraspanin 28 - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism |
Title | Lung-Derived Exosomal miR-483-3p Regulates the Innate Immune Response to Influenza Virus Infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29373693 https://www.proquest.com/docview/1992010046 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEGgvCMZX-ZKREC8lWxPnw3lEsGkdKw_QofEUOY4LWWlSbQmi-7P4Czn7nDSDVQxeotRxHcX38_ls3_2OkBcZ8wMZy1gzH3NHEyo5HCZKZ5rFnLEwkNJw6Y3fh_tH_sFxcNzr_ex4LdVVui3PL40r-R-pQhnIVUfJ_oNk20ahAO5BvnAFCcP1SjI-hJHqvIU3fQezcfdHeVbOdTBI_kFv3jlsAZ1nMs1rGgfjJFnA_WCkQ0J0ugbjHWtSZ4wwVcm5GHzKT-sz_du4aBVd23UVRWaJJrAOVLenPK15PhZqXpsERoOJyHS6phYm9axeirnAzeiq7Dz6WH_J0ZT9XM_yr_msbJ4clgtUZpNce40c2O1au1fhcn3s4q72KtbEQHb1MyyNXY4pk7ZVo5IjB6wI1tXZHgZ8WnDGHQ3sMkwFZGdzTbF46UyBLFpQlGkuh72TfDlE3pTf6LfX1r1GrnuwNDHL-NG7VSwuC6OGoV5_ieV1hSZ2sIEd_PsFO-hCbOUfSxxj6kxuk1tWxvQ1Au4O6alii9zArKXLLXJzbP0x7pK0i0DaIJCuEEhbBFJAIEUEUkQgbRBIq5K2CKQGgbRF4D1ytLc7ebPv2KwdjgRjtHKmnuQyVoHyZQTmTwpawosz14-GUyGmjKuhCjPfk-E0YjAZRL4vlAKpcTfisSdcdp9sFGWhHhIqJViXMF2nqRf4USpjnjLmp0wEQ2gu5H3yqunDRFpKe51Z5VuCrhUswS5PsMv75GVbfYFcLusqPgeB_LVOI64ENLI-ZhOFgjGXaIfuoSZiDPvkAcqxbQqM64iFMXt0hTc8JpurMfSEbFSntXoKFnCVPjOQ-wWv3bTA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung-Derived+Exosomal+miR-483-3p+Regulates+the+Innate+Immune+Response+to+Influenza+Virus+Infection&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Maemura%2C+Tadashi&rft.au=Fukuyama%2C+Satoshi&rft.au=Sugita%2C+Yukihiko&rft.au=Lopes%2C+Tiago+J+S&rft.date=2018-04-11&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=217&rft.issue=9&rft.spage=1372&rft.epage=1382&rft_id=info:doi/10.1093%2Finfdis%2Fjiy035&rft.externalDocID=10.1093%2Finfdis%2Fjiy035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon |