Comparing 2D and 3D representations for face-based genetic syndrome diagnosis
Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds of genetic syndromes and computer-assisted facial phenotyping is a promising approach to assist diagnosis. Most previous approaches to automated face-based syndrome diagn...
Saved in:
Published in | European journal of human genetics : EJHG Vol. 31; no. 9; pp. 1010 - 1016 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Nature Publishing Group
01.09.2023
Springer International Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 1018-4813 1476-5438 1476-5438 |
DOI | 10.1038/s41431-023-01308-w |
Cover
Abstract | Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds of genetic syndromes and computer-assisted facial phenotyping is a promising approach to assist diagnosis. Most previous approaches to automated face-based syndrome diagnosis have analyzed different datasets of either 2D images or surface mesh-based 3D facial representations, making direct comparisons of performance challenging. In this work, we developed a set of subject-matched 2D and 3D facial representations, which we then analyzed with the aim of comparing the performance of 2D and 3D image-based approaches to computer-assisted syndrome diagnosis. This work represents the most comprehensive subject-matched analyses to date on this topic. In our analyses of 1907 subject faces representing 43 different genetic syndromes, 3D surface-based syndrome classification models significantly outperformed 2D image-based models trained and evaluated on the same subject faces. These results suggest that the clinical adoption of 3D facial scanning technology and continued collection of syndromic 3D facial scan data may substantially improve face-based syndrome diagnosis. |
---|---|
AbstractList | Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds of genetic syndromes and computer-assisted facial phenotyping is a promising approach to assist diagnosis. Most previous approaches to automated face-based syndrome diagnosis have analyzed different datasets of either 2D images or surface mesh-based 3D facial representations, making direct comparisons of performance challenging. In this work, we developed a set of subject-matched 2D and 3D facial representations, which we then analyzed with the aim of comparing the performance of 2D and 3D image-based approaches to computer-assisted syndrome diagnosis. This work represents the most comprehensive subject-matched analyses to date on this topic. In our analyses of 1907 subject faces representing 43 different genetic syndromes, 3D surface-based syndrome classification models significantly outperformed 2D image-based models trained and evaluated on the same subject faces. These results suggest that the clinical adoption of 3D facial scanning technology and continued collection of syndromic 3D facial scan data may substantially improve face-based syndrome diagnosis. Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds of genetic syndromes and computer-assisted facial phenotyping is a promising approach to assist diagnosis. Most previous approaches to automated face-based syndrome diagnosis have analyzed different datasets of either 2D images or surface mesh-based 3D facial representations, making direct comparisons of performance challenging. In this work, we developed a set of subject-matched 2D and 3D facial representations, which we then analyzed with the aim of comparing the performance of 2D and 3D image-based approaches to computer-assisted syndrome diagnosis. This work represents the most comprehensive subject-matched analyses to date on this topic. In our analyses of 1907 subject faces representing 43 different genetic syndromes, 3D surface-based syndrome classification models significantly outperformed 2D image-based models trained and evaluated on the same subject faces. These results suggest that the clinical adoption of 3D facial scanning technology and continued collection of syndromic 3D facial scan data may substantially improve face-based syndrome diagnosis.Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds of genetic syndromes and computer-assisted facial phenotyping is a promising approach to assist diagnosis. Most previous approaches to automated face-based syndrome diagnosis have analyzed different datasets of either 2D images or surface mesh-based 3D facial representations, making direct comparisons of performance challenging. In this work, we developed a set of subject-matched 2D and 3D facial representations, which we then analyzed with the aim of comparing the performance of 2D and 3D image-based approaches to computer-assisted syndrome diagnosis. This work represents the most comprehensive subject-matched analyses to date on this topic. In our analyses of 1907 subject faces representing 43 different genetic syndromes, 3D surface-based syndrome classification models significantly outperformed 2D image-based models trained and evaluated on the same subject faces. These results suggest that the clinical adoption of 3D facial scanning technology and continued collection of syndromic 3D facial scan data may substantially improve face-based syndrome diagnosis. |
Author | Bernier, Francois P. Katz, David C. Wilms, Matthias Klein, Ophir D. Bannister, Jordan J. Aponte, J. David Spritz, Richard A. Forkert, Nils D. Hallgrímsson, Benedikt |
Author_xml | – sequence: 1 givenname: Jordan J. orcidid: 0000-0003-1088-5968 surname: Bannister fullname: Bannister, Jordan J. – sequence: 2 givenname: Matthias surname: Wilms fullname: Wilms, Matthias – sequence: 3 givenname: J. David surname: Aponte fullname: Aponte, J. David – sequence: 4 givenname: David C. surname: Katz fullname: Katz, David C. – sequence: 5 givenname: Ophir D. orcidid: 0000-0002-6254-7082 surname: Klein fullname: Klein, Ophir D. – sequence: 6 givenname: Francois P. surname: Bernier fullname: Bernier, Francois P. – sequence: 7 givenname: Richard A. surname: Spritz fullname: Spritz, Richard A. – sequence: 8 givenname: Benedikt orcidid: 0000-0002-7192-9103 surname: Hallgrímsson fullname: Hallgrímsson, Benedikt – sequence: 9 givenname: Nils D. orcidid: 0000-0003-2556-3224 surname: Forkert fullname: Forkert, Nils D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36750664$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URB7wAyyQJTZsDC6_2r1CaMJLCmIDa8vtrh4cdduD3ZMof4_DJAiyYOWS69bVqbqn5CjlhIQ8B_4auLRvqgIlgXEhGQfJLbt-RE5AdYZpJe1RqzlYpizIY3Ja6yXnrdnBE3IsTae5MeqEfNnkZedLTFsqzqlPI5XntOCuYMW0-jXmVOmUC518QDb4iiPdYsI1Blpv0ljygnSMfptyjfUpeTz5ueKzu_eMfP_w_tvmE7v4-vHz5t0FCw14ZSjUIMAA9NpqjVYqJSYp7TCptgcqq0XP0SqtJuh7CN4EIS3y9jOg1L08I28Pvrv9sOAYGmrxs9uVuPhy47KP7t9Oij_cNl854KpTHERzeHXnUPLPPdbVLbEGnGefMO-rE12nVG_A3EpfPpBe5n1JbT8nrO47I7jkTfXib6Q_LPenbgJ7EISSay04uRAPB26EcW5o7jZVd0jVtVTd71TddRsVD0bv3f8z9As_g6Lf |
CitedBy_id | crossref_primary_10_1016_j_jcms_2025_01_030 crossref_primary_10_3389_fphot_2025_1535133 crossref_primary_10_1016_j_compbiomed_2025_109652 crossref_primary_10_3390_s24165286 crossref_primary_10_1016_j_compbiomed_2025_109912 crossref_primary_10_1038_s41431_023_01446_1 |
Cites_doi | 10.1038/s41588-021-01010-x 10.1145/2168752.2168759 10.1139/gen-2020-0131 10.1038/s41436-020-0845-y 10.1038/s41591-018-0279-0 10.1109/JBHI.2022.3164848 10.1109/JBHI.2017.2754861 10.1111/j.1601-6343.2009.01455.x 10.1016/j.heliyon.2019.e01880 10.1109/ASYU50717.2020.9259802 10.1186/s13673-018-0157-2 10.1109/CVPR.2007.383165 10.2174/1874210601812010061 10.1097/01.scs.0000171847.58031.9e 10.1146/annurev-biodatasci-122120-111413 10.1109/CVPR.2019.00482 10.1016/j.patcog.2011.07.022 10.1109/ISBI.2009.5193102 10.3390/s20113171 |
ContentType | Journal Article |
Copyright | 2023. The Author(s), under exclusive licence to European Society of Human Genetics. The Author(s), under exclusive licence to European Society of Human Genetics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: 2023. The Author(s), under exclusive licence to European Society of Human Genetics. – notice: The Author(s), under exclusive licence to European Society of Human Genetics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41431-023-01308-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-5438 |
EndPage | 1016 |
ExternalDocumentID | PMC10474012 36750664 10_1038_s41431_023_01308_w |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: U01 DE024440 – fundername: ; – fundername: ; grantid: U01-DE024440 |
GroupedDBID | --- 0R~ 29G 2WC 36B 39C 4.4 406 53G 5GY 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAYXX AAYZH ABAKF ABBRH ABDBE ABFSG ABJNI ABLJU ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACMFV ACPRK ACRQY ACSTC ACZOJ ADBBV ADFRT AEFQL AEJRE AEMSY AENEX AESKC AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AHWEU AIGIU AILAN AIXLP AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CITATION CS3 DIK DNIVK DPUIP DU5 E3Z EAP EBLON EBS EE. EHN EIOEI EMB ESX F5P FDQFY FEDTE FERAY FIGPU FSGXE FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IWAJR JSO JZLTJ KQ8 LK8 M1P M7P NQJWS O9- OK1 P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TR2 UKHRP -Q- ABAWZ ABDBF ABRTQ ACUHS B0M CAG CGR COF CUY CVF EAD EAS EBC EBD ECM EIF EJD EMK EMOBN EPL EPT FIZPM NPM PJZUB PPXIY PQGLB Q~Q RIG RNS SV3 TUS Y6R ~8M 3V. 7XB 88A 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c431t-e24b2161195855e83442f338bf4130e485290e8454f1991ca6c238e0845be3593 |
IEDL.DBID | 7X7 |
ISSN | 1018-4813 1476-5438 |
IngestDate | Thu Aug 21 18:31:58 EDT 2025 Fri Sep 05 14:04:08 EDT 2025 Fri Jul 25 08:57:58 EDT 2025 Mon Jul 21 06:04:31 EDT 2025 Tue Jul 01 01:28:59 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2023. The Author(s), under exclusive licence to European Society of Human Genetics. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-e24b2161195855e83442f338bf4130e485290e8454f1991ca6c238e0845be3593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2556-3224 0000-0003-1088-5968 0000-0002-6254-7082 0000-0002-7192-9103 |
OpenAccessLink | https://www.nature.com/articles/s41431-023-01308-w.pdf |
PMID | 36750664 |
PQID | 2859762030 |
PQPubID | 34182 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10474012 proquest_miscellaneous_2774496162 proquest_journals_2859762030 pubmed_primary_36750664 crossref_citationtrail_10_1038_s41431_023_01308_w crossref_primary_10_1038_s41431_023_01308_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Leiden – name: Cham |
PublicationTitle | European journal of human genetics : EJHG |
PublicationTitleAlternate | Eur J Hum Genet |
PublicationYear | 2023 |
Publisher | Nature Publishing Group Springer International Publishing |
Publisher_xml | – name: Nature Publishing Group – name: Springer International Publishing |
References | I Anas (1308_CR11) 2019; 5 SJ MacEachern (1308_CR5) 2021; 64 1308_CR15 1308_CR16 T-C Hsieh (1308_CR17) 2022; 54 1308_CR19 1308_CR20 1308_CR10 1308_CR21 AS Bilge (1308_CR13) 2012; 45 1308_CR1 1308_CR14 1308_CR2 H Matthews (1308_CR4) 2022; 5 Y Gurovich (1308_CR7) 2019; 25 B Hallgrímsson (1308_CR8) 2020; 22 1308_CR6 LG Farkas (1308_CR22) 2005; 16 T Hart (1308_CR3) 2009; 12 T Zogheib (1308_CR12) 2018; 12 J Bannister (1308_CR9) 2022; 26 JJ Bannister (1308_CR18) 2020; 20 S Berretti (1308_CR23) 2012; 3 |
References_xml | – volume: 54 start-page: 349 year: 2022 ident: 1308_CR17 publication-title: Nat Genet doi: 10.1038/s41588-021-01010-x – volume: 3 start-page: 1 year: 2012 ident: 1308_CR23 publication-title: ACM Trans Intell Syst Technol (TIST) doi: 10.1145/2168752.2168759 – volume: 64 start-page: 416 year: 2021 ident: 1308_CR5 publication-title: Genome doi: 10.1139/gen-2020-0131 – volume: 22 start-page: 1 year: 2020 ident: 1308_CR8 publication-title: Genet Med doi: 10.1038/s41436-020-0845-y – volume: 25 start-page: 60 year: 2019 ident: 1308_CR7 publication-title: Nat Med doi: 10.1038/s41591-018-0279-0 – volume: 26 start-page: 3229 year: 2022 ident: 1308_CR9 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3164848 – ident: 1308_CR1 doi: 10.1109/JBHI.2017.2754861 – volume: 12 start-page: 212 year: 2009 ident: 1308_CR3 publication-title: Orthod Craniofacial Res doi: 10.1111/j.1601-6343.2009.01455.x – volume: 5 start-page: e01880 year: 2019 ident: 1308_CR11 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01880 – ident: 1308_CR20 doi: 10.1109/ASYU50717.2020.9259802 – ident: 1308_CR15 doi: 10.1186/s13673-018-0157-2 – ident: 1308_CR19 doi: 10.1109/CVPR.2007.383165 – ident: 1308_CR16 – ident: 1308_CR6 – volume: 12 start-page: 61 year: 2018 ident: 1308_CR12 publication-title: Open Dent J doi: 10.2174/1874210601812010061 – ident: 1308_CR14 – volume: 16 start-page: 615 year: 2005 ident: 1308_CR22 publication-title: J Craniofacial Surg doi: 10.1097/01.scs.0000171847.58031.9e – ident: 1308_CR2 – volume: 5 start-page: 19 year: 2022 ident: 1308_CR4 publication-title: Annu Rev Biomed Data Sci doi: 10.1146/annurev-biodatasci-122120-111413 – ident: 1308_CR21 doi: 10.1109/CVPR.2019.00482 – volume: 45 start-page: 767 year: 2012 ident: 1308_CR13 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.07.022 – ident: 1308_CR10 doi: 10.1109/ISBI.2009.5193102 – volume: 20 start-page: 3171 year: 2020 ident: 1308_CR18 publication-title: Sensors doi: 10.3390/s20113171 |
SSID | ssj0014771 |
Score | 2.4267743 |
Snippet | Human genetic syndromes are often challenging to diagnose clinically. Facial phenotype is a key diagnostic indicator for hundreds of genetic syndromes and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1010 |
SubjectTerms | Classification Diagnosis Face Facial recognition technology Genetics Hospitals Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Pediatrics Phenotypes Phenotyping Photography Research centers Scanners Smartphones Syndrome Three dimensional imaging |
Title | Comparing 2D and 3D representations for face-based genetic syndrome diagnosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36750664 https://www.proquest.com/docview/2859762030 https://www.proquest.com/docview/2774496162 https://pubmed.ncbi.nlm.nih.gov/PMC10474012 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB_8QPFFzu96nkTwTYJtkrbp0-Gqiwi7iCjsW2nTVAXpetcV8b93pk2rewc-FZqUtjOTzExm5jcAx4nwjYliy5X2JVexNTwpSp8nSZzlgY1NFlLt8GgcXd2r60k4cQdutUur7PbEZqMupobOyE8JaA0XLsrk75c_nLpGUXTVtdBYhOUGugzlOZ70Dleg4tbh8gM6NAukK5rxpT6tFRoK6EgLyiaSvuZv84rpP2vz36TJL1po-APWnfnIzlp-b8CCrTZhpW0o-b4JqyMXKt-C0XnbYbB6YOKCZVXB5AVrICy7cqOqZmixsjIzlpMyKxgKE9U0sg7GgBVtIt5TvQ33w8u78yvueidwg_8141aoXKA1R1gyYWipm4Yo0R3NS9JaVulQJL7VKlQlJT-ZLDKovK2Pd3Irw0TuwFI1reweMIKQk7KwRpqQAMNybfIs0MgNUxY2kB4EHeFS44DFqb_Fc9oEuKVOW2KnSOy0IXb65sFJ_8xLC6vx7eyDjh-pW2J1-ikQHhz1w7g4KOKRVXb6inPQuFVJFETCg92Wff3rJLpKaG8pD_QcY_sJBLw9P1I9PTYA3ARvgX6p2P_-u37CmmgEjDLSDmBp9vfV_kITZpYfNnJ6CMtnw8FgjNfB5fjm9gNLfu7N |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW_G4oFIeDRQwEpyQ1cR2EueAKui22tLuCqFW6s0kjkMroWwhW636p_iNzMRJYEHqrdfYUaJ5eGY8M98AvMlEaG2SOq50KLlKneVZWYU8y9K8iFxq85h6h6ezZHKqPp3FZ2vwq--FobLK_kxsD-pybumOfIeA1lBxUSZ3L39wmhpF2dV-hIYXiyN3vcSQrXl_OEb-vhXiYP9kb8K7qQLcorFccCdUIdDPIZSVOHY0Z0JUGKgVFZ3nTulYZKHTKlYVlQXZPLFo1lyITwonYwJfwiN_XVFH6wjWP-7PPn8Z8hYq9SFeGNE1XSS7Np1Q6p1GoWuCobug-iUZar5cNYX_-bf_lmn-ZfcONuBB57CyD17CHsKaqzfhjh9heb0Jd6ddcv4RTPf8TMP6GxNjltclk2PWgmb2DU51w9BHZlVuHSfzWTIUX-qiZD1wAit96d9F8xhOb4WuT2BUz2u3BYxA66QsnZU2JoiyQtsijzTy31ali2QAUU84Yzsoc5qo8d20KXWpjSe2QWKblthmGcC74Z1LD-Rx4-7tnh-mU-rG_BHBAF4Py6iOlGPJaze_wj3oTqssiRIRwFPPvuFzEoMz9PBUAHqFscMGgvpeXakvzlvIbwLUwEhYPLv5v17BvcnJ9NgcH86OnsN90Qob1cNtw2jx88q9QAdqUbzspJbB19tWlN_BnyaP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_KFYsvovWjqVVX0CdZLtndJJsHEe31aK13FLHQtzXZbLQgudZcOfqv-dc5k02ip9C3vmY3JMzHzszOzG8AXmUitDZJHVc6lFylzvKsrEKeZWleRC61eUy9w7N5cniqPp7FZxvwq--FobLK_kxsD-pyYemOfExAa6i4KJPjqiuLOJlM311ccpogRZnWfpyGF5Fjd73C8K15ezRBXr8WYnrwZf-QdxMGuEXDueROqEKgz0OIK3HsaOaEqDBoKyo6253SschCp1WsKioRsnli0cS5EJ8UTsYExITH_2aKVlGNYPPDwfzk85DDUKkP98KIruwi2bXshFKPG4VuCobxgmqZZKj5at0s_ufr_luy-ZcNnN6He53zyt57aXsAG67ehjt-nOX1NmzNukT9Q5jt-_mG9TcmJiyvSyYnrAXQ7Jud6oahv8yq3DpOprRkKMrUUcl6EAVW-jLA8-YRnN4KXR_DqF7UbgcYAdhJWTorbUxwZYW2RR5plAVblS6SAUQ94YztYM1pusYP06bXpTae2AaJbVpim1UAb4Z3Ljyox42793p-mE7BG_NHHAN4OSyjalK-Ja_d4gr3oGutsiRKRABPPPuGz0kM1NDbUwHoNcYOGwj2e32lPv_ewn8TuAZGxWL35v96AVuoIObT0fz4KdwVraxRadwejJY_r9wz9KWWxfNOaBl8vW09-Q2dYiq7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+2D+and+3D+representations+for+face-based+genetic+syndrome+diagnosis&rft.jtitle=European+journal+of+human+genetics+%3A+EJHG&rft.au=Bannister%2C+Jordan+J.&rft.au=Wilms%2C+Matthias&rft.au=Aponte%2C+J.+David&rft.au=Katz%2C+David+C.&rft.date=2023-09-01&rft.pub=Springer+International+Publishing&rft.issn=1018-4813&rft.eissn=1476-5438&rft.volume=31&rft.issue=9&rft.spage=1010&rft.epage=1016&rft_id=info:doi/10.1038%2Fs41431-023-01308-w&rft_id=info%3Apmid%2F36750664&rft.externalDocID=PMC10474012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-4813&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-4813&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-4813&client=summon |