Pontine μ-opioid receptors mediate bradypnea caused by intravenous remifentanil infusions at clinically relevant concentrations in dogs

Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet unclear which sites containing μ-opioid receptors (μORs) within the intact in vivo mammalian respiratory control network are responsible. The purp...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 108; no. 9; pp. 2430 - 2441
Main Authors Prkic, Ivana, Mustapic, Sanda, Radocaj, Tomislav, Stucke, Astrid G, Stuth, Eckehard A E, Hopp, Francis A, Dean, Caron, Zuperku, Edward J
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet unclear which sites containing μ-opioid receptors (μORs) within the intact in vivo mammalian respiratory control network are responsible. The purpose of this study was 1) to define the pontine region in which μOR agonists produce bradypnea and 2) to determine whether antagonism of those μORs reverses bradypnea produced by intravenous remifentanil (remi; 0.1-1.0 μg·kg(-1)·min(-1)). The effects of microinjections of agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO; 100 μM) and antagonist naloxone (NAL; 100 μM) into the dorsal rostral pons on the phrenic neurogram were studied in a decerebrate, vagotomized, ventilated, paralyzed canine preparation during hyperoxia. A 1-mm grid pattern of microinjections was used. The DAMGO-sensitive region extended from 5 to 7 mm lateral of midline and from 0 to 2 mm caudal of the inferior colliculus at a depth of 3-4 mm. During remi-induced bradypnea (~72% reduction in fictive breathing rate) NAL microinjections (~500 nl each) within the region defined by the DAMGO protocol were able to reverse bradypnea by 47% (SD 48.0%) per microinjection, with 13 of 84 microinjections producing complete reversal. Histological examination of fluorescent microsphere injections shows that the sensitive region corresponds to the parabrachial/Kölliker-Fuse complex.
AbstractList Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet unclear which sites containing μ-opioid receptors (μORs) within the intact in vivo mammalian respiratory control network are responsible. The purpose of this study was 1 ) to define the pontine region in which μOR agonists produce bradypnea and 2 ) to determine whether antagonism of those μORs reverses bradypnea produced by intravenous remifentanil (remi; 0.1–1.0 μg·kg −1 ·min −1 ). The effects of microinjections of agonist [ d -Ala 2 , N -Me-Phe 4 ,Gly-ol 5 ]-enkephalin (DAMGO; 100 μM) and antagonist naloxone (NAL; 100 μM) into the dorsal rostral pons on the phrenic neurogram were studied in a decerebrate, vagotomized, ventilated, paralyzed canine preparation during hyperoxia. A 1-mm grid pattern of microinjections was used. The DAMGO-sensitive region extended from 5 to 7 mm lateral of midline and from 0 to 2 mm caudal of the inferior colliculus at a depth of 3–4 mm. During remi-induced bradypnea (∼72% reduction in fictive breathing rate) NAL microinjections (∼500 nl each) within the region defined by the DAMGO protocol were able to reverse bradypnea by 47% (SD 48.0%) per microinjection, with 13 of 84 microinjections producing complete reversal. Histological examination of fluorescent microsphere injections shows that the sensitive region corresponds to the parabrachial/Kölliker-Fuse complex.
Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet unclear which sites containing μ-opioid receptors (μORs) within the intact in vivo mammalian respiratory control network are responsible. The purpose of this study was 1) to define the pontine region in which μOR agonists produce bradypnea and 2) to determine whether antagonism of those μORs reverses bradypnea produced by intravenous remifentanil (remi; 0.1–1.0 μg·kg −1 ·min −1 ). The effects of microinjections of agonist [d-Ala 2 , N-Me-Phe 4 ,Gly-ol 5 ]-enkephalin (DAMGO; 100 μM) and antagonist naloxone (NAL; 100 μM) into the dorsal rostral pons on the phrenic neurogram were studied in a decerebrate, vagotomized, ventilated, paralyzed canine preparation during hyperoxia. A 1-mm grid pattern of microinjections was used. The DAMGO-sensitive region extended from 5 to 7 mm lateral of midline and from 0 to 2 mm caudal of the inferior colliculus at a depth of 3–4 mm. During remi-induced bradypnea (∼72% reduction in fictive breathing rate) NAL microinjections (∼500 nl each) within the region defined by the DAMGO protocol were able to reverse bradypnea by 47% (SD 48.0%) per microinjection, with 13 of 84 microinjections producing complete reversal. Histological examination of fluorescent microsphere injections shows that the sensitive region corresponds to the parabrachial/Kölliker-Fuse complex.
Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet unclear which sites containing μ-opioid receptors (μORs) within the intact in vivo mammalian respiratory control network are responsible. The purpose of this study was 1) to define the pontine region in which μOR agonists produce bradypnea and 2) to determine whether antagonism of those μORs reverses bradypnea produced by intravenous remifentanil (remi; 0.1-1.0 μg·kg(-1)·min(-1)). The effects of microinjections of agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO; 100 μM) and antagonist naloxone (NAL; 100 μM) into the dorsal rostral pons on the phrenic neurogram were studied in a decerebrate, vagotomized, ventilated, paralyzed canine preparation during hyperoxia. A 1-mm grid pattern of microinjections was used. The DAMGO-sensitive region extended from 5 to 7 mm lateral of midline and from 0 to 2 mm caudal of the inferior colliculus at a depth of 3-4 mm. During remi-induced bradypnea (~72% reduction in fictive breathing rate) NAL microinjections (~500 nl each) within the region defined by the DAMGO protocol were able to reverse bradypnea by 47% (SD 48.0%) per microinjection, with 13 of 84 microinjections producing complete reversal. Histological examination of fluorescent microsphere injections shows that the sensitive region corresponds to the parabrachial/Kölliker-Fuse complex.
Author Hopp, Francis A
Dean, Caron
Mustapic, Sanda
Stucke, Astrid G
Radocaj, Tomislav
Prkic, Ivana
Stuth, Eckehard A E
Zuperku, Edward J
Author_xml – sequence: 1
  givenname: Ivana
  surname: Prkic
  fullname: Prkic, Ivana
  organization: Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
– sequence: 2
  givenname: Sanda
  surname: Mustapic
  fullname: Mustapic, Sanda
– sequence: 3
  givenname: Tomislav
  surname: Radocaj
  fullname: Radocaj, Tomislav
– sequence: 4
  givenname: Astrid G
  surname: Stucke
  fullname: Stucke, Astrid G
– sequence: 5
  givenname: Eckehard A E
  surname: Stuth
  fullname: Stuth, Eckehard A E
– sequence: 6
  givenname: Francis A
  surname: Hopp
  fullname: Hopp, Francis A
– sequence: 7
  givenname: Caron
  surname: Dean
  fullname: Dean, Caron
– sequence: 8
  givenname: Edward J
  surname: Zuperku
  fullname: Zuperku, Edward J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22875901$$D View this record in MEDLINE/PubMed
BookMark eNpVUUFu2zAQJIoUjZP22GvAD8hdUmYkXQIEQdIWCNAe2jOxIpcpDXkpiLIB_yCPyhv6ptJxG6SnXczOzO5izsQJJyYhPipYKmX0pzUvAVRrlhqUfiMWBdOVMl17IhYApa-haU7FWc5rAGgM6HfiVOu2MR2ohXj8nniOTPL3U5XGmKKXEzka5zRluSEfcSbZT-j3IxNKh9tMXvZ7GXmecEectrkoNjEQz8hxKIOwzTFxljhLN0SODodhX0gD7ZALltjRQT0_syJLnx7ye_E24JDpw996Ln7e3f64-VLdf_v89eb6vnKrWs2Vb7EPfa_NpWtp5RuHnYc-eN-E7rKjHqirQw3QYqcdmUa3BTYhqBrJo1L1ubg6-o7bvvx3vGSw4xQ3OO1twmj_n3D8ZR_SztZmZVQLxaA6Grgp5TxReNEqsIdI7JrtcyT2EEnhX7xe-ML-l0H9B8QWkHY
CitedBy_id crossref_primary_10_1016_j_resp_2020_103388
crossref_primary_10_1097_ALN_0000000000001719
crossref_primary_10_1097_ALN_0000000000000628
crossref_primary_10_1097_j_pain_0000000000002802
crossref_primary_10_1016_j_ejphar_2017_06_012
crossref_primary_10_21307_ijssis_2019_083
crossref_primary_10_1016_j_neuron_2021_11_029
crossref_primary_10_1152_ajpregu_00120_2016
crossref_primary_10_1152_japplphysiol_00819_2021
crossref_primary_10_1113_JP270822
crossref_primary_10_3389_fphys_2023_1156076
crossref_primary_10_1097_ALN_0000000000000984
crossref_primary_10_1113_jphysiol_2013_268318
crossref_primary_10_1016_j_resp_2018_06_011
crossref_primary_10_1016_j_resp_2020_103428
crossref_primary_10_1016_j_bpa_2017_05_004
crossref_primary_10_1113_jphysiol_2013_268300
crossref_primary_10_1152_physiol_00015_2020
crossref_primary_10_3389_fphys_2019_01407
crossref_primary_10_1002_cne_25136
crossref_primary_10_1038_s41598_019_50613_2
crossref_primary_10_1073_pnas_2022134118
crossref_primary_10_1152_jn_00478_2023
crossref_primary_10_1111_bph_15580
crossref_primary_10_1113_jphysiol_2013_258830
crossref_primary_10_7554_eLife_67523
crossref_primary_10_1097_ALN_0000000000003886
crossref_primary_10_1590_0103_8478cr20230020
crossref_primary_10_1016_j_resp_2022_103855
crossref_primary_10_7554_eLife_50613
crossref_primary_10_1016_j_resp_2020_103401
crossref_primary_10_1016_j_bja_2018_12_023
crossref_primary_10_1016_j_resp_2020_103482
crossref_primary_10_1002_cne_25307
crossref_primary_10_1002_jnr_24636
crossref_primary_10_1016_j_resp_2014_11_016
crossref_primary_10_1124_mol_117_109603
crossref_primary_10_1523_ENEURO_0035_23_2023
crossref_primary_10_1016_j_neuropharm_2017_12_032
crossref_primary_10_1016_j_peptides_2013_10_001
crossref_primary_10_1016_j_resp_2015_03_005
crossref_primary_10_7554_eLife_81119
crossref_primary_10_1152_jn_00017_2021
crossref_primary_10_1016_j_eclinm_2023_102417
crossref_primary_10_1038_s41467_018_08162_1
crossref_primary_10_1523_JNEUROSCI_1329_21_2021
crossref_primary_10_7554_eLife_52694
crossref_primary_10_1152_jn_00591_2016
crossref_primary_10_1371_journal_pone_0153187
crossref_primary_10_1113_jphysiol_2013_261974
crossref_primary_10_1111_jnc_15041
crossref_primary_10_2174_1570159X21666230810110901
crossref_primary_10_1007_s00542_015_2707_0
crossref_primary_10_1152_jn_00113_2022
crossref_primary_10_1007_s00204_022_03300_7
crossref_primary_10_1113_JP278612
crossref_primary_10_1016_j_resp_2021_103736
crossref_primary_10_1016_j_crtox_2022_100078
crossref_primary_10_1111_adb_13350
crossref_primary_10_3389_fphys_2023_1109754
Cites_doi 10.1124/jpet.104.082560
10.1016/j.resp.2004.07.019
10.1146/annurev.neuro.25.032502.111311
10.1213/00000539-199609000-00038
10.1097/00000542-199604000-00014
10.1002/(SICI)1096-9861(19960408)367:3<375::AID-CNE5>3.0.CO;2-2
10.1152/jappl.1998.85.2.747
10.1523/JNEUROSCI.4611-10.2011
10.1152/japplphysiol.90548.2008
10.1016/0028-3908(85)90100-5
10.1007/BF00583790
10.1152/physrev.1995.75.1.1
10.1111/j.1476-5381.1988.tb11719.x
10.1097/01.anes.0000270760.46821.67
10.1016/j.resp.2008.10.007
10.1016/S0304-3940(03)00951-0
10.1097/ALN.0b013e31819faa2a
10.1016/j.resp.2008.02.004
10.1152/jn.00188.2009
10.1016/S0952-8180(96)00179-1
10.1016/0006-8993(85)90820-0
10.1016/0891-0618(95)00055-C
10.1080/01621459.1988.10478639
10.1523/JNEUROSCI.1375-09.2009
10.1126/science.286.5444.1566
10.1093/bja/aei058
10.1126/science.1084674
10.1152/jn.00429.2004
10.1038/386499a0
10.1007/s10072-006-0587-x
10.1002/(SICI)1096-9861(19990322)405:4<450::AID-CNE2>3.0.CO;2-#
10.1113/jphysiol.2002.023408
10.1113/jphysiol.1971.sp009563
10.1016/j.jneumeth.2005.11.012
10.1016/S0006-8993(99)01168-3
10.1016/S1569-9048(03)00173-3
10.1016/0006-8993(85)91586-0
10.1523/JNEUROSCI.14-11-06500.1994
10.1113/jphysiol.1994.sp020193
10.1152/jn.90620.2008
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1152/jn.00185.2012
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 2441
ExternalDocumentID 10_1152_jn_00185_2012
22875901
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: BLRD VA
  grantid: I01 BX000721
– fundername: NIGMS NIH HHS
  grantid: GM-59234-06A1
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
476
53G
5GY
5VS
8M5
ABCQX
ABIVO
ABJNI
ABKWE
ABTAH
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADIYS
AENEX
AFFNX
AFOSN
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
NPM
OHT
OK1
P2P
RAP
RHF
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
AAYXX
CITATION
5PM
AETEA
ID FETCH-LOGICAL-c431t-d8abfbb256c8e4d7ca9d0bfdd7f969eb0e93f3008a92ce57289695ff13aeda113
ISSN 0022-3077
IngestDate Tue Sep 17 21:09:53 EDT 2024
Thu Sep 26 15:46:03 EDT 2024
Sat Sep 28 08:34:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-d8abfbb256c8e4d7ca9d0bfdd7f969eb0e93f3008a92ce57289695ff13aeda113
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545180
PMID 22875901
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3545180
crossref_primary_10_1152_jn_00185_2012
pubmed_primary_22875901
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2012
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
Feldman JL (B11) 1986
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
References_xml – ident: B39
  doi: 10.1124/jpet.104.082560
– ident: B17
  doi: 10.1016/j.resp.2004.07.019
– ident: B35
  doi: 10.1146/annurev.neuro.25.032502.111311
– ident: B3
  doi: 10.1213/00000539-199609000-00038
– ident: B27
  doi: 10.1097/00000542-199604000-00014
– ident: B9
  doi: 10.1002/(SICI)1096-9861(19960408)367:3<375::AID-CNE5>3.0.CO;2-2
– ident: B38
  doi: 10.1152/jappl.1998.85.2.747
– start-page: 463
  volume-title: Handbook of Physiology. The Nervous System. Intrinsic Regulatory Systems of the Brain.
  year: 1986
  ident: B11
  contributor:
    fullname: Feldman JL
– ident: B28
  doi: 10.1523/JNEUROSCI.4611-10.2011
– ident: B19
  doi: 10.1152/japplphysiol.90548.2008
– ident: B15
  doi: 10.1016/0028-3908(85)90100-5
– ident: B10
  doi: 10.1007/BF00583790
– ident: B2
  doi: 10.1152/physrev.1995.75.1.1
– ident: B6
  doi: 10.1111/j.1476-5381.1988.tb11719.x
– ident: B41
  doi: 10.1097/01.anes.0000270760.46821.67
– ident: B36
  doi: 10.1016/j.resp.2008.10.007
– ident: B14
  doi: 10.1016/S0304-3940(03)00951-0
– ident: B33
  doi: 10.1097/ALN.0b013e31819faa2a
– ident: B20
  doi: 10.1016/j.resp.2008.02.004
– ident: B29
  doi: 10.1152/jn.00188.2009
– ident: B26
  doi: 10.1016/S0952-8180(96)00179-1
– ident: B34
  doi: 10.1016/0006-8993(85)90820-0
– ident: B23
  doi: 10.1016/0891-0618(95)00055-C
– ident: B7
  doi: 10.1080/01621459.1988.10478639
– ident: B31
  doi: 10.1523/JNEUROSCI.1375-09.2009
– ident: B13
  doi: 10.1126/science.286.5444.1566
– ident: B18
  doi: 10.1093/bja/aei058
– ident: B24
  doi: 10.1126/science.1084674
– ident: B12
  doi: 10.1152/jn.00429.2004
– ident: B40
  doi: 10.1038/386499a0
– ident: B1
  doi: 10.1007/s10072-006-0587-x
– ident: B25
  doi: 10.1002/(SICI)1096-9861(19990322)405:4<450::AID-CNE2>3.0.CO;2-#
– ident: B16
  doi: 10.1113/jphysiol.2002.023408
– ident: B8
  doi: 10.1113/jphysiol.1971.sp009563
– ident: B32
  doi: 10.1016/j.jneumeth.2005.11.012
– ident: B4
  doi: 10.1016/S0006-8993(99)01168-3
– ident: B22
  doi: 10.1016/S1569-9048(03)00173-3
– ident: B30
  doi: 10.1016/0006-8993(85)91586-0
– ident: B5
  doi: 10.1523/JNEUROSCI.14-11-06500.1994
– ident: B21
  doi: 10.1113/jphysiol.1994.sp020193
– ident: B37
  doi: 10.1152/jn.90620.2008
SSID ssj0007502
Score 2.3844988
Snippet Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet...
SourceID pubmedcentral
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2430
SubjectTerms Analgesics, Opioid - toxicity
Anesthetics, Intravenous - toxicity
Animals
Brain Mapping
Diaphragm - innervation
Dogs
Enkephalin, Ala-MePhe-Gly- - pharmacology
Hyperoxia
Infusions, Intravenous
Naloxone - pharmacology
Narcotic Antagonists - pharmacology
Phrenic Nerve - physiology
Piperidines - toxicity
Pons - drug effects
Pons - metabolism
Pons - physiology
Receptors, Opioid, mu - agonists
Receptors, Opioid, mu - antagonists & inhibitors
Receptors, Opioid, mu - metabolism
Remifentanil
Respiratory Rate - drug effects
Respiratory Rate - physiology
Title Pontine μ-opioid receptors mediate bradypnea caused by intravenous remifentanil infusions at clinically relevant concentrations in dogs
URI https://www.ncbi.nlm.nih.gov/pubmed/22875901
https://pubmed.ncbi.nlm.nih.gov/PMC3545180
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NctMwENaEcuHCAOUn_I0O0EvGJZGt2DqWTKHAwARIZ3rLSJY8dWntTOp0JjwBD8WFF-CZ2JUV2aY9FC6eWP5LvF-kT6vdbwl5EUpjmNBZwFDqMzJSBYrDrszUkHOWCiHRD_nx0_jgMHp_xI96vV-tqKVVpXbT71fmlfyPVaEN7IpZsv9gWX9TaIDPYF_YgoVhey0bT0us8wAscbL_8vUkKBd5mWM2CoaqYBEdmxZSmQHMiPV6URg5SOXqvOacOXp1L2qF1qU5yzMMIi9ylODIVuc2PE5WPnHydG2rqwDtrjBQvQ7p9GHounTe9sss1-plWvdJx38_XX7LbW31d1jUubE6cNVFfeCrbDkLvkgNY65daJqVgMxTeeFdQxVGhtguDkuQ6MHb3bYnY8RcSl-rd8bMgqEr62JchwxtQLmSTo89TFrQFO3-N3KrPMbt1qpal8cJjrqzJwUuRCUcI_xYMyBuggD-Gid99KKdN3E2Pynm9vI5Xn6D3GSx4Dj___C5EawHQtYI1sNP28i8cvaq8_QOLfJcqBun2yI-szvktrMl3avhd5f0THGPbO8VsirP1nSHTr1xt8kPh0j6-6dDI_VopA6N1KOR1mikak1baKRtNFKPRior2qCRbtBIu2iE8ymi8T45fLM_mxwErtZHkAKFrQKdSJUpBQQ8TUyk41QKPVSZ1nEmxsKooRFhFgJhlYKlhscsgWaeZSPobLQcjcIHZKsoC_OI0DGmwHIBFycsklIlOrQydXyUcphvpH2ys3nV80Ut6TK_0qR98rB-__40xmB6Dwy6T-KOZfwJKNbePVLkx1a0PYSpCnyJx9d9-BNyq_mPPCVb1XJlngH_rdRzi7A_9Ze7Rg
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pontine+%CE%BC-opioid+receptors+mediate+bradypnea+caused+by+intravenous+remifentanil+infusions+at+clinically+relevant+concentrations+in+dogs&rft.jtitle=Journal+of+neurophysiology&rft.au=Prkic%2C+Ivana&rft.au=Mustapic%2C+Sanda&rft.au=Radocaj%2C+Tomislav&rft.au=Stucke%2C+Astrid+G.&rft.date=2012-11-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=108&rft.issue=9&rft.spage=2430&rft.epage=2441&rft_id=info:doi/10.1152%2Fjn.00185.2012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00185_2012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon