Systematic literature review of machine learning based software development effort estimation models

Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to...

Full description

Saved in:
Bibliographic Details
Published inInformation and software technology Vol. 54; no. 1; pp. 41 - 59
Main Authors Wen, Jianfeng, Li, Shixian, Lin, Zhiyong, Hu, Yong, Huang, Changqin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 2012
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to analyze the empirical evidence on ML models in a systematic way. This research aims to systematically analyze ML models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. We performed a systematic literature review of empirical studies on ML model published in the last two decades (1991–2010). We have identified 84 primary studies relevant to the objective of this research. After investigating these studies, we found that eight types of ML techniques have been employed in SDEE models. Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts. ML models are promising in the field of SDEE. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners.
AbstractList Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to analyze the empirical evidence on ML models in a systematic way. This research aims to systematically analyze ML models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. We performed a systematic literature review of empirical studies on ML model published in the last two decades (1991-2010). We have identified 84 primary studies relevant to the objective of this research. After investigating these studies, we found that eight types of ML techniques have been employed in SDEE models. Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts. ML models are promising in the field of SDEE. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners.
This research aims to systematically analyze machine learning (ML) models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. This paper performs a systematic literature review of empirical studies on ML model published in the last two decades (1991-2010). Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts. ML models are promising in the field of software development effort estimation. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners.
Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to analyze the empirical evidence on ML models in a systematic way. This research aims to systematically analyze ML models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. We performed a systematic literature review of empirical studies on ML model published in the last two decades (1991–2010). We have identified 84 primary studies relevant to the objective of this research. After investigating these studies, we found that eight types of ML techniques have been employed in SDEE models. Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts. ML models are promising in the field of SDEE. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners.
Author Wen, Jianfeng
Hu, Yong
Huang, Changqin
Li, Shixian
Lin, Zhiyong
Author_xml – sequence: 1
  givenname: Jianfeng
  surname: Wen
  fullname: Wen, Jianfeng
  email: wjfsysu@gmail.com
  organization: Department of Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Shixian
  surname: Li
  fullname: Li, Shixian
  organization: Department of Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Zhiyong
  surname: Lin
  fullname: Lin, Zhiyong
  organization: Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
– sequence: 4
  givenname: Yong
  surname: Hu
  fullname: Hu, Yong
  organization: Institute of Business Intelligence and Knowledge Discovery, Department of E-commerce, Guangdong University of Foreign Studies, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Changqin
  surname: Huang
  fullname: Huang, Changqin
  organization: Engineering Research Center of Computer Network and Information Systems, South China Normal University, Guangzhou, China
BookMark eNqFkTFvFDEQhS2USFwS_gGFRUO1y3jt3bUpkFAUAlIkCqC2fPYYfNq1D9uXKP8eH5cqBVQjjd57M_PNBTmLKSIhrxn0DNj0bteH6Evy_QCM9aB6gOEF2TA5826CYTwjG1AjdKMU6iW5KGUHwGbgsCHu22OpuJoaLF1CxWzqISPNeB_wgSZPV2N_hYh0QZNjiD_p1hR0tE2rD6YpHd7jkvYrxkrR-5RbKTUcE1Oka3K4lCty7s1S8NVTvSQ_Pt18v_7c3X29_XL98a6zgrPaOSkt4xMzfrJebsU4cxDetZ4dlBBSOOAjuBGE42wYBgPtwK2azCw9s8ryS_L2lLvP6fehraHXUCwui4mYDkWrictxklw25Ztnyl065NiW0wqYHIdp5k0kTiKbUykZvd7ndlh-1Az0Ebze6RN4fQSvQekGvtneP7PZUP_iqNmE5X_mDydzw3b8QdbFBowWXchoq3Yp_DvgD7SPpH4
CitedBy_id crossref_primary_10_1007_s10462_023_10618_w
crossref_primary_10_1155_2020_8830683
crossref_primary_10_1007_s10664_018_9638_1
crossref_primary_10_1109_ACCESS_2022_3216840
crossref_primary_10_1002_smr_2634
crossref_primary_10_1002_smr_2756
crossref_primary_10_1145_3706582
crossref_primary_10_1016_j_infsof_2019_05_009
crossref_primary_10_1111_ejn_16288
crossref_primary_10_1371_journal_pone_0237749
crossref_primary_10_1109_ACCESS_2021_3073203
crossref_primary_10_1016_j_asoc_2024_111805
crossref_primary_10_1016_j_infsof_2014_07_013
crossref_primary_10_1109_ACCESS_2025_3527330
crossref_primary_10_1007_s42979_024_03517_6
crossref_primary_10_1007_s10664_023_10312_z
crossref_primary_10_1371_journal_pone_0296858
crossref_primary_10_1016_j_infsof_2024_107413
crossref_primary_10_1016_j_jclepro_2014_05_040
crossref_primary_10_1080_09613218_2021_1983754
crossref_primary_10_1016_j_cmpb_2019_05_019
crossref_primary_10_1016_j_jss_2017_11_066
crossref_primary_10_1007_s13198_021_01519_8
crossref_primary_10_3390_math10224189
crossref_primary_10_1049_sfw2_12048
crossref_primary_10_1108_JMTM_07_2022_0269
crossref_primary_10_1155_2021_9917246
crossref_primary_10_1007_s11227_023_05334_9
crossref_primary_10_1007_s00521_015_2127_1
crossref_primary_10_1016_j_compag_2024_109005
crossref_primary_10_1002_smr_2180
crossref_primary_10_1007_s11334_021_00420_8
crossref_primary_10_1155_2022_1960684
crossref_primary_10_1108_K_10_2016_0302
crossref_primary_10_1016_j_infsof_2024_107447
crossref_primary_10_1109_ACCESS_2022_3196923
crossref_primary_10_1590_0001_3765202020181489
crossref_primary_10_1007_s12553_020_00453_2
crossref_primary_10_1007_s00521_024_10420_x
crossref_primary_10_1016_j_jss_2020_110592
crossref_primary_10_1371_journal_pone_0300296
crossref_primary_10_1016_j_jss_2018_09_054
crossref_primary_10_7717_peerj_cs_800
crossref_primary_10_1080_13588265_2023_2301146
crossref_primary_10_1002_smr_2529
crossref_primary_10_1080_08839514_2024_2351718
crossref_primary_10_1109_ACCESS_2023_3293432
crossref_primary_10_1007_s40815_020_00815_y
crossref_primary_10_1016_j_jss_2014_12_002
crossref_primary_10_1109_ACCESS_2024_3457771
crossref_primary_10_1016_j_promfg_2020_11_056
crossref_primary_10_1142_S0218194019500177
crossref_primary_10_22495_cocv18i4art1
crossref_primary_10_1186_s12889_024_21187_0
crossref_primary_10_1007_s00500_020_05005_4
crossref_primary_10_1155_2022_5782587
crossref_primary_10_1007_s11219_024_09697_x
crossref_primary_10_3390_electronics12071656
crossref_primary_10_1016_j_infsof_2017_06_002
crossref_primary_10_4236_jsea_2019_126014
crossref_primary_10_1080_02533839_2016_1176873
crossref_primary_10_33889_IJMEMS_2018_3_2_008
crossref_primary_10_1080_12460125_2018_1437654
crossref_primary_10_1109_TSE_2021_3101192
crossref_primary_10_1016_j_jss_2016_04_058
crossref_primary_10_2139_ssrn_3823900
crossref_primary_10_3390_software2030015
crossref_primary_10_4018_JITR_298616
crossref_primary_10_5753_rbie_2024_3296
crossref_primary_10_1590_1982_7849rac20151109
crossref_primary_10_22581_10_22581_muet1982_2002_18
crossref_primary_10_1016_j_infsof_2021_106783
crossref_primary_10_3389_fcomp_2024_1452961
crossref_primary_10_1109_ACCESS_2023_3312613
crossref_primary_10_1186_s40064_016_3612_4
crossref_primary_10_1109_ACCESS_2019_2953008
crossref_primary_10_1002_smr_2549
crossref_primary_10_1142_S1469026814500138
crossref_primary_10_1016_j_jss_2022_111542
crossref_primary_10_3390_math8112002
crossref_primary_10_1007_s10586_023_03979_y
crossref_primary_10_1007_s11390_020_9668_1
crossref_primary_10_3233_IDA_237366
crossref_primary_10_1007_s10586_024_04858_w
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1007_s10462_020_09914_6
crossref_primary_10_1007_s10586_024_04418_2
crossref_primary_10_1002_smr_1925
crossref_primary_10_1007_s10462_023_10531_2
crossref_primary_10_1016_j_gaitpost_2024_04_029
crossref_primary_10_1186_s40411_017_0037_x
crossref_primary_10_1371_journal_pone_0050531
crossref_primary_10_1109_ACCESS_2021_3119746
crossref_primary_10_1142_S021819401950013X
crossref_primary_10_1016_j_gaitpost_2017_06_019
crossref_primary_10_1016_j_procs_2020_03_343
crossref_primary_10_2139_ssrn_3880328
crossref_primary_10_1016_j_sciaf_2023_e01838
crossref_primary_10_1109_ACCESS_2023_3256533
crossref_primary_10_1080_09613218_2022_2131504
crossref_primary_10_1142_S0218126620500917
crossref_primary_10_1007_s12652_020_02277_4
crossref_primary_10_1002_smr_2211
crossref_primary_10_1109_ICJECE_2021_3084850
crossref_primary_10_1007_s42044_024_00194_9
crossref_primary_10_23940_ijpe_25_01_p2_1023
crossref_primary_10_1007_s10664_022_10260_0
crossref_primary_10_1142_S0218194023500262
crossref_primary_10_1155_2013_312067
crossref_primary_10_1007_s41019_016_0019_8
crossref_primary_10_1145_3485275
crossref_primary_10_1002_smr_2324
crossref_primary_10_1016_j_procs_2024_09_314
crossref_primary_10_1007_s10664_021_10103_4
crossref_primary_10_1016_j_infsof_2017_12_009
crossref_primary_10_1002_smr_2569
crossref_primary_10_1109_ACCESS_2023_3312716
crossref_primary_10_1109_ACCESS_2023_3235953
crossref_primary_10_1109_ACCESS_2023_3314572
crossref_primary_10_1007_s00766_015_0225_3
crossref_primary_10_1016_j_engappai_2019_103312
crossref_primary_10_3390_math8101819
crossref_primary_10_1016_j_scico_2024_103115
crossref_primary_10_1016_j_infsof_2015_07_004
crossref_primary_10_1080_08874417_2013_11645650
crossref_primary_10_1145_3663365
crossref_primary_10_2174_2666255816666220609110712
crossref_primary_10_1002_smr_2114
crossref_primary_10_1162_evco_a_00282
crossref_primary_10_2139_ssrn_4149549
crossref_primary_10_1002_spe_3391
crossref_primary_10_1002_smr_2117
crossref_primary_10_2174_2666255815666220407101922
crossref_primary_10_1007_s13369_024_08746_8
crossref_primary_10_3390_app11198947
crossref_primary_10_1007_s10462_024_11043_3
crossref_primary_10_1016_j_infsof_2017_07_015
crossref_primary_10_22581_muet1982_2002_18
crossref_primary_10_1016_j_jss_2020_110669
crossref_primary_10_1109_TR_2022_3165115
crossref_primary_10_1109_ACCESS_2020_3031690
crossref_primary_10_3390_jimaging9100193
crossref_primary_10_1109_ACCESS_2020_3040169
crossref_primary_10_1002_smr_2588
crossref_primary_10_1109_ACCESS_2020_3021664
crossref_primary_10_1007_s10515_022_00337_x
crossref_primary_10_3390_sym11020212
crossref_primary_10_1002_int_21748
crossref_primary_10_3390_su15065078
crossref_primary_10_1016_j_eswa_2017_07_050
crossref_primary_10_1016_j_jer_2023_100150
crossref_primary_10_1002_smr_2343
crossref_primary_10_1109_ACCESS_2024_3480829
crossref_primary_10_1016_j_compedu_2018_10_004
crossref_primary_10_1016_j_jksuci_2024_102189
crossref_primary_10_1016_j_infsof_2013_03_002
crossref_primary_10_1016_j_engappai_2023_107715
crossref_primary_10_3390_math12071058
crossref_primary_10_1007_s11334_020_00383_2
crossref_primary_10_1002_smr_2258
crossref_primary_10_1007_s11334_017_0308_z
crossref_primary_10_1007_s11517_020_02223_8
crossref_primary_10_1145_2659118_2659141
crossref_primary_10_1007_s13369_019_04311_w
crossref_primary_10_1109_TR_2020_3047396
crossref_primary_10_1109_ACCESS_2024_3517419
crossref_primary_10_1002_kpm_1557
crossref_primary_10_1287_inte_2022_1138
crossref_primary_10_1016_j_swevo_2016_10_002
crossref_primary_10_1080_12460125_2024_2428187
crossref_primary_10_1007_s00500_017_2945_4
crossref_primary_10_1007_s42044_024_00178_9
crossref_primary_10_1007_s42979_023_01785_2
crossref_primary_10_1016_j_bbe_2024_01_005
crossref_primary_10_1016_j_is_2019_03_002
crossref_primary_10_3390_su13031451
crossref_primary_10_1007_s10664_018_9647_0
crossref_primary_10_37467_revhuman_v12_4740
crossref_primary_10_1016_j_procs_2022_09_315
crossref_primary_10_1515_jisys_2016_0247
crossref_primary_10_1007_s10462_021_10087_z
crossref_primary_10_1002_smr_2365
crossref_primary_10_1002_smr_2245
crossref_primary_10_1109_TEM_2022_3217570
crossref_primary_10_1016_j_asoc_2014_10_033
crossref_primary_10_1109_ACCESS_2024_3471428
crossref_primary_10_1007_s11219_020_09545_8
crossref_primary_10_1109_ACCESS_2022_3188246
crossref_primary_10_1002_ett_3053
crossref_primary_10_1007_s10462_021_10132_x
crossref_primary_10_1109_ACCESS_2023_3337809
crossref_primary_10_1016_j_asoc_2016_08_012
crossref_primary_10_1016_j_scico_2020_102596
crossref_primary_10_1002_smr_1983
crossref_primary_10_1109_ACCESS_2023_3307310
crossref_primary_10_1109_TSE_2024_3430514
crossref_primary_10_1002_smr_2271
crossref_primary_10_1016_j_jss_2016_05_016
crossref_primary_10_7717_peerj_8311
crossref_primary_10_1007_s00500_018_3639_2
crossref_primary_10_3390_app9245405
crossref_primary_10_1111_radm_12140
crossref_primary_10_1108_IJOPM_12_2013_0553
crossref_primary_10_1088_1755_1315_905_1_012112
crossref_primary_10_1016_j_asoc_2018_03_022
crossref_primary_10_1080_08839514_2016_1185858
crossref_primary_10_1002_smr_2149
crossref_primary_10_1007_s10462_022_10371_6
crossref_primary_10_1109_ACCESS_2019_2955387
crossref_primary_10_1145_3295700
crossref_primary_10_1007_s00521_015_2003_z
crossref_primary_10_1016_j_asoc_2016_03_026
crossref_primary_10_1007_s11219_017_9362_x
crossref_primary_10_1016_j_ijinfomgt_2019_05_020
crossref_primary_10_3390_s24113484
crossref_primary_10_1007_s10586_024_04876_8
crossref_primary_10_1007_s11042_022_12160_3
crossref_primary_10_1016_j_infsof_2019_03_010
crossref_primary_10_1016_j_infsof_2018_01_003
crossref_primary_10_1002_smr_2611
crossref_primary_10_1007_s11042_023_14522_x
crossref_primary_10_1016_j_eswa_2021_114595
crossref_primary_10_1109_TSE_2020_3040793
crossref_primary_10_33889_IJMEMS_2024_9_3_025
crossref_primary_10_1109_TAES_2022_3219366
crossref_primary_10_1002_spe_3009
crossref_primary_10_1016_j_engappai_2021_104292
crossref_primary_10_1016_j_jss_2021_110904
crossref_primary_10_1007_s11042_023_16356_z
crossref_primary_10_1142_S0219877021300068
crossref_primary_10_1142_S0218194014500351
crossref_primary_10_3989_redc_2018_3_1532
crossref_primary_10_1109_ACCESS_2020_2971712
crossref_primary_10_1016_j_jss_2015_11_040
crossref_primary_10_3390_machines9120351
crossref_primary_10_1016_j_asoc_2014_11_023
crossref_primary_10_1080_02522667_2022_2133216
crossref_primary_10_1145_3572905
crossref_primary_10_1016_j_procs_2019_01_042
crossref_primary_10_1007_s10845_021_01771_6
crossref_primary_10_1007_s12652_021_03427_y
crossref_primary_10_1007_s10586_021_03447_5
Cites_doi 10.1002/9780470712184
10.1109/32.965338
10.1016/j.jss.2004.08.034
10.1016/j.jss.2007.12.793
10.1016/j.infsof.2007.06.004
10.1109/ICTAI.2010.82
10.1109/32.965341
10.1016/S0164-1212(02)00067-5
10.1016/S0164-1212(03)00066-9
10.1016/j.infsof.2008.09.012
10.1109/TSE.2006.1599418
10.1109/TSE.2005.75
10.1016/S0950-5849(97)00004-9
10.1016/S0950-5849(96)00006-7
10.1007/s10489-007-0097-4
10.1016/S0950-5849(02)00128-3
10.1016/S0164-1212(97)00055-1
10.1016/S0950-5849(99)00091-9
10.1007/s10664-008-9104-6
10.1109/METRIC.1998.731247
10.1002/smr.250
10.1023/A:1009849100780
10.1007/978-3-540-85553-8_2
10.1016/j.infsof.2010.05.009
10.1016/j.jss.2006.06.006
10.1007/978-3-540-79588-9_12
10.1007/s10664-007-9054-4
10.1109/TSE.2005.58
10.1109/SSBSE.2010.20
10.1016/S0164-1212(00)00005-4
10.1109/METRIC.2001.915512
10.1016/j.infsof.2008.09.007
10.1109/IJCNN.2007.4371196
10.1109/32.177363
10.1109/32.345828
10.1109/TSE.2007.256943
10.1016/j.knosys.2009.05.001
10.1109/TSE.2007.1001
10.1109/TSE.1983.235271
10.1016/j.jss.2007.07.044
10.1109/ESEM.2007.10
10.2307/249573
10.1016/j.infsof.2008.01.006
10.1145/1370788.1370805
10.1109/32.852743
10.1109/TSE.2005.97
10.1109/TSE.1978.231521
10.1145/302405.302647
10.1023/A:1023062629183
10.1109/TSE.2008.34
10.1016/S0957-4174(01)00021-5
10.1109/COMPSAC.2010.56
10.1016/j.infsof.2005.04.004
10.1109/ESEM.2007.14
10.1016/S0950-5849(00)00153-1
10.1016/0950-5849(92)90068-Z
10.1109/32.799947
10.1023/A:1009897800559
10.1145/337180.337223
10.1109/METRIC.2002.1011342
10.1007/s10664-010-9128-6
10.1016/j.asoc.2005.06.007
10.1016/j.infsof.2010.03.006
10.1109/ICTAI.2010.30
10.1049/ic:20040398
10.1145/1868328.1868335
10.1016/S0950-5849(02)00163-5
10.1109/APSEC.2009.40
10.1145/1145581.1145584
10.1007/s10664-006-7552-4
10.1023/A:1009872202035
10.1016/S0164-1212(02)00156-5
10.1016/j.infsof.2005.12.020
10.1109/ISESE.2002.1166928
10.1016/S0065-2458(08)60337-X
10.1016/S0378-7206(98)00041-X
10.1109/TSE.1984.5010193
10.1016/j.eswa.2009.02.013
10.1016/S0169-2070(97)00044-7
10.1016/S0950-5849(01)00147-1
10.1109/ICTAI.2007.172
10.1016/j.jss.2007.05.011
10.1109/MS.2005.19
10.1016/0950-5849(96)01124-X
10.1016/S0950-5849(00)00137-3
10.1109/32.637387
10.1002/smr.451
10.1109/TSE.2008.64
10.1145/22899.22906
10.1016/j.infsof.2007.04.001
10.1016/j.eswa.2007.08.001
10.1109/METRIC.2004.1357904
10.1016/j.neucom.2005.12.119
10.1016/S0950-5849(01)00192-6
10.1023/A:1023760326768
10.1016/j.eswa.2008.07.062
10.1016/j.jss.2008.06.001
10.1016/S0950-5849(98)00101-3
10.1109/METRIC.2004.1357920
10.1016/j.jss.2006.07.009
10.1109/FOSE.2007.23
10.1109/ESEM.2007.45
10.1023/A:1018991717352
10.1145/1370788.1370796
10.1016/j.ijforecast.2007.05.008
10.1016/S0950-5849(00)00114-2
10.1016/j.ejor.2007.07.002
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 2012
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 2012
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.infsof.2011.09.002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-6025
EndPage 59
ExternalDocumentID 2501673031
10_1016_j_infsof_2011_09_002
S0950584911001832
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TWZ
UHS
UNMZH
WH7
WUQ
XFK
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c431t-d88c1361af6cf8b457304fdc13c294484d0350d504d31222a0873b96a78f1c9c3
IEDL.DBID .~1
ISSN 0950-5849
IngestDate Fri Jul 11 08:05:21 EDT 2025
Fri Jul 25 02:54:03 EDT 2025
Sun Jul 06 05:05:00 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Fri Feb 23 02:23:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Software effort estimation
Machine learning
Systematic literature review
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-d88c1361af6cf8b457304fdc13c294484d0350d504d31222a0873b96a78f1c9c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Literature Review-3
content type line 23
PQID 901852673
PQPubID 41979
PageCount 19
ParticipantIDs proquest_miscellaneous_963856838
proquest_journals_901852673
crossref_primary_10_1016_j_infsof_2011_09_002
crossref_citationtrail_10_1016_j_infsof_2011_09_002
elsevier_sciencedirect_doi_10_1016_j_infsof_2011_09_002
PublicationCentury 2000
PublicationDate 2012
2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information and software technology
PublicationYear 2012
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References T.K. Le-Do, K.-A. Yoon, Y.-S. Seo, D.-H. Bae, Filtering of inconsistent software project data for analogy-based effort estimation, in: Proceedings of the 34th Annual IEEE Computer Software and Applications Conference, Seoul, South Korea, 2010, pp. 503–508.
Pendharkar, Subramanian, Rodger (b0575) 2005; 31
A.J. Albrecht, Measuring application development productivity, in: Proceedings of the Joint SHARE/GUIDE/IBM Application Development Symposium, Monterey, CA, USA, 1979, pp. 83–92.
Finnie, Wittig, Desharnais (b0430) 1997; 39
Heemstra (b0110) 1992; 34
Auer, Trendowicz, Graser, Haunschmid, Biffl (b0355) 2006; 32
Park, Baek (b0570) 2008; 35
I. Wieczorek, M. Ruhe, How valuable is company-specific data compared to multi-company data for software cost estimation?, in: Proceedings of the 8th International Software Metrics Symposium, Ottawa, Canada, 2002, pp. 237–246.
M. Shepperd, Software project economics: a roadmap, in: Proceedings of the Conference on Future of Software Engineering, Minneapolis, MN, USA, 2007, pp. 304–315.
Wittig, Finnie (b0635) 1994; 1
Y.-S. Seo, K.-A. Yoon, D.-H. Bae, An empirical analysis of software effort estimation with outlier elimination, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 25–32.
Pickard, Kitchenham, Jones (b0220) 1998; 40
Zhang, Patuwo, Hu (b0270) 1998; 14
J. Wen, S. Li, L. Tang, Improve analogy-based software effort estimation using principal components analysis and correlation weighting, in: Proceedings of the 16th Asia-Pacific Software Engineering Conference, 2009, pp. 179–186.
Burgess, Lefley (b0405) 2001; 43
Jeffery, Ruhe, Wieczorek (b0040) 2000; 42
Myrtveit, Stensrud, Shepperd (b0340) 2005; 31
A. Corazza, S.D. Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is tabu search to configure support vector regression for effort estimation?, in: Proceedings of the 6th International Conference on Predictor Models in Software Engineering, Timisoara, Romania, 2010, pp. 1–10.
Azzeh, Neagu, Cowling (b0370) 2009
Wohlin (b0230) 2009; 51
J.W. Bailey, V.R. Basili, A meta-model for software development resource expenditures, in: Proceedings of the 5th International Conference on Software Engineering, San Diego, California, USA, 1981, pp. 107–116.
Tronto, Silva, Anna (b0015) 2008; 81
Kitchenham, Mendes, Travassos (b0150) 2007; 33
L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: Proceedings of the 22nd International Conference on Software Engineering, Limerick, Ireland, 2000, pp. 377–386.
Keung, Kitchenham, Jeffery (b0480) 2008; 34
Kemerer (b0255) 1987; 30
.
Huang, Chiu (b0300) 2006; 48
Gray, MacDonell (b0035) 1999; 4
Boetticher, Menzies, Ostrand (b0320) 2007
E. Mendes, A comparison of techniques for web effort estimation, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 334–343.
J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 126–135.
Huang, Chiu, Chen (b0440) 2008; 188
Mittas, Angelis (b0555) 2010; 15
Bishop (b0175) 2006
G. Costagliola, S.D. Martino, F. Ferrucci, C. Gravino, G. Tortora, G. Vitiello, Effort estimation modeling techniques: a case study for web applications, in: Proceedings of the 6th International Conference on Web Engineering, Palo Alto, CA, United States, 2006, pp. 9–16.
Jørgensen, Indahl, Sjøberg (b0465) 2003; 68
Myrtveit, Stensrud (b0055) 1999; 25
Mukhopadhyay, Vicinanza, Prietula (b0180) 1992; 16
S.G. MacDonell, M.J. Shepperd, Comparing local and global software effort estimation models – reflections on a systematic review, in: Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 401–409.
L.C. Briand, K.E. Emam, D. Surmann, I. Wieczorek, K.D. Maxwell, An assessment and comparison of common software cost estimation modeling techniques, in: Proceedings of the 21st International Conference on Software Engineering, Los Angeles, CA, USA, 1999, pp. 313–322.
Berlin, Raz, Glezer, Zviran (b0375) 2009; 51
Shepperd, Kadoda (b0315) 2001; 27
M. Azzeh, D. Neagu, P. Cowling, Improving analogy software effort estimation using fuzzy feature subset selection algorithm, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 71–78.
Mittas, Athanasiades, Angelis (b0560) 2008; 50
Jørgensen (b0100) 2004; 70
Shin, Goel (b0595) 2000; 26
Idri, Abran, Khoshgoftaar (b0455) 2004
R.A. Araújo, A.L.I. Oliveira, S. Soares, Hybrid intelligent design of morphological-rank-linear perceptrons for software development cost estimation, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, Arras, France, 2010, pp. 160–167.
Wittig, Finnie (b0630) 1997; 39
Mair, Kadoda, Lefley, Phalp, Schofield, Shepperd, Webster (b0085) 2000; 53
M. Azzeh, D. Neagu, P. Cowling, Software project similarity measurement based on fuzzy C-means, in: Proceedings of the International Conference on Software Process, Leipzig, Germany, 2008, pp. 123–134.
Brereton, Kitchenham, Budgen, Turner, Khalil (b0210) 2007; 80
Jun, Lee (b0470) 2001; 21
E. Mendes, N. Mosley, Further investigation into the use of CBR and stepwise regression to predict development effort for web hypermedia applications, in: Proceedings of the International Symposium on Empirical Software Engineering, Nara, Japan, 2002, pp. 79–90.
Zhang, Tsai (b0030) 2003; 11
Gray, MacDonell (b0065) 1997; 39
B.A. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software engineering, Tech. Rep. EBSE-2007-01, Keele University and University of Durham, 2007.
Walkerden, Jeffery (b0115) 1997; 44
Mitchell (b0165) 1997
Bibi, Stamelos, Angelis (b0305) 2008; 50
B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: Proceedings of the 8th International Conference on Empirical Assessment in Software Engineering, Edinburgh, Scotland, UK, 2004, pp. 47–55.
Oliveira, Braga, Lima, Cornélio (b0310) 2010; 52
Srinivasan, Fisher (b0600) 1995; 21
Boehm (b0240) 1981
Mendes, Mosley (b0550) 2008; 34
Stewart (b0615) 2002; 14
Grimstad, Jørgensen, Moløkken-Østvold (b0145) 2006; 48
Shukla (b0295) 2000; 42
R. Setiono, K. Dejaeger, W. Verbeke, D. Martens, B. Baesens, Software effort prediction using regression rule extraction from neural networks, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, vol. 2, Arras, France, 2010, pp. 45–52.
Oliveira (b0565) 2006; 69
Alpaydin (b0170) 2004
Samson, Ellison, Dugard (b0580) 1997; 39
Stensrud (b0080) 2001; 43
G. Kadoda, M. Cartwright, L. Chen, M. Shepperd, Experiences using case-based reasoning to predict software project effort, in: Proceedings of the Conference on Evaluation and Assessment in Software Engineering, Keele University, UK, 2000.
R. Jeffery, M. Ruhe, I. Wieczorek, Using public domain metrics to estimate software development effort, in: Proceedings of the 7th International Software Metrics Symposium, London, UK, 2001, pp. 16–27.
K. Moløkken-Østvold, M. Jørgensen, S.S. Tanilkan, H. Gallis, A.C. Lien, S.E. Hove, A survey on software estimation in the norwegian industry, in: Proceedings of the 10th International Symposium on Software Metrics, Chicago, Illinois, USA, 2004, pp. 208–219.
Bibi, Stamelos (b0285) 2006; vol. 204
Kultur, Turhan, Bener (b0485) 2009; 22
Mendes, Martino, Ferrucci, Gravino (b0540) 2008; 81
Sjøeberg, Hannay, Hansen, Kampenes, Karahasanović, Liborg, Rekdal (b0200) 2005; 31
Jørgensen, Shepperd (b0005) 2007; 33
Boehm, Abts, Chulani (b0120) 2000; 10
Putnam (b0280) 1978; SE-4
Huang, Ho, Ren, Capretz (b0450) 2007; 7
A. Idri, A. Zahi, E. Mendes, A. Zakrani, Software cost estimation models using radial basis function neural networks, in: Proceedings of the International Workshop on Software Measurement, Palma de Mallorca, Spain, 2007, pp. 21–31.
Chiu, Huang (b0090) 2007; 80
Angelis, Stamelos (b0345) 2000; 5
Mendes, Watson, Triggs, Mosley, Counsell (b0010) 2003; 8
Bibi, Stamelos, Gerolimos, Kollias (b0380) 2010; 22
Dybå, Dingsøyr (b0195) 2008; 50
Huang, Chiu (b0435) 2009; 30
International Software Benchmarking Standards Group (ISBSG)
Li, Ruhe, Al-Emran, Richter (b0515) 2007; 12
P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, Software effort estimation using machine learning techniques with robust confidence intervals, in: Proceedings of the 19th International Conference on Tools with Artificial Intelligence, vol. 1, Patras, Greece, 2007, pp. 181–185.
Briand, Wüst (b0400) 2001; 27
Stamelos, Angelis, Dimou, Sakellaris (b0605) 2003; 45
Li, Xie, Goh (b0530) 2009; 14
Jørgensen (b0135) 2007; 23
P.L. Braga, A.L.I. Oliveira, G.H.T. Ribeiro, S.R.L. Meira, Bagging predictors for estimation of software project effort, in: Proceedings of the International Joint Conference on Neural Networks, Orlando, Florida, USA, 2007, pp. 1595–1600.
Boehm, Sullivan (b0025) 1999; 41
Kumar, Ravi, Carr, Kiran (b0490) 2008; 81
Li, Ruhe (b0510) 2008; 13
Li, Xie, Goh (b0520) 2009; 36
J.M. Desharnais, Analyse statistique de la productivite des projets de developpement en informatique a partir de la technique des points de fonction, Master’s thesis, University of Montreal, 1989.
Dolado (b0050) 2001; 43
C. Mair, M. Shepperd, The consistency of empirical comparisons of regression and analogy-based software project cost prediction, in: Proceedings of the International Symposium on Empirical Software Engineering, 2005, pp. 509–518.
Kitchenham, Pretorius, Budgen, Brereton, Turner, Niazi, Linkman (b0215) 2010; 52
L.C. Briand, I. Wieczorek, Resource estimation in software engineering, Tech. Rep. ISERN 00-05, International Software Engineering Research Network, 2000.
Shepperd, Schofield (b0060) 1997; 23
Briand, Basili,
Mittas (10.1016/j.infsof.2011.09.002_b0560) 2008; 50
10.1016/j.infsof.2011.09.002_b0390
Boehm (10.1016/j.infsof.2011.09.002_b0105) 1984
10.1016/j.infsof.2011.09.002_b0155
10.1016/j.infsof.2011.09.002_b0395
10.1016/j.infsof.2011.09.002_b0275
Bibi (10.1016/j.infsof.2011.09.002_b0305) 2008; 50
Oliveira (10.1016/j.infsof.2011.09.002_b0310) 2010; 52
Myrtveit (10.1016/j.infsof.2011.09.002_b0055) 1999; 25
Berlin (10.1016/j.infsof.2011.09.002_b0375) 2009; 51
Pendharkar (10.1016/j.infsof.2011.09.002_b0575) 2005; 31
10.1016/j.infsof.2011.09.002_b0425
10.1016/j.infsof.2011.09.002_b0545
Myrtveit (10.1016/j.infsof.2011.09.002_b0340) 2005; 31
10.1016/j.infsof.2011.09.002_b0160
Jeffery (10.1016/j.infsof.2011.09.002_b0040) 2000; 42
Boehm (10.1016/j.infsof.2011.09.002_b0240) 1981
Shin (10.1016/j.infsof.2011.09.002_b0595) 2000; 26
Li (10.1016/j.infsof.2011.09.002_b0510) 2008; 13
Samson (10.1016/j.infsof.2011.09.002_b0580) 1997; 39
Albrecht (10.1016/j.infsof.2011.09.002_b0250) 1983; 9
Briand (10.1016/j.infsof.2011.09.002_b0400) 2001; 27
Noblit (10.1016/j.infsof.2011.09.002_b0225) 1988
Zhang (10.1016/j.infsof.2011.09.002_b0030) 2003; 11
Bibi (10.1016/j.infsof.2011.09.002_b0380) 2010; 22
Kitchenham (10.1016/j.infsof.2011.09.002_b0215) 2010; 52
Bishop (10.1016/j.infsof.2011.09.002_b0175) 2006
Wittig (10.1016/j.infsof.2011.09.002_b0635) 1994; 1
Tronto (10.1016/j.infsof.2011.09.002_b0015) 2008; 81
Idri (10.1016/j.infsof.2011.09.002_b0455) 2004
10.1016/j.infsof.2011.09.002_b0095
Shukla (10.1016/j.infsof.2011.09.002_b0295) 2000; 42
Jørgensen (10.1016/j.infsof.2011.09.002_b0005) 2007; 33
Lee (10.1016/j.infsof.2011.09.002_b0500) 1998; 34
Boehm (10.1016/j.infsof.2011.09.002_b0120) 2000; 10
Mair (10.1016/j.infsof.2011.09.002_b0085) 2000; 53
Heemstra (10.1016/j.infsof.2011.09.002_b0110) 1992; 34
10.1016/j.infsof.2011.09.002_b0495
Walkerden (10.1016/j.infsof.2011.09.002_b0115) 1997; 44
Srinivasan (10.1016/j.infsof.2011.09.002_b0600) 1995; 21
10.1016/j.infsof.2011.09.002_b0130
Pfleeger (10.1016/j.infsof.2011.09.002_b0205) 2005; 22
Park (10.1016/j.infsof.2011.09.002_b0570) 2008; 35
Boetticher (10.1016/j.infsof.2011.09.002_b0320) 2007
Dybå (10.1016/j.infsof.2011.09.002_b0195) 2008; 50
Kitchenham (10.1016/j.infsof.2011.09.002_b0150) 2007; 33
10.1016/j.infsof.2011.09.002_b0260
Mukhopadhyay (10.1016/j.infsof.2011.09.002_b0180) 1992; 16
Shepperd (10.1016/j.infsof.2011.09.002_b0315) 2001; 27
10.1016/j.infsof.2011.09.002_b0420
Jørgensen (10.1016/j.infsof.2011.09.002_b0135) 2007; 23
10.1016/j.infsof.2011.09.002_b0385
10.1016/j.infsof.2011.09.002_b0140
Walkerden (10.1016/j.infsof.2011.09.002_b0070) 1999; 4
Shepperd (10.1016/j.infsof.2011.09.002_b0060) 1997; 23
Corazza (10.1016/j.infsof.2011.09.002_b0410) 2010
Grimstad (10.1016/j.infsof.2011.09.002_b0145) 2006; 48
10.1016/j.infsof.2011.09.002_b0415
10.1016/j.infsof.2011.09.002_b0535
Stensrud (10.1016/j.infsof.2011.09.002_b0080) 2001; 43
Bibi (10.1016/j.infsof.2011.09.002_b0285) 2006; vol. 204
10.1016/j.infsof.2011.09.002_b0590
Mendes (10.1016/j.infsof.2011.09.002_b0265) 2005; 77
Mittas (10.1016/j.infsof.2011.09.002_b0555) 2010; 15
10.1016/j.infsof.2011.09.002_b0190
Burgess (10.1016/j.infsof.2011.09.002_b0405) 2001; 43
10.1016/j.infsof.2011.09.002_b0235
Wohlin (10.1016/j.infsof.2011.09.002_b0230) 2009; 51
10.1016/j.infsof.2011.09.002_b0475
10.1016/j.infsof.2011.09.002_b0075
10.1016/j.infsof.2011.09.002_b0350
10.1016/j.infsof.2011.09.002_b0505
10.1016/j.infsof.2011.09.002_b0625
Heiat (10.1016/j.infsof.2011.09.002_b0045) 2002; 44
Jun (10.1016/j.infsof.2011.09.002_b0470) 2001; 21
Boehm (10.1016/j.infsof.2011.09.002_b0025) 1999; 41
Kultur (10.1016/j.infsof.2011.09.002_b0485) 2009; 22
Brereton (10.1016/j.infsof.2011.09.002_b0210) 2007; 80
Huang (10.1016/j.infsof.2011.09.002_b0445) 2006; 22
Mendes (10.1016/j.infsof.2011.09.002_b0550) 2008; 34
Mitchell (10.1016/j.infsof.2011.09.002_b0165) 1997
10.1016/j.infsof.2011.09.002_b0245
Chiu (10.1016/j.infsof.2011.09.002_b0090) 2007; 80
10.1016/j.infsof.2011.09.002_b0125
Oliveira (10.1016/j.infsof.2011.09.002_b0565) 2006; 69
10.1016/j.infsof.2011.09.002_b0365
MacDonell (10.1016/j.infsof.2011.09.002_b0290) 2003; 66
10.1016/j.infsof.2011.09.002_b0360
Auer (10.1016/j.infsof.2011.09.002_b0355) 2006; 32
Keung (10.1016/j.infsof.2011.09.002_b0480) 2008; 34
Alpaydin (10.1016/j.infsof.2011.09.002_b0170) 2004
Dolado (10.1016/j.infsof.2011.09.002_b0050) 2001; 43
Li (10.1016/j.infsof.2011.09.002_b0515) 2007; 12
Pickard (10.1016/j.infsof.2011.09.002_b0220) 1998; 40
Kemerer (10.1016/j.infsof.2011.09.002_b0255) 1987; 30
Azzeh (10.1016/j.infsof.2011.09.002_b0370) 2009
Li (10.1016/j.infsof.2011.09.002_b0520) 2009; 36
Finnie (10.1016/j.infsof.2011.09.002_b0430) 1997; 39
10.1016/j.infsof.2011.09.002_b0330
Huang (10.1016/j.infsof.2011.09.002_b0450) 2007; 7
Mendes (10.1016/j.infsof.2011.09.002_b0540) 2008; 81
Stamelos (10.1016/j.infsof.2011.09.002_b0605) 2003; 45
Wittig (10.1016/j.infsof.2011.09.002_b0630) 1997; 39
Gray (10.1016/j.infsof.2011.09.002_b0065) 1997; 39
Sjøeberg (10.1016/j.infsof.2011.09.002_b0200) 2005; 31
10.1016/j.infsof.2011.09.002_b0325
Stewart (10.1016/j.infsof.2011.09.002_b0615) 2002; 14
Li (10.1016/j.infsof.2011.09.002_b0530) 2009; 14
Li (10.1016/j.infsof.2011.09.002_b0525) 2009; 82
Gray (10.1016/j.infsof.2011.09.002_b0035) 1999; 4
Elish (10.1016/j.infsof.2011.09.002_b0020) 2009; 36
Huang (10.1016/j.infsof.2011.09.002_b0300) 2006; 48
10.1016/j.infsof.2011.09.002_b0620
10.1016/j.infsof.2011.09.002_b0585
Jørgensen (10.1016/j.infsof.2011.09.002_b0465) 2003; 68
Angelis (10.1016/j.infsof.2011.09.002_b0345) 2000; 5
10.1016/j.infsof.2011.09.002_b0460
Zhang (10.1016/j.infsof.2011.09.002_b0270) 1998; 14
Briand (10.1016/j.infsof.2011.09.002_b0185) 1992; 18
Kumar (10.1016/j.infsof.2011.09.002_b0490) 2008; 81
Jørgensen (10.1016/j.infsof.2011.09.002_b0100) 2004; 70
10.1016/j.infsof.2011.09.002_b0335
Mendes (10.1016/j.infsof.2011.09.002_b0010) 2003; 8
10.1016/j.infsof.2011.09.002_b0610
Huang (10.1016/j.infsof.2011.09.002_b0440) 2008; 188
Putnam (10.1016/j.infsof.2011.09.002_b0280) 1978; SE-4
Huang (10.1016/j.infsof.2011.09.002_b0435) 2009; 30
References_xml – volume: 7
  start-page: 29
  year: 2007
  end-page: 40
  ident: b0450
  article-title: Improving the COCOMO model using a neuro-fuzzy approach
  publication-title: Applied Soft Computing
– volume: 77
  start-page: 157
  year: 2005
  end-page: 172
  ident: b0265
  article-title: Investigating web size metrics for early web cost estimation
  publication-title: Journal of Systems and Software
– volume: 13
  start-page: 63
  year: 2008
  end-page: 96
  ident: b0510
  article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA
  publication-title: Empirical Software Engineering
– volume: 5
  start-page: 35
  year: 2000
  end-page: 68
  ident: b0345
  article-title: A simulation tool for efficient analogy based cost estimation
  publication-title: Empirical Software Engineering
– volume: 43
  start-page: 413
  year: 2001
  end-page: 423
  ident: b0080
  article-title: Alternative approaches to effort prediction of ERP projects
  publication-title: Information and Software Technology
– volume: 41
  start-page: 937
  year: 1999
  end-page: 946
  ident: b0025
  article-title: Software economics: status and prospects
  publication-title: Information and Software Technology
– reference: A. Corazza, S.D. Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is tabu search to configure support vector regression for effort estimation?, in: Proceedings of the 6th International Conference on Predictor Models in Software Engineering, Timisoara, Romania, 2010, pp. 1–10.
– volume: 50
  start-page: 221
  year: 2008
  end-page: 230
  ident: b0560
  article-title: Improving analogy-based software cost estimation by a resampling method
  publication-title: Information and Software Technology
– volume: 14
  start-page: 35
  year: 1998
  end-page: 62
  ident: b0270
  article-title: Forecasting with artificial neural networks: the state of the art
  publication-title: International Journal of Forecasting
– volume: 66
  start-page: 91
  year: 2003
  end-page: 98
  ident: b0290
  article-title: Combining techniques to optimize effort predictions in software project management
  publication-title: Journal of Systems and Software
– year: 1988
  ident: b0225
  article-title: Meta-Ethnography: Synthesizing Qualitative Studies
– volume: 42
  start-page: 1009
  year: 2000
  end-page: 1016
  ident: b0040
  article-title: A comparative study of two software development cost modeling techniques using multi-organizational and company-specific data
  publication-title: Information and Software Technology
– volume: 21
  start-page: 1
  year: 2001
  end-page: 14
  ident: b0470
  article-title: Quasi-optimal case-selective neural network model for software effort estimation
  publication-title: Expert Systems with Applications
– reference: E. Mendes, N. Mosley, Further investigation into the use of CBR and stepwise regression to predict development effort for web hypermedia applications, in: Proceedings of the International Symposium on Empirical Software Engineering, Nara, Japan, 2002, pp. 79–90.
– reference: R.A. Araújo, A.L.I. Oliveira, S. Soares, Hybrid intelligent design of morphological-rank-linear perceptrons for software development cost estimation, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, Arras, France, 2010, pp. 160–167.
– reference: M. Azzeh, D. Neagu, P. Cowling, Improving analogy software effort estimation using fuzzy feature subset selection algorithm, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 71–78.
– reference: P.L. Braga, A.L.I. Oliveira, G.H.T. Ribeiro, S.R.L. Meira, Bagging predictors for estimation of software project effort, in: Proceedings of the International Joint Conference on Neural Networks, Orlando, Florida, USA, 2007, pp. 1595–1600.
– reference: International Software Benchmarking Standards Group (ISBSG), <
– volume: 52
  start-page: 792
  year: 2010
  end-page: 805
  ident: b0215
  article-title: Systematic literature reviews in software engineering – a tertiary study
  publication-title: Information and Software Technology
– volume: 51
  start-page: 738
  year: 2009
  end-page: 748
  ident: b0375
  article-title: Comparison of estimation methods of cost and duration in IT projects
  publication-title: Information and Software Technology
– volume: 43
  start-page: 863
  year: 2001
  end-page: 873
  ident: b0405
  article-title: Can genetic programming improve software effort estimation? a comparative evaluation
  publication-title: Information and Software Technology
– volume: 81
  start-page: 673
  year: 2008
  end-page: 690
  ident: b0540
  article-title: Cross-company vs. single-company web effort models using the tukutuku database: an extended study
  publication-title: Journal of Systems and Software
– reference: B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: Proceedings of the 8th International Conference on Empirical Assessment in Software Engineering, Edinburgh, Scotland, UK, 2004, pp. 47–55.
– reference: B.A. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software engineering, Tech. Rep. EBSE-2007-01, Keele University and University of Durham, 2007.
– volume: 45
  start-page: 51
  year: 2003
  end-page: 60
  ident: b0605
  article-title: On the use of bayesian belief networks for the prediction of software productivity
  publication-title: Information and Software Technology
– reference: T.K. Le-Do, K.-A. Yoon, Y.-S. Seo, D.-H. Bae, Filtering of inconsistent software project data for analogy-based effort estimation, in: Proceedings of the 34th Annual IEEE Computer Software and Applications Conference, Seoul, South Korea, 2010, pp. 503–508.
– volume: 18
  start-page: 931
  year: 1992
  end-page: 942
  ident: b0185
  article-title: A pattern recognition approach for software engineering data analysis
  publication-title: IEEE Transactions on Software Engineering
– volume: 50
  start-page: 656
  year: 2008
  end-page: 669
  ident: b0305
  article-title: Combining probabilistic models for explanatory productivity estimation
  publication-title: Information and Software Technology
– volume: 31
  start-page: 380
  year: 2005
  end-page: 391
  ident: b0340
  article-title: Reliability and validity in comparative studies of software prediction models
  publication-title: IEEE Transactions on Software Engineering
– reference: R. Jeffery, M. Ruhe, I. Wieczorek, Using public domain metrics to estimate software development effort, in: Proceedings of the 7th International Software Metrics Symposium, London, UK, 2001, pp. 16–27.
– reference: L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: Proceedings of the 22nd International Conference on Software Engineering, Limerick, Ireland, 2000, pp. 377–386.
– volume: 53
  start-page: 23
  year: 2000
  end-page: 29
  ident: b0085
  article-title: An investigation of machine learning based prediction systems
  publication-title: Journal of Systems and Software
– volume: 48
  start-page: 1034
  year: 2006
  end-page: 1045
  ident: b0300
  article-title: Optimization of analogy weights by genetic algorithm for software effort estimation
  publication-title: Information and Software Technology
– volume: 22
  start-page: 66
  year: 2005
  end-page: 73
  ident: b0205
  article-title: Soup or art? The role of evidential force in empirical software engineering
  publication-title: IEEE Software
– start-page: 64
  year: 2004
  end-page: 96
  ident: b0455
  article-title: Fuzzy case-based reasoning models for software cost estimation
  publication-title: Soft Computing in Software Engineering
– reference: S.G. MacDonell, M.J. Shepperd, Comparing local and global software effort estimation models – reflections on a systematic review, in: Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 401–409.
– volume: 34
  start-page: 1
  year: 1998
  end-page: 9
  ident: b0500
  article-title: Software development cost estimation: integrating neural network with cluster analysis
  publication-title: Information and Management
– volume: 23
  start-page: 736
  year: 1997
  end-page: 743
  ident: b0060
  article-title: Estimating software project effort using analogies
  publication-title: IEEE Transactions on Software Engineering
– volume: 52
  start-page: 1155
  year: 2010
  end-page: 1166
  ident: b0310
  article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation
  publication-title: Information and Software Technology
– volume: 9
  start-page: 639
  year: 1983
  end-page: 648
  ident: b0250
  article-title: Software function, source lines of code, and development effort prediction: a software science validation
  publication-title: IEEE Transactions on Software Engineering
– volume: 188
  start-page: 898
  year: 2008
  end-page: 909
  ident: b0440
  article-title: Integration of the grey relational analysis with genetic algorithm for software effort estimation
  publication-title: European Journal of Operational Research
– volume: 10
  start-page: 177
  year: 2000
  end-page: 205
  ident: b0120
  article-title: Software development cost estimation approaches – a survey
  publication-title: Annals of Software Engineering
– volume: 33
  start-page: 33
  year: 2007
  end-page: 53
  ident: b0005
  article-title: A systematic review of software development cost estimation studies
  publication-title: IEEE Transactions on Software Engineering
– volume: 31
  start-page: 733
  year: 2005
  end-page: 753
  ident: b0200
  article-title: A survey of controlled experiments in software engineering
  publication-title: IEEE Transactions on Software Engineering
– reference: L.C. Briand, I. Wieczorek, Resource estimation in software engineering, Tech. Rep. ISERN 00-05, International Software Engineering Research Network, 2000.
– volume: 22
  start-page: 121
  year: 2010
  end-page: 140
  ident: b0380
  article-title: BBN based approach for improving the software development process of an SME – a case study
  publication-title: Journal of Software Maintenance and Evolution: Research and Practice
– reference: M. Shepperd, Software project economics: a roadmap, in: Proceedings of the Conference on Future of Software Engineering, Minneapolis, MN, USA, 2007, pp. 304–315.
– year: 1981
  ident: b0240
  article-title: Software Engineering Economics
– year: 2004
  ident: b0170
  article-title: Introduction to Machine Learning
– volume: 27
  start-page: 963
  year: 2001
  end-page: 986
  ident: b0400
  article-title: Modeling development effort in object-oriented systems using design properties
  publication-title: IEEE Transactions on Software Engineering
– reference: J.M. Desharnais, Analyse statistique de la productivite des projets de developpement en informatique a partir de la technique des points de fonction, Master’s thesis, University of Montreal, 1989.
– volume: 70
  start-page: 37
  year: 2004
  end-page: 60
  ident: b0100
  article-title: A review of studies on expert estimation of software development effort
  publication-title: Journal of Systems and Software
– volume: 39
  start-page: 469
  year: 1997
  end-page: 476
  ident: b0630
  article-title: Estimating software development effort with connectionist models
  publication-title: Information and Software Technology
– volume: 21
  start-page: 126
  year: 1995
  end-page: 137
  ident: b0600
  article-title: Machine learning approaches to estimating software development effort
  publication-title: IEEE Transactions on Software Engineering
– reference: E. Mendes, B. Kitchenham, Further comparison of cross-company and within-company effort estimation models for web applications, in: Proceedings of the 10th International Symposium on Software Metrics Symposium, Chicago, IL, USA, 2004, pp. 348–357.
– volume: 36
  start-page: 10774
  year: 2009
  end-page: 10778
  ident: b0020
  article-title: Improved estimation of software project effort using multiple additive regression trees
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 297
  year: 1999
  end-page: 316
  ident: b0035
  article-title: Software metrics data analysis – exploring the relative performance of some commonly used modeling techniques
  publication-title: Empirical Software Engineering
– reference: F. Ferrucci, C. Gravino, R. Oliveto, F. Sarro, Genetic programming for effort estimation: an analysis of the impact of different fitness functions, in: Proceedings of the 2nd International Symposium on Search Based Software Engineering, Benevento, Italy, 2010, pp. 89–98.
– reference: G. Costagliola, S.D. Martino, F. Ferrucci, C. Gravino, G. Tortora, G. Vitiello, Effort estimation modeling techniques: a case study for web applications, in: Proceedings of the 6th International Conference on Web Engineering, Palo Alto, CA, United States, 2006, pp. 9–16.
– volume: 68
  start-page: 253
  year: 2003
  end-page: 262
  ident: b0465
  article-title: Software effort estimation by analogy and “regression toward the mean”
  publication-title: Journal of Systems and Software
– volume: 12
  start-page: 65
  year: 2007
  end-page: 106
  ident: b0515
  article-title: A flexible method for software effort estimation by analogy
  publication-title: Empirical Software Engineering
– volume: 80
  start-page: 571
  year: 2007
  end-page: 583
  ident: b0210
  article-title: Lessons from applying the systematic literature review process within the software engineering domain
  publication-title: Journal of Systems and Software
– reference: E. Stensrud, I. Myrtveit, Human performance estimating with analogy and regression models: an empirical validation, in: Proceedings of the 5th International Software Metrics Symposium, 1998, pp. 205–213.
– volume: 39
  start-page: 55
  year: 1997
  end-page: 60
  ident: b0580
  article-title: Software cost estimation using an Albus perceptron (CMAC)
  publication-title: Information and Software Technology
– volume: 15
  start-page: 523
  year: 2010
  end-page: 555
  ident: b0555
  article-title: LSEbA: Least squares regression and estimation by analogy in a semi-parametric model for software cost estimation
  publication-title: Empirical Software Engineering
– volume: 34
  start-page: 471
  year: 2008
  end-page: 484
  ident: b0480
  article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation
  publication-title: IEEE Transactions on Software Engineering
– reference: K. Moløkken-Østvold, M. Jørgensen, S.S. Tanilkan, H. Gallis, A.C. Lien, S.E. Hove, A survey on software estimation in the norwegian industry, in: Proceedings of the 10th International Symposium on Software Metrics, Chicago, Illinois, USA, 2004, pp. 208–219.
– volume: 81
  start-page: 1853
  year: 2008
  end-page: 1867
  ident: b0490
  article-title: Software development cost estimation using wavelet neural networks
  publication-title: Journal of Systems and Software
– volume: 11
  start-page: 87
  year: 2003
  end-page: 119
  ident: b0030
  article-title: Machine learning and software engineering
  publication-title: Software Quality Journal
– volume: 42
  start-page: 701
  year: 2000
  end-page: 713
  ident: b0295
  article-title: Neuro-genetic prediction of software development effort
  publication-title: Information and Software Technology
– volume: 34
  start-page: 627
  year: 1992
  end-page: 639
  ident: b0110
  article-title: Software cost estimation
  publication-title: Information and Software Technology
– volume: 8
  start-page: 163
  year: 2003
  end-page: 196
  ident: b0010
  article-title: A comparative study of cost estimation models for web hypermedia applications
  publication-title: Empirical Software Engineering
– reference: A.J. Albrecht, Measuring application development productivity, in: Proceedings of the Joint SHARE/GUIDE/IBM Application Development Symposium, Monterey, CA, USA, 1979, pp. 83–92.
– reference: J.P. Higgins, S. Green, Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.2 [updated September 2009], The Cochrane Collaboration, 2009, <
– volume: 25
  start-page: 510
  year: 1999
  end-page: 525
  ident: b0055
  article-title: A controlled experiment to assess the benefits of estimating with analogy and regression models
  publication-title: IEEE Transactions on Software Engineering
– volume: 44
  start-page: 911
  year: 2002
  end-page: 922
  ident: b0045
  article-title: Comparison of artificial neural network and regression models for estimating software development effort
  publication-title: Information and Software Technology
– volume: 81
  start-page: 356
  year: 2008
  end-page: 367
  ident: b0015
  article-title: An investigation of artificial neural networks based prediction systems in software project management
  publication-title: Journal of Systems and Software
– volume: 44
  start-page: 59
  year: 1997
  end-page: 125
  ident: b0115
  article-title: Software cost estimation: a review of models, process and practice
  publication-title: Advances in Computers
– volume: 82
  start-page: 241
  year: 2009
  end-page: 252
  ident: b0525
  article-title: A study of project selection and feature weighting for analogy based software cost estimation
  publication-title: Journal of Systems and Software
– volume: 51
  start-page: 2
  year: 2009
  end-page: 6
  ident: b0230
  article-title: An analysis of the most cited articles in software engineering journals – 2002
  publication-title: Information and Software Technology
– volume: 32
  start-page: 83
  year: 2006
  end-page: 92
  ident: b0355
  article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations
  publication-title: IEEE Transactions on Software Engineering
– volume: SE-4
  start-page: 345
  year: 1978
  end-page: 361
  ident: b0280
  article-title: A general empirical solution to the macro software sizing and estimating problem
  publication-title: IEEE Transactions on Software Engineering
– volume: 39
  start-page: 281
  year: 1997
  end-page: 289
  ident: b0430
  article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models
  publication-title: Journal of Systems and Software
– volume: 14
  start-page: 161
  year: 2002
  end-page: 179
  ident: b0615
  article-title: Predicting project delivery rates using the naive-bayes classifier
  publication-title: Journal of Software Maintenance and Evolution: Research and Practice
– reference: L.C. Briand, K.E. Emam, D. Surmann, I. Wieczorek, K.D. Maxwell, An assessment and comparison of common software cost estimation modeling techniques, in: Proceedings of the 21st International Conference on Software Engineering, Los Angeles, CA, USA, 1999, pp. 313–322.
– start-page: 4
  year: 1984
  end-page: 21
  ident: b0105
  article-title: Software engineering economics
  publication-title: IEEE Transactions on Software Engineering SE-10
– volume: 22
  start-page: 297
  year: 2006
  end-page: 313
  ident: b0445
  article-title: Fuzzy decision tree approach for embedding risk assessment information into software cost estimation model
  publication-title: Journal of Information Science and Engineering
– volume: 30
  start-page: 416
  year: 1987
  end-page: 429
  ident: b0255
  article-title: An empirical validation of software cost estimation models
  publication-title: Communications of the ACM
– volume: 30
  start-page: 73
  year: 2009
  end-page: 83
  ident: b0435
  article-title: Applying fuzzy neural network to estimate software development effort
  publication-title: Applied Intelligence
– volume: 80
  start-page: 628
  year: 2007
  end-page: 640
  ident: b0090
  article-title: The adjusted analogy-based software effort estimation based on similarity distances
  publication-title: Journal of Systems and Software
– volume: 31
  start-page: 615
  year: 2005
  end-page: 624
  ident: b0575
  article-title: A probabilistic model for predicting software development effort
  publication-title: IEEE Transactions on Software Engineering
– start-page: 1
  year: 2009
  end-page: 10
  ident: b0370
  article-title: Software effort estimation based on weighted fuzzy grey relational analysis
  publication-title: Proceedings of the 5th International Conference on Predictor Models in Software Engineering
– reference: M. Azzeh, D. Neagu, P. Cowling, Software project similarity measurement based on fuzzy C-means, in: Proceedings of the International Conference on Software Process, Leipzig, Germany, 2008, pp. 123–134.
– volume: 50
  start-page: 833
  year: 2008
  end-page: 859
  ident: b0195
  article-title: Empirical studies of agile software development: a systematic review
  publication-title: Information and Software Technology
– reference: J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 126–135.
– volume: 1
  start-page: 87
  year: 1994
  end-page: 94
  ident: b0635
  article-title: Using artificial neural networks and function points to estimate 4GL software development effort
  publication-title: Australian Journal of Information Systems
– volume: 36
  start-page: 5921
  year: 2009
  end-page: 5931
  ident: b0520
  article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation
  publication-title: Expert Systems with Applications
– reference: E. Mendes, A comparison of techniques for web effort estimation, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 334–343.
– year: 2007
  ident: b0320
  article-title: PROMISE Repository of Empirical Software Engineering Data
– start-page: 1
  year: 2010
  end-page: 33
  ident: b0410
  article-title: Investigating the use of support vector regression for web effort estimation
  publication-title: Empirical Software Engineering
– volume: 39
  start-page: 425
  year: 1997
  end-page: 437
  ident: b0065
  article-title: A comparison of techniques for developing predictive models of software metrics
  publication-title: Information and Software Technology
– volume: 40
  start-page: 811
  year: 1998
  end-page: 821
  ident: b0220
  article-title: Combining empirical results in software engineering
  publication-title: Information and Software Technology
– reference: J. Wen, S. Li, L. Tang, Improve analogy-based software effort estimation using principal components analysis and correlation weighting, in: Proceedings of the 16th Asia-Pacific Software Engineering Conference, 2009, pp. 179–186.
– volume: 48
  start-page: 302
  year: 2006
  end-page: 310
  ident: b0145
  article-title: Software effort estimation terminology: the tower of babel
  publication-title: Information and Software Technology
– volume: 34
  start-page: 723
  year: 2008
  end-page: 737
  ident: b0550
  article-title: Bayesian network models for web effort prediction: a comparative study
  publication-title: IEEE Transactions on Software Engineering
– volume: 69
  start-page: 1749
  year: 2006
  end-page: 1753
  ident: b0565
  article-title: Estimation of software project effort with support vector regression
  publication-title: Neurocomputing
– volume: 26
  start-page: 567
  year: 2000
  end-page: 576
  ident: b0595
  article-title: Empirical data modeling in software engineering using radial basis functions
  publication-title: IEEE Transactions on Software Engineering
– volume: 43
  start-page: 61
  year: 2001
  end-page: 72
  ident: b0050
  article-title: On the problem of the software cost function
  publication-title: Information and Software Technology
– reference: J.W. Bailey, V.R. Basili, A meta-model for software development resource expenditures, in: Proceedings of the 5th International Conference on Software Engineering, San Diego, California, USA, 1981, pp. 107–116.
– reference: P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, Software effort estimation using machine learning techniques with robust confidence intervals, in: Proceedings of the 19th International Conference on Tools with Artificial Intelligence, vol. 1, Patras, Greece, 2007, pp. 181–185.
– reference: Y.-S. Seo, K.-A. Yoon, D.-H. Bae, An empirical analysis of software effort estimation with outlier elimination, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 25–32.
– volume: 14
  start-page: 603
  year: 2009
  end-page: 643
  ident: b0530
  article-title: A study of the non-linear adjustment for analogy based software cost estimation
  publication-title: Empirical Software Engineering
– reference: R. Setiono, K. Dejaeger, W. Verbeke, D. Martens, B. Baesens, Software effort prediction using regression rule extraction from neural networks, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, vol. 2, Arras, France, 2010, pp. 45–52.
– volume: 27
  start-page: 1014
  year: 2001
  end-page: 1022
  ident: b0315
  article-title: Comparing software prediction techniques using simulation
  publication-title: IEEE Transactions on Software Engineering
– volume: 22
  start-page: 395
  year: 2009
  end-page: 402
  ident: b0485
  article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs
  publication-title: Knowledge-Based Systems
– volume: 16
  start-page: 155
  year: 1992
  end-page: 171
  ident: b0180
  article-title: Examining the feasibility of a case-based reasoning model for software effort estimation
  publication-title: MIS Quarterly
– reference: G. Kadoda, M. Cartwright, L. Chen, M. Shepperd, Experiences using case-based reasoning to predict software project effort, in: Proceedings of the Conference on Evaluation and Assessment in Software Engineering, Keele University, UK, 2000.
– year: 2006
  ident: b0175
  article-title: Pattern Recognition and Machine Learning
– reference: >.
– year: 1997
  ident: b0165
  article-title: Machine Learning
– volume: 33
  start-page: 316
  year: 2007
  end-page: 329
  ident: b0150
  article-title: Cross versus within-company cost estimation studies: a systematic review
  publication-title: IEEE Transactions on Software Engineering
– reference: A. Idri, A. Zahi, E. Mendes, A. Zakrani, Software cost estimation models using radial basis function neural networks, in: Proceedings of the International Workshop on Software Measurement, Palma de Mallorca, Spain, 2007, pp. 21–31.
– reference: I. Wieczorek, M. Ruhe, How valuable is company-specific data compared to multi-company data for software cost estimation?, in: Proceedings of the 8th International Software Metrics Symposium, Ottawa, Canada, 2002, pp. 237–246.
– volume: 23
  start-page: 449
  year: 2007
  end-page: 462
  ident: b0135
  article-title: Forecasting of software development work effort: evidence on expert judgement and formal models
  publication-title: International Journal of Forecasting
– volume: vol. 204
  start-page: 533
  year: 2006
  end-page: 540
  ident: b0285
  article-title: Selecting the appropriate machine learning techniques for the prediction of software development costs
  publication-title: Artificial Intelligence Applications and Innovations
– volume: 35
  start-page: 929
  year: 2008
  end-page: 937
  ident: b0570
  article-title: An empirical validation of a neural network model for software effort estimation
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 135
  year: 1999
  end-page: 158
  ident: b0070
  article-title: An empirical study of analogy-based software effort estimation
  publication-title: Empirical Software Engineering
– reference: C. Mair, M. Shepperd, The consistency of empirical comparisons of regression and analogy-based software project cost prediction, in: Proceedings of the International Symposium on Empirical Software Engineering, 2005, pp. 509–518.
– ident: 10.1016/j.infsof.2011.09.002_b0190
  doi: 10.1002/9780470712184
– volume: 27
  start-page: 963
  issue: 11
  year: 2001
  ident: 10.1016/j.infsof.2011.09.002_b0400
  article-title: Modeling development effort in object-oriented systems using design properties
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.965338
– volume: 77
  start-page: 157
  issue: 2
  year: 2005
  ident: 10.1016/j.infsof.2011.09.002_b0265
  article-title: Investigating web size metrics for early web cost estimation
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2004.08.034
– volume: 81
  start-page: 1853
  issue: 11
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0490
  article-title: Software development cost estimation using wavelet neural networks
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2007.12.793
– volume: 50
  start-page: 656
  issue: 7–8
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0305
  article-title: Combining probabilistic models for explanatory productivity estimation
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2007.06.004
– ident: 10.1016/j.infsof.2011.09.002_b0590
  doi: 10.1109/ICTAI.2010.82
– volume: 27
  start-page: 1014
  issue: 11
  year: 2001
  ident: 10.1016/j.infsof.2011.09.002_b0315
  article-title: Comparing software prediction techniques using simulation
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.965341
– volume: 66
  start-page: 91
  issue: 2
  year: 2003
  ident: 10.1016/j.infsof.2011.09.002_b0290
  article-title: Combining techniques to optimize effort predictions in software project management
  publication-title: Journal of Systems and Software
  doi: 10.1016/S0164-1212(02)00067-5
– volume: 68
  start-page: 253
  issue: 3
  year: 2003
  ident: 10.1016/j.infsof.2011.09.002_b0465
  article-title: Software effort estimation by analogy and “regression toward the mean”
  publication-title: Journal of Systems and Software
  doi: 10.1016/S0164-1212(03)00066-9
– volume: 51
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0230
  article-title: An analysis of the most cited articles in software engineering journals – 2002
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2008.09.012
– volume: 32
  start-page: 83
  issue: 2
  year: 2006
  ident: 10.1016/j.infsof.2011.09.002_b0355
  article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2006.1599418
– volume: 31
  start-page: 615
  issue: 7
  year: 2005
  ident: 10.1016/j.infsof.2011.09.002_b0575
  article-title: A probabilistic model for predicting software development effort
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2005.75
– volume: 39
  start-page: 469
  issue: 7
  year: 1997
  ident: 10.1016/j.infsof.2011.09.002_b0630
  article-title: Estimating software development effort with connectionist models
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(97)00004-9
– volume: 39
  start-page: 425
  issue: 6
  year: 1997
  ident: 10.1016/j.infsof.2011.09.002_b0065
  article-title: A comparison of techniques for developing predictive models of software metrics
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(96)00006-7
– volume: 30
  start-page: 73
  issue: 2
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0435
  article-title: Applying fuzzy neural network to estimate software development effort
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-007-0097-4
– volume: 44
  start-page: 911
  issue: 15
  year: 2002
  ident: 10.1016/j.infsof.2011.09.002_b0045
  article-title: Comparison of artificial neural network and regression models for estimating software development effort
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(02)00128-3
– volume: 39
  start-page: 281
  issue: 3
  year: 1997
  ident: 10.1016/j.infsof.2011.09.002_b0430
  article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models
  publication-title: Journal of Systems and Software
  doi: 10.1016/S0164-1212(97)00055-1
– volume: 22
  start-page: 297
  issue: 2
  year: 2006
  ident: 10.1016/j.infsof.2011.09.002_b0445
  article-title: Fuzzy decision tree approach for embedding risk assessment information into software cost estimation model
  publication-title: Journal of Information Science and Engineering
– volume: 41
  start-page: 937
  issue: 14
  year: 1999
  ident: 10.1016/j.infsof.2011.09.002_b0025
  article-title: Software economics: status and prospects
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(99)00091-9
– volume: 14
  start-page: 603
  issue: 6
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0530
  article-title: A study of the non-linear adjustment for analogy based software cost estimation
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-008-9104-6
– ident: 10.1016/j.infsof.2011.09.002_b0610
  doi: 10.1109/METRIC.1998.731247
– volume: 14
  start-page: 161
  issue: 3
  year: 2002
  ident: 10.1016/j.infsof.2011.09.002_b0615
  article-title: Predicting project delivery rates using the naive-bayes classifier
  publication-title: Journal of Software Maintenance and Evolution: Research and Practice
  doi: 10.1002/smr.250
– volume: 4
  start-page: 297
  issue: 4
  year: 1999
  ident: 10.1016/j.infsof.2011.09.002_b0035
  article-title: Software metrics data analysis – exploring the relative performance of some commonly used modeling techniques
  publication-title: Empirical Software Engineering
  doi: 10.1023/A:1009849100780
– ident: 10.1016/j.infsof.2011.09.002_b0460
  doi: 10.1007/978-3-540-85553-8_2
– year: 1997
  ident: 10.1016/j.infsof.2011.09.002_b0165
– volume: 52
  start-page: 1155
  issue: 11
  year: 2010
  ident: 10.1016/j.infsof.2011.09.002_b0310
  article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2010.05.009
– start-page: 1
  year: 2010
  ident: 10.1016/j.infsof.2011.09.002_b0410
  article-title: Investigating the use of support vector regression for web effort estimation
  publication-title: Empirical Software Engineering
– volume: 80
  start-page: 628
  issue: 4
  year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0090
  article-title: The adjusted analogy-based software effort estimation based on similarity distances
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2006.06.006
– ident: 10.1016/j.infsof.2011.09.002_b0360
  doi: 10.1007/978-3-540-79588-9_12
– volume: 13
  start-page: 63
  issue: 1
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0510
  article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-007-9054-4
– volume: 31
  start-page: 380
  issue: 5
  year: 2005
  ident: 10.1016/j.infsof.2011.09.002_b0340
  article-title: Reliability and validity in comparative studies of software prediction models
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2005.58
– ident: 10.1016/j.infsof.2011.09.002_b0425
  doi: 10.1109/SSBSE.2010.20
– ident: 10.1016/j.infsof.2011.09.002_b0245
– year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0320
– volume: 53
  start-page: 23
  issue: 1
  year: 2000
  ident: 10.1016/j.infsof.2011.09.002_b0085
  article-title: An investigation of machine learning based prediction systems
  publication-title: Journal of Systems and Software
  doi: 10.1016/S0164-1212(00)00005-4
– ident: 10.1016/j.infsof.2011.09.002_b0325
  doi: 10.1109/METRIC.2001.915512
– start-page: 64
  year: 2004
  ident: 10.1016/j.infsof.2011.09.002_b0455
  article-title: Fuzzy case-based reasoning models for software cost estimation
– volume: 51
  start-page: 738
  issue: 4
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0375
  article-title: Comparison of estimation methods of cost and duration in IT projects
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2008.09.007
– ident: 10.1016/j.infsof.2011.09.002_b0390
  doi: 10.1109/IJCNN.2007.4371196
– volume: 18
  start-page: 931
  issue: 11
  year: 1992
  ident: 10.1016/j.infsof.2011.09.002_b0185
  article-title: A pattern recognition approach for software engineering data analysis
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.177363
– volume: 21
  start-page: 126
  issue: 2
  year: 1995
  ident: 10.1016/j.infsof.2011.09.002_b0600
  article-title: Machine learning approaches to estimating software development effort
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.345828
– volume: 33
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0005
  article-title: A systematic review of software development cost estimation studies
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2007.256943
– volume: 22
  start-page: 395
  issue: 6
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0485
  article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2009.05.001
– volume: 33
  start-page: 316
  issue: 5
  year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0150
  article-title: Cross versus within-company cost estimation studies: a systematic review
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2007.1001
– ident: 10.1016/j.infsof.2011.09.002_b0160
– volume: 9
  start-page: 639
  issue: 6
  year: 1983
  ident: 10.1016/j.infsof.2011.09.002_b0250
  article-title: Software function, source lines of code, and development effort prediction: a software science validation
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.1983.235271
– volume: 81
  start-page: 673
  issue: 5
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0540
  article-title: Cross-company vs. single-company web effort models using the tukutuku database: an extended study
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2007.07.044
– year: 2004
  ident: 10.1016/j.infsof.2011.09.002_b0170
– ident: 10.1016/j.infsof.2011.09.002_b0505
  doi: 10.1109/ESEM.2007.10
– volume: 16
  start-page: 155
  issue: 2
  year: 1992
  ident: 10.1016/j.infsof.2011.09.002_b0180
  article-title: Examining the feasibility of a case-based reasoning model for software effort estimation
  publication-title: MIS Quarterly
  doi: 10.2307/249573
– volume: 50
  start-page: 833
  issue: 9–10
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0195
  article-title: Empirical studies of agile software development: a systematic review
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2008.01.006
– ident: 10.1016/j.infsof.2011.09.002_b0365
  doi: 10.1145/1370788.1370805
– year: 1988
  ident: 10.1016/j.infsof.2011.09.002_b0225
– volume: 26
  start-page: 567
  issue: 6
  year: 2000
  ident: 10.1016/j.infsof.2011.09.002_b0595
  article-title: Empirical data modeling in software engineering using radial basis functions
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.852743
– volume: 31
  start-page: 733
  issue: 9
  year: 2005
  ident: 10.1016/j.infsof.2011.09.002_b0200
  article-title: A survey of controlled experiments in software engineering
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2005.97
– ident: 10.1016/j.infsof.2011.09.002_b0475
– volume: SE-4
  start-page: 345
  issue: 4
  year: 1978
  ident: 10.1016/j.infsof.2011.09.002_b0280
  article-title: A general empirical solution to the macro software sizing and estimating problem
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.1978.231521
– start-page: 1
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0370
  article-title: Software effort estimation based on weighted fuzzy grey relational analysis
– ident: 10.1016/j.infsof.2011.09.002_b0075
  doi: 10.1145/302405.302647
– volume: 8
  start-page: 163
  issue: 2
  year: 2003
  ident: 10.1016/j.infsof.2011.09.002_b0010
  article-title: A comparative study of cost estimation models for web hypermedia applications
  publication-title: Empirical Software Engineering
  doi: 10.1023/A:1023062629183
– volume: 34
  start-page: 471
  issue: 4
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0480
  article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2008.34
– year: 2006
  ident: 10.1016/j.infsof.2011.09.002_b0175
– volume: 21
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.infsof.2011.09.002_b0470
  article-title: Quasi-optimal case-selective neural network model for software effort estimation
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(01)00021-5
– ident: 10.1016/j.infsof.2011.09.002_b0495
  doi: 10.1109/COMPSAC.2010.56
– ident: 10.1016/j.infsof.2011.09.002_b0125
– ident: 10.1016/j.infsof.2011.09.002_b0140
– volume: 48
  start-page: 302
  issue: 4
  year: 2006
  ident: 10.1016/j.infsof.2011.09.002_b0145
  article-title: Software effort estimation terminology: the tower of babel
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2005.04.004
– ident: 10.1016/j.infsof.2011.09.002_b0535
  doi: 10.1109/ESEM.2007.14
– volume: 42
  start-page: 1009
  issue: 14
  year: 2000
  ident: 10.1016/j.infsof.2011.09.002_b0040
  article-title: A comparative study of two software development cost modeling techniques using multi-organizational and company-specific data
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(00)00153-1
– volume: 34
  start-page: 627
  issue: 10
  year: 1992
  ident: 10.1016/j.infsof.2011.09.002_b0110
  article-title: Software cost estimation
  publication-title: Information and Software Technology
  doi: 10.1016/0950-5849(92)90068-Z
– volume: vol. 204
  start-page: 533
  year: 2006
  ident: 10.1016/j.infsof.2011.09.002_b0285
  article-title: Selecting the appropriate machine learning techniques for the prediction of software development costs
– volume: 25
  start-page: 510
  issue: 4
  year: 1999
  ident: 10.1016/j.infsof.2011.09.002_b0055
  article-title: A controlled experiment to assess the benefits of estimating with analogy and regression models
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.799947
– volume: 5
  start-page: 35
  issue: 1
  year: 2000
  ident: 10.1016/j.infsof.2011.09.002_b0345
  article-title: A simulation tool for efficient analogy based cost estimation
  publication-title: Empirical Software Engineering
  doi: 10.1023/A:1009897800559
– ident: 10.1016/j.infsof.2011.09.002_b0395
  doi: 10.1145/337180.337223
– ident: 10.1016/j.infsof.2011.09.002_b0625
  doi: 10.1109/METRIC.2002.1011342
– ident: 10.1016/j.infsof.2011.09.002_b0260
– volume: 15
  start-page: 523
  issue: 5
  year: 2010
  ident: 10.1016/j.infsof.2011.09.002_b0555
  article-title: LSEbA: Least squares regression and estimation by analogy in a semi-parametric model for software cost estimation
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-010-9128-6
– volume: 7
  start-page: 29
  issue: 1
  year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0450
  article-title: Improving the COCOMO model using a neuro-fuzzy approach
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2005.06.007
– volume: 52
  start-page: 792
  issue: 8
  year: 2010
  ident: 10.1016/j.infsof.2011.09.002_b0215
  article-title: Systematic literature reviews in software engineering – a tertiary study
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2010.03.006
– ident: 10.1016/j.infsof.2011.09.002_b0350
  doi: 10.1109/ICTAI.2010.30
– ident: 10.1016/j.infsof.2011.09.002_b0330
  doi: 10.1049/ic:20040398
– ident: 10.1016/j.infsof.2011.09.002_b0415
  doi: 10.1145/1868328.1868335
– volume: 1
  start-page: 87
  issue: 2
  year: 1994
  ident: 10.1016/j.infsof.2011.09.002_b0635
  article-title: Using artificial neural networks and function points to estimate 4GL software development effort
  publication-title: Australian Journal of Information Systems
– volume: 45
  start-page: 51
  issue: 1
  year: 2003
  ident: 10.1016/j.infsof.2011.09.002_b0605
  article-title: On the use of bayesian belief networks for the prediction of software productivity
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(02)00163-5
– ident: 10.1016/j.infsof.2011.09.002_b0620
  doi: 10.1109/APSEC.2009.40
– ident: 10.1016/j.infsof.2011.09.002_b0275
– ident: 10.1016/j.infsof.2011.09.002_b0420
  doi: 10.1145/1145581.1145584
– volume: 12
  start-page: 65
  issue: 1
  year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0515
  article-title: A flexible method for software effort estimation by analogy
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-006-7552-4
– volume: 4
  start-page: 135
  issue: 2
  year: 1999
  ident: 10.1016/j.infsof.2011.09.002_b0070
  article-title: An empirical study of analogy-based software effort estimation
  publication-title: Empirical Software Engineering
  doi: 10.1023/A:1009872202035
– volume: 70
  start-page: 37
  issue: 1–2
  year: 2004
  ident: 10.1016/j.infsof.2011.09.002_b0100
  article-title: A review of studies on expert estimation of software development effort
  publication-title: Journal of Systems and Software
  doi: 10.1016/S0164-1212(02)00156-5
– volume: 48
  start-page: 1034
  issue: 11
  year: 2006
  ident: 10.1016/j.infsof.2011.09.002_b0300
  article-title: Optimization of analogy weights by genetic algorithm for software effort estimation
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2005.12.020
– ident: 10.1016/j.infsof.2011.09.002_b0545
  doi: 10.1109/ISESE.2002.1166928
– volume: 44
  start-page: 59
  year: 1997
  ident: 10.1016/j.infsof.2011.09.002_b0115
  article-title: Software cost estimation: a review of models, process and practice
  publication-title: Advances in Computers
  doi: 10.1016/S0065-2458(08)60337-X
– volume: 34
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.infsof.2011.09.002_b0500
  article-title: Software development cost estimation: integrating neural network with cluster analysis
  publication-title: Information and Management
  doi: 10.1016/S0378-7206(98)00041-X
– start-page: 4
  issue: 1
  year: 1984
  ident: 10.1016/j.infsof.2011.09.002_b0105
  article-title: Software engineering economics
  publication-title: IEEE Transactions on Software Engineering SE-10
  doi: 10.1109/TSE.1984.5010193
– volume: 36
  start-page: 10774
  issue: 7
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0020
  article-title: Improved estimation of software project effort using multiple additive regression trees
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.013
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  ident: 10.1016/j.infsof.2011.09.002_b0270
  article-title: Forecasting with artificial neural networks: the state of the art
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 43
  start-page: 413
  issue: 7
  year: 2001
  ident: 10.1016/j.infsof.2011.09.002_b0080
  article-title: Alternative approaches to effort prediction of ERP projects
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(01)00147-1
– ident: 10.1016/j.infsof.2011.09.002_b0385
  doi: 10.1109/ICTAI.2007.172
– volume: 81
  start-page: 356
  issue: 3
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0015
  article-title: An investigation of artificial neural networks based prediction systems in software project management
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2007.05.011
– year: 1981
  ident: 10.1016/j.infsof.2011.09.002_b0240
– volume: 22
  start-page: 66
  issue: 1
  year: 2005
  ident: 10.1016/j.infsof.2011.09.002_b0205
  article-title: Soup or art? The role of evidential force in empirical software engineering
  publication-title: IEEE Software
  doi: 10.1109/MS.2005.19
– volume: 39
  start-page: 55
  issue: 1
  year: 1997
  ident: 10.1016/j.infsof.2011.09.002_b0580
  article-title: Software cost estimation using an Albus perceptron (CMAC)
  publication-title: Information and Software Technology
  doi: 10.1016/0950-5849(96)01124-X
– volume: 43
  start-page: 61
  issue: 1
  year: 2001
  ident: 10.1016/j.infsof.2011.09.002_b0050
  article-title: On the problem of the software cost function
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(00)00137-3
– volume: 23
  start-page: 736
  issue: 11
  year: 1997
  ident: 10.1016/j.infsof.2011.09.002_b0060
  article-title: Estimating software project effort using analogies
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.637387
– volume: 22
  start-page: 121
  issue: 2
  year: 2010
  ident: 10.1016/j.infsof.2011.09.002_b0380
  article-title: BBN based approach for improving the software development process of an SME – a case study
  publication-title: Journal of Software Maintenance and Evolution: Research and Practice
  doi: 10.1002/smr.451
– volume: 34
  start-page: 723
  issue: 6
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0550
  article-title: Bayesian network models for web effort prediction: a comparative study
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2008.64
– volume: 30
  start-page: 416
  issue: 5
  year: 1987
  ident: 10.1016/j.infsof.2011.09.002_b0255
  article-title: An empirical validation of software cost estimation models
  publication-title: Communications of the ACM
  doi: 10.1145/22899.22906
– volume: 50
  start-page: 221
  issue: 3
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0560
  article-title: Improving analogy-based software cost estimation by a resampling method
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2007.04.001
– volume: 35
  start-page: 929
  issue: 3
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0570
  article-title: An empirical validation of a neural network model for software effort estimation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.08.001
– ident: 10.1016/j.infsof.2011.09.002_b0095
  doi: 10.1109/METRIC.2004.1357904
– volume: 69
  start-page: 1749
  issue: 13–15
  year: 2006
  ident: 10.1016/j.infsof.2011.09.002_b0565
  article-title: Estimation of software project effort with support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.119
– volume: 43
  start-page: 863
  issue: 14
  year: 2001
  ident: 10.1016/j.infsof.2011.09.002_b0405
  article-title: Can genetic programming improve software effort estimation? a comparative evaluation
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(01)00192-6
– volume: 11
  start-page: 87
  issue: 2
  year: 2003
  ident: 10.1016/j.infsof.2011.09.002_b0030
  article-title: Machine learning and software engineering
  publication-title: Software Quality Journal
  doi: 10.1023/A:1023760326768
– volume: 36
  start-page: 5921
  issue: 3
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0520
  article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.062
– volume: 82
  start-page: 241
  issue: 2
  year: 2009
  ident: 10.1016/j.infsof.2011.09.002_b0525
  article-title: A study of project selection and feature weighting for analogy based software cost estimation
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2008.06.001
– volume: 40
  start-page: 811
  issue: 14
  year: 1998
  ident: 10.1016/j.infsof.2011.09.002_b0220
  article-title: Combining empirical results in software engineering
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(98)00101-3
– ident: 10.1016/j.infsof.2011.09.002_b0335
  doi: 10.1109/METRIC.2004.1357920
– volume: 80
  start-page: 571
  issue: 4
  year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0210
  article-title: Lessons from applying the systematic literature review process within the software engineering domain
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2006.07.009
– ident: 10.1016/j.infsof.2011.09.002_b0130
  doi: 10.1109/FOSE.2007.23
– ident: 10.1016/j.infsof.2011.09.002_b0155
  doi: 10.1109/ESEM.2007.45
– volume: 10
  start-page: 177
  year: 2000
  ident: 10.1016/j.infsof.2011.09.002_b0120
  article-title: Software development cost estimation approaches – a survey
  publication-title: Annals of Software Engineering
  doi: 10.1023/A:1018991717352
– ident: 10.1016/j.infsof.2011.09.002_b0585
  doi: 10.1145/1370788.1370796
– volume: 23
  start-page: 449
  issue: 3
  year: 2007
  ident: 10.1016/j.infsof.2011.09.002_b0135
  article-title: Forecasting of software development work effort: evidence on expert judgement and formal models
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2007.05.008
– ident: 10.1016/j.infsof.2011.09.002_b0235
– volume: 42
  start-page: 701
  issue: 10
  year: 2000
  ident: 10.1016/j.infsof.2011.09.002_b0295
  article-title: Neuro-genetic prediction of software development effort
  publication-title: Information and Software Technology
  doi: 10.1016/S0950-5849(00)00114-2
– volume: 188
  start-page: 898
  issue: 3
  year: 2008
  ident: 10.1016/j.infsof.2011.09.002_b0440
  article-title: Integration of the grey relational analysis with genetic algorithm for software effort estimation
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.07.002
SSID ssj0017030
Score 2.4821627
SecondaryResourceType review_article
Snippet Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation...
This research aims to systematically analyze machine learning (ML) models from four aspects: type of ML technique, estimation accuracy, model comparison, and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Acceptability
Accuracy
Artificial intelligence
Computer programs
Empirical analysis
Estimating techniques
Guidelines
Literature reviews
Machine learning
Mathematical models
Software
Software development
Software effort estimation
Studies
Systematic literature review
Systematic review
Systems development
Title Systematic literature review of machine learning based software development effort estimation models
URI https://dx.doi.org/10.1016/j.infsof.2011.09.002
https://www.proquest.com/docview/901852673
https://www.proquest.com/docview/963856838
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jgvgifuKcjjz4Gtc2aZs-jqFMhb3Mwd5CmjQyme1wHb75t3tp04oiDHwqbS9tuLvcXZK7XxC6kUbZsIISLVNlS3IiknqpJJpqPwtCzamq0D6n0WTOHhfhooPGTS2MTat0tr-26ZW1dk-GjpvD9XI5nEFw4IH7TCzomVVMW8HOYqvlt59tmodvNbrG2_OIpW7K56ocLxDipmiAPJN2ceUP9_TLUFfe5_4IHbqwEY_qnh2jTpafoP0ma_0U6VmLyIxXLVIyrgtTcGHwW5U0mWF3SsQLtu5LY-hX-SGBUn8nD-HMQCQLFxj9dWEjrs7L2Zyh-f3d83hC3AEKREFcUBLNufJp5EsTKcNTFsJwZkbDMxUkMC9j2u4r6tBjmvoQKEiPxzRNIhlz46tE0XPUzYs8u0A4ZT7IMLAAcD7THL4WMxPKJIwzAzM200O04ZtQDl3cHnKxEk0a2auouS0st4WXCOB2D5G21bpG19hBHzciET-0RIAD2NGy30hQuFG6ERAL8TCIYtpDuH0Lw8vumcg8K7ZAAvYpjDjll__-dR8dwF1Qr9tcoW75vs2uIZIp00GlqgO0N3p4mky_AIGe9M4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MCepF_MQ5P3LwWtc2aZseZTimzl22wW4hTRqZzG24DW_-7b70SxRh4KmQvrThJe8jyXu_B3AjjbJuBXW0TJRNyQmdxE2ko6n2Uj_QnKoM7bMfdkfscRyMa9Auc2FsWGWh-3OdnmnroqVVcLO1mExaA3QOXDSfsQU9swtzC7YZiq8tY3D7WcV5eHZJ54B7rmPJy_y5LMgLZ3E5L5E84-p05Q_79EtTZ-ancwD7hd9I7vKhHUItnR3BThm2fgx6UEEyk2kFlUzyzBQyN-Qti5pMSVEm4oVY-6UJjmv1IZFSf0cPkdSgK4sPFP88s5FkBXOWJzDq3A_bXaeooOAodAxWjuZceTT0pAmV4QkLUJ6Z0dim_Bg3Zkzbi0UduExTDz0F6fKIJnEoI248FSt6CvXZfJaeAUmYh5PoWwQ4j2mOX4uYCWQcRKnBLZtpAC35JlQBL26rXExFGUf2KnJuC8tt4cYCud0Ap-q1yOE1NtBH5ZSIH8tEoAXY0LNZzqAoxHQp0BnigR9GtAGkeovyZS9N5Cydr5EEFVQQcsrP__3ra9jtDp97ovfQf2rCHr7x80OcC6iv3tfpJbo1q-QqW7ZfGIb2XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+literature+review+of+machine+learning+based+software+development+effort+estimation+models&rft.jtitle=Information+and+software+technology&rft.au=Wen%2C+Jianfeng&rft.au=Li%2C+Shixian&rft.au=Lin%2C+Zhiyong&rft.au=Hu%2C+Yong&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=0950-5849&rft.eissn=1873-6025&rft.volume=54&rft.issue=1&rft.spage=41&rft.epage=59&rft_id=info:doi/10.1016%2Fj.infsof.2011.09.002&rft.externalDocID=S0950584911001832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon