Systematic literature review of machine learning based software development effort estimation models
Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to...
Saved in:
Published in | Information and software technology Vol. 54; no. 1; pp. 41 - 59 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
2012
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to analyze the empirical evidence on ML models in a systematic way.
This research aims to systematically analyze ML models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context.
We performed a systematic literature review of empirical studies on ML model published in the last two decades (1991–2010).
We have identified 84 primary studies relevant to the objective of this research. After investigating these studies, we found that eight types of ML techniques have been employed in SDEE models. Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts.
ML models are promising in the field of SDEE. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners. |
---|---|
AbstractList | Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to analyze the empirical evidence on ML models in a systematic way. This research aims to systematically analyze ML models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. We performed a systematic literature review of empirical studies on ML model published in the last two decades (1991-2010). We have identified 84 primary studies relevant to the objective of this research. After investigating these studies, we found that eight types of ML techniques have been employed in SDEE models. Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts. ML models are promising in the field of SDEE. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners. This research aims to systematically analyze machine learning (ML) models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. This paper performs a systematic literature review of empirical studies on ML model published in the last two decades (1991-2010). Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts. ML models are promising in the field of software development effort estimation. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners. Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation accuracy, many researchers have proposed machine learning (ML) based SDEE models (ML models) since 1990s. However, there has been no attempt to analyze the empirical evidence on ML models in a systematic way. This research aims to systematically analyze ML models from four aspects: type of ML technique, estimation accuracy, model comparison, and estimation context. We performed a systematic literature review of empirical studies on ML model published in the last two decades (1991–2010). We have identified 84 primary studies relevant to the objective of this research. After investigating these studies, we found that eight types of ML techniques have been employed in SDEE models. Overall speaking, the estimation accuracy of these ML models is close to the acceptable level and is better than that of non-ML models. Furthermore, different ML models have different strengths and weaknesses and thus favor different estimation contexts. ML models are promising in the field of SDEE. However, the application of ML models in industry is still limited, so that more effort and incentives are needed to facilitate the application of ML models. To this end, based on the findings of this review, we provide recommendations for researchers as well as guidelines for practitioners. |
Author | Wen, Jianfeng Hu, Yong Huang, Changqin Li, Shixian Lin, Zhiyong |
Author_xml | – sequence: 1 givenname: Jianfeng surname: Wen fullname: Wen, Jianfeng email: wjfsysu@gmail.com organization: Department of Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Shixian surname: Li fullname: Li, Shixian organization: Department of Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Zhiyong surname: Lin fullname: Lin, Zhiyong organization: Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China – sequence: 4 givenname: Yong surname: Hu fullname: Hu, Yong organization: Institute of Business Intelligence and Knowledge Discovery, Department of E-commerce, Guangdong University of Foreign Studies, Sun Yat-sen University, Guangzhou, China – sequence: 5 givenname: Changqin surname: Huang fullname: Huang, Changqin organization: Engineering Research Center of Computer Network and Information Systems, South China Normal University, Guangzhou, China |
BookMark | eNqFkTFvFDEQhS2USFwS_gGFRUO1y3jt3bUpkFAUAlIkCqC2fPYYfNq1D9uXKP8eH5cqBVQjjd57M_PNBTmLKSIhrxn0DNj0bteH6Evy_QCM9aB6gOEF2TA5826CYTwjG1AjdKMU6iW5KGUHwGbgsCHu22OpuJoaLF1CxWzqISPNeB_wgSZPV2N_hYh0QZNjiD_p1hR0tE2rD6YpHd7jkvYrxkrR-5RbKTUcE1Oka3K4lCty7s1S8NVTvSQ_Pt18v_7c3X29_XL98a6zgrPaOSkt4xMzfrJebsU4cxDetZ4dlBBSOOAjuBGE42wYBgPtwK2azCw9s8ryS_L2lLvP6fehraHXUCwui4mYDkWrictxklw25Ztnyl065NiW0wqYHIdp5k0kTiKbUykZvd7ndlh-1Az0Ebze6RN4fQSvQekGvtneP7PZUP_iqNmE5X_mDydzw3b8QdbFBowWXchoq3Yp_DvgD7SPpH4 |
CitedBy_id | crossref_primary_10_1007_s10462_023_10618_w crossref_primary_10_1155_2020_8830683 crossref_primary_10_1007_s10664_018_9638_1 crossref_primary_10_1109_ACCESS_2022_3216840 crossref_primary_10_1002_smr_2634 crossref_primary_10_1002_smr_2756 crossref_primary_10_1145_3706582 crossref_primary_10_1016_j_infsof_2019_05_009 crossref_primary_10_1111_ejn_16288 crossref_primary_10_1371_journal_pone_0237749 crossref_primary_10_1109_ACCESS_2021_3073203 crossref_primary_10_1016_j_asoc_2024_111805 crossref_primary_10_1016_j_infsof_2014_07_013 crossref_primary_10_1109_ACCESS_2025_3527330 crossref_primary_10_1007_s42979_024_03517_6 crossref_primary_10_1007_s10664_023_10312_z crossref_primary_10_1371_journal_pone_0296858 crossref_primary_10_1016_j_infsof_2024_107413 crossref_primary_10_1016_j_jclepro_2014_05_040 crossref_primary_10_1080_09613218_2021_1983754 crossref_primary_10_1016_j_cmpb_2019_05_019 crossref_primary_10_1016_j_jss_2017_11_066 crossref_primary_10_1007_s13198_021_01519_8 crossref_primary_10_3390_math10224189 crossref_primary_10_1049_sfw2_12048 crossref_primary_10_1108_JMTM_07_2022_0269 crossref_primary_10_1155_2021_9917246 crossref_primary_10_1007_s11227_023_05334_9 crossref_primary_10_1007_s00521_015_2127_1 crossref_primary_10_1016_j_compag_2024_109005 crossref_primary_10_1002_smr_2180 crossref_primary_10_1007_s11334_021_00420_8 crossref_primary_10_1155_2022_1960684 crossref_primary_10_1108_K_10_2016_0302 crossref_primary_10_1016_j_infsof_2024_107447 crossref_primary_10_1109_ACCESS_2022_3196923 crossref_primary_10_1590_0001_3765202020181489 crossref_primary_10_1007_s12553_020_00453_2 crossref_primary_10_1007_s00521_024_10420_x crossref_primary_10_1016_j_jss_2020_110592 crossref_primary_10_1371_journal_pone_0300296 crossref_primary_10_1016_j_jss_2018_09_054 crossref_primary_10_7717_peerj_cs_800 crossref_primary_10_1080_13588265_2023_2301146 crossref_primary_10_1002_smr_2529 crossref_primary_10_1080_08839514_2024_2351718 crossref_primary_10_1109_ACCESS_2023_3293432 crossref_primary_10_1007_s40815_020_00815_y crossref_primary_10_1016_j_jss_2014_12_002 crossref_primary_10_1109_ACCESS_2024_3457771 crossref_primary_10_1016_j_promfg_2020_11_056 crossref_primary_10_1142_S0218194019500177 crossref_primary_10_22495_cocv18i4art1 crossref_primary_10_1186_s12889_024_21187_0 crossref_primary_10_1007_s00500_020_05005_4 crossref_primary_10_1155_2022_5782587 crossref_primary_10_1007_s11219_024_09697_x crossref_primary_10_3390_electronics12071656 crossref_primary_10_1016_j_infsof_2017_06_002 crossref_primary_10_4236_jsea_2019_126014 crossref_primary_10_1080_02533839_2016_1176873 crossref_primary_10_33889_IJMEMS_2018_3_2_008 crossref_primary_10_1080_12460125_2018_1437654 crossref_primary_10_1109_TSE_2021_3101192 crossref_primary_10_1016_j_jss_2016_04_058 crossref_primary_10_2139_ssrn_3823900 crossref_primary_10_3390_software2030015 crossref_primary_10_4018_JITR_298616 crossref_primary_10_5753_rbie_2024_3296 crossref_primary_10_1590_1982_7849rac20151109 crossref_primary_10_22581_10_22581_muet1982_2002_18 crossref_primary_10_1016_j_infsof_2021_106783 crossref_primary_10_3389_fcomp_2024_1452961 crossref_primary_10_1109_ACCESS_2023_3312613 crossref_primary_10_1186_s40064_016_3612_4 crossref_primary_10_1109_ACCESS_2019_2953008 crossref_primary_10_1002_smr_2549 crossref_primary_10_1142_S1469026814500138 crossref_primary_10_1016_j_jss_2022_111542 crossref_primary_10_3390_math8112002 crossref_primary_10_1007_s10586_023_03979_y crossref_primary_10_1007_s11390_020_9668_1 crossref_primary_10_3233_IDA_237366 crossref_primary_10_1007_s10586_024_04858_w crossref_primary_10_3390_bioengineering10040397 crossref_primary_10_1007_s10462_020_09914_6 crossref_primary_10_1007_s10586_024_04418_2 crossref_primary_10_1002_smr_1925 crossref_primary_10_1007_s10462_023_10531_2 crossref_primary_10_1016_j_gaitpost_2024_04_029 crossref_primary_10_1186_s40411_017_0037_x crossref_primary_10_1371_journal_pone_0050531 crossref_primary_10_1109_ACCESS_2021_3119746 crossref_primary_10_1142_S021819401950013X crossref_primary_10_1016_j_gaitpost_2017_06_019 crossref_primary_10_1016_j_procs_2020_03_343 crossref_primary_10_2139_ssrn_3880328 crossref_primary_10_1016_j_sciaf_2023_e01838 crossref_primary_10_1109_ACCESS_2023_3256533 crossref_primary_10_1080_09613218_2022_2131504 crossref_primary_10_1142_S0218126620500917 crossref_primary_10_1007_s12652_020_02277_4 crossref_primary_10_1002_smr_2211 crossref_primary_10_1109_ICJECE_2021_3084850 crossref_primary_10_1007_s42044_024_00194_9 crossref_primary_10_23940_ijpe_25_01_p2_1023 crossref_primary_10_1007_s10664_022_10260_0 crossref_primary_10_1142_S0218194023500262 crossref_primary_10_1155_2013_312067 crossref_primary_10_1007_s41019_016_0019_8 crossref_primary_10_1145_3485275 crossref_primary_10_1002_smr_2324 crossref_primary_10_1016_j_procs_2024_09_314 crossref_primary_10_1007_s10664_021_10103_4 crossref_primary_10_1016_j_infsof_2017_12_009 crossref_primary_10_1002_smr_2569 crossref_primary_10_1109_ACCESS_2023_3312716 crossref_primary_10_1109_ACCESS_2023_3235953 crossref_primary_10_1109_ACCESS_2023_3314572 crossref_primary_10_1007_s00766_015_0225_3 crossref_primary_10_1016_j_engappai_2019_103312 crossref_primary_10_3390_math8101819 crossref_primary_10_1016_j_scico_2024_103115 crossref_primary_10_1016_j_infsof_2015_07_004 crossref_primary_10_1080_08874417_2013_11645650 crossref_primary_10_1145_3663365 crossref_primary_10_2174_2666255816666220609110712 crossref_primary_10_1002_smr_2114 crossref_primary_10_1162_evco_a_00282 crossref_primary_10_2139_ssrn_4149549 crossref_primary_10_1002_spe_3391 crossref_primary_10_1002_smr_2117 crossref_primary_10_2174_2666255815666220407101922 crossref_primary_10_1007_s13369_024_08746_8 crossref_primary_10_3390_app11198947 crossref_primary_10_1007_s10462_024_11043_3 crossref_primary_10_1016_j_infsof_2017_07_015 crossref_primary_10_22581_muet1982_2002_18 crossref_primary_10_1016_j_jss_2020_110669 crossref_primary_10_1109_TR_2022_3165115 crossref_primary_10_1109_ACCESS_2020_3031690 crossref_primary_10_3390_jimaging9100193 crossref_primary_10_1109_ACCESS_2020_3040169 crossref_primary_10_1002_smr_2588 crossref_primary_10_1109_ACCESS_2020_3021664 crossref_primary_10_1007_s10515_022_00337_x crossref_primary_10_3390_sym11020212 crossref_primary_10_1002_int_21748 crossref_primary_10_3390_su15065078 crossref_primary_10_1016_j_eswa_2017_07_050 crossref_primary_10_1016_j_jer_2023_100150 crossref_primary_10_1002_smr_2343 crossref_primary_10_1109_ACCESS_2024_3480829 crossref_primary_10_1016_j_compedu_2018_10_004 crossref_primary_10_1016_j_jksuci_2024_102189 crossref_primary_10_1016_j_infsof_2013_03_002 crossref_primary_10_1016_j_engappai_2023_107715 crossref_primary_10_3390_math12071058 crossref_primary_10_1007_s11334_020_00383_2 crossref_primary_10_1002_smr_2258 crossref_primary_10_1007_s11334_017_0308_z crossref_primary_10_1007_s11517_020_02223_8 crossref_primary_10_1145_2659118_2659141 crossref_primary_10_1007_s13369_019_04311_w crossref_primary_10_1109_TR_2020_3047396 crossref_primary_10_1109_ACCESS_2024_3517419 crossref_primary_10_1002_kpm_1557 crossref_primary_10_1287_inte_2022_1138 crossref_primary_10_1016_j_swevo_2016_10_002 crossref_primary_10_1080_12460125_2024_2428187 crossref_primary_10_1007_s00500_017_2945_4 crossref_primary_10_1007_s42044_024_00178_9 crossref_primary_10_1007_s42979_023_01785_2 crossref_primary_10_1016_j_bbe_2024_01_005 crossref_primary_10_1016_j_is_2019_03_002 crossref_primary_10_3390_su13031451 crossref_primary_10_1007_s10664_018_9647_0 crossref_primary_10_37467_revhuman_v12_4740 crossref_primary_10_1016_j_procs_2022_09_315 crossref_primary_10_1515_jisys_2016_0247 crossref_primary_10_1007_s10462_021_10087_z crossref_primary_10_1002_smr_2365 crossref_primary_10_1002_smr_2245 crossref_primary_10_1109_TEM_2022_3217570 crossref_primary_10_1016_j_asoc_2014_10_033 crossref_primary_10_1109_ACCESS_2024_3471428 crossref_primary_10_1007_s11219_020_09545_8 crossref_primary_10_1109_ACCESS_2022_3188246 crossref_primary_10_1002_ett_3053 crossref_primary_10_1007_s10462_021_10132_x crossref_primary_10_1109_ACCESS_2023_3337809 crossref_primary_10_1016_j_asoc_2016_08_012 crossref_primary_10_1016_j_scico_2020_102596 crossref_primary_10_1002_smr_1983 crossref_primary_10_1109_ACCESS_2023_3307310 crossref_primary_10_1109_TSE_2024_3430514 crossref_primary_10_1002_smr_2271 crossref_primary_10_1016_j_jss_2016_05_016 crossref_primary_10_7717_peerj_8311 crossref_primary_10_1007_s00500_018_3639_2 crossref_primary_10_3390_app9245405 crossref_primary_10_1111_radm_12140 crossref_primary_10_1108_IJOPM_12_2013_0553 crossref_primary_10_1088_1755_1315_905_1_012112 crossref_primary_10_1016_j_asoc_2018_03_022 crossref_primary_10_1080_08839514_2016_1185858 crossref_primary_10_1002_smr_2149 crossref_primary_10_1007_s10462_022_10371_6 crossref_primary_10_1109_ACCESS_2019_2955387 crossref_primary_10_1145_3295700 crossref_primary_10_1007_s00521_015_2003_z crossref_primary_10_1016_j_asoc_2016_03_026 crossref_primary_10_1007_s11219_017_9362_x crossref_primary_10_1016_j_ijinfomgt_2019_05_020 crossref_primary_10_3390_s24113484 crossref_primary_10_1007_s10586_024_04876_8 crossref_primary_10_1007_s11042_022_12160_3 crossref_primary_10_1016_j_infsof_2019_03_010 crossref_primary_10_1016_j_infsof_2018_01_003 crossref_primary_10_1002_smr_2611 crossref_primary_10_1007_s11042_023_14522_x crossref_primary_10_1016_j_eswa_2021_114595 crossref_primary_10_1109_TSE_2020_3040793 crossref_primary_10_33889_IJMEMS_2024_9_3_025 crossref_primary_10_1109_TAES_2022_3219366 crossref_primary_10_1002_spe_3009 crossref_primary_10_1016_j_engappai_2021_104292 crossref_primary_10_1016_j_jss_2021_110904 crossref_primary_10_1007_s11042_023_16356_z crossref_primary_10_1142_S0219877021300068 crossref_primary_10_1142_S0218194014500351 crossref_primary_10_3989_redc_2018_3_1532 crossref_primary_10_1109_ACCESS_2020_2971712 crossref_primary_10_1016_j_jss_2015_11_040 crossref_primary_10_3390_machines9120351 crossref_primary_10_1016_j_asoc_2014_11_023 crossref_primary_10_1080_02522667_2022_2133216 crossref_primary_10_1145_3572905 crossref_primary_10_1016_j_procs_2019_01_042 crossref_primary_10_1007_s10845_021_01771_6 crossref_primary_10_1007_s12652_021_03427_y crossref_primary_10_1007_s10586_021_03447_5 |
Cites_doi | 10.1002/9780470712184 10.1109/32.965338 10.1016/j.jss.2004.08.034 10.1016/j.jss.2007.12.793 10.1016/j.infsof.2007.06.004 10.1109/ICTAI.2010.82 10.1109/32.965341 10.1016/S0164-1212(02)00067-5 10.1016/S0164-1212(03)00066-9 10.1016/j.infsof.2008.09.012 10.1109/TSE.2006.1599418 10.1109/TSE.2005.75 10.1016/S0950-5849(97)00004-9 10.1016/S0950-5849(96)00006-7 10.1007/s10489-007-0097-4 10.1016/S0950-5849(02)00128-3 10.1016/S0164-1212(97)00055-1 10.1016/S0950-5849(99)00091-9 10.1007/s10664-008-9104-6 10.1109/METRIC.1998.731247 10.1002/smr.250 10.1023/A:1009849100780 10.1007/978-3-540-85553-8_2 10.1016/j.infsof.2010.05.009 10.1016/j.jss.2006.06.006 10.1007/978-3-540-79588-9_12 10.1007/s10664-007-9054-4 10.1109/TSE.2005.58 10.1109/SSBSE.2010.20 10.1016/S0164-1212(00)00005-4 10.1109/METRIC.2001.915512 10.1016/j.infsof.2008.09.007 10.1109/IJCNN.2007.4371196 10.1109/32.177363 10.1109/32.345828 10.1109/TSE.2007.256943 10.1016/j.knosys.2009.05.001 10.1109/TSE.2007.1001 10.1109/TSE.1983.235271 10.1016/j.jss.2007.07.044 10.1109/ESEM.2007.10 10.2307/249573 10.1016/j.infsof.2008.01.006 10.1145/1370788.1370805 10.1109/32.852743 10.1109/TSE.2005.97 10.1109/TSE.1978.231521 10.1145/302405.302647 10.1023/A:1023062629183 10.1109/TSE.2008.34 10.1016/S0957-4174(01)00021-5 10.1109/COMPSAC.2010.56 10.1016/j.infsof.2005.04.004 10.1109/ESEM.2007.14 10.1016/S0950-5849(00)00153-1 10.1016/0950-5849(92)90068-Z 10.1109/32.799947 10.1023/A:1009897800559 10.1145/337180.337223 10.1109/METRIC.2002.1011342 10.1007/s10664-010-9128-6 10.1016/j.asoc.2005.06.007 10.1016/j.infsof.2010.03.006 10.1109/ICTAI.2010.30 10.1049/ic:20040398 10.1145/1868328.1868335 10.1016/S0950-5849(02)00163-5 10.1109/APSEC.2009.40 10.1145/1145581.1145584 10.1007/s10664-006-7552-4 10.1023/A:1009872202035 10.1016/S0164-1212(02)00156-5 10.1016/j.infsof.2005.12.020 10.1109/ISESE.2002.1166928 10.1016/S0065-2458(08)60337-X 10.1016/S0378-7206(98)00041-X 10.1109/TSE.1984.5010193 10.1016/j.eswa.2009.02.013 10.1016/S0169-2070(97)00044-7 10.1016/S0950-5849(01)00147-1 10.1109/ICTAI.2007.172 10.1016/j.jss.2007.05.011 10.1109/MS.2005.19 10.1016/0950-5849(96)01124-X 10.1016/S0950-5849(00)00137-3 10.1109/32.637387 10.1002/smr.451 10.1109/TSE.2008.64 10.1145/22899.22906 10.1016/j.infsof.2007.04.001 10.1016/j.eswa.2007.08.001 10.1109/METRIC.2004.1357904 10.1016/j.neucom.2005.12.119 10.1016/S0950-5849(01)00192-6 10.1023/A:1023760326768 10.1016/j.eswa.2008.07.062 10.1016/j.jss.2008.06.001 10.1016/S0950-5849(98)00101-3 10.1109/METRIC.2004.1357920 10.1016/j.jss.2006.07.009 10.1109/FOSE.2007.23 10.1109/ESEM.2007.45 10.1023/A:1018991717352 10.1145/1370788.1370796 10.1016/j.ijforecast.2007.05.008 10.1016/S0950-5849(00)00114-2 10.1016/j.ejor.2007.07.002 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 2012 |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 2012 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.infsof.2011.09.002 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1873-6025 |
EndPage | 59 |
ExternalDocumentID | 2501673031 10_1016_j_infsof_2011_09_002 S0950584911001832 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TWZ UHS UNMZH WH7 WUQ XFK ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c431t-d88c1361af6cf8b457304fdc13c294484d0350d504d31222a0873b96a78f1c9c3 |
IEDL.DBID | .~1 |
ISSN | 0950-5849 |
IngestDate | Fri Jul 11 08:05:21 EDT 2025 Fri Jul 25 02:54:03 EDT 2025 Sun Jul 06 05:05:00 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Fri Feb 23 02:23:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Software effort estimation Machine learning Systematic literature review |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-d88c1361af6cf8b457304fdc13c294484d0350d504d31222a0873b96a78f1c9c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Literature Review-3 content type line 23 |
PQID | 901852673 |
PQPubID | 41979 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_963856838 proquest_journals_901852673 crossref_primary_10_1016_j_infsof_2011_09_002 crossref_citationtrail_10_1016_j_infsof_2011_09_002 elsevier_sciencedirect_doi_10_1016_j_infsof_2011_09_002 |
PublicationCentury | 2000 |
PublicationDate | 2012 2012-1-00 20120101 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Information and software technology |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | T.K. Le-Do, K.-A. Yoon, Y.-S. Seo, D.-H. Bae, Filtering of inconsistent software project data for analogy-based effort estimation, in: Proceedings of the 34th Annual IEEE Computer Software and Applications Conference, Seoul, South Korea, 2010, pp. 503–508. Pendharkar, Subramanian, Rodger (b0575) 2005; 31 A.J. Albrecht, Measuring application development productivity, in: Proceedings of the Joint SHARE/GUIDE/IBM Application Development Symposium, Monterey, CA, USA, 1979, pp. 83–92. Finnie, Wittig, Desharnais (b0430) 1997; 39 Heemstra (b0110) 1992; 34 Auer, Trendowicz, Graser, Haunschmid, Biffl (b0355) 2006; 32 Park, Baek (b0570) 2008; 35 I. Wieczorek, M. Ruhe, How valuable is company-specific data compared to multi-company data for software cost estimation?, in: Proceedings of the 8th International Software Metrics Symposium, Ottawa, Canada, 2002, pp. 237–246. M. Shepperd, Software project economics: a roadmap, in: Proceedings of the Conference on Future of Software Engineering, Minneapolis, MN, USA, 2007, pp. 304–315. Wittig, Finnie (b0635) 1994; 1 Y.-S. Seo, K.-A. Yoon, D.-H. Bae, An empirical analysis of software effort estimation with outlier elimination, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 25–32. Pickard, Kitchenham, Jones (b0220) 1998; 40 Zhang, Patuwo, Hu (b0270) 1998; 14 J. Wen, S. Li, L. Tang, Improve analogy-based software effort estimation using principal components analysis and correlation weighting, in: Proceedings of the 16th Asia-Pacific Software Engineering Conference, 2009, pp. 179–186. Burgess, Lefley (b0405) 2001; 43 Jeffery, Ruhe, Wieczorek (b0040) 2000; 42 Myrtveit, Stensrud, Shepperd (b0340) 2005; 31 A. Corazza, S.D. Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is tabu search to configure support vector regression for effort estimation?, in: Proceedings of the 6th International Conference on Predictor Models in Software Engineering, Timisoara, Romania, 2010, pp. 1–10. Azzeh, Neagu, Cowling (b0370) 2009 Wohlin (b0230) 2009; 51 J.W. Bailey, V.R. Basili, A meta-model for software development resource expenditures, in: Proceedings of the 5th International Conference on Software Engineering, San Diego, California, USA, 1981, pp. 107–116. Tronto, Silva, Anna (b0015) 2008; 81 Kitchenham, Mendes, Travassos (b0150) 2007; 33 L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: Proceedings of the 22nd International Conference on Software Engineering, Limerick, Ireland, 2000, pp. 377–386. Keung, Kitchenham, Jeffery (b0480) 2008; 34 Kemerer (b0255) 1987; 30 . Huang, Chiu (b0300) 2006; 48 Gray, MacDonell (b0035) 1999; 4 Boetticher, Menzies, Ostrand (b0320) 2007 E. Mendes, A comparison of techniques for web effort estimation, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 334–343. J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 126–135. Huang, Chiu, Chen (b0440) 2008; 188 Mittas, Angelis (b0555) 2010; 15 Bishop (b0175) 2006 G. Costagliola, S.D. Martino, F. Ferrucci, C. Gravino, G. Tortora, G. Vitiello, Effort estimation modeling techniques: a case study for web applications, in: Proceedings of the 6th International Conference on Web Engineering, Palo Alto, CA, United States, 2006, pp. 9–16. Jørgensen, Indahl, Sjøberg (b0465) 2003; 68 Myrtveit, Stensrud (b0055) 1999; 25 Mukhopadhyay, Vicinanza, Prietula (b0180) 1992; 16 S.G. MacDonell, M.J. Shepperd, Comparing local and global software effort estimation models – reflections on a systematic review, in: Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 401–409. L.C. Briand, K.E. Emam, D. Surmann, I. Wieczorek, K.D. Maxwell, An assessment and comparison of common software cost estimation modeling techniques, in: Proceedings of the 21st International Conference on Software Engineering, Los Angeles, CA, USA, 1999, pp. 313–322. Berlin, Raz, Glezer, Zviran (b0375) 2009; 51 Shepperd, Kadoda (b0315) 2001; 27 M. Azzeh, D. Neagu, P. Cowling, Improving analogy software effort estimation using fuzzy feature subset selection algorithm, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 71–78. Mittas, Athanasiades, Angelis (b0560) 2008; 50 Jørgensen (b0100) 2004; 70 Shin, Goel (b0595) 2000; 26 Idri, Abran, Khoshgoftaar (b0455) 2004 R.A. Araújo, A.L.I. Oliveira, S. Soares, Hybrid intelligent design of morphological-rank-linear perceptrons for software development cost estimation, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, Arras, France, 2010, pp. 160–167. Wittig, Finnie (b0630) 1997; 39 Mair, Kadoda, Lefley, Phalp, Schofield, Shepperd, Webster (b0085) 2000; 53 M. Azzeh, D. Neagu, P. Cowling, Software project similarity measurement based on fuzzy C-means, in: Proceedings of the International Conference on Software Process, Leipzig, Germany, 2008, pp. 123–134. Brereton, Kitchenham, Budgen, Turner, Khalil (b0210) 2007; 80 Jun, Lee (b0470) 2001; 21 E. Mendes, N. Mosley, Further investigation into the use of CBR and stepwise regression to predict development effort for web hypermedia applications, in: Proceedings of the International Symposium on Empirical Software Engineering, Nara, Japan, 2002, pp. 79–90. Zhang, Tsai (b0030) 2003; 11 Gray, MacDonell (b0065) 1997; 39 B.A. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software engineering, Tech. Rep. EBSE-2007-01, Keele University and University of Durham, 2007. Walkerden, Jeffery (b0115) 1997; 44 Mitchell (b0165) 1997 Bibi, Stamelos, Angelis (b0305) 2008; 50 B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: Proceedings of the 8th International Conference on Empirical Assessment in Software Engineering, Edinburgh, Scotland, UK, 2004, pp. 47–55. Oliveira, Braga, Lima, Cornélio (b0310) 2010; 52 Srinivasan, Fisher (b0600) 1995; 21 Boehm (b0240) 1981 Mendes, Mosley (b0550) 2008; 34 Stewart (b0615) 2002; 14 Grimstad, Jørgensen, Moløkken-Østvold (b0145) 2006; 48 Shukla (b0295) 2000; 42 R. Setiono, K. Dejaeger, W. Verbeke, D. Martens, B. Baesens, Software effort prediction using regression rule extraction from neural networks, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, vol. 2, Arras, France, 2010, pp. 45–52. Oliveira (b0565) 2006; 69 Alpaydin (b0170) 2004 Samson, Ellison, Dugard (b0580) 1997; 39 Stensrud (b0080) 2001; 43 G. Kadoda, M. Cartwright, L. Chen, M. Shepperd, Experiences using case-based reasoning to predict software project effort, in: Proceedings of the Conference on Evaluation and Assessment in Software Engineering, Keele University, UK, 2000. R. Jeffery, M. Ruhe, I. Wieczorek, Using public domain metrics to estimate software development effort, in: Proceedings of the 7th International Software Metrics Symposium, London, UK, 2001, pp. 16–27. K. Moløkken-Østvold, M. Jørgensen, S.S. Tanilkan, H. Gallis, A.C. Lien, S.E. Hove, A survey on software estimation in the norwegian industry, in: Proceedings of the 10th International Symposium on Software Metrics, Chicago, Illinois, USA, 2004, pp. 208–219. Bibi, Stamelos (b0285) 2006; vol. 204 Kultur, Turhan, Bener (b0485) 2009; 22 Mendes, Martino, Ferrucci, Gravino (b0540) 2008; 81 Sjøeberg, Hannay, Hansen, Kampenes, Karahasanović, Liborg, Rekdal (b0200) 2005; 31 Jørgensen, Shepperd (b0005) 2007; 33 Boehm, Abts, Chulani (b0120) 2000; 10 Putnam (b0280) 1978; SE-4 Huang, Ho, Ren, Capretz (b0450) 2007; 7 A. Idri, A. Zahi, E. Mendes, A. Zakrani, Software cost estimation models using radial basis function neural networks, in: Proceedings of the International Workshop on Software Measurement, Palma de Mallorca, Spain, 2007, pp. 21–31. Chiu, Huang (b0090) 2007; 80 Angelis, Stamelos (b0345) 2000; 5 Mendes, Watson, Triggs, Mosley, Counsell (b0010) 2003; 8 Bibi, Stamelos, Gerolimos, Kollias (b0380) 2010; 22 Dybå, Dingsøyr (b0195) 2008; 50 Huang, Chiu (b0435) 2009; 30 International Software Benchmarking Standards Group (ISBSG) Li, Ruhe, Al-Emran, Richter (b0515) 2007; 12 P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, Software effort estimation using machine learning techniques with robust confidence intervals, in: Proceedings of the 19th International Conference on Tools with Artificial Intelligence, vol. 1, Patras, Greece, 2007, pp. 181–185. Briand, Wüst (b0400) 2001; 27 Stamelos, Angelis, Dimou, Sakellaris (b0605) 2003; 45 Li, Xie, Goh (b0530) 2009; 14 Jørgensen (b0135) 2007; 23 P.L. Braga, A.L.I. Oliveira, G.H.T. Ribeiro, S.R.L. Meira, Bagging predictors for estimation of software project effort, in: Proceedings of the International Joint Conference on Neural Networks, Orlando, Florida, USA, 2007, pp. 1595–1600. Boehm, Sullivan (b0025) 1999; 41 Kumar, Ravi, Carr, Kiran (b0490) 2008; 81 Li, Ruhe (b0510) 2008; 13 Li, Xie, Goh (b0520) 2009; 36 J.M. Desharnais, Analyse statistique de la productivite des projets de developpement en informatique a partir de la technique des points de fonction, Master’s thesis, University of Montreal, 1989. Dolado (b0050) 2001; 43 C. Mair, M. Shepperd, The consistency of empirical comparisons of regression and analogy-based software project cost prediction, in: Proceedings of the International Symposium on Empirical Software Engineering, 2005, pp. 509–518. Kitchenham, Pretorius, Budgen, Brereton, Turner, Niazi, Linkman (b0215) 2010; 52 L.C. Briand, I. Wieczorek, Resource estimation in software engineering, Tech. Rep. ISERN 00-05, International Software Engineering Research Network, 2000. Shepperd, Schofield (b0060) 1997; 23 Briand, Basili, Mittas (10.1016/j.infsof.2011.09.002_b0560) 2008; 50 10.1016/j.infsof.2011.09.002_b0390 Boehm (10.1016/j.infsof.2011.09.002_b0105) 1984 10.1016/j.infsof.2011.09.002_b0155 10.1016/j.infsof.2011.09.002_b0395 10.1016/j.infsof.2011.09.002_b0275 Bibi (10.1016/j.infsof.2011.09.002_b0305) 2008; 50 Oliveira (10.1016/j.infsof.2011.09.002_b0310) 2010; 52 Myrtveit (10.1016/j.infsof.2011.09.002_b0055) 1999; 25 Berlin (10.1016/j.infsof.2011.09.002_b0375) 2009; 51 Pendharkar (10.1016/j.infsof.2011.09.002_b0575) 2005; 31 10.1016/j.infsof.2011.09.002_b0425 10.1016/j.infsof.2011.09.002_b0545 Myrtveit (10.1016/j.infsof.2011.09.002_b0340) 2005; 31 10.1016/j.infsof.2011.09.002_b0160 Jeffery (10.1016/j.infsof.2011.09.002_b0040) 2000; 42 Boehm (10.1016/j.infsof.2011.09.002_b0240) 1981 Shin (10.1016/j.infsof.2011.09.002_b0595) 2000; 26 Li (10.1016/j.infsof.2011.09.002_b0510) 2008; 13 Samson (10.1016/j.infsof.2011.09.002_b0580) 1997; 39 Albrecht (10.1016/j.infsof.2011.09.002_b0250) 1983; 9 Briand (10.1016/j.infsof.2011.09.002_b0400) 2001; 27 Noblit (10.1016/j.infsof.2011.09.002_b0225) 1988 Zhang (10.1016/j.infsof.2011.09.002_b0030) 2003; 11 Bibi (10.1016/j.infsof.2011.09.002_b0380) 2010; 22 Kitchenham (10.1016/j.infsof.2011.09.002_b0215) 2010; 52 Bishop (10.1016/j.infsof.2011.09.002_b0175) 2006 Wittig (10.1016/j.infsof.2011.09.002_b0635) 1994; 1 Tronto (10.1016/j.infsof.2011.09.002_b0015) 2008; 81 Idri (10.1016/j.infsof.2011.09.002_b0455) 2004 10.1016/j.infsof.2011.09.002_b0095 Shukla (10.1016/j.infsof.2011.09.002_b0295) 2000; 42 Jørgensen (10.1016/j.infsof.2011.09.002_b0005) 2007; 33 Lee (10.1016/j.infsof.2011.09.002_b0500) 1998; 34 Boehm (10.1016/j.infsof.2011.09.002_b0120) 2000; 10 Mair (10.1016/j.infsof.2011.09.002_b0085) 2000; 53 Heemstra (10.1016/j.infsof.2011.09.002_b0110) 1992; 34 10.1016/j.infsof.2011.09.002_b0495 Walkerden (10.1016/j.infsof.2011.09.002_b0115) 1997; 44 Srinivasan (10.1016/j.infsof.2011.09.002_b0600) 1995; 21 10.1016/j.infsof.2011.09.002_b0130 Pfleeger (10.1016/j.infsof.2011.09.002_b0205) 2005; 22 Park (10.1016/j.infsof.2011.09.002_b0570) 2008; 35 Boetticher (10.1016/j.infsof.2011.09.002_b0320) 2007 Dybå (10.1016/j.infsof.2011.09.002_b0195) 2008; 50 Kitchenham (10.1016/j.infsof.2011.09.002_b0150) 2007; 33 10.1016/j.infsof.2011.09.002_b0260 Mukhopadhyay (10.1016/j.infsof.2011.09.002_b0180) 1992; 16 Shepperd (10.1016/j.infsof.2011.09.002_b0315) 2001; 27 10.1016/j.infsof.2011.09.002_b0420 Jørgensen (10.1016/j.infsof.2011.09.002_b0135) 2007; 23 10.1016/j.infsof.2011.09.002_b0385 10.1016/j.infsof.2011.09.002_b0140 Walkerden (10.1016/j.infsof.2011.09.002_b0070) 1999; 4 Shepperd (10.1016/j.infsof.2011.09.002_b0060) 1997; 23 Corazza (10.1016/j.infsof.2011.09.002_b0410) 2010 Grimstad (10.1016/j.infsof.2011.09.002_b0145) 2006; 48 10.1016/j.infsof.2011.09.002_b0415 10.1016/j.infsof.2011.09.002_b0535 Stensrud (10.1016/j.infsof.2011.09.002_b0080) 2001; 43 Bibi (10.1016/j.infsof.2011.09.002_b0285) 2006; vol. 204 10.1016/j.infsof.2011.09.002_b0590 Mendes (10.1016/j.infsof.2011.09.002_b0265) 2005; 77 Mittas (10.1016/j.infsof.2011.09.002_b0555) 2010; 15 10.1016/j.infsof.2011.09.002_b0190 Burgess (10.1016/j.infsof.2011.09.002_b0405) 2001; 43 10.1016/j.infsof.2011.09.002_b0235 Wohlin (10.1016/j.infsof.2011.09.002_b0230) 2009; 51 10.1016/j.infsof.2011.09.002_b0475 10.1016/j.infsof.2011.09.002_b0075 10.1016/j.infsof.2011.09.002_b0350 10.1016/j.infsof.2011.09.002_b0505 10.1016/j.infsof.2011.09.002_b0625 Heiat (10.1016/j.infsof.2011.09.002_b0045) 2002; 44 Jun (10.1016/j.infsof.2011.09.002_b0470) 2001; 21 Boehm (10.1016/j.infsof.2011.09.002_b0025) 1999; 41 Kultur (10.1016/j.infsof.2011.09.002_b0485) 2009; 22 Brereton (10.1016/j.infsof.2011.09.002_b0210) 2007; 80 Huang (10.1016/j.infsof.2011.09.002_b0445) 2006; 22 Mendes (10.1016/j.infsof.2011.09.002_b0550) 2008; 34 Mitchell (10.1016/j.infsof.2011.09.002_b0165) 1997 10.1016/j.infsof.2011.09.002_b0245 Chiu (10.1016/j.infsof.2011.09.002_b0090) 2007; 80 10.1016/j.infsof.2011.09.002_b0125 Oliveira (10.1016/j.infsof.2011.09.002_b0565) 2006; 69 10.1016/j.infsof.2011.09.002_b0365 MacDonell (10.1016/j.infsof.2011.09.002_b0290) 2003; 66 10.1016/j.infsof.2011.09.002_b0360 Auer (10.1016/j.infsof.2011.09.002_b0355) 2006; 32 Keung (10.1016/j.infsof.2011.09.002_b0480) 2008; 34 Alpaydin (10.1016/j.infsof.2011.09.002_b0170) 2004 Dolado (10.1016/j.infsof.2011.09.002_b0050) 2001; 43 Li (10.1016/j.infsof.2011.09.002_b0515) 2007; 12 Pickard (10.1016/j.infsof.2011.09.002_b0220) 1998; 40 Kemerer (10.1016/j.infsof.2011.09.002_b0255) 1987; 30 Azzeh (10.1016/j.infsof.2011.09.002_b0370) 2009 Li (10.1016/j.infsof.2011.09.002_b0520) 2009; 36 Finnie (10.1016/j.infsof.2011.09.002_b0430) 1997; 39 10.1016/j.infsof.2011.09.002_b0330 Huang (10.1016/j.infsof.2011.09.002_b0450) 2007; 7 Mendes (10.1016/j.infsof.2011.09.002_b0540) 2008; 81 Stamelos (10.1016/j.infsof.2011.09.002_b0605) 2003; 45 Wittig (10.1016/j.infsof.2011.09.002_b0630) 1997; 39 Gray (10.1016/j.infsof.2011.09.002_b0065) 1997; 39 Sjøeberg (10.1016/j.infsof.2011.09.002_b0200) 2005; 31 10.1016/j.infsof.2011.09.002_b0325 Stewart (10.1016/j.infsof.2011.09.002_b0615) 2002; 14 Li (10.1016/j.infsof.2011.09.002_b0530) 2009; 14 Li (10.1016/j.infsof.2011.09.002_b0525) 2009; 82 Gray (10.1016/j.infsof.2011.09.002_b0035) 1999; 4 Elish (10.1016/j.infsof.2011.09.002_b0020) 2009; 36 Huang (10.1016/j.infsof.2011.09.002_b0300) 2006; 48 10.1016/j.infsof.2011.09.002_b0620 10.1016/j.infsof.2011.09.002_b0585 Jørgensen (10.1016/j.infsof.2011.09.002_b0465) 2003; 68 Angelis (10.1016/j.infsof.2011.09.002_b0345) 2000; 5 10.1016/j.infsof.2011.09.002_b0460 Zhang (10.1016/j.infsof.2011.09.002_b0270) 1998; 14 Briand (10.1016/j.infsof.2011.09.002_b0185) 1992; 18 Kumar (10.1016/j.infsof.2011.09.002_b0490) 2008; 81 Jørgensen (10.1016/j.infsof.2011.09.002_b0100) 2004; 70 10.1016/j.infsof.2011.09.002_b0335 Mendes (10.1016/j.infsof.2011.09.002_b0010) 2003; 8 10.1016/j.infsof.2011.09.002_b0610 Huang (10.1016/j.infsof.2011.09.002_b0440) 2008; 188 Putnam (10.1016/j.infsof.2011.09.002_b0280) 1978; SE-4 Huang (10.1016/j.infsof.2011.09.002_b0435) 2009; 30 |
References_xml | – volume: 7 start-page: 29 year: 2007 end-page: 40 ident: b0450 article-title: Improving the COCOMO model using a neuro-fuzzy approach publication-title: Applied Soft Computing – volume: 77 start-page: 157 year: 2005 end-page: 172 ident: b0265 article-title: Investigating web size metrics for early web cost estimation publication-title: Journal of Systems and Software – volume: 13 start-page: 63 year: 2008 end-page: 96 ident: b0510 article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA publication-title: Empirical Software Engineering – volume: 5 start-page: 35 year: 2000 end-page: 68 ident: b0345 article-title: A simulation tool for efficient analogy based cost estimation publication-title: Empirical Software Engineering – volume: 43 start-page: 413 year: 2001 end-page: 423 ident: b0080 article-title: Alternative approaches to effort prediction of ERP projects publication-title: Information and Software Technology – volume: 41 start-page: 937 year: 1999 end-page: 946 ident: b0025 article-title: Software economics: status and prospects publication-title: Information and Software Technology – reference: A. Corazza, S.D. Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is tabu search to configure support vector regression for effort estimation?, in: Proceedings of the 6th International Conference on Predictor Models in Software Engineering, Timisoara, Romania, 2010, pp. 1–10. – volume: 50 start-page: 221 year: 2008 end-page: 230 ident: b0560 article-title: Improving analogy-based software cost estimation by a resampling method publication-title: Information and Software Technology – volume: 14 start-page: 35 year: 1998 end-page: 62 ident: b0270 article-title: Forecasting with artificial neural networks: the state of the art publication-title: International Journal of Forecasting – volume: 66 start-page: 91 year: 2003 end-page: 98 ident: b0290 article-title: Combining techniques to optimize effort predictions in software project management publication-title: Journal of Systems and Software – year: 1988 ident: b0225 article-title: Meta-Ethnography: Synthesizing Qualitative Studies – volume: 42 start-page: 1009 year: 2000 end-page: 1016 ident: b0040 article-title: A comparative study of two software development cost modeling techniques using multi-organizational and company-specific data publication-title: Information and Software Technology – volume: 21 start-page: 1 year: 2001 end-page: 14 ident: b0470 article-title: Quasi-optimal case-selective neural network model for software effort estimation publication-title: Expert Systems with Applications – reference: E. Mendes, N. Mosley, Further investigation into the use of CBR and stepwise regression to predict development effort for web hypermedia applications, in: Proceedings of the International Symposium on Empirical Software Engineering, Nara, Japan, 2002, pp. 79–90. – reference: R.A. Araújo, A.L.I. Oliveira, S. Soares, Hybrid intelligent design of morphological-rank-linear perceptrons for software development cost estimation, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, Arras, France, 2010, pp. 160–167. – reference: M. Azzeh, D. Neagu, P. Cowling, Improving analogy software effort estimation using fuzzy feature subset selection algorithm, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 71–78. – reference: P.L. Braga, A.L.I. Oliveira, G.H.T. Ribeiro, S.R.L. Meira, Bagging predictors for estimation of software project effort, in: Proceedings of the International Joint Conference on Neural Networks, Orlando, Florida, USA, 2007, pp. 1595–1600. – reference: International Software Benchmarking Standards Group (ISBSG), < – volume: 52 start-page: 792 year: 2010 end-page: 805 ident: b0215 article-title: Systematic literature reviews in software engineering – a tertiary study publication-title: Information and Software Technology – volume: 51 start-page: 738 year: 2009 end-page: 748 ident: b0375 article-title: Comparison of estimation methods of cost and duration in IT projects publication-title: Information and Software Technology – volume: 43 start-page: 863 year: 2001 end-page: 873 ident: b0405 article-title: Can genetic programming improve software effort estimation? a comparative evaluation publication-title: Information and Software Technology – volume: 81 start-page: 673 year: 2008 end-page: 690 ident: b0540 article-title: Cross-company vs. single-company web effort models using the tukutuku database: an extended study publication-title: Journal of Systems and Software – reference: B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: Proceedings of the 8th International Conference on Empirical Assessment in Software Engineering, Edinburgh, Scotland, UK, 2004, pp. 47–55. – reference: B.A. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in software engineering, Tech. Rep. EBSE-2007-01, Keele University and University of Durham, 2007. – volume: 45 start-page: 51 year: 2003 end-page: 60 ident: b0605 article-title: On the use of bayesian belief networks for the prediction of software productivity publication-title: Information and Software Technology – reference: T.K. Le-Do, K.-A. Yoon, Y.-S. Seo, D.-H. Bae, Filtering of inconsistent software project data for analogy-based effort estimation, in: Proceedings of the 34th Annual IEEE Computer Software and Applications Conference, Seoul, South Korea, 2010, pp. 503–508. – volume: 18 start-page: 931 year: 1992 end-page: 942 ident: b0185 article-title: A pattern recognition approach for software engineering data analysis publication-title: IEEE Transactions on Software Engineering – volume: 50 start-page: 656 year: 2008 end-page: 669 ident: b0305 article-title: Combining probabilistic models for explanatory productivity estimation publication-title: Information and Software Technology – volume: 31 start-page: 380 year: 2005 end-page: 391 ident: b0340 article-title: Reliability and validity in comparative studies of software prediction models publication-title: IEEE Transactions on Software Engineering – reference: R. Jeffery, M. Ruhe, I. Wieczorek, Using public domain metrics to estimate software development effort, in: Proceedings of the 7th International Software Metrics Symposium, London, UK, 2001, pp. 16–27. – reference: L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: Proceedings of the 22nd International Conference on Software Engineering, Limerick, Ireland, 2000, pp. 377–386. – volume: 53 start-page: 23 year: 2000 end-page: 29 ident: b0085 article-title: An investigation of machine learning based prediction systems publication-title: Journal of Systems and Software – volume: 48 start-page: 1034 year: 2006 end-page: 1045 ident: b0300 article-title: Optimization of analogy weights by genetic algorithm for software effort estimation publication-title: Information and Software Technology – volume: 22 start-page: 66 year: 2005 end-page: 73 ident: b0205 article-title: Soup or art? The role of evidential force in empirical software engineering publication-title: IEEE Software – start-page: 64 year: 2004 end-page: 96 ident: b0455 article-title: Fuzzy case-based reasoning models for software cost estimation publication-title: Soft Computing in Software Engineering – reference: S.G. MacDonell, M.J. Shepperd, Comparing local and global software effort estimation models – reflections on a systematic review, in: Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 401–409. – volume: 34 start-page: 1 year: 1998 end-page: 9 ident: b0500 article-title: Software development cost estimation: integrating neural network with cluster analysis publication-title: Information and Management – volume: 23 start-page: 736 year: 1997 end-page: 743 ident: b0060 article-title: Estimating software project effort using analogies publication-title: IEEE Transactions on Software Engineering – volume: 52 start-page: 1155 year: 2010 end-page: 1166 ident: b0310 article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation publication-title: Information and Software Technology – volume: 9 start-page: 639 year: 1983 end-page: 648 ident: b0250 article-title: Software function, source lines of code, and development effort prediction: a software science validation publication-title: IEEE Transactions on Software Engineering – volume: 188 start-page: 898 year: 2008 end-page: 909 ident: b0440 article-title: Integration of the grey relational analysis with genetic algorithm for software effort estimation publication-title: European Journal of Operational Research – volume: 10 start-page: 177 year: 2000 end-page: 205 ident: b0120 article-title: Software development cost estimation approaches – a survey publication-title: Annals of Software Engineering – volume: 33 start-page: 33 year: 2007 end-page: 53 ident: b0005 article-title: A systematic review of software development cost estimation studies publication-title: IEEE Transactions on Software Engineering – volume: 31 start-page: 733 year: 2005 end-page: 753 ident: b0200 article-title: A survey of controlled experiments in software engineering publication-title: IEEE Transactions on Software Engineering – reference: L.C. Briand, I. Wieczorek, Resource estimation in software engineering, Tech. Rep. ISERN 00-05, International Software Engineering Research Network, 2000. – volume: 22 start-page: 121 year: 2010 end-page: 140 ident: b0380 article-title: BBN based approach for improving the software development process of an SME – a case study publication-title: Journal of Software Maintenance and Evolution: Research and Practice – reference: M. Shepperd, Software project economics: a roadmap, in: Proceedings of the Conference on Future of Software Engineering, Minneapolis, MN, USA, 2007, pp. 304–315. – year: 1981 ident: b0240 article-title: Software Engineering Economics – year: 2004 ident: b0170 article-title: Introduction to Machine Learning – volume: 27 start-page: 963 year: 2001 end-page: 986 ident: b0400 article-title: Modeling development effort in object-oriented systems using design properties publication-title: IEEE Transactions on Software Engineering – reference: J.M. Desharnais, Analyse statistique de la productivite des projets de developpement en informatique a partir de la technique des points de fonction, Master’s thesis, University of Montreal, 1989. – volume: 70 start-page: 37 year: 2004 end-page: 60 ident: b0100 article-title: A review of studies on expert estimation of software development effort publication-title: Journal of Systems and Software – volume: 39 start-page: 469 year: 1997 end-page: 476 ident: b0630 article-title: Estimating software development effort with connectionist models publication-title: Information and Software Technology – volume: 21 start-page: 126 year: 1995 end-page: 137 ident: b0600 article-title: Machine learning approaches to estimating software development effort publication-title: IEEE Transactions on Software Engineering – reference: E. Mendes, B. Kitchenham, Further comparison of cross-company and within-company effort estimation models for web applications, in: Proceedings of the 10th International Symposium on Software Metrics Symposium, Chicago, IL, USA, 2004, pp. 348–357. – volume: 36 start-page: 10774 year: 2009 end-page: 10778 ident: b0020 article-title: Improved estimation of software project effort using multiple additive regression trees publication-title: Expert Systems with Applications – volume: 4 start-page: 297 year: 1999 end-page: 316 ident: b0035 article-title: Software metrics data analysis – exploring the relative performance of some commonly used modeling techniques publication-title: Empirical Software Engineering – reference: F. Ferrucci, C. Gravino, R. Oliveto, F. Sarro, Genetic programming for effort estimation: an analysis of the impact of different fitness functions, in: Proceedings of the 2nd International Symposium on Search Based Software Engineering, Benevento, Italy, 2010, pp. 89–98. – reference: G. Costagliola, S.D. Martino, F. Ferrucci, C. Gravino, G. Tortora, G. Vitiello, Effort estimation modeling techniques: a case study for web applications, in: Proceedings of the 6th International Conference on Web Engineering, Palo Alto, CA, United States, 2006, pp. 9–16. – volume: 68 start-page: 253 year: 2003 end-page: 262 ident: b0465 article-title: Software effort estimation by analogy and “regression toward the mean” publication-title: Journal of Systems and Software – volume: 12 start-page: 65 year: 2007 end-page: 106 ident: b0515 article-title: A flexible method for software effort estimation by analogy publication-title: Empirical Software Engineering – volume: 80 start-page: 571 year: 2007 end-page: 583 ident: b0210 article-title: Lessons from applying the systematic literature review process within the software engineering domain publication-title: Journal of Systems and Software – reference: E. Stensrud, I. Myrtveit, Human performance estimating with analogy and regression models: an empirical validation, in: Proceedings of the 5th International Software Metrics Symposium, 1998, pp. 205–213. – volume: 39 start-page: 55 year: 1997 end-page: 60 ident: b0580 article-title: Software cost estimation using an Albus perceptron (CMAC) publication-title: Information and Software Technology – volume: 15 start-page: 523 year: 2010 end-page: 555 ident: b0555 article-title: LSEbA: Least squares regression and estimation by analogy in a semi-parametric model for software cost estimation publication-title: Empirical Software Engineering – volume: 34 start-page: 471 year: 2008 end-page: 484 ident: b0480 article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation publication-title: IEEE Transactions on Software Engineering – reference: K. Moløkken-Østvold, M. Jørgensen, S.S. Tanilkan, H. Gallis, A.C. Lien, S.E. Hove, A survey on software estimation in the norwegian industry, in: Proceedings of the 10th International Symposium on Software Metrics, Chicago, Illinois, USA, 2004, pp. 208–219. – volume: 81 start-page: 1853 year: 2008 end-page: 1867 ident: b0490 article-title: Software development cost estimation using wavelet neural networks publication-title: Journal of Systems and Software – volume: 11 start-page: 87 year: 2003 end-page: 119 ident: b0030 article-title: Machine learning and software engineering publication-title: Software Quality Journal – volume: 42 start-page: 701 year: 2000 end-page: 713 ident: b0295 article-title: Neuro-genetic prediction of software development effort publication-title: Information and Software Technology – volume: 34 start-page: 627 year: 1992 end-page: 639 ident: b0110 article-title: Software cost estimation publication-title: Information and Software Technology – volume: 8 start-page: 163 year: 2003 end-page: 196 ident: b0010 article-title: A comparative study of cost estimation models for web hypermedia applications publication-title: Empirical Software Engineering – reference: A.J. Albrecht, Measuring application development productivity, in: Proceedings of the Joint SHARE/GUIDE/IBM Application Development Symposium, Monterey, CA, USA, 1979, pp. 83–92. – reference: J.P. Higgins, S. Green, Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.2 [updated September 2009], The Cochrane Collaboration, 2009, < – volume: 25 start-page: 510 year: 1999 end-page: 525 ident: b0055 article-title: A controlled experiment to assess the benefits of estimating with analogy and regression models publication-title: IEEE Transactions on Software Engineering – volume: 44 start-page: 911 year: 2002 end-page: 922 ident: b0045 article-title: Comparison of artificial neural network and regression models for estimating software development effort publication-title: Information and Software Technology – volume: 81 start-page: 356 year: 2008 end-page: 367 ident: b0015 article-title: An investigation of artificial neural networks based prediction systems in software project management publication-title: Journal of Systems and Software – volume: 44 start-page: 59 year: 1997 end-page: 125 ident: b0115 article-title: Software cost estimation: a review of models, process and practice publication-title: Advances in Computers – volume: 82 start-page: 241 year: 2009 end-page: 252 ident: b0525 article-title: A study of project selection and feature weighting for analogy based software cost estimation publication-title: Journal of Systems and Software – volume: 51 start-page: 2 year: 2009 end-page: 6 ident: b0230 article-title: An analysis of the most cited articles in software engineering journals – 2002 publication-title: Information and Software Technology – volume: 32 start-page: 83 year: 2006 end-page: 92 ident: b0355 article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations publication-title: IEEE Transactions on Software Engineering – volume: SE-4 start-page: 345 year: 1978 end-page: 361 ident: b0280 article-title: A general empirical solution to the macro software sizing and estimating problem publication-title: IEEE Transactions on Software Engineering – volume: 39 start-page: 281 year: 1997 end-page: 289 ident: b0430 article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models publication-title: Journal of Systems and Software – volume: 14 start-page: 161 year: 2002 end-page: 179 ident: b0615 article-title: Predicting project delivery rates using the naive-bayes classifier publication-title: Journal of Software Maintenance and Evolution: Research and Practice – reference: L.C. Briand, K.E. Emam, D. Surmann, I. Wieczorek, K.D. Maxwell, An assessment and comparison of common software cost estimation modeling techniques, in: Proceedings of the 21st International Conference on Software Engineering, Los Angeles, CA, USA, 1999, pp. 313–322. – start-page: 4 year: 1984 end-page: 21 ident: b0105 article-title: Software engineering economics publication-title: IEEE Transactions on Software Engineering SE-10 – volume: 22 start-page: 297 year: 2006 end-page: 313 ident: b0445 article-title: Fuzzy decision tree approach for embedding risk assessment information into software cost estimation model publication-title: Journal of Information Science and Engineering – volume: 30 start-page: 416 year: 1987 end-page: 429 ident: b0255 article-title: An empirical validation of software cost estimation models publication-title: Communications of the ACM – volume: 30 start-page: 73 year: 2009 end-page: 83 ident: b0435 article-title: Applying fuzzy neural network to estimate software development effort publication-title: Applied Intelligence – volume: 80 start-page: 628 year: 2007 end-page: 640 ident: b0090 article-title: The adjusted analogy-based software effort estimation based on similarity distances publication-title: Journal of Systems and Software – volume: 31 start-page: 615 year: 2005 end-page: 624 ident: b0575 article-title: A probabilistic model for predicting software development effort publication-title: IEEE Transactions on Software Engineering – start-page: 1 year: 2009 end-page: 10 ident: b0370 article-title: Software effort estimation based on weighted fuzzy grey relational analysis publication-title: Proceedings of the 5th International Conference on Predictor Models in Software Engineering – reference: M. Azzeh, D. Neagu, P. Cowling, Software project similarity measurement based on fuzzy C-means, in: Proceedings of the International Conference on Software Process, Leipzig, Germany, 2008, pp. 123–134. – volume: 50 start-page: 833 year: 2008 end-page: 859 ident: b0195 article-title: Empirical studies of agile software development: a systematic review publication-title: Information and Software Technology – reference: J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 126–135. – volume: 1 start-page: 87 year: 1994 end-page: 94 ident: b0635 article-title: Using artificial neural networks and function points to estimate 4GL software development effort publication-title: Australian Journal of Information Systems – volume: 36 start-page: 5921 year: 2009 end-page: 5931 ident: b0520 article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation publication-title: Expert Systems with Applications – reference: E. Mendes, A comparison of techniques for web effort estimation, in: Proceedings of the 1st International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 2007, pp. 334–343. – year: 2007 ident: b0320 article-title: PROMISE Repository of Empirical Software Engineering Data – start-page: 1 year: 2010 end-page: 33 ident: b0410 article-title: Investigating the use of support vector regression for web effort estimation publication-title: Empirical Software Engineering – volume: 39 start-page: 425 year: 1997 end-page: 437 ident: b0065 article-title: A comparison of techniques for developing predictive models of software metrics publication-title: Information and Software Technology – volume: 40 start-page: 811 year: 1998 end-page: 821 ident: b0220 article-title: Combining empirical results in software engineering publication-title: Information and Software Technology – reference: J. Wen, S. Li, L. Tang, Improve analogy-based software effort estimation using principal components analysis and correlation weighting, in: Proceedings of the 16th Asia-Pacific Software Engineering Conference, 2009, pp. 179–186. – volume: 48 start-page: 302 year: 2006 end-page: 310 ident: b0145 article-title: Software effort estimation terminology: the tower of babel publication-title: Information and Software Technology – volume: 34 start-page: 723 year: 2008 end-page: 737 ident: b0550 article-title: Bayesian network models for web effort prediction: a comparative study publication-title: IEEE Transactions on Software Engineering – volume: 69 start-page: 1749 year: 2006 end-page: 1753 ident: b0565 article-title: Estimation of software project effort with support vector regression publication-title: Neurocomputing – volume: 26 start-page: 567 year: 2000 end-page: 576 ident: b0595 article-title: Empirical data modeling in software engineering using radial basis functions publication-title: IEEE Transactions on Software Engineering – volume: 43 start-page: 61 year: 2001 end-page: 72 ident: b0050 article-title: On the problem of the software cost function publication-title: Information and Software Technology – reference: J.W. Bailey, V.R. Basili, A meta-model for software development resource expenditures, in: Proceedings of the 5th International Conference on Software Engineering, San Diego, California, USA, 1981, pp. 107–116. – reference: P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, Software effort estimation using machine learning techniques with robust confidence intervals, in: Proceedings of the 19th International Conference on Tools with Artificial Intelligence, vol. 1, Patras, Greece, 2007, pp. 181–185. – reference: Y.-S. Seo, K.-A. Yoon, D.-H. Bae, An empirical analysis of software effort estimation with outlier elimination, in: Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 2008, pp. 25–32. – volume: 14 start-page: 603 year: 2009 end-page: 643 ident: b0530 article-title: A study of the non-linear adjustment for analogy based software cost estimation publication-title: Empirical Software Engineering – reference: R. Setiono, K. Dejaeger, W. Verbeke, D. Martens, B. Baesens, Software effort prediction using regression rule extraction from neural networks, in: Proceedings of the 22nd International Conference on Tools with Artificial Intelligence, vol. 2, Arras, France, 2010, pp. 45–52. – volume: 27 start-page: 1014 year: 2001 end-page: 1022 ident: b0315 article-title: Comparing software prediction techniques using simulation publication-title: IEEE Transactions on Software Engineering – volume: 22 start-page: 395 year: 2009 end-page: 402 ident: b0485 article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs publication-title: Knowledge-Based Systems – volume: 16 start-page: 155 year: 1992 end-page: 171 ident: b0180 article-title: Examining the feasibility of a case-based reasoning model for software effort estimation publication-title: MIS Quarterly – reference: G. Kadoda, M. Cartwright, L. Chen, M. Shepperd, Experiences using case-based reasoning to predict software project effort, in: Proceedings of the Conference on Evaluation and Assessment in Software Engineering, Keele University, UK, 2000. – year: 2006 ident: b0175 article-title: Pattern Recognition and Machine Learning – reference: >. – year: 1997 ident: b0165 article-title: Machine Learning – volume: 33 start-page: 316 year: 2007 end-page: 329 ident: b0150 article-title: Cross versus within-company cost estimation studies: a systematic review publication-title: IEEE Transactions on Software Engineering – reference: A. Idri, A. Zahi, E. Mendes, A. Zakrani, Software cost estimation models using radial basis function neural networks, in: Proceedings of the International Workshop on Software Measurement, Palma de Mallorca, Spain, 2007, pp. 21–31. – reference: I. Wieczorek, M. Ruhe, How valuable is company-specific data compared to multi-company data for software cost estimation?, in: Proceedings of the 8th International Software Metrics Symposium, Ottawa, Canada, 2002, pp. 237–246. – volume: 23 start-page: 449 year: 2007 end-page: 462 ident: b0135 article-title: Forecasting of software development work effort: evidence on expert judgement and formal models publication-title: International Journal of Forecasting – volume: vol. 204 start-page: 533 year: 2006 end-page: 540 ident: b0285 article-title: Selecting the appropriate machine learning techniques for the prediction of software development costs publication-title: Artificial Intelligence Applications and Innovations – volume: 35 start-page: 929 year: 2008 end-page: 937 ident: b0570 article-title: An empirical validation of a neural network model for software effort estimation publication-title: Expert Systems with Applications – volume: 4 start-page: 135 year: 1999 end-page: 158 ident: b0070 article-title: An empirical study of analogy-based software effort estimation publication-title: Empirical Software Engineering – reference: C. Mair, M. Shepperd, The consistency of empirical comparisons of regression and analogy-based software project cost prediction, in: Proceedings of the International Symposium on Empirical Software Engineering, 2005, pp. 509–518. – ident: 10.1016/j.infsof.2011.09.002_b0190 doi: 10.1002/9780470712184 – volume: 27 start-page: 963 issue: 11 year: 2001 ident: 10.1016/j.infsof.2011.09.002_b0400 article-title: Modeling development effort in object-oriented systems using design properties publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.965338 – volume: 77 start-page: 157 issue: 2 year: 2005 ident: 10.1016/j.infsof.2011.09.002_b0265 article-title: Investigating web size metrics for early web cost estimation publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2004.08.034 – volume: 81 start-page: 1853 issue: 11 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0490 article-title: Software development cost estimation using wavelet neural networks publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2007.12.793 – volume: 50 start-page: 656 issue: 7–8 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0305 article-title: Combining probabilistic models for explanatory productivity estimation publication-title: Information and Software Technology doi: 10.1016/j.infsof.2007.06.004 – ident: 10.1016/j.infsof.2011.09.002_b0590 doi: 10.1109/ICTAI.2010.82 – volume: 27 start-page: 1014 issue: 11 year: 2001 ident: 10.1016/j.infsof.2011.09.002_b0315 article-title: Comparing software prediction techniques using simulation publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.965341 – volume: 66 start-page: 91 issue: 2 year: 2003 ident: 10.1016/j.infsof.2011.09.002_b0290 article-title: Combining techniques to optimize effort predictions in software project management publication-title: Journal of Systems and Software doi: 10.1016/S0164-1212(02)00067-5 – volume: 68 start-page: 253 issue: 3 year: 2003 ident: 10.1016/j.infsof.2011.09.002_b0465 article-title: Software effort estimation by analogy and “regression toward the mean” publication-title: Journal of Systems and Software doi: 10.1016/S0164-1212(03)00066-9 – volume: 51 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0230 article-title: An analysis of the most cited articles in software engineering journals – 2002 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2008.09.012 – volume: 32 start-page: 83 issue: 2 year: 2006 ident: 10.1016/j.infsof.2011.09.002_b0355 article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2006.1599418 – volume: 31 start-page: 615 issue: 7 year: 2005 ident: 10.1016/j.infsof.2011.09.002_b0575 article-title: A probabilistic model for predicting software development effort publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2005.75 – volume: 39 start-page: 469 issue: 7 year: 1997 ident: 10.1016/j.infsof.2011.09.002_b0630 article-title: Estimating software development effort with connectionist models publication-title: Information and Software Technology doi: 10.1016/S0950-5849(97)00004-9 – volume: 39 start-page: 425 issue: 6 year: 1997 ident: 10.1016/j.infsof.2011.09.002_b0065 article-title: A comparison of techniques for developing predictive models of software metrics publication-title: Information and Software Technology doi: 10.1016/S0950-5849(96)00006-7 – volume: 30 start-page: 73 issue: 2 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0435 article-title: Applying fuzzy neural network to estimate software development effort publication-title: Applied Intelligence doi: 10.1007/s10489-007-0097-4 – volume: 44 start-page: 911 issue: 15 year: 2002 ident: 10.1016/j.infsof.2011.09.002_b0045 article-title: Comparison of artificial neural network and regression models for estimating software development effort publication-title: Information and Software Technology doi: 10.1016/S0950-5849(02)00128-3 – volume: 39 start-page: 281 issue: 3 year: 1997 ident: 10.1016/j.infsof.2011.09.002_b0430 article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models publication-title: Journal of Systems and Software doi: 10.1016/S0164-1212(97)00055-1 – volume: 22 start-page: 297 issue: 2 year: 2006 ident: 10.1016/j.infsof.2011.09.002_b0445 article-title: Fuzzy decision tree approach for embedding risk assessment information into software cost estimation model publication-title: Journal of Information Science and Engineering – volume: 41 start-page: 937 issue: 14 year: 1999 ident: 10.1016/j.infsof.2011.09.002_b0025 article-title: Software economics: status and prospects publication-title: Information and Software Technology doi: 10.1016/S0950-5849(99)00091-9 – volume: 14 start-page: 603 issue: 6 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0530 article-title: A study of the non-linear adjustment for analogy based software cost estimation publication-title: Empirical Software Engineering doi: 10.1007/s10664-008-9104-6 – ident: 10.1016/j.infsof.2011.09.002_b0610 doi: 10.1109/METRIC.1998.731247 – volume: 14 start-page: 161 issue: 3 year: 2002 ident: 10.1016/j.infsof.2011.09.002_b0615 article-title: Predicting project delivery rates using the naive-bayes classifier publication-title: Journal of Software Maintenance and Evolution: Research and Practice doi: 10.1002/smr.250 – volume: 4 start-page: 297 issue: 4 year: 1999 ident: 10.1016/j.infsof.2011.09.002_b0035 article-title: Software metrics data analysis – exploring the relative performance of some commonly used modeling techniques publication-title: Empirical Software Engineering doi: 10.1023/A:1009849100780 – ident: 10.1016/j.infsof.2011.09.002_b0460 doi: 10.1007/978-3-540-85553-8_2 – year: 1997 ident: 10.1016/j.infsof.2011.09.002_b0165 – volume: 52 start-page: 1155 issue: 11 year: 2010 ident: 10.1016/j.infsof.2011.09.002_b0310 article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation publication-title: Information and Software Technology doi: 10.1016/j.infsof.2010.05.009 – start-page: 1 year: 2010 ident: 10.1016/j.infsof.2011.09.002_b0410 article-title: Investigating the use of support vector regression for web effort estimation publication-title: Empirical Software Engineering – volume: 80 start-page: 628 issue: 4 year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0090 article-title: The adjusted analogy-based software effort estimation based on similarity distances publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2006.06.006 – ident: 10.1016/j.infsof.2011.09.002_b0360 doi: 10.1007/978-3-540-79588-9_12 – volume: 13 start-page: 63 issue: 1 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0510 article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+ publication-title: Empirical Software Engineering doi: 10.1007/s10664-007-9054-4 – volume: 31 start-page: 380 issue: 5 year: 2005 ident: 10.1016/j.infsof.2011.09.002_b0340 article-title: Reliability and validity in comparative studies of software prediction models publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2005.58 – ident: 10.1016/j.infsof.2011.09.002_b0425 doi: 10.1109/SSBSE.2010.20 – ident: 10.1016/j.infsof.2011.09.002_b0245 – year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0320 – volume: 53 start-page: 23 issue: 1 year: 2000 ident: 10.1016/j.infsof.2011.09.002_b0085 article-title: An investigation of machine learning based prediction systems publication-title: Journal of Systems and Software doi: 10.1016/S0164-1212(00)00005-4 – ident: 10.1016/j.infsof.2011.09.002_b0325 doi: 10.1109/METRIC.2001.915512 – start-page: 64 year: 2004 ident: 10.1016/j.infsof.2011.09.002_b0455 article-title: Fuzzy case-based reasoning models for software cost estimation – volume: 51 start-page: 738 issue: 4 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0375 article-title: Comparison of estimation methods of cost and duration in IT projects publication-title: Information and Software Technology doi: 10.1016/j.infsof.2008.09.007 – ident: 10.1016/j.infsof.2011.09.002_b0390 doi: 10.1109/IJCNN.2007.4371196 – volume: 18 start-page: 931 issue: 11 year: 1992 ident: 10.1016/j.infsof.2011.09.002_b0185 article-title: A pattern recognition approach for software engineering data analysis publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.177363 – volume: 21 start-page: 126 issue: 2 year: 1995 ident: 10.1016/j.infsof.2011.09.002_b0600 article-title: Machine learning approaches to estimating software development effort publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.345828 – volume: 33 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0005 article-title: A systematic review of software development cost estimation studies publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2007.256943 – volume: 22 start-page: 395 issue: 6 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0485 article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2009.05.001 – volume: 33 start-page: 316 issue: 5 year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0150 article-title: Cross versus within-company cost estimation studies: a systematic review publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2007.1001 – ident: 10.1016/j.infsof.2011.09.002_b0160 – volume: 9 start-page: 639 issue: 6 year: 1983 ident: 10.1016/j.infsof.2011.09.002_b0250 article-title: Software function, source lines of code, and development effort prediction: a software science validation publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.1983.235271 – volume: 81 start-page: 673 issue: 5 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0540 article-title: Cross-company vs. single-company web effort models using the tukutuku database: an extended study publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2007.07.044 – year: 2004 ident: 10.1016/j.infsof.2011.09.002_b0170 – ident: 10.1016/j.infsof.2011.09.002_b0505 doi: 10.1109/ESEM.2007.10 – volume: 16 start-page: 155 issue: 2 year: 1992 ident: 10.1016/j.infsof.2011.09.002_b0180 article-title: Examining the feasibility of a case-based reasoning model for software effort estimation publication-title: MIS Quarterly doi: 10.2307/249573 – volume: 50 start-page: 833 issue: 9–10 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0195 article-title: Empirical studies of agile software development: a systematic review publication-title: Information and Software Technology doi: 10.1016/j.infsof.2008.01.006 – ident: 10.1016/j.infsof.2011.09.002_b0365 doi: 10.1145/1370788.1370805 – year: 1988 ident: 10.1016/j.infsof.2011.09.002_b0225 – volume: 26 start-page: 567 issue: 6 year: 2000 ident: 10.1016/j.infsof.2011.09.002_b0595 article-title: Empirical data modeling in software engineering using radial basis functions publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.852743 – volume: 31 start-page: 733 issue: 9 year: 2005 ident: 10.1016/j.infsof.2011.09.002_b0200 article-title: A survey of controlled experiments in software engineering publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2005.97 – ident: 10.1016/j.infsof.2011.09.002_b0475 – volume: SE-4 start-page: 345 issue: 4 year: 1978 ident: 10.1016/j.infsof.2011.09.002_b0280 article-title: A general empirical solution to the macro software sizing and estimating problem publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.1978.231521 – start-page: 1 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0370 article-title: Software effort estimation based on weighted fuzzy grey relational analysis – ident: 10.1016/j.infsof.2011.09.002_b0075 doi: 10.1145/302405.302647 – volume: 8 start-page: 163 issue: 2 year: 2003 ident: 10.1016/j.infsof.2011.09.002_b0010 article-title: A comparative study of cost estimation models for web hypermedia applications publication-title: Empirical Software Engineering doi: 10.1023/A:1023062629183 – volume: 34 start-page: 471 issue: 4 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0480 article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2008.34 – year: 2006 ident: 10.1016/j.infsof.2011.09.002_b0175 – volume: 21 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.infsof.2011.09.002_b0470 article-title: Quasi-optimal case-selective neural network model for software effort estimation publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(01)00021-5 – ident: 10.1016/j.infsof.2011.09.002_b0495 doi: 10.1109/COMPSAC.2010.56 – ident: 10.1016/j.infsof.2011.09.002_b0125 – ident: 10.1016/j.infsof.2011.09.002_b0140 – volume: 48 start-page: 302 issue: 4 year: 2006 ident: 10.1016/j.infsof.2011.09.002_b0145 article-title: Software effort estimation terminology: the tower of babel publication-title: Information and Software Technology doi: 10.1016/j.infsof.2005.04.004 – ident: 10.1016/j.infsof.2011.09.002_b0535 doi: 10.1109/ESEM.2007.14 – volume: 42 start-page: 1009 issue: 14 year: 2000 ident: 10.1016/j.infsof.2011.09.002_b0040 article-title: A comparative study of two software development cost modeling techniques using multi-organizational and company-specific data publication-title: Information and Software Technology doi: 10.1016/S0950-5849(00)00153-1 – volume: 34 start-page: 627 issue: 10 year: 1992 ident: 10.1016/j.infsof.2011.09.002_b0110 article-title: Software cost estimation publication-title: Information and Software Technology doi: 10.1016/0950-5849(92)90068-Z – volume: vol. 204 start-page: 533 year: 2006 ident: 10.1016/j.infsof.2011.09.002_b0285 article-title: Selecting the appropriate machine learning techniques for the prediction of software development costs – volume: 25 start-page: 510 issue: 4 year: 1999 ident: 10.1016/j.infsof.2011.09.002_b0055 article-title: A controlled experiment to assess the benefits of estimating with analogy and regression models publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.799947 – volume: 5 start-page: 35 issue: 1 year: 2000 ident: 10.1016/j.infsof.2011.09.002_b0345 article-title: A simulation tool for efficient analogy based cost estimation publication-title: Empirical Software Engineering doi: 10.1023/A:1009897800559 – ident: 10.1016/j.infsof.2011.09.002_b0395 doi: 10.1145/337180.337223 – ident: 10.1016/j.infsof.2011.09.002_b0625 doi: 10.1109/METRIC.2002.1011342 – ident: 10.1016/j.infsof.2011.09.002_b0260 – volume: 15 start-page: 523 issue: 5 year: 2010 ident: 10.1016/j.infsof.2011.09.002_b0555 article-title: LSEbA: Least squares regression and estimation by analogy in a semi-parametric model for software cost estimation publication-title: Empirical Software Engineering doi: 10.1007/s10664-010-9128-6 – volume: 7 start-page: 29 issue: 1 year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0450 article-title: Improving the COCOMO model using a neuro-fuzzy approach publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2005.06.007 – volume: 52 start-page: 792 issue: 8 year: 2010 ident: 10.1016/j.infsof.2011.09.002_b0215 article-title: Systematic literature reviews in software engineering – a tertiary study publication-title: Information and Software Technology doi: 10.1016/j.infsof.2010.03.006 – ident: 10.1016/j.infsof.2011.09.002_b0350 doi: 10.1109/ICTAI.2010.30 – ident: 10.1016/j.infsof.2011.09.002_b0330 doi: 10.1049/ic:20040398 – ident: 10.1016/j.infsof.2011.09.002_b0415 doi: 10.1145/1868328.1868335 – volume: 1 start-page: 87 issue: 2 year: 1994 ident: 10.1016/j.infsof.2011.09.002_b0635 article-title: Using artificial neural networks and function points to estimate 4GL software development effort publication-title: Australian Journal of Information Systems – volume: 45 start-page: 51 issue: 1 year: 2003 ident: 10.1016/j.infsof.2011.09.002_b0605 article-title: On the use of bayesian belief networks for the prediction of software productivity publication-title: Information and Software Technology doi: 10.1016/S0950-5849(02)00163-5 – ident: 10.1016/j.infsof.2011.09.002_b0620 doi: 10.1109/APSEC.2009.40 – ident: 10.1016/j.infsof.2011.09.002_b0275 – ident: 10.1016/j.infsof.2011.09.002_b0420 doi: 10.1145/1145581.1145584 – volume: 12 start-page: 65 issue: 1 year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0515 article-title: A flexible method for software effort estimation by analogy publication-title: Empirical Software Engineering doi: 10.1007/s10664-006-7552-4 – volume: 4 start-page: 135 issue: 2 year: 1999 ident: 10.1016/j.infsof.2011.09.002_b0070 article-title: An empirical study of analogy-based software effort estimation publication-title: Empirical Software Engineering doi: 10.1023/A:1009872202035 – volume: 70 start-page: 37 issue: 1–2 year: 2004 ident: 10.1016/j.infsof.2011.09.002_b0100 article-title: A review of studies on expert estimation of software development effort publication-title: Journal of Systems and Software doi: 10.1016/S0164-1212(02)00156-5 – volume: 48 start-page: 1034 issue: 11 year: 2006 ident: 10.1016/j.infsof.2011.09.002_b0300 article-title: Optimization of analogy weights by genetic algorithm for software effort estimation publication-title: Information and Software Technology doi: 10.1016/j.infsof.2005.12.020 – ident: 10.1016/j.infsof.2011.09.002_b0545 doi: 10.1109/ISESE.2002.1166928 – volume: 44 start-page: 59 year: 1997 ident: 10.1016/j.infsof.2011.09.002_b0115 article-title: Software cost estimation: a review of models, process and practice publication-title: Advances in Computers doi: 10.1016/S0065-2458(08)60337-X – volume: 34 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.infsof.2011.09.002_b0500 article-title: Software development cost estimation: integrating neural network with cluster analysis publication-title: Information and Management doi: 10.1016/S0378-7206(98)00041-X – start-page: 4 issue: 1 year: 1984 ident: 10.1016/j.infsof.2011.09.002_b0105 article-title: Software engineering economics publication-title: IEEE Transactions on Software Engineering SE-10 doi: 10.1109/TSE.1984.5010193 – volume: 36 start-page: 10774 issue: 7 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0020 article-title: Improved estimation of software project effort using multiple additive regression trees publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.02.013 – volume: 14 start-page: 35 issue: 1 year: 1998 ident: 10.1016/j.infsof.2011.09.002_b0270 article-title: Forecasting with artificial neural networks: the state of the art publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(97)00044-7 – volume: 43 start-page: 413 issue: 7 year: 2001 ident: 10.1016/j.infsof.2011.09.002_b0080 article-title: Alternative approaches to effort prediction of ERP projects publication-title: Information and Software Technology doi: 10.1016/S0950-5849(01)00147-1 – ident: 10.1016/j.infsof.2011.09.002_b0385 doi: 10.1109/ICTAI.2007.172 – volume: 81 start-page: 356 issue: 3 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0015 article-title: An investigation of artificial neural networks based prediction systems in software project management publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2007.05.011 – year: 1981 ident: 10.1016/j.infsof.2011.09.002_b0240 – volume: 22 start-page: 66 issue: 1 year: 2005 ident: 10.1016/j.infsof.2011.09.002_b0205 article-title: Soup or art? The role of evidential force in empirical software engineering publication-title: IEEE Software doi: 10.1109/MS.2005.19 – volume: 39 start-page: 55 issue: 1 year: 1997 ident: 10.1016/j.infsof.2011.09.002_b0580 article-title: Software cost estimation using an Albus perceptron (CMAC) publication-title: Information and Software Technology doi: 10.1016/0950-5849(96)01124-X – volume: 43 start-page: 61 issue: 1 year: 2001 ident: 10.1016/j.infsof.2011.09.002_b0050 article-title: On the problem of the software cost function publication-title: Information and Software Technology doi: 10.1016/S0950-5849(00)00137-3 – volume: 23 start-page: 736 issue: 11 year: 1997 ident: 10.1016/j.infsof.2011.09.002_b0060 article-title: Estimating software project effort using analogies publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.637387 – volume: 22 start-page: 121 issue: 2 year: 2010 ident: 10.1016/j.infsof.2011.09.002_b0380 article-title: BBN based approach for improving the software development process of an SME – a case study publication-title: Journal of Software Maintenance and Evolution: Research and Practice doi: 10.1002/smr.451 – volume: 34 start-page: 723 issue: 6 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0550 article-title: Bayesian network models for web effort prediction: a comparative study publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2008.64 – volume: 30 start-page: 416 issue: 5 year: 1987 ident: 10.1016/j.infsof.2011.09.002_b0255 article-title: An empirical validation of software cost estimation models publication-title: Communications of the ACM doi: 10.1145/22899.22906 – volume: 50 start-page: 221 issue: 3 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0560 article-title: Improving analogy-based software cost estimation by a resampling method publication-title: Information and Software Technology doi: 10.1016/j.infsof.2007.04.001 – volume: 35 start-page: 929 issue: 3 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0570 article-title: An empirical validation of a neural network model for software effort estimation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.08.001 – ident: 10.1016/j.infsof.2011.09.002_b0095 doi: 10.1109/METRIC.2004.1357904 – volume: 69 start-page: 1749 issue: 13–15 year: 2006 ident: 10.1016/j.infsof.2011.09.002_b0565 article-title: Estimation of software project effort with support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.119 – volume: 43 start-page: 863 issue: 14 year: 2001 ident: 10.1016/j.infsof.2011.09.002_b0405 article-title: Can genetic programming improve software effort estimation? a comparative evaluation publication-title: Information and Software Technology doi: 10.1016/S0950-5849(01)00192-6 – volume: 11 start-page: 87 issue: 2 year: 2003 ident: 10.1016/j.infsof.2011.09.002_b0030 article-title: Machine learning and software engineering publication-title: Software Quality Journal doi: 10.1023/A:1023760326768 – volume: 36 start-page: 5921 issue: 3 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0520 article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.07.062 – volume: 82 start-page: 241 issue: 2 year: 2009 ident: 10.1016/j.infsof.2011.09.002_b0525 article-title: A study of project selection and feature weighting for analogy based software cost estimation publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2008.06.001 – volume: 40 start-page: 811 issue: 14 year: 1998 ident: 10.1016/j.infsof.2011.09.002_b0220 article-title: Combining empirical results in software engineering publication-title: Information and Software Technology doi: 10.1016/S0950-5849(98)00101-3 – ident: 10.1016/j.infsof.2011.09.002_b0335 doi: 10.1109/METRIC.2004.1357920 – volume: 80 start-page: 571 issue: 4 year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0210 article-title: Lessons from applying the systematic literature review process within the software engineering domain publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2006.07.009 – ident: 10.1016/j.infsof.2011.09.002_b0130 doi: 10.1109/FOSE.2007.23 – ident: 10.1016/j.infsof.2011.09.002_b0155 doi: 10.1109/ESEM.2007.45 – volume: 10 start-page: 177 year: 2000 ident: 10.1016/j.infsof.2011.09.002_b0120 article-title: Software development cost estimation approaches – a survey publication-title: Annals of Software Engineering doi: 10.1023/A:1018991717352 – ident: 10.1016/j.infsof.2011.09.002_b0585 doi: 10.1145/1370788.1370796 – volume: 23 start-page: 449 issue: 3 year: 2007 ident: 10.1016/j.infsof.2011.09.002_b0135 article-title: Forecasting of software development work effort: evidence on expert judgement and formal models publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2007.05.008 – ident: 10.1016/j.infsof.2011.09.002_b0235 – volume: 42 start-page: 701 issue: 10 year: 2000 ident: 10.1016/j.infsof.2011.09.002_b0295 article-title: Neuro-genetic prediction of software development effort publication-title: Information and Software Technology doi: 10.1016/S0950-5849(00)00114-2 – volume: 188 start-page: 898 issue: 3 year: 2008 ident: 10.1016/j.infsof.2011.09.002_b0440 article-title: Integration of the grey relational analysis with genetic algorithm for software effort estimation publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2007.07.002 |
SSID | ssj0017030 |
Score | 2.4821627 |
SecondaryResourceType | review_article |
Snippet | Software development effort estimation (SDEE) is the process of predicting the effort required to develop a software system. In order to improve estimation... This research aims to systematically analyze machine learning (ML) models from four aspects: type of ML technique, estimation accuracy, model comparison, and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Acceptability Accuracy Artificial intelligence Computer programs Empirical analysis Estimating techniques Guidelines Literature reviews Machine learning Mathematical models Software Software development Software effort estimation Studies Systematic literature review Systematic review Systems development |
Title | Systematic literature review of machine learning based software development effort estimation models |
URI | https://dx.doi.org/10.1016/j.infsof.2011.09.002 https://www.proquest.com/docview/901852673 https://www.proquest.com/docview/963856838 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jgvgifuKcjjz4Gtc2aZs-jqFMhb3Mwd5CmjQyme1wHb75t3tp04oiDHwqbS9tuLvcXZK7XxC6kUbZsIISLVNlS3IiknqpJJpqPwtCzamq0D6n0WTOHhfhooPGTS2MTat0tr-26ZW1dk-GjpvD9XI5nEFw4IH7TCzomVVMW8HOYqvlt59tmodvNbrG2_OIpW7K56ocLxDipmiAPJN2ceUP9_TLUFfe5_4IHbqwEY_qnh2jTpafoP0ma_0U6VmLyIxXLVIyrgtTcGHwW5U0mWF3SsQLtu5LY-hX-SGBUn8nD-HMQCQLFxj9dWEjrs7L2Zyh-f3d83hC3AEKREFcUBLNufJp5EsTKcNTFsJwZkbDMxUkMC9j2u4r6tBjmvoQKEiPxzRNIhlz46tE0XPUzYs8u0A4ZT7IMLAAcD7THL4WMxPKJIwzAzM200O04ZtQDl3cHnKxEk0a2auouS0st4WXCOB2D5G21bpG19hBHzciET-0RIAD2NGy30hQuFG6ERAL8TCIYtpDuH0Lw8vumcg8K7ZAAvYpjDjll__-dR8dwF1Qr9tcoW75vs2uIZIp00GlqgO0N3p4mky_AIGe9M4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MCepF_MQ5P3LwWtc2aZseZTimzl22wW4hTRqZzG24DW_-7b70SxRh4KmQvrThJe8jyXu_B3AjjbJuBXW0TJRNyQmdxE2ko6n2Uj_QnKoM7bMfdkfscRyMa9Auc2FsWGWh-3OdnmnroqVVcLO1mExaA3QOXDSfsQU9swtzC7YZiq8tY3D7WcV5eHZJ54B7rmPJy_y5LMgLZ3E5L5E84-p05Q_79EtTZ-ancwD7hd9I7vKhHUItnR3BThm2fgx6UEEyk2kFlUzyzBQyN-Qti5pMSVEm4oVY-6UJjmv1IZFSf0cPkdSgK4sPFP88s5FkBXOWJzDq3A_bXaeooOAodAxWjuZceTT0pAmV4QkLUJ6Z0dim_Bg3Zkzbi0UduExTDz0F6fKIJnEoI248FSt6CvXZfJaeAUmYh5PoWwQ4j2mOX4uYCWQcRKnBLZtpAC35JlQBL26rXExFGUf2KnJuC8tt4cYCud0Ap-q1yOE1NtBH5ZSIH8tEoAXY0LNZzqAoxHQp0BnigR9GtAGkeovyZS9N5Cydr5EEFVQQcsrP__3ra9jtDp97ovfQf2rCHr7x80OcC6iv3tfpJbo1q-QqW7ZfGIb2XA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+literature+review+of+machine+learning+based+software+development+effort+estimation+models&rft.jtitle=Information+and+software+technology&rft.au=Wen%2C+Jianfeng&rft.au=Li%2C+Shixian&rft.au=Lin%2C+Zhiyong&rft.au=Hu%2C+Yong&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=0950-5849&rft.eissn=1873-6025&rft.volume=54&rft.issue=1&rft.spage=41&rft.epage=59&rft_id=info:doi/10.1016%2Fj.infsof.2011.09.002&rft.externalDocID=S0950584911001832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon |