An interpretable framework of data-driven turbulence modeling using deep neural networks

Reynolds-averaged Navier–Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for more accurate turbulence models. Recently, emerging machine learning techniques have had a promising impact on turbulence modeling, but are st...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 33; no. 5
Main Author Vinuesa, Ricardo
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reynolds-averaged Navier–Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for more accurate turbulence models. Recently, emerging machine learning techniques have had a promising impact on turbulence modeling, but are still in their infancy regarding widespread industrial adoption. Toward their extensive uptake, this paper presents a universally interpretable machine learning (UIML) framework for turbulence modeling, which consists of two parallel machine learning-based modules to directly infer the structural and parametric representations of turbulence physics, respectively. At each phase of model development, data reflecting the evolution dynamics of turbulence and domain knowledge representing prior physical considerations are converted into modeling knowledge. The data- and knowledge-driven UIML is investigated with a deep residual network. The following three aspects are demonstrated in detail: (i) a compact input feature parameterizing a new turbulent timescale is introduced to prevent nonunique mappings between conventional input arguments and output Reynolds stress; (ii) a realizability limiter is developed to overcome the under-constrained state of modeled stress; and (iii) fairness and noise-insensitivity constraints are included in the training procedure. Consequently, an invariant, realizable, unbiased, and robust data-driven turbulence model is achieved. The influences of the training dataset size, activation function, and network hyperparameter on the performance are also investigated. The resulting model exhibits good generalization across two- and three-dimensional flows, and captures the effects of the Reynolds number and aspect ratio. Finally, the underlying rationale behind prediction is explored.
AbstractList Reynolds-averaged Navier-Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for more accurate turbulence models. Recently, emerging machine learning techniques have had a promising impact on turbulence modeling, but are still in their infancy regarding widespread industrial adoption. Toward their extensive uptake, this paper presents a universally interpretable machine learning (UIML) framework for turbulence modeling, which consists of two parallel machine learning-based modules to directly infer the structural and parametric representations of turbulence physics, respectively. At each phase of model development, data reflecting the evolution dynamics of turbulence and domain knowledge representing prior physical considerations are converted into modeling knowledge. The data- and knowledge-driven UIML is investigated with a deep residual network. The following three aspects are demonstrated in detail: (i) a compact input feature parameterizing a new turbulent timescale is introduced to prevent nonunique mappings between conventional input arguments and output Reynolds stress; (ii) a realizability limiter is developed to overcome the under-constrained state of modeled stress; and (iii) fairness and noise-insensitivity constraints are included in the training procedure. Consequently, an invariant, realizable, unbiased, and robust data-driven turbulence model is achieved. The influences of the training dataset size, activation function, and network hyperparameter on the performance are also investigated. The resulting model exhibits good generalization across two- and three-dimensional flows, and captures the effects of the Reynolds number and aspect ratio. Finally, the underlying rationale behind prediction is explored.
Author Vinuesa, Ricardo
Author_xml – sequence: 2
  givenname: Ricardo
  surname: Vinuesa
  fullname: Vinuesa, Ricardo
  organization: SimEx/Flow, Engineering Mechanics, KTH Royal Institute of Technology and Swedish e-Science Research Centre (SeRC)
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299314$$DView record from Swedish Publication Index
BookMark eNp9kE9PGzEUxK0qlZpQDv0GK3ECaYn_rRMfo0ChElIvbcXN8trP1LCxF9sL4tt3oyStBKiXN-_wm9FoZmgSYgCEvhB8TrBg8-YcY76UWH5AU4KXsl4IISbbf4FrIRj5hGY532OMmaRiim5XofKhQOoTFN12ULmkN_Ac00MVXWV10bVN_glCVYbUDh0EA9UmWuh8uKuGvL0WoK8CDEl3o5StOX9GH53uMhzv9Qj9_Hr5Y31d33y_-rZe3dSGM1JqKwThji9aKYimxiwpZZID5lQ622DTcsIbJ5zRIAmXLeFGNFpg56il0rbsCNW73PwM_dCqPvmNTi8qaq8u_K-ViulOPZTfikrJCB_5kx3fp_g4QC7qPg4pjBUVbRjDZMEwG6n5jjIp5pzAKeOLLj6GkrTvFMFqO7dq1H7u0XH6ynFo8h57tu98SP0LP8X0D1S9df-D3yb_AWU1ngk
CODEN PHFLE6
CitedBy_id crossref_primary_10_3389_fphy_2022_888832
crossref_primary_10_3390_s22103697
crossref_primary_10_3390_en15041513
crossref_primary_10_1021_acs_iecr_2c01036
crossref_primary_10_1103_PhysRevFluids_9_084604
crossref_primary_10_1103_PhysRevFluids_10_034606
crossref_primary_10_1038_s43588_022_00264_7
crossref_primary_10_1016_j_ijheatfluidflow_2022_109017
crossref_primary_10_1016_j_ijheatfluidflow_2022_109018
crossref_primary_10_1063_5_0160977
crossref_primary_10_1063_5_0070890
crossref_primary_10_1063_5_0058542
crossref_primary_10_1063_5_0104243
crossref_primary_10_1063_5_0095958
crossref_primary_10_1016_j_ijheatfluidflow_2022_109010
crossref_primary_10_1063_5_0142643
crossref_primary_10_2514_1_J062572
crossref_primary_10_1063_5_0207256
crossref_primary_10_3390_buildings13030650
crossref_primary_10_1063_5_0083074
crossref_primary_10_1063_5_0247759
crossref_primary_10_1016_j_nucengdes_2022_112005
crossref_primary_10_1088_1361_6501_ad3fd3
crossref_primary_10_1063_5_0147902
crossref_primary_10_1016_j_buildenv_2023_110803
crossref_primary_10_1038_s42256_021_00414_y
crossref_primary_10_1063_5_0190452
crossref_primary_10_1016_j_taml_2024_100496
crossref_primary_10_1186_s40323_022_00234_8
crossref_primary_10_1016_j_eswa_2022_117038
crossref_primary_10_1007_s40747_024_01668_w
crossref_primary_10_1080_02286203_2024_2371682
crossref_primary_10_1063_5_0155649
crossref_primary_10_1103_PhysRevFluids_9_024603
crossref_primary_10_1109_ACCESS_2023_3260405
crossref_primary_10_1063_5_0211680
crossref_primary_10_1016_j_oceaneng_2023_114902
crossref_primary_10_1063_5_0129203
crossref_primary_10_1063_5_0098925
crossref_primary_10_1016_j_physd_2022_133568
crossref_primary_10_1063_5_0155383
crossref_primary_10_1063_5_0220444
crossref_primary_10_1098_rspa_2023_0058
crossref_primary_10_1016_j_ast_2024_108955
crossref_primary_10_1063_5_0095270
crossref_primary_10_1063_5_0090134
crossref_primary_10_1063_5_0100076
crossref_primary_10_1063_5_0206387
crossref_primary_10_1016_j_ijheatfluidflow_2024_109348
crossref_primary_10_1063_5_0059643
crossref_primary_10_1063_5_0149547
crossref_primary_10_1080_14685248_2021_1999459
crossref_primary_10_1016_j_compfluid_2023_105993
crossref_primary_10_1063_5_0218611
crossref_primary_10_1108_HFF_07_2023_0358
crossref_primary_10_1063_5_0130052
crossref_primary_10_1063_5_0177940
crossref_primary_10_1063_5_0210851
crossref_primary_10_1016_j_energy_2023_128209
crossref_primary_10_1063_5_0149750
crossref_primary_10_3390_app14020863
crossref_primary_10_1016_j_jcp_2024_113569
crossref_primary_10_1080_00295450_2022_2151822
crossref_primary_10_1016_j_ast_2023_108354
crossref_primary_10_1063_5_0141512
crossref_primary_10_1063_5_0116038
crossref_primary_10_1016_j_taml_2022_100381
crossref_primary_10_1038_s41598_024_78784_7
crossref_primary_10_1063_5_0060760
crossref_primary_10_1063_5_0104605
crossref_primary_10_1063_5_0152893
crossref_primary_10_1016_j_taml_2022_100387
crossref_primary_10_1063_5_0123231
crossref_primary_10_1051_e3sconf_202345902005
crossref_primary_10_1063_5_0128522
crossref_primary_10_1016_j_ijheatfluidflow_2022_109047
crossref_primary_10_1063_5_0190138
crossref_primary_10_1063_5_0160482
crossref_primary_10_1063_5_0078644
crossref_primary_10_1016_j_jcp_2025_113793
crossref_primary_10_1186_s42774_022_00107_z
crossref_primary_10_1063_5_0231805
crossref_primary_10_1016_j_compfluid_2024_106506
crossref_primary_10_1063_5_0135638
crossref_primary_10_1063_5_0086354
crossref_primary_10_1063_5_0101356
crossref_primary_10_1088_1755_1315_1037_1_012013
crossref_primary_10_1063_5_0137819
crossref_primary_10_1063_5_0093438
crossref_primary_10_1016_j_oceaneng_2022_111791
crossref_primary_10_1007_s10494_024_00595_7
crossref_primary_10_1063_5_0263211
crossref_primary_10_3390_vehicles6030063
crossref_primary_10_1016_j_cjche_2025_02_001
crossref_primary_10_1088_1367_2630_ad6689
crossref_primary_10_1016_j_compfluid_2024_106246
crossref_primary_10_1016_j_cma_2024_117509
crossref_primary_10_1063_5_0184157
Cites_doi 10.1017/S0022112076001961
10.1017/jfm.2020.184
10.1063/5.0038929
10.1007/978-3-030-58595-2_41
10.1103/PhysRevFluids.5.054606
10.1063/1.5079582
10.1103/PhysRevFluids.4.100501
10.1017/jfm.2019.205
10.1080/14685248.2014.925623
10.1038/s41746-019-0193-y
10.1063/5.0036515
10.1063/1.5054835
10.1038/nature14539
10.1063/1.4947045
10.1103/PhysRevFluids.2.034603
10.1017/S0022112094002983
10.1063/1.5099176
10.1017/jfm.2016.615
10.1063/1.858442
10.3390/en13010258
10.1063/1.4824659
10.1080/14685248.2014.996716
10.1017/jfm.2015.268
10.1038/s42256-019-0048-x
10.1103/PhysRevFluids.4.104605
10.1007/BF00253332
10.1088/1468-5248/4/1/022
10.2514/1.J055595
10.1017/S0022112004009656
10.1017/S0022112093002034
10.1073/pnas.1906995116
10.1017/jfm.2018.660
10.1063/1.2162185
10.1017/jfm.2021.148
10.1146/annurev-fluid-010719-060214
10.1007/BF00277929
10.1016/0142-727X(95)00079-6
10.1017/S0022112087001319
10.1063/5.0041122
10.1016/j.ress.2010.09.013
10.1002/1097-0363(20010130)35:2<221::AID-FLD93>3.0.CO;2-N
10.1090/qam/11999
10.1017/jfm.2019.254
10.1016/j.jcp.2014.06.052
10.1016/j.paerosci.2014.12.004
10.1021/acs.iecr.0c05045
10.1063/5.0020858
10.1063/1.5048727
10.1016/j.cma.2018.09.010
10.1103/PhysRevE.63.056305
10.1126/sciadv.1602614
10.1146/annurev.fluid.31.1.1
10.1063/1.3006023
10.1103/PhysRevFluids.3.054606
10.1063/1.5086341
10.1063/1.861942
10.1016/j.ijthermalsci.2018.09.002
10.1063/1.4930004
10.1103/PhysRevFluids.4.114601
10.1007/BF00271513
10.1016/j.jcp.2013.10.027
10.1063/1.5110788
10.1080/14685240701506896
10.1016/S0045-7825(96)01202-9
10.1063/1.5061693
10.1029/2020GL088376
10.1063/1.168744
10.1063/1.1711320
10.1016/j.jcp.2016.05.003
10.1016/j.jcp.2015.11.012
10.1063/1.4807067
10.1029/2020GL087005
10.1063/5.0022561
10.1063/5.0025138
10.1016/j.jcp.2020.109413
10.1017/S0022112004002526
10.1146/annurev.fl.19.010187.000413
10.1103/PhysRevD.101.084024
10.1016/j.ijheatfluidflow.2017.09.017
10.1017/jfm.2016.730
10.1016/j.jcp.2019.01.021
10.1016/S0065-2156(08)70266-7
10.1063/1.5136351
10.1063/1.1761271
10.1017/S0022112075003382
10.1063/1.3005862
10.1063/1.5012546
10.1017/jfm.2019.309
10.1073/pnas.1517384113
10.1103/PhysRevFluids.4.044603
10.1063/5.0027524
10.1016/j.paerosci.2018.10.001
10.2514/3.11752
10.1080/14685248.2020.1757685
10.1063/5.0008493
10.1063/5.0027146
10.1063/1.3676783
10.1103/PhysRevFluids.2.024605
10.1017/jfm.2016.803
10.1016/j.jcp.2016.07.038
10.1017/S0022112070000678
10.1017/S002211207800275X
10.1103/PhysRevFluids.3.074602
10.1016/j.jcp.2016.08.015
10.1016/j.jweia.2015.03.025
10.1146/annurev-fluid-122316-045020
10.1103/PhysRevFluids.5.084611
10.1016/j.compfluid.2017.11.007
10.1017/S0022112091000101
10.1016/S0142-727X(02)00197-2
10.1146/annurev-fluid-010518-040547
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
ADTPV
AOWAS
D8V
DOI 10.1063/5.0048909
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID oai_DiVA_org_kth_299314
10_1063_5_0048909
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1711265
  funderid: https://doi.org/10.13039/501100001809
– fundername: Guangdong Science and Technology Department
  grantid: 2020B1212030001
  funderid: https://doi.org/10.13039/501100007162
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c431t-d6614f47b961a2cc822394e0429fd50cb4145f6fcae9149b14c65a60ff2d29db3
ISSN 1070-6631
1089-7666
IngestDate Thu Aug 21 06:59:10 EDT 2025
Mon Jun 30 03:55:35 EDT 2025
Tue Jul 01 02:44:22 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Fri Jun 21 00:13:44 EDT 2024
Thu Jun 23 13:44:55 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-d6614f47b961a2cc822394e0429fd50cb4145f6fcae9149b14c65a60ff2d29db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9198-3951
0000-0002-5263-1117
0000-0001-6570-5499
0000-0001-5693-1646
PQID 2533017303
PQPubID 2050667
PageCount 24
ParticipantIDs proquest_journals_2533017303
scitation_primary_10_1063_5_0048909
crossref_citationtrail_10_1063_5_0048909
swepub_primary_oai_DiVA_org_kth_299314
crossref_primary_10_1063_5_0048909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Brunton, Noack, Koumoutsakos (c13) 2020
Weatheritt, Sandberg (c21) 2017
Spencer, Rivlin (c74) 1962
Girimaji (c95) 2004
Speziale (c127) 1987
Xiao, Wu, Wang, Sun, Roy (c45) 2016
Zanna, Bolton (c64) 2020
Kutz (c66) 2017
Durbin (c6) 2018
Wu, Xiao, Paterson (c47) 2018
Choi, Moin (c1) 2012
Gorlé, Garcia-Sanchez, Iaccarino (c41) 2015
Emory, Larsson, Iaccarino (c37) 2013
Weller, Tabor, Jasak, Fureby (c118) 1998
Champion, Lusch, Kutz, Brunton (c59) 2019
Kraichnan (c124) 1964
Wu, Xiao, Sun, Wang (c117) 2019
Brener, Cruz, Thompson, Anjos (c119) 2021
Bevilaqua, Lykoudis (c122) 1978
Mishra, Mukhopadhaya, Alonso, Iaccarino (c43) 2020
Yang, Shih (c89) 1993
Pandey, Schumacher, Sreenivasan (c14) 2020
Ling, Jones, Templeton (c67) 2016
Pope (c68) 1975
Yang, Griffin (c2) 2021
Zhang, Ma (c65) 2020
Geneva, Zabaras (c86) 2019
Zhang, Fu (c19) 2018
Wang, Wu, Xiao (c46) 2017
Kraichnan (c123) 1965
Chou (c126) 1945
Hanjalic, Launder (c88) 1976
Mishra, Girimaji (c121) 2017
Mishra, Iaccarino (c44) 2019
Jiménez (c83) 2018
Edeling, Cinnella, Dwight, Bijl (c18) 2014
Maulik, San, Rasheed, Vedula (c50) 2018
Haller (c85) 2005
Vinuesa, Noorani, Lozano-Duran, El Khoury, Schlatter, Fischer, Nagib (c103) 2014
Vinuesa, Schlatter, Nagib (c104) 2015
Chen, Hussain, She (c107) 2019
Yang, Xiao (c36) 2020
Durbin (c93) 1991
Vaddireddy, Rasheed, Staples, San (c63) 2020
Yin, Yang, Zhang, Chen, Fu (c49) 2020
Brenner, Eldredge, Freund (c10) 2019
Gatski, Speziale (c98) 1993
Weatheritt, Sandberg (c20) 2016
Noll (c84) 1958
Edeling, Cinnella, Dwight (c17) 2014
Duraisamy, Iaccarino, Xiao (c12) 2019
Yao, Wang, Kronenburg, Stein (c56) 2020
Zhu, Zhang, Kou, Liu (c23) 2019
Goldberg, Apsley (c91) 1997
Durbin, Speziale (c94) 1994
Wang, Wang (c15) 2021
Parish, Duraisamy (c32) 2016
Speziale, Sarkar, Gatski (c79) 1991
Huang, Durst (c80) 2001
Jiang, Mi, Laima, Li (c9) 2020
Singh, Medida, Duraisamy (c34) 2017
Rudy, Brunton, Proctor, Kutz (c60) 2017
Iaccarino, Mishra, Ghili (c39) 2017
Pawar, San, Aksoylu, Rasheed, Kvamsdal (c77) 2021
Xie, Yuan, Wang (c30) 2020
Beetham, Capecelatro (c27) 2020
Gorlé, Zeoli, Emory, Larsson, Iaccarino (c42) 2019
Xie, Wang, Li, Wan, Chen (c26) 2019
Lumley (c81) 1979
Ma, Lu, Tryggvason (c62) 2015
Thompson, Mishra, Iaccarino, Edeling, Sampaio (c40) 2019
LeCun, Bengio, Hinton (c111) 2015
Lee, Moser (c87) 2015
Jiménez (c3) 2003
Singh, Duraisamy (c33) 2016
Inagaki, Ariki, Hamba (c96) 2019
He, Liu, Gan (c35) 2018
Rahman, Rautaheimo, Siikonen (c99) 2001
Hoyas, Jiménez (c101) 2008
Hamlington, Dahm (c129) 2008
Maulik, San, Jacob, Crick (c52) 2019
Bradshaw (c115) 1987
Zhao, Akolekar, Weatheritt, Michelassi, Sandberg (c22) 2020
Ling, Kurzawski, Templeton (c24) 2016
Craft, Launder, Suga (c90) 1996
Trias, Gorobets, Silvis, Verstappen, Oliva (c25) 2017
Gorlé, Iaccarino (c38) 2013
Wang, Luo, Li, Tan, Fan (c51) 2018
Iwamoto, Suzuki, Kasagi (c100) 2002
Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (c76) 2019
Xiao, Cinnella (c8) 2019
Hoyas, Jiménez (c102) 2006
Rosofsky, Huerta (c29) 2020
Spalart (c7) 2015
Pal (c28) 2020
Readshaw, Ding, Rigopoulos, Jones (c57) 2021
Brunton, Proctor, Kutz (c61) 2016
Vinuesa, Schlatter, Nagib (c105) 2018
Banerjee, Krahl, Durst, Zenger (c82) 2007
Taulbee (c128) 1992
Lumley (c69) 1970
Rudin (c73) 2019
Yuan, Xie, Wang (c55) 2020
Xie, Li, Ma, Wang (c53) 2019
Wu, Sun, Laizet, Xiao (c48) 2019
Xie, Wang, Weinan (c54) 2020
Cheung, Oliver, Prudencio, Prudhomme, Moser (c16) 2011
Chang, Dinh (c11) 2019
Schumann (c97) 1977
Cambon, Scott (c120) 1999
(2024031518152620400_c115) 1987; 19
(2024031518152620400_c79) 1991; 227
(2024031518152620400_c35) 2018; 30
(2024031518152620400_c17) 2014; 275
(2024031518152620400_c62) 2015; 27
(2024031518152620400_c81) 1979; 18
(2024031518152620400_c129) 2008; 20
(2024031518152620400_c14) 2020; 21
(2024031518152620400_c114) 2016
(2024031518152620400_c23) 2019; 31
(2024031518152620400_c65) 2020; 892
(2024031518152620400_c66) 2017; 814
(2024031518152620400_c67) 2016; 318
(2024031518152620400_c57) 2021; 33
(2024031518152620400_c104) 2015; 16
(2024031518152620400_c94) 1994; 280
(2024031518152620400_c16) 2011; 96
(2024031518152620400_c50) 2018; 30
(2024031518152620400_c9) 2020; 13
(2024031518152620400_c89) 1993; 31
(2024031518152620400_c101) 2008; 20
(2024031518152620400_c25) 2017; 29
(2024031518152620400_c74) 1962; 9
(2024031518152620400_c111) 2015; 521
(2024031518152620400_c77) 2021; 33
(2024031518152620400_c128) 1992; 4
(2024031518152620400_c2) 2021; 33
(2024031518152620400_c69) 1970; 41
(2024031518152620400_c55) 2020; 32
(2024031518152620400_c52) 2019; 870
(2024031518152620400_c10) 2019; 4
(2024031518152620400_c72) 2016
(2024031518152620400_c61) 2016; 113
(2024031518152620400_c88) 1976; 74
(2024031518152620400_c41) 2015; 144
(2024031518152620400_c121) 2017; 811
(2024031518152620400_c100) 2002; 23
(2024031518152620400_c44) 2019; 31
(2024031518152620400_c40) 2019; 4
(2024031518152620400_c26) 2019; 31
(2024031518152620400_c11) 2019; 135
(2024031518152620400_c21) 2017; 68
(2024031518152620400_c93) 1991; 3
(2024031518152620400_c70) 1995
(2024031518152620400_c118) 1998; 12
(2024031518152620400_c106) 2007
(2024031518152620400_c85) 2005; 525
(2024031518152620400_c8) 2019; 108
(2024031518152620400_c53) 2019; 4
2024031518152620400_c4
(2024031518152620400_c38) 2013; 25
2024031518152620400_c5
(2024031518152620400_c84) 1958; 2
(2024031518152620400_c34) 2017; 55
(2024031518152620400_c90) 1996; 17
(2024031518152620400_c110) 2015
(2024031518152620400_c99) 2001; 35
(2024031518152620400_c49) 2020; 32
(2024031518152620400_c18) 2014; 258
(2024031518152620400_c29) 2020; 101
(2024031518152620400_c59) 2019; 116
(2024031518152620400_c80) 2001; 63
(2024031518152620400_c46) 2017; 2
(2024031518152620400_c98) 1993; 254
(2024031518152620400_c27) 2020; 5
(2024031518152620400_c103) 2014; 15
(2024031518152620400_c13) 2020; 52
(2024031518152620400_c91) 1997; 145
(2024031518152620400_c42) 2019; 31
(2024031518152620400_c96) 2019; 4
(2024031518152620400_c73) 2019; 1
(2024031518152620400_c71) 2016
(2024031518152620400_c32) 2016; 305
(2024031518152620400_c45) 2016; 324
(2024031518152620400_c37) 2013; 25
(2024031518152620400_c107) 2019; 871
(2024031518152620400_c28) 2020; 47
(2024031518152620400_c78) 2000
(2024031518152620400_c87) 2015; 774
(2024031518152620400_c63) 2020; 32
(2024031518152620400_c7) 2015; 74
(2024031518152620400_c48) 2019; 346
(2024031518152620400_c122) 1978; 89
(2024031518152620400_c24) 2016; 807
(2024031518152620400_c31) 2011
(2024031518152620400_c102) 2006; 18
(2024031518152620400_c82) 2007; 8
(2024031518152620400_c117) 2019; 869
(2024031518152620400_c125) 2009
(2024031518152620400_c39) 2017; 2
(2024031518152620400_c105) 2018; 3
(2024031518152620400_c36) 2020; 32
(2024031518152620400_c12) 2019; 51
(2024031518152620400_c60) 2017; 3
(2024031518152620400_c20) 2016; 325
(2024031518152620400_c15) 2021; 60
(2024031518152620400_c92) 2014
(2024031518152620400_c109) 2018
(2024031518152620400_c124) 1964; 7
(2024031518152620400_c47) 2018; 3
(2024031518152620400_c58) 2016
(2024031518152620400_c75) 2016
(2024031518152620400_c123) 1965; 8
(2024031518152620400_c19) 2018; 161
(2024031518152620400_c22) 2020; 411
(2024031518152620400_c54) 2020; 5
(2024031518152620400_c86) 2019; 383
(2024031518152620400_c56) 2020; 32
(2024031518152620400_c3) 2003; 4
(2024031518152620400_c33) 2016; 28
(2024031518152620400_c43) 2020; 32
2024031518152620400_c112
(2024031518152620400_c113) 2010
(2024031518152620400_c1) 2012; 24
(2024031518152620400_c30) 2020; 32
(2024031518152620400_c120) 1999; 31
(2024031518152620400_c95) 2004; 512
(2024031518152620400_c97) 1977; 20
(2024031518152620400_c64) 2020; 47
2024031518152620400_c116
(2024031518152620400_c127) 1987; 178
(2024031518152620400_c108) 2016
(2024031518152620400_c126) 1945; 3
(2024031518152620400_c51) 2018; 30
(2024031518152620400_c119) 2021; 915
(2024031518152620400_c76) 2019; 2
(2024031518152620400_c68) 1975; 72
(2024031518152620400_c83) 2018; 854
(2024031518152620400_c6) 2018; 50
References_xml – start-page: 054606
  year: 2020
  ident: c54
  article-title: Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence
  publication-title: Phys. Rev. Fluids
– start-page: 395
  year: 1994
  ident: c94
  article-title: Realizability of second-moment closure via stochastic analysis
  publication-title: J. Fluid Mech.
– start-page: 108
  year: 1996
  ident: c90
  article-title: Development and application of a cubic eddy-viscosity model of turbulence
  publication-title: Int. J. Heat Fluid Flow
– start-page: A110
  year: 2021
  ident: c119
  article-title: Conditioning and accurate solutions of Reynolds average Navier–Stokes equations with data-driven turbulence closures
  publication-title: J. Fluid Mech.
– start-page: 085112
  year: 2019
  ident: c26
  article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence
  publication-title: Phys. Fluids
– start-page: 056305
  year: 2001
  ident: c80
  article-title: Reynolds stress under a change of frame of reference
  publication-title: Phys. Rev. E
– start-page: 035101
  year: 2019
  ident: c42
  article-title: Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces
  publication-title: Phys. Fluids
– start-page: 22
  year: 2016
  ident: c67
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
– start-page: 125101
  year: 2018
  ident: c51
  article-title: Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation
  publication-title: Phys. Fluids
– start-page: 034603
  year: 2017
  ident: c46
  article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
  publication-title: Phys. Rev. Fluids
– start-page: 104605
  year: 2019
  ident: c53
  article-title: Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network
  publication-title: Phys. Rev. Fluids
– start-page: 115124
  year: 2020
  ident: c56
  article-title: Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods
  publication-title: Phys. Fluids
– start-page: 38
  year: 1945
  ident: c126
  article-title: On velocity correlations and the solutions of the equations of turbulent fluctuation
  publication-title: Q. Appl. Math.
– start-page: 125
  year: 2019
  ident: c86
  article-title: Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks
  publication-title: J. Comput. Phys.
– start-page: 221
  year: 2001
  ident: c99
  article-title: Modifications for an explicit algebraic stress model
  publication-title: Int. J. Numer. Methods Fluids
– start-page: 245
  year: 1991
  ident: c79
  article-title: Modelling the pressure–strain correlation of turbulence: An invariant dynamical systems approach
  publication-title: J. Fluid Mech.
– start-page: N22
  year: 2003
  ident: c3
  article-title: Computing high-Reynolds-number turbulence: Will simulations ever replace experiments?
  publication-title: J. Turbul.
– start-page: 115106
  year: 2020
  ident: c55
  article-title: Deconvolutional artificial neural network models for large eddy simulation of turbulence
  publication-title: Phys. Fluids
– start-page: 678
  year: 2002
  ident: c100
  article-title: Reynolds number effect on wall turbulence: Toward effective feedback control
  publication-title: Int. J. Heat Fluid Flow
– start-page: 015113
  year: 2020
  ident: c63
  article-title: Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data
  publication-title: Phys. Fluids
– start-page: 53
  year: 1987
  ident: c115
  article-title: Turbulent secondary flows
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 1
  year: 2019
  ident: c8
  article-title: Quantification of model uncertainty in RANS simulations: A review
  publication-title: Prog. Aerosp. Sci.
– start-page: 035154
  year: 2021
  ident: c57
  article-title: Modeling of turbulent flames with the large eddy simulation–probability density function (LES–PDF) approach, stochastic fields, and artificial neural networks
  publication-title: Phys. Fluids
– start-page: 206
  year: 2019
  ident: c73
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
– start-page: 015108
  year: 2021
  ident: c2
  article-title: Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation
  publication-title: Phys. Fluids
– start-page: 73
  year: 2014
  ident: c18
  article-title: Bayesian estimates of parameter variability in the k-ε turbulence model
  publication-title: J. Comput. Phys.
– start-page: 168
  year: 2017
  ident: c121
  article-title: Toward approximating non-local dynamics in single-point pressure–strain correlation closures
  publication-title: J. Fluid Mech.
– start-page: 784
  year: 2019
  ident: c52
  article-title: Sub-grid scale model classification and blending through deep learning
  publication-title: J. Fluid Mech.
– start-page: 477
  year: 2020
  ident: c13
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 559
  year: 2019
  ident: c11
  article-title: Classification of machine learning frameworks for data-driven thermal fluid models
  publication-title: Int. J. Therm. Sci.
– start-page: e1602614
  year: 2017
  ident: c60
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
– start-page: 589
  year: 1978
  ident: c122
  article-title: Turbulence memory in self-preserving wakes
  publication-title: J. Fluid Mech.
– start-page: 085106
  year: 2020
  ident: c43
  article-title: Design exploration and optimization under uncertainty
  publication-title: Phys. Fluids
– start-page: 620
  year: 1998
  ident: c118
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
– start-page: 105108
  year: 2018
  ident: c35
  article-title: A data assimilation model for turbulent flows using continuous adjoint formulation
  publication-title: Phys. Fluids
– start-page: 567
  year: 2020
  ident: c14
  article-title: A perspective on machine learning in turbulent flows
  publication-title: J. Turbul.
– start-page: 413
  year: 1970
  ident: c69
  article-title: Toward a turbulent constitutive relation
  publication-title: J. Fluid Mech.
– start-page: 011702
  year: 2012
  ident: c1
  article-title: Grid-point requirements for large eddy simulation: Chapman's estimates revisited
  publication-title: Phys. Fluids
– start-page: 115101
  year: 2020
  ident: c30
  article-title: Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence
  publication-title: Phys. Fluids
– start-page: 45
  year: 1962
  ident: c74
  article-title: Isotropic integrity bases for vectors and second-order tensors
  publication-title: Arch. Ration. Mech. Anal.
– start-page: 65
  year: 2014
  ident: c17
  article-title: Predictive RANS simulations via Bayesian model-scenario averaging
  publication-title: J. Comput. Phys.
– start-page: 588
  year: 2015
  ident: c104
  article-title: On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows
  publication-title: J. Turbul.
– start-page: 074602
  year: 2018
  ident: c47
  article-title: Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
  publication-title: Phys. Rev. Fluids
– start-page: 055105
  year: 2013
  ident: c38
  article-title: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations
  publication-title: Phys. Fluids
– start-page: 110822
  year: 2013
  ident: c37
  article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
  publication-title: Phys. Fluids
– start-page: 115
  year: 2016
  ident: c45
  article-title: Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach
  publication-title: J. Comput. Phys.
– start-page: 075101
  year: 2019
  ident: c44
  article-title: Theoretical analysis of tensor perturbations for uncertainty quantification of Reynolds averaged and subgrid scale closures
  publication-title: Phys. Fluids
– start-page: 357
  year: 2019
  ident: c12
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 758
  year: 2016
  ident: c32
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
– start-page: 22
  year: 2016
  ident: c20
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
  publication-title: J. Comput. Phys.
– start-page: 109413
  year: 2020
  ident: c22
  article-title: RANS turbulence model development using CFD-driven machine learning
  publication-title: J. Comput. Phys.
– start-page: 202
  year: 2015
  ident: c41
  article-title: Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows
  publication-title: J. Wind Eng. Ind. Aerodyn.
– start-page: 1
  year: 2015
  ident: c7
  article-title: Philosophies and fallacies in turbulence modeling
  publication-title: Prog. Aerosp. Sci.
– start-page: 436
  year: 2015
  ident: c111
  article-title: Deep learning
  publication-title: Nature
– start-page: 1137
  year: 2011
  ident: c16
  article-title: Bayesian uncertainty analysis with applications to turbulence modeling
  publication-title: Reliab. Eng. Syst. Safe
– start-page: 2772
  year: 2021
  ident: c15
  article-title: Application of artificial intelligence in computational fluid dynamics
  publication-title: Ind. Eng. Chem. Res.
– start-page: 1
  year: 2005
  ident: c85
  article-title: An objective definition of a vortex
  publication-title: J. Fluid Mech.
– start-page: 064101
  year: 2020
  ident: c36
  article-title: Improving the k–ω–γ–A transition model by the field inversion and machine learning framework
  publication-title: Phys. Fluids
– start-page: 707
  year: 2019
  ident: c48
  article-title: Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling
  publication-title: Comput. Method Appl. Mech. Eng.
– start-page: 197
  year: 1958
  ident: c84
  article-title: A mathematical theory of the mechanical behavior of continuous media
  publication-title: Arch. Ration. Mech. Anal.
– start-page: 553
  year: 2019
  ident: c117
  article-title: Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned
  publication-title: J. Fluid Mech.
– start-page: 101511
  year: 2008
  ident: c101
  article-title: Reynolds number effects on the Reynolds-stress budgets in turbulent channels
  publication-title: Phys. Fluids
– start-page: R2
  year: 2019
  ident: c107
  article-title: Non-universal scaling transition of momentum cascade in wall turbulence
  publication-title: J. Fluid Mech.
– start-page: 092101
  year: 2015
  ident: c62
  article-title: Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system
  publication-title: Phys. Fluids
– start-page: R1
  year: 2018
  ident: c83
  article-title: Machine-aided turbulence theory
  publication-title: J. Fluid Mech.
– start-page: 191
  year: 2004
  ident: c95
  article-title: A new perspective on realizability of turbulence models
  publication-title: J. Fluid Mech.
– start-page: N32
  year: 2007
  ident: c82
  article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
  publication-title: J. Turbul.
– start-page: 045110
  year: 2016
  ident: c33
  article-title: Using field inversion to quantify functional errors in turbulence closures
  publication-title: Phys. Fluids
– start-page: 59
  year: 1993
  ident: c98
  article-title: On the explicit algebraic stress models for complex turbulent flows
  publication-title: J. Fluid Mech.
– start-page: 114601
  year: 2019
  ident: c96
  article-title: Higher-order realizable algebraic Reynolds stress modeling based on the square root tensor
  publication-title: Phys. Rev. Fluids
– start-page: A5
  year: 2020
  ident: c65
  article-title: Data-driven discovery of governing equations for fluid dynamics based on molecular simulation
  publication-title: J. Fluid Mech.
– start-page: 331
  year: 1975
  ident: c68
  article-title: A more general effective-viscosity hypothesis
  publication-title: J. Fluid Mech.
– start-page: 593
  year: 1976
  ident: c88
  article-title: Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence
  publication-title: J. Fluid Mech.
– start-page: e2020
  year: 2020
  ident: c28
  article-title: Deep learning emulation of subgrid-scale processes in turbulent shear flows
  publication-title: Geophys. Res. Lett.
– start-page: 2555
  year: 1992
  ident: c128
  article-title: An improved algebraic Reynolds stress model and corresponding nonlinear stress model
  publication-title: Phys. Fluids
– start-page: 054606
  year: 2018
  ident: c105
  article-title: Secondary flow in turbulent ducts with increasing aspect ratio
  publication-title: Phys. Rev. Fluids
– start-page: 1191
  year: 1993
  ident: c89
  article-title: New time scale based k-ε model for near-wall turbulence
  publication-title: AIAA J.
– start-page: 011702
  year: 2006
  ident: c102
  article-title: Scaling of the velocity fluctuations in turbulent channels up to Re = 2003
  publication-title: Phys. Fluids
– start-page: 677
  year: 2014
  ident: c103
  article-title: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation
  publication-title: J. Turbul.
– start-page: 258
  year: 2020
  ident: c9
  article-title: A novel algebraic stress model with machine-learning-assisted parameterization
  publication-title: Energies
– start-page: 721
  year: 1977
  ident: c97
  article-title: Realizability of Reynolds-stress turbulence models
  publication-title: Phys. Fluids
– start-page: 1048
  year: 1964
  ident: c124
  article-title: Direct-interaction approximation for shear and thermally driven turbulence
  publication-title: Phys. Fluids
– start-page: 084611
  year: 2020
  ident: c27
  article-title: Formulating turbulence closures using sparse regression with embedded form invariance
  publication-title: Phys. Rev. Fluids
– start-page: 1
  year: 1991
  ident: c93
  article-title: Near-wall turbulence closure modeling without ‘damping functions’
  publication-title: Theor. Comp. Fluid Dyn.
– start-page: 123
  year: 1979
  ident: c81
  article-title: Computational modeling of turbulent flows
  publication-title: Adv. Appl. Mech.
– start-page: 105117
  year: 2020
  ident: c49
  article-title: Feature selection and processing of turbulence modeling based on an artificial neural network
  publication-title: Phys. Fluids
– start-page: 115109
  year: 2017
  ident: c25
  article-title: A new subgrid characteristic length for turbulence simulations on anisotropic grids
  publication-title: Phys. Fluids
– start-page: 2215
  year: 2017
  ident: c34
  article-title: Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
  publication-title: AIAA J.
– start-page: 115101
  year: 2008
  ident: c129
  article-title: Reynolds stress closure for nonequilibrium effects in turbulent flows
  publication-title: Phys. Fluids
– start-page: 298
  year: 2017
  ident: c21
  article-title: The development of algebraic stress models using a novel evolutionary algorithm
  publication-title: Int. J. Heat Fluid Flow
– start-page: 015105
  year: 2019
  ident: c23
  article-title: Machine learning methods for turbulence modeling in subsonic flows around airfoils
  publication-title: Phys. Fluids
– start-page: 024605
  year: 2017
  ident: c39
  article-title: Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
  publication-title: Phys. Rev. Fluids
– start-page: 77
  year: 2018
  ident: c6
  article-title: Some recent developments in turbulence closure modeling
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 084024
  year: 2020
  ident: c29
  article-title: Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence
  publication-title: Phys. Rev. D
– start-page: 211
  year: 2018
  ident: c19
  article-title: An efficient Bayesian uncertainty quantification approach with application to k-ω-γ transition modeling
  publication-title: Comput. Fluids
– start-page: 100501
  year: 2019
  ident: c10
  article-title: Perspective on machine learning for advancing fluid mechanics
  publication-title: Phys. Rev. Fluids
– start-page: 227
  year: 1997
  ident: c91
  article-title: A wall-distance-free low Re k-ϵ turbulence model
  publication-title: Comput. Method Appl. Mech. Eng.
– start-page: 3932
  year: 2016
  ident: c61
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 22445
  year: 2019
  ident: c59
  article-title: Data-driven discovery of coordinates and governing equations
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 575
  year: 1965
  ident: c123
  article-title: Lagrangian-history closure approximation for turbulence
  publication-title: Phys. Fluids
– start-page: 044603
  year: 2019
  ident: c40
  article-title: Eigenvector perturbation methodology for uncertainty quantification of turbulence models
  publication-title: Phys. Rev. Fluids
– start-page: e2020
  year: 2020
  ident: c64
  article-title: Data-driven equation discovery of ocean mesoscale closures
  publication-title: Geophys. Res. Lett.
– start-page: 125109
  year: 2018
  ident: c50
  article-title: Data-driven deconvolution for large eddy simulations of Kraichnan turbulence
  publication-title: Phys. Fluids
– start-page: 395
  year: 2015
  ident: c87
  article-title: Direct numerical simulation of turbulent channel flow up to Re ≈ 5200
  publication-title: J. Fluid Mech.
– start-page: 1
  year: 2017
  ident: c66
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– start-page: 011701
  year: 2021
  ident: c77
  article-title: Physics guided machine learning using simplified theories
  publication-title: Phys. Fluids
– start-page: 1
  year: 1999
  ident: c120
  article-title: Linear and nonlinear models of anisotropic turbulence
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 115
  year: 2019
  ident: c76
  article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
  publication-title: npj Digital Med.
– start-page: 155
  year: 2016
  ident: c24
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
– start-page: 459
  year: 1987
  ident: c127
  article-title: On nonlinear k-l and k-ε models of turbulence
  publication-title: J. Fluid Mech.
– volume: 74
  start-page: 593
  year: 1976
  ident: 2024031518152620400_c88
  article-title: Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112076001961
– volume: 892
  start-page: A5
  year: 2020
  ident: 2024031518152620400_c65
  article-title: Data-driven discovery of governing equations for fluid dynamics based on molecular simulation
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.184
– volume: 33
  start-page: 011701
  year: 2021
  ident: 2024031518152620400_c77
  article-title: Physics guided machine learning using simplified theories
  publication-title: Phys. Fluids
  doi: 10.1063/5.0038929
– ident: 2024031518152620400_c116
  doi: 10.1007/978-3-030-58595-2_41
– volume: 5
  start-page: 054606
  year: 2020
  ident: 2024031518152620400_c54
  article-title: Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.054606
– volume: 30
  start-page: 125109
  year: 2018
  ident: 2024031518152620400_c50
  article-title: Data-driven deconvolution for large eddy simulations of Kraichnan turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.5079582
– volume: 4
  start-page: 100501
  year: 2019
  ident: 2024031518152620400_c10
  article-title: Perspective on machine learning for advancing fluid mechanics
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.100501
– volume: 869
  start-page: 553
  year: 2019
  ident: 2024031518152620400_c117
  article-title: Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.205
– volume: 15
  start-page: 677
  year: 2014
  ident: 2024031518152620400_c103
  article-title: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2014.925623
– volume: 2
  start-page: 115
  year: 2019
  ident: 2024031518152620400_c76
  article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-019-0193-y
– start-page: 770
  year: 2016
  ident: 2024031518152620400_c71
  article-title: Deep residual learning for image recognition
– volume: 33
  start-page: 015108
  year: 2021
  ident: 2024031518152620400_c2
  article-title: Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation
  publication-title: Phys. Fluids
  doi: 10.1063/5.0036515
– volume: 30
  start-page: 125101
  year: 2018
  ident: 2024031518152620400_c51
  article-title: Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation
  publication-title: Phys. Fluids
  doi: 10.1063/1.5054835
– volume: 521
  start-page: 436
  year: 2015
  ident: 2024031518152620400_c111
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 28
  start-page: 045110
  year: 2016
  ident: 2024031518152620400_c33
  article-title: Using field inversion to quantify functional errors in turbulence closures
  publication-title: Phys. Fluids
  doi: 10.1063/1.4947045
– volume: 2
  start-page: 034603
  year: 2017
  ident: 2024031518152620400_c46
  article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.034603
– volume: 280
  start-page: 395
  year: 1994
  ident: 2024031518152620400_c94
  article-title: Realizability of second-moment closure via stochastic analysis
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094002983
– volume: 31
  start-page: 075101
  year: 2019
  ident: 2024031518152620400_c44
  article-title: Theoretical analysis of tensor perturbations for uncertainty quantification of Reynolds averaged and subgrid scale closures
  publication-title: Phys. Fluids
  doi: 10.1063/1.5099176
– volume: 807
  start-page: 155
  year: 2016
  ident: 2024031518152620400_c24
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.615
– volume: 4
  start-page: 2555
  year: 1992
  ident: 2024031518152620400_c128
  article-title: An improved algebraic Reynolds stress model and corresponding nonlinear stress model
  publication-title: Phys. Fluids
  doi: 10.1063/1.858442
– volume: 13
  start-page: 258
  year: 2020
  ident: 2024031518152620400_c9
  article-title: A novel algebraic stress model with machine-learning-assisted parameterization
  publication-title: Energies
  doi: 10.3390/en13010258
– volume: 25
  start-page: 110822
  year: 2013
  ident: 2024031518152620400_c37
  article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
  publication-title: Phys. Fluids
  doi: 10.1063/1.4824659
– start-page: 273
  year: 2016
  ident: 2024031518152620400_c58
  article-title: A return to eddy viscosity model for epistemic UQ in RANS closures
– volume: 16
  start-page: 588
  year: 2015
  ident: 2024031518152620400_c104
  article-title: On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2014.996716
– volume: 774
  start-page: 395
  year: 2015
  ident: 2024031518152620400_c87
  article-title: Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.268
– volume: 1
  start-page: 206
  year: 2019
  ident: 2024031518152620400_c73
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– start-page: 4162
  year: 2009
  ident: 2024031518152620400_c125
  article-title: Reynolds stress closure including nonlocal and nonequilibrium effects in turbulent flows
– volume: 4
  start-page: 104605
  year: 2019
  ident: 2024031518152620400_c53
  article-title: Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.104605
– volume: 9
  start-page: 45
  year: 1962
  ident: 2024031518152620400_c74
  article-title: Isotropic integrity bases for vectors and second-order tensors
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253332
– volume: 4
  start-page: N22
  year: 2003
  ident: 2024031518152620400_c3
  article-title: Computing high-Reynolds-number turbulence: Will simulations ever replace experiments?
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/4/1/022
– volume: 55
  start-page: 2215
  year: 2017
  ident: 2024031518152620400_c34
  article-title: Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
  publication-title: AIAA J.
  doi: 10.2514/1.J055595
– volume: 512
  start-page: 191
  year: 2004
  ident: 2024031518152620400_c95
  article-title: A new perspective on realizability of turbulence models
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004009656
– volume-title: An Introduction to Neural Networks
  year: 1995
  ident: 2024031518152620400_c70
– volume: 254
  start-page: 59
  year: 1993
  ident: 2024031518152620400_c98
  article-title: On the explicit algebraic stress models for complex turbulent flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093002034
– volume: 116
  start-page: 22445
  year: 2019
  ident: 2024031518152620400_c59
  article-title: Data-driven discovery of coordinates and governing equations
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1906995116
– volume: 854
  start-page: R1
  year: 2018
  ident: 2024031518152620400_c83
  article-title: Machine-aided turbulence theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.660
– volume: 18
  start-page: 011702
  year: 2006
  ident: 2024031518152620400_c102
  article-title: Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
  publication-title: Phys. Fluids
  doi: 10.1063/1.2162185
– volume: 915
  start-page: A110
  year: 2021
  ident: 2024031518152620400_c119
  article-title: Conditioning and accurate solutions of Reynolds average Navier–Stokes equations with data-driven turbulence closures
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.148
– volume: 52
  start-page: 477
  year: 2020
  ident: 2024031518152620400_c13
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 2
  start-page: 197
  year: 1958
  ident: 2024031518152620400_c84
  article-title: A mathematical theory of the mechanical behavior of continuous media
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00277929
– volume: 17
  start-page: 108
  year: 1996
  ident: 2024031518152620400_c90
  article-title: Development and application of a cubic eddy-viscosity model of turbulence
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(95)00079-6
– volume: 178
  start-page: 459
  year: 1987
  ident: 2024031518152620400_c127
  article-title: On nonlinear k-l and k-ε models of turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087001319
– volume: 33
  start-page: 035154
  year: 2021
  ident: 2024031518152620400_c57
  article-title: Modeling of turbulent flames with the large eddy simulation–probability density function (LES–PDF) approach, stochastic fields, and artificial neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0041122
– year: 2015
  ident: 2024031518152620400_c110
  article-title: Adam: A method for stochastic optimization
– volume: 96
  start-page: 1137
  year: 2011
  ident: 2024031518152620400_c16
  article-title: Bayesian uncertainty analysis with applications to turbulence modeling
  publication-title: Reliab. Eng. Syst. Safe
  doi: 10.1016/j.ress.2010.09.013
– year: 2016
  ident: 2024031518152620400_c114
  article-title: Fast and accurate deep network learning by exponential linear units
– volume: 35
  start-page: 221
  year: 2001
  ident: 2024031518152620400_c99
  article-title: Modifications for an explicit algebraic stress model
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/1097-0363(20010130)35:2<221::AID-FLD93>3.0.CO;2-N
– volume: 3
  start-page: 38
  year: 1945
  ident: 2024031518152620400_c126
  article-title: On velocity correlations and the solutions of the equations of turbulent fluctuation
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/11999
– volume: 870
  start-page: 784
  year: 2019
  ident: 2024031518152620400_c52
  article-title: Sub-grid scale model classification and blending through deep learning
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.254
– volume: 275
  start-page: 65
  year: 2014
  ident: 2024031518152620400_c17
  article-title: Predictive RANS simulations via Bayesian model-scenario averaging
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.06.052
– volume: 74
  start-page: 1
  year: 2015
  ident: 2024031518152620400_c7
  article-title: Philosophies and fallacies in turbulence modeling
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2014.12.004
– volume-title: Turbulent Flows
  year: 2000
  ident: 2024031518152620400_c78
– volume: 60
  start-page: 2772
  year: 2021
  ident: 2024031518152620400_c15
  article-title: Application of artificial intelligence in computational fluid dynamics
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c05045
– volume: 32
  start-page: 085106
  year: 2020
  ident: 2024031518152620400_c43
  article-title: Design exploration and optimization under uncertainty
  publication-title: Phys. Fluids
  doi: 10.1063/5.0020858
– volume: 30
  start-page: 105108
  year: 2018
  ident: 2024031518152620400_c35
  article-title: A data assimilation model for turbulent flows using continuous adjoint formulation
  publication-title: Phys. Fluids
  doi: 10.1063/1.5048727
– volume: 346
  start-page: 707
  year: 2019
  ident: 2024031518152620400_c48
  article-title: Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling
  publication-title: Comput. Method Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.010
– volume: 63
  start-page: 056305
  year: 2001
  ident: 2024031518152620400_c80
  article-title: Reynolds stress under a change of frame of reference
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.63.056305
– volume: 3
  start-page: e1602614
  year: 2017
  ident: 2024031518152620400_c60
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 31
  start-page: 1
  year: 1999
  ident: 2024031518152620400_c120
  article-title: Linear and nonlinear models of anisotropic turbulence
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.31.1.1
– volume: 20
  start-page: 115101
  year: 2008
  ident: 2024031518152620400_c129
  article-title: Reynolds stress closure for nonequilibrium effects in turbulent flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.3006023
– volume: 3
  start-page: 054606
  year: 2018
  ident: 2024031518152620400_c105
  article-title: Secondary flow in turbulent ducts with increasing aspect ratio
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.054606
– start-page: 630
  year: 2016
  ident: 2024031518152620400_c108
  article-title: Identity mappings in deep residual networks
– volume: 31
  start-page: 035101
  year: 2019
  ident: 2024031518152620400_c42
  article-title: Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/1.5086341
– volume: 20
  start-page: 721
  year: 1977
  ident: 2024031518152620400_c97
  article-title: Realizability of Reynolds-stress turbulence models
  publication-title: Phys. Fluids
  doi: 10.1063/1.861942
– volume: 135
  start-page: 559
  year: 2019
  ident: 2024031518152620400_c11
  article-title: Classification of machine learning frameworks for data-driven thermal fluid models
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.09.002
– volume: 27
  start-page: 092101
  year: 2015
  ident: 2024031518152620400_c62
  article-title: Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system
  publication-title: Phys. Fluids
  doi: 10.1063/1.4930004
– volume: 4
  start-page: 114601
  year: 2019
  ident: 2024031518152620400_c96
  article-title: Higher-order realizable algebraic Reynolds stress modeling based on the square root tensor
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.114601
– volume: 3
  start-page: 1
  year: 1991
  ident: 2024031518152620400_c93
  article-title: Near-wall turbulence closure modeling without ‘damping functions’
  publication-title: Theor. Comp. Fluid Dyn.
  doi: 10.1007/BF00271513
– volume: 258
  start-page: 73
  year: 2014
  ident: 2024031518152620400_c18
  article-title: Bayesian estimates of parameter variability in the k-ε turbulence model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.027
– volume: 31
  start-page: 085112
  year: 2019
  ident: 2024031518152620400_c26
  article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.5110788
– volume: 8
  start-page: N32
  year: 2007
  ident: 2024031518152620400_c82
  article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
  publication-title: J. Turbul.
  doi: 10.1080/14685240701506896
– volume: 145
  start-page: 227
  year: 1997
  ident: 2024031518152620400_c91
  article-title: A wall-distance-free low Re k-ϵ turbulence model
  publication-title: Comput. Method Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01202-9
– volume: 31
  start-page: 015105
  year: 2019
  ident: 2024031518152620400_c23
  article-title: Machine learning methods for turbulence modeling in subsonic flows around airfoils
  publication-title: Phys. Fluids
  doi: 10.1063/1.5061693
– volume: 47
  start-page: e2020
  year: 2020
  ident: 2024031518152620400_c64
  article-title: Data-driven equation discovery of ocean mesoscale closures
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL088376
– volume-title: Handbook of Fluid Dynamics
  year: 2016
  ident: 2024031518152620400_c75
– volume: 12
  start-page: 620
  year: 1998
  ident: 2024031518152620400_c118
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
– ident: 2024031518152620400_c4
– volume: 7
  start-page: 1048
  year: 1964
  ident: 2024031518152620400_c124
  article-title: Direct-interaction approximation for shear and thermally driven turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.1711320
– year: 2010
  ident: 2024031518152620400_c113
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 318
  start-page: 22
  year: 2016
  ident: 2024031518152620400_c67
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.003
– volume: 305
  start-page: 758
  year: 2016
  ident: 2024031518152620400_c32
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.11.012
– volume: 25
  start-page: 055105
  year: 2013
  ident: 2024031518152620400_c38
  article-title: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations
  publication-title: Phys. Fluids
  doi: 10.1063/1.4807067
– volume: 47
  start-page: e2020
  year: 2020
  ident: 2024031518152620400_c28
  article-title: Deep learning emulation of subgrid-scale processes in turbulent shear flows
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL087005
– volume: 32
  start-page: 105117
  year: 2020
  ident: 2024031518152620400_c49
  article-title: Feature selection and processing of turbulence modeling based on an artificial neural network
  publication-title: Phys. Fluids
  doi: 10.1063/5.0022561
– volume: 32
  start-page: 115101
  year: 2020
  ident: 2024031518152620400_c30
  article-title: Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/5.0025138
– volume: 411
  start-page: 109413
  year: 2020
  ident: 2024031518152620400_c22
  article-title: RANS turbulence model development using CFD-driven machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109413
– volume: 525
  start-page: 1
  year: 2005
  ident: 2024031518152620400_c85
  article-title: An objective definition of a vortex
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004002526
– volume: 19
  start-page: 53
  year: 1987
  ident: 2024031518152620400_c115
  article-title: Turbulent secondary flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.19.010187.000413
– volume: 101
  start-page: 084024
  year: 2020
  ident: 2024031518152620400_c29
  article-title: Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.084024
– volume: 68
  start-page: 298
  year: 2017
  ident: 2024031518152620400_c21
  article-title: The development of algebraic stress models using a novel evolutionary algorithm
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2017.09.017
– volume: 811
  start-page: 168
  year: 2017
  ident: 2024031518152620400_c121
  article-title: Toward approximating non-local dynamics in single-point pressure–strain correlation closures
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.730
– volume: 383
  start-page: 125
  year: 2019
  ident: 2024031518152620400_c86
  article-title: Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.01.021
– volume: 18
  start-page: 123
  year: 1979
  ident: 2024031518152620400_c81
  article-title: Computational modeling of turbulent flows
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70266-7
– volume: 32
  start-page: 015113
  year: 2020
  ident: 2024031518152620400_c63
  article-title: Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data
  publication-title: Phys. Fluids
  doi: 10.1063/1.5136351
– volume: 8
  start-page: 575
  year: 1965
  ident: 2024031518152620400_c123
  article-title: Lagrangian-history closure approximation for turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.1761271
– volume: 72
  start-page: 331
  year: 1975
  ident: 2024031518152620400_c68
  article-title: A more general effective-viscosity hypothesis
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075003382
– volume: 20
  start-page: 101511
  year: 2008
  ident: 2024031518152620400_c101
  article-title: Reynolds number effects on the Reynolds-stress budgets in turbulent channels
  publication-title: Phys. Fluids
  doi: 10.1063/1.3005862
– volume: 29
  start-page: 115109
  year: 2017
  ident: 2024031518152620400_c25
  article-title: A new subgrid characteristic length for turbulence simulations on anisotropic grids
  publication-title: Phys. Fluids
  doi: 10.1063/1.5012546
– volume: 871
  start-page: R2
  year: 2019
  ident: 2024031518152620400_c107
  article-title: Non-universal scaling transition of momentum cascade in wall turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.309
– volume: 113
  start-page: 3932
  year: 2016
  ident: 2024031518152620400_c61
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1517384113
– volume: 4
  start-page: 044603
  year: 2019
  ident: 2024031518152620400_c40
  article-title: Eigenvector perturbation methodology for uncertainty quantification of turbulence models
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.044603
– volume: 32
  start-page: 115124
  year: 2020
  ident: 2024031518152620400_c56
  article-title: Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods
  publication-title: Phys. Fluids
  doi: 10.1063/5.0027524
– volume: 108
  start-page: 1
  year: 2019
  ident: 2024031518152620400_c8
  article-title: Quantification of model uncertainty in RANS simulations: A review
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2018.10.001
– volume: 31
  start-page: 1191
  year: 1993
  ident: 2024031518152620400_c89
  article-title: New time scale based k-ε model for near-wall turbulence
  publication-title: AIAA J.
  doi: 10.2514/3.11752
– ident: 2024031518152620400_c112
– volume: 21
  start-page: 567
  year: 2020
  ident: 2024031518152620400_c14
  article-title: A perspective on machine learning in turbulent flows
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2020.1757685
– volume: 32
  start-page: 064101
  year: 2020
  ident: 2024031518152620400_c36
  article-title: Improving the k–ω–γ–Ar transition model by the field inversion and machine learning framework
  publication-title: Phys. Fluids
  doi: 10.1063/5.0008493
– volume: 32
  start-page: 115106
  year: 2020
  ident: 2024031518152620400_c55
  article-title: Deconvolutional artificial neural network models for large eddy simulation of turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/5.0027146
– volume: 24
  start-page: 011702
  year: 2012
  ident: 2024031518152620400_c1
  article-title: Grid-point requirements for large eddy simulation: Chapman's estimates revisited
  publication-title: Phys. Fluids
  doi: 10.1063/1.3676783
– year: 2014
  ident: 2024031518152620400_c92
  article-title: Improvements to Rahman-Agarwal-Siikonen one-equation turbulence model based on k-ε closure
– volume: 2
  start-page: 024605
  year: 2017
  ident: 2024031518152620400_c39
  article-title: Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.024605
– start-page: 1027
  year: 2007
  ident: 2024031518152620400_c106
  article-title: K-means++: The advantages of careful seeding
– volume: 814
  start-page: 1
  year: 2017
  ident: 2024031518152620400_c66
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.803
– year: 2018
  ident: 2024031518152620400_c109
  article-title: Multi-level residual networks from dynamical systems view
– year: 2011
  ident: 2024031518152620400_c31
  article-title: Quantification of structural uncertainties in the k–ω turbulence model
– volume: 324
  start-page: 115
  year: 2016
  ident: 2024031518152620400_c45
  article-title: Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.07.038
– volume: 41
  start-page: 413
  year: 1970
  ident: 2024031518152620400_c69
  article-title: Toward a turbulent constitutive relation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112070000678
– volume: 89
  start-page: 589
  year: 1978
  ident: 2024031518152620400_c122
  article-title: Turbulence memory in self-preserving wakes
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211207800275X
– volume: 3
  start-page: 074602
  year: 2018
  ident: 2024031518152620400_c47
  article-title: Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.074602
– volume: 325
  start-page: 22
  year: 2016
  ident: 2024031518152620400_c20
  article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.08.015
– volume: 144
  start-page: 202
  year: 2015
  ident: 2024031518152620400_c41
  article-title: Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2015.03.025
– ident: 2024031518152620400_c5
– volume: 50
  start-page: 77
  year: 2018
  ident: 2024031518152620400_c6
  article-title: Some recent developments in turbulence closure modeling
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122316-045020
– volume: 5
  start-page: 084611
  year: 2020
  ident: 2024031518152620400_c27
  article-title: Formulating turbulence closures using sparse regression with embedded form invariance
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.084611
– volume: 161
  start-page: 211
  year: 2018
  ident: 2024031518152620400_c19
  article-title: An efficient Bayesian uncertainty quantification approach with application to k-ω-γ transition modeling
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2017.11.007
– start-page: 2378
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2024031518152620400_c72
  article-title: Stein variational gradient descent: A general purpose Bayesian inference algorithm
– volume: 227
  start-page: 245
  year: 1991
  ident: 2024031518152620400_c79
  article-title: Modelling the pressure–strain correlation of turbulence: An invariant dynamical systems approach
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112091000101
– volume: 23
  start-page: 678
  year: 2002
  ident: 2024031518152620400_c100
  article-title: Reynolds number effect on wall turbulence: Toward effective feedback control
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(02)00197-2
– volume: 51
  start-page: 357
  year: 2019
  ident: 2024031518152620400_c12
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010518-040547
SSID ssj0003926
Score 2.645545
Snippet Reynolds-averaged Navier–Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for...
Reynolds-averaged Navier-Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for...
SourceID swepub
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Aspect ratio
Computational fluid dynamics
Constraints
Fluid dynamics
Fluid flow
Knowledge representation
Machine learning
Modelling
Physics
Realizability
Reynolds number
Reynolds stress
Three dimensional flow
Training
Turbulence models
Turbulent flow
Title An interpretable framework of data-driven turbulence modeling using deep neural networks
URI http://dx.doi.org/10.1063/5.0048909
https://www.proquest.com/docview/2533017303
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299314
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF6kRfRFa1V62sqiIkJZvSSbTfYxWKWI9cW23NuyP-1hSY67nA_-9c5mN8lVDqm-hLBMEphvM_vt8M0sQq9dqbTMC0cKPlWE8lITqeSUSJtJqmhW5s7nO86-stML-nmWz8ZTWbvqkla907-21pX8D6owBrj6Ktl_QHZ4KQzAPeALV0AYrrfCuKq7dg9BNOhLoFwvtfIc0Is_iVn6cHYMC4tad_VF4ewbnyBYd2kCY-3i2He1BKzqoAlfbTLWTiKqO8GHu17PTWjtxDndyCFczmtYXWQs1Ic512wmE9JklO7F-AcRgAAJCUM2jpWcFCwcjtIHzdC9Ik6OfGssBvIDDvQpK1pyX2O5mwKVh1i0W52cffk2rJfA0FhQhoZP9_2fWPZ-ePgmaxi3AveAJwTJwh-tXjt6cL6HHkRej6sA0iN0x9b76GHk-DhG0NU-uhv9-RjNqhrfQA8P6OHG4Q308Ige7tHDHXrYo4cDerhH7wm6-PTx_MMpiedcEA30rSXGcyRHC8VZIlOtgbNlnFpPFZzJp1rRhOaOOS0thw2tSqhmuWRT51KTcqOyp2inbmp7gLBvrp9zYMWygI0lt2XJpFZlZk1qYetuJuht70fRe86fRXItOjECy0Quossn6OVgugidT7YZHfZgiPhjrETqFcsJLB3ZBL0aAPrbS7ZY_WyWo4VYGDdBbwLAg4nvjH4yv6xEs_wufrRXAqhVltBnt_roc3R__AEO0U67XNsj4JetehEn6G-hsnv2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interpretable+framework+of+data-driven+turbulence+modeling+using+deep+neural+networks&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Vinuesa%2C+Ricardo&rft.date=2021-05-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1063%2F5.0048909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon