An interpretable framework of data-driven turbulence modeling using deep neural networks
Reynolds-averaged Navier–Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for more accurate turbulence models. Recently, emerging machine learning techniques have had a promising impact on turbulence modeling, but are st...
Saved in:
Published in | Physics of fluids (1994) Vol. 33; no. 5 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reynolds-averaged Navier–Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for more accurate turbulence models. Recently, emerging machine learning techniques have had a promising impact on turbulence modeling, but are still in their infancy regarding widespread industrial adoption. Toward their extensive uptake, this paper presents a universally interpretable machine learning (UIML) framework for turbulence modeling, which consists of two parallel machine learning-based modules to directly infer the structural and parametric representations of turbulence physics, respectively. At each phase of model development, data reflecting the evolution dynamics of turbulence and domain knowledge representing prior physical considerations are converted into modeling knowledge. The data- and knowledge-driven UIML is investigated with a deep residual network. The following three aspects are demonstrated in detail: (i) a compact input feature parameterizing a new turbulent timescale is introduced to prevent nonunique mappings between conventional input arguments and output Reynolds stress; (ii) a realizability limiter is developed to overcome the under-constrained state of modeled stress; and (iii) fairness and noise-insensitivity constraints are included in the training procedure. Consequently, an invariant, realizable, unbiased, and robust data-driven turbulence model is achieved. The influences of the training dataset size, activation function, and network hyperparameter on the performance are also investigated. The resulting model exhibits good generalization across two- and three-dimensional flows, and captures the effects of the Reynolds number and aspect ratio. Finally, the underlying rationale behind prediction is explored. |
---|---|
AbstractList | Reynolds-averaged Navier-Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for more accurate turbulence models. Recently, emerging machine learning techniques have had a promising impact on turbulence modeling, but are still in their infancy regarding widespread industrial adoption. Toward their extensive uptake, this paper presents a universally interpretable machine learning (UIML) framework for turbulence modeling, which consists of two parallel machine learning-based modules to directly infer the structural and parametric representations of turbulence physics, respectively. At each phase of model development, data reflecting the evolution dynamics of turbulence and domain knowledge representing prior physical considerations are converted into modeling knowledge. The data- and knowledge-driven UIML is investigated with a deep residual network. The following three aspects are demonstrated in detail: (i) a compact input feature parameterizing a new turbulent timescale is introduced to prevent nonunique mappings between conventional input arguments and output Reynolds stress; (ii) a realizability limiter is developed to overcome the under-constrained state of modeled stress; and (iii) fairness and noise-insensitivity constraints are included in the training procedure. Consequently, an invariant, realizable, unbiased, and robust data-driven turbulence model is achieved. The influences of the training dataset size, activation function, and network hyperparameter on the performance are also investigated. The resulting model exhibits good generalization across two- and three-dimensional flows, and captures the effects of the Reynolds number and aspect ratio. Finally, the underlying rationale behind prediction is explored. |
Author | Vinuesa, Ricardo |
Author_xml | – sequence: 2 givenname: Ricardo surname: Vinuesa fullname: Vinuesa, Ricardo organization: SimEx/Flow, Engineering Mechanics, KTH Royal Institute of Technology and Swedish e-Science Research Centre (SeRC) |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299314$$DView record from Swedish Publication Index |
BookMark | eNp9kE9PGzEUxK0qlZpQDv0GK3ECaYn_rRMfo0ChElIvbcXN8trP1LCxF9sL4tt3oyStBKiXN-_wm9FoZmgSYgCEvhB8TrBg8-YcY76UWH5AU4KXsl4IISbbf4FrIRj5hGY532OMmaRiim5XofKhQOoTFN12ULmkN_Ac00MVXWV10bVN_glCVYbUDh0EA9UmWuh8uKuGvL0WoK8CDEl3o5StOX9GH53uMhzv9Qj9_Hr5Y31d33y_-rZe3dSGM1JqKwThji9aKYimxiwpZZID5lQ622DTcsIbJ5zRIAmXLeFGNFpg56il0rbsCNW73PwM_dCqPvmNTi8qaq8u_K-ViulOPZTfikrJCB_5kx3fp_g4QC7qPg4pjBUVbRjDZMEwG6n5jjIp5pzAKeOLLj6GkrTvFMFqO7dq1H7u0XH6ynFo8h57tu98SP0LP8X0D1S9df-D3yb_AWU1ngk |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_3389_fphy_2022_888832 crossref_primary_10_3390_s22103697 crossref_primary_10_3390_en15041513 crossref_primary_10_1021_acs_iecr_2c01036 crossref_primary_10_1103_PhysRevFluids_9_084604 crossref_primary_10_1103_PhysRevFluids_10_034606 crossref_primary_10_1038_s43588_022_00264_7 crossref_primary_10_1016_j_ijheatfluidflow_2022_109017 crossref_primary_10_1016_j_ijheatfluidflow_2022_109018 crossref_primary_10_1063_5_0160977 crossref_primary_10_1063_5_0070890 crossref_primary_10_1063_5_0058542 crossref_primary_10_1063_5_0104243 crossref_primary_10_1063_5_0095958 crossref_primary_10_1016_j_ijheatfluidflow_2022_109010 crossref_primary_10_1063_5_0142643 crossref_primary_10_2514_1_J062572 crossref_primary_10_1063_5_0207256 crossref_primary_10_3390_buildings13030650 crossref_primary_10_1063_5_0083074 crossref_primary_10_1063_5_0247759 crossref_primary_10_1016_j_nucengdes_2022_112005 crossref_primary_10_1088_1361_6501_ad3fd3 crossref_primary_10_1063_5_0147902 crossref_primary_10_1016_j_buildenv_2023_110803 crossref_primary_10_1038_s42256_021_00414_y crossref_primary_10_1063_5_0190452 crossref_primary_10_1016_j_taml_2024_100496 crossref_primary_10_1186_s40323_022_00234_8 crossref_primary_10_1016_j_eswa_2022_117038 crossref_primary_10_1007_s40747_024_01668_w crossref_primary_10_1080_02286203_2024_2371682 crossref_primary_10_1063_5_0155649 crossref_primary_10_1103_PhysRevFluids_9_024603 crossref_primary_10_1109_ACCESS_2023_3260405 crossref_primary_10_1063_5_0211680 crossref_primary_10_1016_j_oceaneng_2023_114902 crossref_primary_10_1063_5_0129203 crossref_primary_10_1063_5_0098925 crossref_primary_10_1016_j_physd_2022_133568 crossref_primary_10_1063_5_0155383 crossref_primary_10_1063_5_0220444 crossref_primary_10_1098_rspa_2023_0058 crossref_primary_10_1016_j_ast_2024_108955 crossref_primary_10_1063_5_0095270 crossref_primary_10_1063_5_0090134 crossref_primary_10_1063_5_0100076 crossref_primary_10_1063_5_0206387 crossref_primary_10_1016_j_ijheatfluidflow_2024_109348 crossref_primary_10_1063_5_0059643 crossref_primary_10_1063_5_0149547 crossref_primary_10_1080_14685248_2021_1999459 crossref_primary_10_1016_j_compfluid_2023_105993 crossref_primary_10_1063_5_0218611 crossref_primary_10_1108_HFF_07_2023_0358 crossref_primary_10_1063_5_0130052 crossref_primary_10_1063_5_0177940 crossref_primary_10_1063_5_0210851 crossref_primary_10_1016_j_energy_2023_128209 crossref_primary_10_1063_5_0149750 crossref_primary_10_3390_app14020863 crossref_primary_10_1016_j_jcp_2024_113569 crossref_primary_10_1080_00295450_2022_2151822 crossref_primary_10_1016_j_ast_2023_108354 crossref_primary_10_1063_5_0141512 crossref_primary_10_1063_5_0116038 crossref_primary_10_1016_j_taml_2022_100381 crossref_primary_10_1038_s41598_024_78784_7 crossref_primary_10_1063_5_0060760 crossref_primary_10_1063_5_0104605 crossref_primary_10_1063_5_0152893 crossref_primary_10_1016_j_taml_2022_100387 crossref_primary_10_1063_5_0123231 crossref_primary_10_1051_e3sconf_202345902005 crossref_primary_10_1063_5_0128522 crossref_primary_10_1016_j_ijheatfluidflow_2022_109047 crossref_primary_10_1063_5_0190138 crossref_primary_10_1063_5_0160482 crossref_primary_10_1063_5_0078644 crossref_primary_10_1016_j_jcp_2025_113793 crossref_primary_10_1186_s42774_022_00107_z crossref_primary_10_1063_5_0231805 crossref_primary_10_1016_j_compfluid_2024_106506 crossref_primary_10_1063_5_0135638 crossref_primary_10_1063_5_0086354 crossref_primary_10_1063_5_0101356 crossref_primary_10_1088_1755_1315_1037_1_012013 crossref_primary_10_1063_5_0137819 crossref_primary_10_1063_5_0093438 crossref_primary_10_1016_j_oceaneng_2022_111791 crossref_primary_10_1007_s10494_024_00595_7 crossref_primary_10_1063_5_0263211 crossref_primary_10_3390_vehicles6030063 crossref_primary_10_1016_j_cjche_2025_02_001 crossref_primary_10_1088_1367_2630_ad6689 crossref_primary_10_1016_j_compfluid_2024_106246 crossref_primary_10_1016_j_cma_2024_117509 crossref_primary_10_1063_5_0184157 |
Cites_doi | 10.1017/S0022112076001961 10.1017/jfm.2020.184 10.1063/5.0038929 10.1007/978-3-030-58595-2_41 10.1103/PhysRevFluids.5.054606 10.1063/1.5079582 10.1103/PhysRevFluids.4.100501 10.1017/jfm.2019.205 10.1080/14685248.2014.925623 10.1038/s41746-019-0193-y 10.1063/5.0036515 10.1063/1.5054835 10.1038/nature14539 10.1063/1.4947045 10.1103/PhysRevFluids.2.034603 10.1017/S0022112094002983 10.1063/1.5099176 10.1017/jfm.2016.615 10.1063/1.858442 10.3390/en13010258 10.1063/1.4824659 10.1080/14685248.2014.996716 10.1017/jfm.2015.268 10.1038/s42256-019-0048-x 10.1103/PhysRevFluids.4.104605 10.1007/BF00253332 10.1088/1468-5248/4/1/022 10.2514/1.J055595 10.1017/S0022112004009656 10.1017/S0022112093002034 10.1073/pnas.1906995116 10.1017/jfm.2018.660 10.1063/1.2162185 10.1017/jfm.2021.148 10.1146/annurev-fluid-010719-060214 10.1007/BF00277929 10.1016/0142-727X(95)00079-6 10.1017/S0022112087001319 10.1063/5.0041122 10.1016/j.ress.2010.09.013 10.1002/1097-0363(20010130)35:2<221::AID-FLD93>3.0.CO;2-N 10.1090/qam/11999 10.1017/jfm.2019.254 10.1016/j.jcp.2014.06.052 10.1016/j.paerosci.2014.12.004 10.1021/acs.iecr.0c05045 10.1063/5.0020858 10.1063/1.5048727 10.1016/j.cma.2018.09.010 10.1103/PhysRevE.63.056305 10.1126/sciadv.1602614 10.1146/annurev.fluid.31.1.1 10.1063/1.3006023 10.1103/PhysRevFluids.3.054606 10.1063/1.5086341 10.1063/1.861942 10.1016/j.ijthermalsci.2018.09.002 10.1063/1.4930004 10.1103/PhysRevFluids.4.114601 10.1007/BF00271513 10.1016/j.jcp.2013.10.027 10.1063/1.5110788 10.1080/14685240701506896 10.1016/S0045-7825(96)01202-9 10.1063/1.5061693 10.1029/2020GL088376 10.1063/1.168744 10.1063/1.1711320 10.1016/j.jcp.2016.05.003 10.1016/j.jcp.2015.11.012 10.1063/1.4807067 10.1029/2020GL087005 10.1063/5.0022561 10.1063/5.0025138 10.1016/j.jcp.2020.109413 10.1017/S0022112004002526 10.1146/annurev.fl.19.010187.000413 10.1103/PhysRevD.101.084024 10.1016/j.ijheatfluidflow.2017.09.017 10.1017/jfm.2016.730 10.1016/j.jcp.2019.01.021 10.1016/S0065-2156(08)70266-7 10.1063/1.5136351 10.1063/1.1761271 10.1017/S0022112075003382 10.1063/1.3005862 10.1063/1.5012546 10.1017/jfm.2019.309 10.1073/pnas.1517384113 10.1103/PhysRevFluids.4.044603 10.1063/5.0027524 10.1016/j.paerosci.2018.10.001 10.2514/3.11752 10.1080/14685248.2020.1757685 10.1063/5.0008493 10.1063/5.0027146 10.1063/1.3676783 10.1103/PhysRevFluids.2.024605 10.1017/jfm.2016.803 10.1016/j.jcp.2016.07.038 10.1017/S0022112070000678 10.1017/S002211207800275X 10.1103/PhysRevFluids.3.074602 10.1016/j.jcp.2016.08.015 10.1016/j.jweia.2015.03.025 10.1146/annurev-fluid-122316-045020 10.1103/PhysRevFluids.5.084611 10.1016/j.compfluid.2017.11.007 10.1017/S0022112091000101 10.1016/S0142-727X(02)00197-2 10.1146/annurev-fluid-010518-040547 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M ADTPV AOWAS D8V |
DOI | 10.1063/5.0048909 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | oai_DiVA_org_kth_299314 10_1063_5_0048909 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1711265 funderid: https://doi.org/10.13039/501100001809 – fundername: Guangdong Science and Technology Department grantid: 2020B1212030001 funderid: https://doi.org/10.13039/501100007162 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c431t-d6614f47b961a2cc822394e0429fd50cb4145f6fcae9149b14c65a60ff2d29db3 |
ISSN | 1070-6631 1089-7666 |
IngestDate | Thu Aug 21 06:59:10 EDT 2025 Mon Jun 30 03:55:35 EDT 2025 Tue Jul 01 02:44:22 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Fri Jun 21 00:13:44 EDT 2024 Thu Jun 23 13:44:55 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c431t-d6614f47b961a2cc822394e0429fd50cb4145f6fcae9149b14c65a60ff2d29db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9198-3951 0000-0002-5263-1117 0000-0001-6570-5499 0000-0001-5693-1646 |
PQID | 2533017303 |
PQPubID | 2050667 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2533017303 scitation_primary_10_1063_5_0048909 crossref_citationtrail_10_1063_5_0048909 swepub_primary_oai_DiVA_org_kth_299314 crossref_primary_10_1063_5_0048909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Brunton, Noack, Koumoutsakos (c13) 2020 Weatheritt, Sandberg (c21) 2017 Spencer, Rivlin (c74) 1962 Girimaji (c95) 2004 Speziale (c127) 1987 Xiao, Wu, Wang, Sun, Roy (c45) 2016 Zanna, Bolton (c64) 2020 Kutz (c66) 2017 Durbin (c6) 2018 Wu, Xiao, Paterson (c47) 2018 Choi, Moin (c1) 2012 Gorlé, Garcia-Sanchez, Iaccarino (c41) 2015 Emory, Larsson, Iaccarino (c37) 2013 Weller, Tabor, Jasak, Fureby (c118) 1998 Champion, Lusch, Kutz, Brunton (c59) 2019 Kraichnan (c124) 1964 Wu, Xiao, Sun, Wang (c117) 2019 Brener, Cruz, Thompson, Anjos (c119) 2021 Bevilaqua, Lykoudis (c122) 1978 Mishra, Mukhopadhaya, Alonso, Iaccarino (c43) 2020 Yang, Shih (c89) 1993 Pandey, Schumacher, Sreenivasan (c14) 2020 Ling, Jones, Templeton (c67) 2016 Pope (c68) 1975 Yang, Griffin (c2) 2021 Zhang, Ma (c65) 2020 Geneva, Zabaras (c86) 2019 Zhang, Fu (c19) 2018 Wang, Wu, Xiao (c46) 2017 Kraichnan (c123) 1965 Chou (c126) 1945 Hanjalic, Launder (c88) 1976 Mishra, Girimaji (c121) 2017 Mishra, Iaccarino (c44) 2019 Jiménez (c83) 2018 Edeling, Cinnella, Dwight, Bijl (c18) 2014 Maulik, San, Rasheed, Vedula (c50) 2018 Haller (c85) 2005 Vinuesa, Noorani, Lozano-Duran, El Khoury, Schlatter, Fischer, Nagib (c103) 2014 Vinuesa, Schlatter, Nagib (c104) 2015 Chen, Hussain, She (c107) 2019 Yang, Xiao (c36) 2020 Durbin (c93) 1991 Vaddireddy, Rasheed, Staples, San (c63) 2020 Yin, Yang, Zhang, Chen, Fu (c49) 2020 Brenner, Eldredge, Freund (c10) 2019 Gatski, Speziale (c98) 1993 Weatheritt, Sandberg (c20) 2016 Noll (c84) 1958 Edeling, Cinnella, Dwight (c17) 2014 Duraisamy, Iaccarino, Xiao (c12) 2019 Yao, Wang, Kronenburg, Stein (c56) 2020 Zhu, Zhang, Kou, Liu (c23) 2019 Goldberg, Apsley (c91) 1997 Durbin, Speziale (c94) 1994 Wang, Wang (c15) 2021 Parish, Duraisamy (c32) 2016 Speziale, Sarkar, Gatski (c79) 1991 Huang, Durst (c80) 2001 Jiang, Mi, Laima, Li (c9) 2020 Singh, Medida, Duraisamy (c34) 2017 Rudy, Brunton, Proctor, Kutz (c60) 2017 Iaccarino, Mishra, Ghili (c39) 2017 Pawar, San, Aksoylu, Rasheed, Kvamsdal (c77) 2021 Xie, Yuan, Wang (c30) 2020 Beetham, Capecelatro (c27) 2020 Gorlé, Zeoli, Emory, Larsson, Iaccarino (c42) 2019 Xie, Wang, Li, Wan, Chen (c26) 2019 Lumley (c81) 1979 Ma, Lu, Tryggvason (c62) 2015 Thompson, Mishra, Iaccarino, Edeling, Sampaio (c40) 2019 LeCun, Bengio, Hinton (c111) 2015 Lee, Moser (c87) 2015 Jiménez (c3) 2003 Singh, Duraisamy (c33) 2016 Inagaki, Ariki, Hamba (c96) 2019 He, Liu, Gan (c35) 2018 Rahman, Rautaheimo, Siikonen (c99) 2001 Hoyas, Jiménez (c101) 2008 Hamlington, Dahm (c129) 2008 Maulik, San, Jacob, Crick (c52) 2019 Bradshaw (c115) 1987 Zhao, Akolekar, Weatheritt, Michelassi, Sandberg (c22) 2020 Ling, Kurzawski, Templeton (c24) 2016 Craft, Launder, Suga (c90) 1996 Trias, Gorobets, Silvis, Verstappen, Oliva (c25) 2017 Gorlé, Iaccarino (c38) 2013 Wang, Luo, Li, Tan, Fan (c51) 2018 Iwamoto, Suzuki, Kasagi (c100) 2002 Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (c76) 2019 Xiao, Cinnella (c8) 2019 Hoyas, Jiménez (c102) 2006 Rosofsky, Huerta (c29) 2020 Spalart (c7) 2015 Pal (c28) 2020 Readshaw, Ding, Rigopoulos, Jones (c57) 2021 Brunton, Proctor, Kutz (c61) 2016 Vinuesa, Schlatter, Nagib (c105) 2018 Banerjee, Krahl, Durst, Zenger (c82) 2007 Taulbee (c128) 1992 Lumley (c69) 1970 Rudin (c73) 2019 Yuan, Xie, Wang (c55) 2020 Xie, Li, Ma, Wang (c53) 2019 Wu, Sun, Laizet, Xiao (c48) 2019 Xie, Wang, Weinan (c54) 2020 Cheung, Oliver, Prudencio, Prudhomme, Moser (c16) 2011 Chang, Dinh (c11) 2019 Schumann (c97) 1977 Cambon, Scott (c120) 1999 (2024031518152620400_c115) 1987; 19 (2024031518152620400_c79) 1991; 227 (2024031518152620400_c35) 2018; 30 (2024031518152620400_c17) 2014; 275 (2024031518152620400_c62) 2015; 27 (2024031518152620400_c81) 1979; 18 (2024031518152620400_c129) 2008; 20 (2024031518152620400_c14) 2020; 21 (2024031518152620400_c114) 2016 (2024031518152620400_c23) 2019; 31 (2024031518152620400_c65) 2020; 892 (2024031518152620400_c66) 2017; 814 (2024031518152620400_c67) 2016; 318 (2024031518152620400_c57) 2021; 33 (2024031518152620400_c104) 2015; 16 (2024031518152620400_c94) 1994; 280 (2024031518152620400_c16) 2011; 96 (2024031518152620400_c50) 2018; 30 (2024031518152620400_c9) 2020; 13 (2024031518152620400_c89) 1993; 31 (2024031518152620400_c101) 2008; 20 (2024031518152620400_c25) 2017; 29 (2024031518152620400_c74) 1962; 9 (2024031518152620400_c111) 2015; 521 (2024031518152620400_c77) 2021; 33 (2024031518152620400_c128) 1992; 4 (2024031518152620400_c2) 2021; 33 (2024031518152620400_c69) 1970; 41 (2024031518152620400_c55) 2020; 32 (2024031518152620400_c52) 2019; 870 (2024031518152620400_c10) 2019; 4 (2024031518152620400_c72) 2016 (2024031518152620400_c61) 2016; 113 (2024031518152620400_c88) 1976; 74 (2024031518152620400_c41) 2015; 144 (2024031518152620400_c121) 2017; 811 (2024031518152620400_c100) 2002; 23 (2024031518152620400_c44) 2019; 31 (2024031518152620400_c40) 2019; 4 (2024031518152620400_c26) 2019; 31 (2024031518152620400_c11) 2019; 135 (2024031518152620400_c21) 2017; 68 (2024031518152620400_c93) 1991; 3 (2024031518152620400_c70) 1995 (2024031518152620400_c118) 1998; 12 (2024031518152620400_c106) 2007 (2024031518152620400_c85) 2005; 525 (2024031518152620400_c8) 2019; 108 (2024031518152620400_c53) 2019; 4 2024031518152620400_c4 (2024031518152620400_c38) 2013; 25 2024031518152620400_c5 (2024031518152620400_c84) 1958; 2 (2024031518152620400_c34) 2017; 55 (2024031518152620400_c90) 1996; 17 (2024031518152620400_c110) 2015 (2024031518152620400_c99) 2001; 35 (2024031518152620400_c49) 2020; 32 (2024031518152620400_c18) 2014; 258 (2024031518152620400_c29) 2020; 101 (2024031518152620400_c59) 2019; 116 (2024031518152620400_c80) 2001; 63 (2024031518152620400_c46) 2017; 2 (2024031518152620400_c98) 1993; 254 (2024031518152620400_c27) 2020; 5 (2024031518152620400_c103) 2014; 15 (2024031518152620400_c13) 2020; 52 (2024031518152620400_c91) 1997; 145 (2024031518152620400_c42) 2019; 31 (2024031518152620400_c96) 2019; 4 (2024031518152620400_c73) 2019; 1 (2024031518152620400_c71) 2016 (2024031518152620400_c32) 2016; 305 (2024031518152620400_c45) 2016; 324 (2024031518152620400_c37) 2013; 25 (2024031518152620400_c107) 2019; 871 (2024031518152620400_c28) 2020; 47 (2024031518152620400_c78) 2000 (2024031518152620400_c87) 2015; 774 (2024031518152620400_c63) 2020; 32 (2024031518152620400_c7) 2015; 74 (2024031518152620400_c48) 2019; 346 (2024031518152620400_c122) 1978; 89 (2024031518152620400_c24) 2016; 807 (2024031518152620400_c31) 2011 (2024031518152620400_c102) 2006; 18 (2024031518152620400_c82) 2007; 8 (2024031518152620400_c117) 2019; 869 (2024031518152620400_c125) 2009 (2024031518152620400_c39) 2017; 2 (2024031518152620400_c105) 2018; 3 (2024031518152620400_c36) 2020; 32 (2024031518152620400_c12) 2019; 51 (2024031518152620400_c60) 2017; 3 (2024031518152620400_c20) 2016; 325 (2024031518152620400_c15) 2021; 60 (2024031518152620400_c92) 2014 (2024031518152620400_c109) 2018 (2024031518152620400_c124) 1964; 7 (2024031518152620400_c47) 2018; 3 (2024031518152620400_c58) 2016 (2024031518152620400_c75) 2016 (2024031518152620400_c123) 1965; 8 (2024031518152620400_c19) 2018; 161 (2024031518152620400_c22) 2020; 411 (2024031518152620400_c54) 2020; 5 (2024031518152620400_c86) 2019; 383 (2024031518152620400_c56) 2020; 32 (2024031518152620400_c3) 2003; 4 (2024031518152620400_c33) 2016; 28 (2024031518152620400_c43) 2020; 32 2024031518152620400_c112 (2024031518152620400_c113) 2010 (2024031518152620400_c1) 2012; 24 (2024031518152620400_c30) 2020; 32 (2024031518152620400_c120) 1999; 31 (2024031518152620400_c95) 2004; 512 (2024031518152620400_c97) 1977; 20 (2024031518152620400_c64) 2020; 47 2024031518152620400_c116 (2024031518152620400_c127) 1987; 178 (2024031518152620400_c108) 2016 (2024031518152620400_c126) 1945; 3 (2024031518152620400_c51) 2018; 30 (2024031518152620400_c119) 2021; 915 (2024031518152620400_c76) 2019; 2 (2024031518152620400_c68) 1975; 72 (2024031518152620400_c83) 2018; 854 (2024031518152620400_c6) 2018; 50 |
References_xml | – start-page: 054606 year: 2020 ident: c54 article-title: Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence publication-title: Phys. Rev. Fluids – start-page: 395 year: 1994 ident: c94 article-title: Realizability of second-moment closure via stochastic analysis publication-title: J. Fluid Mech. – start-page: 108 year: 1996 ident: c90 article-title: Development and application of a cubic eddy-viscosity model of turbulence publication-title: Int. J. Heat Fluid Flow – start-page: A110 year: 2021 ident: c119 article-title: Conditioning and accurate solutions of Reynolds average Navier–Stokes equations with data-driven turbulence closures publication-title: J. Fluid Mech. – start-page: 085112 year: 2019 ident: c26 article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence publication-title: Phys. Fluids – start-page: 056305 year: 2001 ident: c80 article-title: Reynolds stress under a change of frame of reference publication-title: Phys. Rev. E – start-page: 035101 year: 2019 ident: c42 article-title: Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces publication-title: Phys. Fluids – start-page: 22 year: 2016 ident: c67 article-title: Machine learning strategies for systems with invariance properties publication-title: J. Comput. Phys. – start-page: 125101 year: 2018 ident: c51 article-title: Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation publication-title: Phys. Fluids – start-page: 034603 year: 2017 ident: c46 article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data publication-title: Phys. Rev. Fluids – start-page: 104605 year: 2019 ident: c53 article-title: Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network publication-title: Phys. Rev. Fluids – start-page: 115124 year: 2020 ident: c56 article-title: Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods publication-title: Phys. Fluids – start-page: 38 year: 1945 ident: c126 article-title: On velocity correlations and the solutions of the equations of turbulent fluctuation publication-title: Q. Appl. Math. – start-page: 125 year: 2019 ident: c86 article-title: Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks publication-title: J. Comput. Phys. – start-page: 221 year: 2001 ident: c99 article-title: Modifications for an explicit algebraic stress model publication-title: Int. J. Numer. Methods Fluids – start-page: 245 year: 1991 ident: c79 article-title: Modelling the pressure–strain correlation of turbulence: An invariant dynamical systems approach publication-title: J. Fluid Mech. – start-page: N22 year: 2003 ident: c3 article-title: Computing high-Reynolds-number turbulence: Will simulations ever replace experiments? publication-title: J. Turbul. – start-page: 115106 year: 2020 ident: c55 article-title: Deconvolutional artificial neural network models for large eddy simulation of turbulence publication-title: Phys. Fluids – start-page: 678 year: 2002 ident: c100 article-title: Reynolds number effect on wall turbulence: Toward effective feedback control publication-title: Int. J. Heat Fluid Flow – start-page: 015113 year: 2020 ident: c63 article-title: Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data publication-title: Phys. Fluids – start-page: 53 year: 1987 ident: c115 article-title: Turbulent secondary flows publication-title: Annu. Rev. Fluid Mech. – start-page: 1 year: 2019 ident: c8 article-title: Quantification of model uncertainty in RANS simulations: A review publication-title: Prog. Aerosp. Sci. – start-page: 035154 year: 2021 ident: c57 article-title: Modeling of turbulent flames with the large eddy simulation–probability density function (LES–PDF) approach, stochastic fields, and artificial neural networks publication-title: Phys. Fluids – start-page: 206 year: 2019 ident: c73 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. – start-page: 015108 year: 2021 ident: c2 article-title: Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation publication-title: Phys. Fluids – start-page: 73 year: 2014 ident: c18 article-title: Bayesian estimates of parameter variability in the k-ε turbulence model publication-title: J. Comput. Phys. – start-page: 168 year: 2017 ident: c121 article-title: Toward approximating non-local dynamics in single-point pressure–strain correlation closures publication-title: J. Fluid Mech. – start-page: 784 year: 2019 ident: c52 article-title: Sub-grid scale model classification and blending through deep learning publication-title: J. Fluid Mech. – start-page: 477 year: 2020 ident: c13 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – start-page: 559 year: 2019 ident: c11 article-title: Classification of machine learning frameworks for data-driven thermal fluid models publication-title: Int. J. Therm. Sci. – start-page: e1602614 year: 2017 ident: c60 article-title: Data-driven discovery of partial differential equations publication-title: Sci. Adv. – start-page: 589 year: 1978 ident: c122 article-title: Turbulence memory in self-preserving wakes publication-title: J. Fluid Mech. – start-page: 085106 year: 2020 ident: c43 article-title: Design exploration and optimization under uncertainty publication-title: Phys. Fluids – start-page: 620 year: 1998 ident: c118 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. – start-page: 105108 year: 2018 ident: c35 article-title: A data assimilation model for turbulent flows using continuous adjoint formulation publication-title: Phys. Fluids – start-page: 567 year: 2020 ident: c14 article-title: A perspective on machine learning in turbulent flows publication-title: J. Turbul. – start-page: 413 year: 1970 ident: c69 article-title: Toward a turbulent constitutive relation publication-title: J. Fluid Mech. – start-page: 011702 year: 2012 ident: c1 article-title: Grid-point requirements for large eddy simulation: Chapman's estimates revisited publication-title: Phys. Fluids – start-page: 115101 year: 2020 ident: c30 article-title: Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence publication-title: Phys. Fluids – start-page: 45 year: 1962 ident: c74 article-title: Isotropic integrity bases for vectors and second-order tensors publication-title: Arch. Ration. Mech. Anal. – start-page: 65 year: 2014 ident: c17 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J. Comput. Phys. – start-page: 588 year: 2015 ident: c104 article-title: On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows publication-title: J. Turbul. – start-page: 074602 year: 2018 ident: c47 article-title: Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework publication-title: Phys. Rev. Fluids – start-page: 055105 year: 2013 ident: c38 article-title: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations publication-title: Phys. Fluids – start-page: 110822 year: 2013 ident: c37 article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures publication-title: Phys. Fluids – start-page: 115 year: 2016 ident: c45 article-title: Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach publication-title: J. Comput. Phys. – start-page: 075101 year: 2019 ident: c44 article-title: Theoretical analysis of tensor perturbations for uncertainty quantification of Reynolds averaged and subgrid scale closures publication-title: Phys. Fluids – start-page: 357 year: 2019 ident: c12 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. – start-page: 758 year: 2016 ident: c32 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. – start-page: 22 year: 2016 ident: c20 article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship publication-title: J. Comput. Phys. – start-page: 109413 year: 2020 ident: c22 article-title: RANS turbulence model development using CFD-driven machine learning publication-title: J. Comput. Phys. – start-page: 202 year: 2015 ident: c41 article-title: Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 1 year: 2015 ident: c7 article-title: Philosophies and fallacies in turbulence modeling publication-title: Prog. Aerosp. Sci. – start-page: 436 year: 2015 ident: c111 article-title: Deep learning publication-title: Nature – start-page: 1137 year: 2011 ident: c16 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab. Eng. Syst. Safe – start-page: 2772 year: 2021 ident: c15 article-title: Application of artificial intelligence in computational fluid dynamics publication-title: Ind. Eng. Chem. Res. – start-page: 1 year: 2005 ident: c85 article-title: An objective definition of a vortex publication-title: J. Fluid Mech. – start-page: 064101 year: 2020 ident: c36 article-title: Improving the k–ω–γ–A transition model by the field inversion and machine learning framework publication-title: Phys. Fluids – start-page: 707 year: 2019 ident: c48 article-title: Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling publication-title: Comput. Method Appl. Mech. Eng. – start-page: 197 year: 1958 ident: c84 article-title: A mathematical theory of the mechanical behavior of continuous media publication-title: Arch. Ration. Mech. Anal. – start-page: 553 year: 2019 ident: c117 article-title: Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned publication-title: J. Fluid Mech. – start-page: 101511 year: 2008 ident: c101 article-title: Reynolds number effects on the Reynolds-stress budgets in turbulent channels publication-title: Phys. Fluids – start-page: R2 year: 2019 ident: c107 article-title: Non-universal scaling transition of momentum cascade in wall turbulence publication-title: J. Fluid Mech. – start-page: 092101 year: 2015 ident: c62 article-title: Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system publication-title: Phys. Fluids – start-page: R1 year: 2018 ident: c83 article-title: Machine-aided turbulence theory publication-title: J. Fluid Mech. – start-page: 191 year: 2004 ident: c95 article-title: A new perspective on realizability of turbulence models publication-title: J. Fluid Mech. – start-page: N32 year: 2007 ident: c82 article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches publication-title: J. Turbul. – start-page: 045110 year: 2016 ident: c33 article-title: Using field inversion to quantify functional errors in turbulence closures publication-title: Phys. Fluids – start-page: 59 year: 1993 ident: c98 article-title: On the explicit algebraic stress models for complex turbulent flows publication-title: J. Fluid Mech. – start-page: 114601 year: 2019 ident: c96 article-title: Higher-order realizable algebraic Reynolds stress modeling based on the square root tensor publication-title: Phys. Rev. Fluids – start-page: A5 year: 2020 ident: c65 article-title: Data-driven discovery of governing equations for fluid dynamics based on molecular simulation publication-title: J. Fluid Mech. – start-page: 331 year: 1975 ident: c68 article-title: A more general effective-viscosity hypothesis publication-title: J. Fluid Mech. – start-page: 593 year: 1976 ident: c88 article-title: Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence publication-title: J. Fluid Mech. – start-page: e2020 year: 2020 ident: c28 article-title: Deep learning emulation of subgrid-scale processes in turbulent shear flows publication-title: Geophys. Res. Lett. – start-page: 2555 year: 1992 ident: c128 article-title: An improved algebraic Reynolds stress model and corresponding nonlinear stress model publication-title: Phys. Fluids – start-page: 054606 year: 2018 ident: c105 article-title: Secondary flow in turbulent ducts with increasing aspect ratio publication-title: Phys. Rev. Fluids – start-page: 1191 year: 1993 ident: c89 article-title: New time scale based k-ε model for near-wall turbulence publication-title: AIAA J. – start-page: 011702 year: 2006 ident: c102 article-title: Scaling of the velocity fluctuations in turbulent channels up to Re = 2003 publication-title: Phys. Fluids – start-page: 677 year: 2014 ident: c103 article-title: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation publication-title: J. Turbul. – start-page: 258 year: 2020 ident: c9 article-title: A novel algebraic stress model with machine-learning-assisted parameterization publication-title: Energies – start-page: 721 year: 1977 ident: c97 article-title: Realizability of Reynolds-stress turbulence models publication-title: Phys. Fluids – start-page: 1048 year: 1964 ident: c124 article-title: Direct-interaction approximation for shear and thermally driven turbulence publication-title: Phys. Fluids – start-page: 084611 year: 2020 ident: c27 article-title: Formulating turbulence closures using sparse regression with embedded form invariance publication-title: Phys. Rev. Fluids – start-page: 1 year: 1991 ident: c93 article-title: Near-wall turbulence closure modeling without ‘damping functions’ publication-title: Theor. Comp. Fluid Dyn. – start-page: 123 year: 1979 ident: c81 article-title: Computational modeling of turbulent flows publication-title: Adv. Appl. Mech. – start-page: 105117 year: 2020 ident: c49 article-title: Feature selection and processing of turbulence modeling based on an artificial neural network publication-title: Phys. Fluids – start-page: 115109 year: 2017 ident: c25 article-title: A new subgrid characteristic length for turbulence simulations on anisotropic grids publication-title: Phys. Fluids – start-page: 2215 year: 2017 ident: c34 article-title: Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils publication-title: AIAA J. – start-page: 115101 year: 2008 ident: c129 article-title: Reynolds stress closure for nonequilibrium effects in turbulent flows publication-title: Phys. Fluids – start-page: 298 year: 2017 ident: c21 article-title: The development of algebraic stress models using a novel evolutionary algorithm publication-title: Int. J. Heat Fluid Flow – start-page: 015105 year: 2019 ident: c23 article-title: Machine learning methods for turbulence modeling in subsonic flows around airfoils publication-title: Phys. Fluids – start-page: 024605 year: 2017 ident: c39 article-title: Eigenspace perturbations for uncertainty estimation of single-point turbulence closures publication-title: Phys. Rev. Fluids – start-page: 77 year: 2018 ident: c6 article-title: Some recent developments in turbulence closure modeling publication-title: Annu. Rev. Fluid Mech. – start-page: 084024 year: 2020 ident: c29 article-title: Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence publication-title: Phys. Rev. D – start-page: 211 year: 2018 ident: c19 article-title: An efficient Bayesian uncertainty quantification approach with application to k-ω-γ transition modeling publication-title: Comput. Fluids – start-page: 100501 year: 2019 ident: c10 article-title: Perspective on machine learning for advancing fluid mechanics publication-title: Phys. Rev. Fluids – start-page: 227 year: 1997 ident: c91 article-title: A wall-distance-free low Re k-ϵ turbulence model publication-title: Comput. Method Appl. Mech. Eng. – start-page: 3932 year: 2016 ident: c61 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 22445 year: 2019 ident: c59 article-title: Data-driven discovery of coordinates and governing equations publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 575 year: 1965 ident: c123 article-title: Lagrangian-history closure approximation for turbulence publication-title: Phys. Fluids – start-page: 044603 year: 2019 ident: c40 article-title: Eigenvector perturbation methodology for uncertainty quantification of turbulence models publication-title: Phys. Rev. Fluids – start-page: e2020 year: 2020 ident: c64 article-title: Data-driven equation discovery of ocean mesoscale closures publication-title: Geophys. Res. Lett. – start-page: 125109 year: 2018 ident: c50 article-title: Data-driven deconvolution for large eddy simulations of Kraichnan turbulence publication-title: Phys. Fluids – start-page: 395 year: 2015 ident: c87 article-title: Direct numerical simulation of turbulent channel flow up to Re ≈ 5200 publication-title: J. Fluid Mech. – start-page: 1 year: 2017 ident: c66 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. – start-page: 011701 year: 2021 ident: c77 article-title: Physics guided machine learning using simplified theories publication-title: Phys. Fluids – start-page: 1 year: 1999 ident: c120 article-title: Linear and nonlinear models of anisotropic turbulence publication-title: Annu. Rev. Fluid Mech. – start-page: 115 year: 2019 ident: c76 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: npj Digital Med. – start-page: 155 year: 2016 ident: c24 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J. Fluid Mech. – start-page: 459 year: 1987 ident: c127 article-title: On nonlinear k-l and k-ε models of turbulence publication-title: J. Fluid Mech. – volume: 74 start-page: 593 year: 1976 ident: 2024031518152620400_c88 article-title: Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112076001961 – volume: 892 start-page: A5 year: 2020 ident: 2024031518152620400_c65 article-title: Data-driven discovery of governing equations for fluid dynamics based on molecular simulation publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.184 – volume: 33 start-page: 011701 year: 2021 ident: 2024031518152620400_c77 article-title: Physics guided machine learning using simplified theories publication-title: Phys. Fluids doi: 10.1063/5.0038929 – ident: 2024031518152620400_c116 doi: 10.1007/978-3-030-58595-2_41 – volume: 5 start-page: 054606 year: 2020 ident: 2024031518152620400_c54 article-title: Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.054606 – volume: 30 start-page: 125109 year: 2018 ident: 2024031518152620400_c50 article-title: Data-driven deconvolution for large eddy simulations of Kraichnan turbulence publication-title: Phys. Fluids doi: 10.1063/1.5079582 – volume: 4 start-page: 100501 year: 2019 ident: 2024031518152620400_c10 article-title: Perspective on machine learning for advancing fluid mechanics publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.100501 – volume: 869 start-page: 553 year: 2019 ident: 2024031518152620400_c117 article-title: Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.205 – volume: 15 start-page: 677 year: 2014 ident: 2024031518152620400_c103 article-title: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation publication-title: J. Turbul. doi: 10.1080/14685248.2014.925623 – volume: 2 start-page: 115 year: 2019 ident: 2024031518152620400_c76 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: npj Digital Med. doi: 10.1038/s41746-019-0193-y – start-page: 770 year: 2016 ident: 2024031518152620400_c71 article-title: Deep residual learning for image recognition – volume: 33 start-page: 015108 year: 2021 ident: 2024031518152620400_c2 article-title: Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation publication-title: Phys. Fluids doi: 10.1063/5.0036515 – volume: 30 start-page: 125101 year: 2018 ident: 2024031518152620400_c51 article-title: Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation publication-title: Phys. Fluids doi: 10.1063/1.5054835 – volume: 521 start-page: 436 year: 2015 ident: 2024031518152620400_c111 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 28 start-page: 045110 year: 2016 ident: 2024031518152620400_c33 article-title: Using field inversion to quantify functional errors in turbulence closures publication-title: Phys. Fluids doi: 10.1063/1.4947045 – volume: 2 start-page: 034603 year: 2017 ident: 2024031518152620400_c46 article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.034603 – volume: 280 start-page: 395 year: 1994 ident: 2024031518152620400_c94 article-title: Realizability of second-moment closure via stochastic analysis publication-title: J. Fluid Mech. doi: 10.1017/S0022112094002983 – volume: 31 start-page: 075101 year: 2019 ident: 2024031518152620400_c44 article-title: Theoretical analysis of tensor perturbations for uncertainty quantification of Reynolds averaged and subgrid scale closures publication-title: Phys. Fluids doi: 10.1063/1.5099176 – volume: 807 start-page: 155 year: 2016 ident: 2024031518152620400_c24 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.615 – volume: 4 start-page: 2555 year: 1992 ident: 2024031518152620400_c128 article-title: An improved algebraic Reynolds stress model and corresponding nonlinear stress model publication-title: Phys. Fluids doi: 10.1063/1.858442 – volume: 13 start-page: 258 year: 2020 ident: 2024031518152620400_c9 article-title: A novel algebraic stress model with machine-learning-assisted parameterization publication-title: Energies doi: 10.3390/en13010258 – volume: 25 start-page: 110822 year: 2013 ident: 2024031518152620400_c37 article-title: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures publication-title: Phys. Fluids doi: 10.1063/1.4824659 – start-page: 273 year: 2016 ident: 2024031518152620400_c58 article-title: A return to eddy viscosity model for epistemic UQ in RANS closures – volume: 16 start-page: 588 year: 2015 ident: 2024031518152620400_c104 article-title: On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows publication-title: J. Turbul. doi: 10.1080/14685248.2014.996716 – volume: 774 start-page: 395 year: 2015 ident: 2024031518152620400_c87 article-title: Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.268 – volume: 1 start-page: 206 year: 2019 ident: 2024031518152620400_c73 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – start-page: 4162 year: 2009 ident: 2024031518152620400_c125 article-title: Reynolds stress closure including nonlocal and nonequilibrium effects in turbulent flows – volume: 4 start-page: 104605 year: 2019 ident: 2024031518152620400_c53 article-title: Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.104605 – volume: 9 start-page: 45 year: 1962 ident: 2024031518152620400_c74 article-title: Isotropic integrity bases for vectors and second-order tensors publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253332 – volume: 4 start-page: N22 year: 2003 ident: 2024031518152620400_c3 article-title: Computing high-Reynolds-number turbulence: Will simulations ever replace experiments? publication-title: J. Turbul. doi: 10.1088/1468-5248/4/1/022 – volume: 55 start-page: 2215 year: 2017 ident: 2024031518152620400_c34 article-title: Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils publication-title: AIAA J. doi: 10.2514/1.J055595 – volume: 512 start-page: 191 year: 2004 ident: 2024031518152620400_c95 article-title: A new perspective on realizability of turbulence models publication-title: J. Fluid Mech. doi: 10.1017/S0022112004009656 – volume-title: An Introduction to Neural Networks year: 1995 ident: 2024031518152620400_c70 – volume: 254 start-page: 59 year: 1993 ident: 2024031518152620400_c98 article-title: On the explicit algebraic stress models for complex turbulent flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112093002034 – volume: 116 start-page: 22445 year: 2019 ident: 2024031518152620400_c59 article-title: Data-driven discovery of coordinates and governing equations publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1906995116 – volume: 854 start-page: R1 year: 2018 ident: 2024031518152620400_c83 article-title: Machine-aided turbulence theory publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.660 – volume: 18 start-page: 011702 year: 2006 ident: 2024031518152620400_c102 article-title: Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003 publication-title: Phys. Fluids doi: 10.1063/1.2162185 – volume: 915 start-page: A110 year: 2021 ident: 2024031518152620400_c119 article-title: Conditioning and accurate solutions of Reynolds average Navier–Stokes equations with data-driven turbulence closures publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.148 – volume: 52 start-page: 477 year: 2020 ident: 2024031518152620400_c13 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 2 start-page: 197 year: 1958 ident: 2024031518152620400_c84 article-title: A mathematical theory of the mechanical behavior of continuous media publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00277929 – volume: 17 start-page: 108 year: 1996 ident: 2024031518152620400_c90 article-title: Development and application of a cubic eddy-viscosity model of turbulence publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(95)00079-6 – volume: 178 start-page: 459 year: 1987 ident: 2024031518152620400_c127 article-title: On nonlinear k-l and k-ε models of turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112087001319 – volume: 33 start-page: 035154 year: 2021 ident: 2024031518152620400_c57 article-title: Modeling of turbulent flames with the large eddy simulation–probability density function (LES–PDF) approach, stochastic fields, and artificial neural networks publication-title: Phys. Fluids doi: 10.1063/5.0041122 – year: 2015 ident: 2024031518152620400_c110 article-title: Adam: A method for stochastic optimization – volume: 96 start-page: 1137 year: 2011 ident: 2024031518152620400_c16 article-title: Bayesian uncertainty analysis with applications to turbulence modeling publication-title: Reliab. Eng. Syst. Safe doi: 10.1016/j.ress.2010.09.013 – year: 2016 ident: 2024031518152620400_c114 article-title: Fast and accurate deep network learning by exponential linear units – volume: 35 start-page: 221 year: 2001 ident: 2024031518152620400_c99 article-title: Modifications for an explicit algebraic stress model publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/1097-0363(20010130)35:2<221::AID-FLD93>3.0.CO;2-N – volume: 3 start-page: 38 year: 1945 ident: 2024031518152620400_c126 article-title: On velocity correlations and the solutions of the equations of turbulent fluctuation publication-title: Q. Appl. Math. doi: 10.1090/qam/11999 – volume: 870 start-page: 784 year: 2019 ident: 2024031518152620400_c52 article-title: Sub-grid scale model classification and blending through deep learning publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.254 – volume: 275 start-page: 65 year: 2014 ident: 2024031518152620400_c17 article-title: Predictive RANS simulations via Bayesian model-scenario averaging publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.06.052 – volume: 74 start-page: 1 year: 2015 ident: 2024031518152620400_c7 article-title: Philosophies and fallacies in turbulence modeling publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2014.12.004 – volume-title: Turbulent Flows year: 2000 ident: 2024031518152620400_c78 – volume: 60 start-page: 2772 year: 2021 ident: 2024031518152620400_c15 article-title: Application of artificial intelligence in computational fluid dynamics publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c05045 – volume: 32 start-page: 085106 year: 2020 ident: 2024031518152620400_c43 article-title: Design exploration and optimization under uncertainty publication-title: Phys. Fluids doi: 10.1063/5.0020858 – volume: 30 start-page: 105108 year: 2018 ident: 2024031518152620400_c35 article-title: A data assimilation model for turbulent flows using continuous adjoint formulation publication-title: Phys. Fluids doi: 10.1063/1.5048727 – volume: 346 start-page: 707 year: 2019 ident: 2024031518152620400_c48 article-title: Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling publication-title: Comput. Method Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.010 – volume: 63 start-page: 056305 year: 2001 ident: 2024031518152620400_c80 article-title: Reynolds stress under a change of frame of reference publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.63.056305 – volume: 3 start-page: e1602614 year: 2017 ident: 2024031518152620400_c60 article-title: Data-driven discovery of partial differential equations publication-title: Sci. Adv. doi: 10.1126/sciadv.1602614 – volume: 31 start-page: 1 year: 1999 ident: 2024031518152620400_c120 article-title: Linear and nonlinear models of anisotropic turbulence publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.31.1.1 – volume: 20 start-page: 115101 year: 2008 ident: 2024031518152620400_c129 article-title: Reynolds stress closure for nonequilibrium effects in turbulent flows publication-title: Phys. Fluids doi: 10.1063/1.3006023 – volume: 3 start-page: 054606 year: 2018 ident: 2024031518152620400_c105 article-title: Secondary flow in turbulent ducts with increasing aspect ratio publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.054606 – start-page: 630 year: 2016 ident: 2024031518152620400_c108 article-title: Identity mappings in deep residual networks – volume: 31 start-page: 035101 year: 2019 ident: 2024031518152620400_c42 article-title: Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces publication-title: Phys. Fluids doi: 10.1063/1.5086341 – volume: 20 start-page: 721 year: 1977 ident: 2024031518152620400_c97 article-title: Realizability of Reynolds-stress turbulence models publication-title: Phys. Fluids doi: 10.1063/1.861942 – volume: 135 start-page: 559 year: 2019 ident: 2024031518152620400_c11 article-title: Classification of machine learning frameworks for data-driven thermal fluid models publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.09.002 – volume: 27 start-page: 092101 year: 2015 ident: 2024031518152620400_c62 article-title: Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system publication-title: Phys. Fluids doi: 10.1063/1.4930004 – volume: 4 start-page: 114601 year: 2019 ident: 2024031518152620400_c96 article-title: Higher-order realizable algebraic Reynolds stress modeling based on the square root tensor publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.114601 – volume: 3 start-page: 1 year: 1991 ident: 2024031518152620400_c93 article-title: Near-wall turbulence closure modeling without ‘damping functions’ publication-title: Theor. Comp. Fluid Dyn. doi: 10.1007/BF00271513 – volume: 258 start-page: 73 year: 2014 ident: 2024031518152620400_c18 article-title: Bayesian estimates of parameter variability in the k-ε turbulence model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.027 – volume: 31 start-page: 085112 year: 2019 ident: 2024031518152620400_c26 article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence publication-title: Phys. Fluids doi: 10.1063/1.5110788 – volume: 8 start-page: N32 year: 2007 ident: 2024031518152620400_c82 article-title: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches publication-title: J. Turbul. doi: 10.1080/14685240701506896 – volume: 145 start-page: 227 year: 1997 ident: 2024031518152620400_c91 article-title: A wall-distance-free low Re k-ϵ turbulence model publication-title: Comput. Method Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01202-9 – volume: 31 start-page: 015105 year: 2019 ident: 2024031518152620400_c23 article-title: Machine learning methods for turbulence modeling in subsonic flows around airfoils publication-title: Phys. Fluids doi: 10.1063/1.5061693 – volume: 47 start-page: e2020 year: 2020 ident: 2024031518152620400_c64 article-title: Data-driven equation discovery of ocean mesoscale closures publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL088376 – volume-title: Handbook of Fluid Dynamics year: 2016 ident: 2024031518152620400_c75 – volume: 12 start-page: 620 year: 1998 ident: 2024031518152620400_c118 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput. Phys. doi: 10.1063/1.168744 – ident: 2024031518152620400_c4 – volume: 7 start-page: 1048 year: 1964 ident: 2024031518152620400_c124 article-title: Direct-interaction approximation for shear and thermally driven turbulence publication-title: Phys. Fluids doi: 10.1063/1.1711320 – year: 2010 ident: 2024031518152620400_c113 article-title: Rectified linear units improve restricted Boltzmann machines – volume: 318 start-page: 22 year: 2016 ident: 2024031518152620400_c67 article-title: Machine learning strategies for systems with invariance properties publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.05.003 – volume: 305 start-page: 758 year: 2016 ident: 2024031518152620400_c32 article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.11.012 – volume: 25 start-page: 055105 year: 2013 ident: 2024031518152620400_c38 article-title: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations publication-title: Phys. Fluids doi: 10.1063/1.4807067 – volume: 47 start-page: e2020 year: 2020 ident: 2024031518152620400_c28 article-title: Deep learning emulation of subgrid-scale processes in turbulent shear flows publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL087005 – volume: 32 start-page: 105117 year: 2020 ident: 2024031518152620400_c49 article-title: Feature selection and processing of turbulence modeling based on an artificial neural network publication-title: Phys. Fluids doi: 10.1063/5.0022561 – volume: 32 start-page: 115101 year: 2020 ident: 2024031518152620400_c30 article-title: Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence publication-title: Phys. Fluids doi: 10.1063/5.0025138 – volume: 411 start-page: 109413 year: 2020 ident: 2024031518152620400_c22 article-title: RANS turbulence model development using CFD-driven machine learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109413 – volume: 525 start-page: 1 year: 2005 ident: 2024031518152620400_c85 article-title: An objective definition of a vortex publication-title: J. Fluid Mech. doi: 10.1017/S0022112004002526 – volume: 19 start-page: 53 year: 1987 ident: 2024031518152620400_c115 article-title: Turbulent secondary flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.19.010187.000413 – volume: 101 start-page: 084024 year: 2020 ident: 2024031518152620400_c29 article-title: Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.084024 – volume: 68 start-page: 298 year: 2017 ident: 2024031518152620400_c21 article-title: The development of algebraic stress models using a novel evolutionary algorithm publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2017.09.017 – volume: 811 start-page: 168 year: 2017 ident: 2024031518152620400_c121 article-title: Toward approximating non-local dynamics in single-point pressure–strain correlation closures publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.730 – volume: 383 start-page: 125 year: 2019 ident: 2024031518152620400_c86 article-title: Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.01.021 – volume: 18 start-page: 123 year: 1979 ident: 2024031518152620400_c81 article-title: Computational modeling of turbulent flows publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70266-7 – volume: 32 start-page: 015113 year: 2020 ident: 2024031518152620400_c63 article-title: Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data publication-title: Phys. Fluids doi: 10.1063/1.5136351 – volume: 8 start-page: 575 year: 1965 ident: 2024031518152620400_c123 article-title: Lagrangian-history closure approximation for turbulence publication-title: Phys. Fluids doi: 10.1063/1.1761271 – volume: 72 start-page: 331 year: 1975 ident: 2024031518152620400_c68 article-title: A more general effective-viscosity hypothesis publication-title: J. Fluid Mech. doi: 10.1017/S0022112075003382 – volume: 20 start-page: 101511 year: 2008 ident: 2024031518152620400_c101 article-title: Reynolds number effects on the Reynolds-stress budgets in turbulent channels publication-title: Phys. Fluids doi: 10.1063/1.3005862 – volume: 29 start-page: 115109 year: 2017 ident: 2024031518152620400_c25 article-title: A new subgrid characteristic length for turbulence simulations on anisotropic grids publication-title: Phys. Fluids doi: 10.1063/1.5012546 – volume: 871 start-page: R2 year: 2019 ident: 2024031518152620400_c107 article-title: Non-universal scaling transition of momentum cascade in wall turbulence publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.309 – volume: 113 start-page: 3932 year: 2016 ident: 2024031518152620400_c61 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1517384113 – volume: 4 start-page: 044603 year: 2019 ident: 2024031518152620400_c40 article-title: Eigenvector perturbation methodology for uncertainty quantification of turbulence models publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.044603 – volume: 32 start-page: 115124 year: 2020 ident: 2024031518152620400_c56 article-title: Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods publication-title: Phys. Fluids doi: 10.1063/5.0027524 – volume: 108 start-page: 1 year: 2019 ident: 2024031518152620400_c8 article-title: Quantification of model uncertainty in RANS simulations: A review publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2018.10.001 – volume: 31 start-page: 1191 year: 1993 ident: 2024031518152620400_c89 article-title: New time scale based k-ε model for near-wall turbulence publication-title: AIAA J. doi: 10.2514/3.11752 – ident: 2024031518152620400_c112 – volume: 21 start-page: 567 year: 2020 ident: 2024031518152620400_c14 article-title: A perspective on machine learning in turbulent flows publication-title: J. Turbul. doi: 10.1080/14685248.2020.1757685 – volume: 32 start-page: 064101 year: 2020 ident: 2024031518152620400_c36 article-title: Improving the k–ω–γ–Ar transition model by the field inversion and machine learning framework publication-title: Phys. Fluids doi: 10.1063/5.0008493 – volume: 32 start-page: 115106 year: 2020 ident: 2024031518152620400_c55 article-title: Deconvolutional artificial neural network models for large eddy simulation of turbulence publication-title: Phys. Fluids doi: 10.1063/5.0027146 – volume: 24 start-page: 011702 year: 2012 ident: 2024031518152620400_c1 article-title: Grid-point requirements for large eddy simulation: Chapman's estimates revisited publication-title: Phys. Fluids doi: 10.1063/1.3676783 – year: 2014 ident: 2024031518152620400_c92 article-title: Improvements to Rahman-Agarwal-Siikonen one-equation turbulence model based on k-ε closure – volume: 2 start-page: 024605 year: 2017 ident: 2024031518152620400_c39 article-title: Eigenspace perturbations for uncertainty estimation of single-point turbulence closures publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.024605 – start-page: 1027 year: 2007 ident: 2024031518152620400_c106 article-title: K-means++: The advantages of careful seeding – volume: 814 start-page: 1 year: 2017 ident: 2024031518152620400_c66 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.803 – year: 2018 ident: 2024031518152620400_c109 article-title: Multi-level residual networks from dynamical systems view – year: 2011 ident: 2024031518152620400_c31 article-title: Quantification of structural uncertainties in the k–ω turbulence model – volume: 324 start-page: 115 year: 2016 ident: 2024031518152620400_c45 article-title: Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.07.038 – volume: 41 start-page: 413 year: 1970 ident: 2024031518152620400_c69 article-title: Toward a turbulent constitutive relation publication-title: J. Fluid Mech. doi: 10.1017/S0022112070000678 – volume: 89 start-page: 589 year: 1978 ident: 2024031518152620400_c122 article-title: Turbulence memory in self-preserving wakes publication-title: J. Fluid Mech. doi: 10.1017/S002211207800275X – volume: 3 start-page: 074602 year: 2018 ident: 2024031518152620400_c47 article-title: Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.074602 – volume: 325 start-page: 22 year: 2016 ident: 2024031518152620400_c20 article-title: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.08.015 – volume: 144 start-page: 202 year: 2015 ident: 2024031518152620400_c41 article-title: Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2015.03.025 – ident: 2024031518152620400_c5 – volume: 50 start-page: 77 year: 2018 ident: 2024031518152620400_c6 article-title: Some recent developments in turbulence closure modeling publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122316-045020 – volume: 5 start-page: 084611 year: 2020 ident: 2024031518152620400_c27 article-title: Formulating turbulence closures using sparse regression with embedded form invariance publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.084611 – volume: 161 start-page: 211 year: 2018 ident: 2024031518152620400_c19 article-title: An efficient Bayesian uncertainty quantification approach with application to k-ω-γ transition modeling publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2017.11.007 – start-page: 2378 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2024031518152620400_c72 article-title: Stein variational gradient descent: A general purpose Bayesian inference algorithm – volume: 227 start-page: 245 year: 1991 ident: 2024031518152620400_c79 article-title: Modelling the pressure–strain correlation of turbulence: An invariant dynamical systems approach publication-title: J. Fluid Mech. doi: 10.1017/S0022112091000101 – volume: 23 start-page: 678 year: 2002 ident: 2024031518152620400_c100 article-title: Reynolds number effect on wall turbulence: Toward effective feedback control publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(02)00197-2 – volume: 51 start-page: 357 year: 2019 ident: 2024031518152620400_c12 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040547 |
SSID | ssj0003926 |
Score | 2.645545 |
Snippet | Reynolds-averaged Navier–Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for... Reynolds-averaged Navier-Stokes simulations represent a cost-effective option for practical engineering applications, but are facing ever-growing demands for... |
SourceID | swepub proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Artificial neural networks Aspect ratio Computational fluid dynamics Constraints Fluid dynamics Fluid flow Knowledge representation Machine learning Modelling Physics Realizability Reynolds number Reynolds stress Three dimensional flow Training Turbulence models Turbulent flow |
Title | An interpretable framework of data-driven turbulence modeling using deep neural networks |
URI | http://dx.doi.org/10.1063/5.0048909 https://www.proquest.com/docview/2533017303 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299314 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF6kRfRFa1V62sqiIkJZvSSbTfYxWKWI9cW23NuyP-1hSY67nA_-9c5mN8lVDqm-hLBMEphvM_vt8M0sQq9dqbTMC0cKPlWE8lITqeSUSJtJqmhW5s7nO86-stML-nmWz8ZTWbvqkla907-21pX8D6owBrj6Ktl_QHZ4KQzAPeALV0AYrrfCuKq7dg9BNOhLoFwvtfIc0Is_iVn6cHYMC4tad_VF4ewbnyBYd2kCY-3i2He1BKzqoAlfbTLWTiKqO8GHu17PTWjtxDndyCFczmtYXWQs1Ic512wmE9JklO7F-AcRgAAJCUM2jpWcFCwcjtIHzdC9Ik6OfGssBvIDDvQpK1pyX2O5mwKVh1i0W52cffk2rJfA0FhQhoZP9_2fWPZ-ePgmaxi3AveAJwTJwh-tXjt6cL6HHkRej6sA0iN0x9b76GHk-DhG0NU-uhv9-RjNqhrfQA8P6OHG4Q308Ige7tHDHXrYo4cDerhH7wm6-PTx_MMpiedcEA30rSXGcyRHC8VZIlOtgbNlnFpPFZzJp1rRhOaOOS0thw2tSqhmuWRT51KTcqOyp2inbmp7gLBvrp9zYMWygI0lt2XJpFZlZk1qYetuJuht70fRe86fRXItOjECy0Quossn6OVgugidT7YZHfZgiPhjrETqFcsJLB3ZBL0aAPrbS7ZY_WyWo4VYGDdBbwLAg4nvjH4yv6xEs_wufrRXAqhVltBnt_roc3R__AEO0U67XNsj4JetehEn6G-hsnv2 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interpretable+framework+of+data-driven+turbulence+modeling+using+deep+neural+networks&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Vinuesa%2C+Ricardo&rft.date=2021-05-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1063%2F5.0048909 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |