Exploring the molecular mechanisms of tirzepatide in alleviating metabolic dysfunction-associated fatty liver in mice through integration of metabolomics, lipidomics, and proteomics
Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminar...
Saved in:
Published in | Lipids in health and disease Vol. 24; no. 1; pp. 8 - 17 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.01.2025
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD). The results demonstrated that tirzepatide significantly reduced serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as hepatic triglycerides (TG) and total cholesterol (TC), indicating its efficacy in treating MAFLD. Further findings revealed that tirzepatide reduced fatty acid uptake by downregulating Cd36 and Fabp2/4, as well as enhance the mitochondrial-lysosomal function by upregulating Lamp1/2. In addition, tirzepatide promoted cholesterol efflux and reduced cholesterol reabsorption by upregulating the expression of Hnf4a, Abcg5, and Abcg8. These results suggest that tirzepatide exerts its therapeutic effects on MAFLD by reducing fatty acid uptake, promoting cholesterol excretion, and enhancing mitochondrial-lysosomal function, providing a theoretical basis for a comprehensive understanding of tirzepatide. |
---|---|
AbstractList | Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD). The results demonstrated that tirzepatide significantly reduced serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as hepatic triglycerides (TG) and total cholesterol (TC), indicating its efficacy in treating MAFLD. Further findings revealed that tirzepatide reduced fatty acid uptake by downregulating Cd36 and Fabp2/4, as well as enhance the mitochondrial-lysosomal function by upregulating Lamp1/2. In addition, tirzepatide promoted cholesterol efflux and reduced cholesterol reabsorption by upregulating the expression of Hnf4a, Abcg5, and Abcg8. These results suggest that tirzepatide exerts its therapeutic effects on MAFLD by reducing fatty acid uptake, promoting cholesterol excretion, and enhancing mitochondrial-lysosomal function, providing a theoretical basis for a comprehensive understanding of tirzepatide. Keywords: Metabolic dysfunction-associated fatty liver disease, Tirzepatide, Metabolomics, Lipidomics, Proteomics Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD). The results demonstrated that tirzepatide significantly reduced serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as hepatic triglycerides (TG) and total cholesterol (TC), indicating its efficacy in treating MAFLD. Further findings revealed that tirzepatide reduced fatty acid uptake by downregulating Cd36 and Fabp2/4, as well as enhance the mitochondrial-lysosomal function by upregulating Lamp1/2. In addition, tirzepatide promoted cholesterol efflux and reduced cholesterol reabsorption by upregulating the expression of Hnf4a, Abcg5, and Abcg8. These results suggest that tirzepatide exerts its therapeutic effects on MAFLD by reducing fatty acid uptake, promoting cholesterol excretion, and enhancing mitochondrial-lysosomal function, providing a theoretical basis for a comprehensive understanding of tirzepatide. Abstract Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD). The results demonstrated that tirzepatide significantly reduced serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as hepatic triglycerides (TG) and total cholesterol (TC), indicating its efficacy in treating MAFLD. Further findings revealed that tirzepatide reduced fatty acid uptake by downregulating Cd36 and Fabp2/4, as well as enhance the mitochondrial-lysosomal function by upregulating Lamp1/2. In addition, tirzepatide promoted cholesterol efflux and reduced cholesterol reabsorption by upregulating the expression of Hnf4a, Abcg5, and Abcg8. These results suggest that tirzepatide exerts its therapeutic effects on MAFLD by reducing fatty acid uptake, promoting cholesterol excretion, and enhancing mitochondrial-lysosomal function, providing a theoretical basis for a comprehensive understanding of tirzepatide. Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD). The results demonstrated that tirzepatide significantly reduced serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as hepatic triglycerides (TG) and total cholesterol (TC), indicating its efficacy in treating MAFLD. Further findings revealed that tirzepatide reduced fatty acid uptake by downregulating Cd36 and Fabp2/4, as well as enhance the mitochondrial-lysosomal function by upregulating Lamp1/2. In addition, tirzepatide promoted cholesterol efflux and reduced cholesterol reabsorption by upregulating the expression of Hnf4a, Abcg5, and Abcg8. These results suggest that tirzepatide exerts its therapeutic effects on MAFLD by reducing fatty acid uptake, promoting cholesterol excretion, and enhancing mitochondrial-lysosomal function, providing a theoretical basis for a comprehensive understanding of tirzepatide.Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD). The results demonstrated that tirzepatide significantly reduced serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as hepatic triglycerides (TG) and total cholesterol (TC), indicating its efficacy in treating MAFLD. Further findings revealed that tirzepatide reduced fatty acid uptake by downregulating Cd36 and Fabp2/4, as well as enhance the mitochondrial-lysosomal function by upregulating Lamp1/2. In addition, tirzepatide promoted cholesterol efflux and reduced cholesterol reabsorption by upregulating the expression of Hnf4a, Abcg5, and Abcg8. These results suggest that tirzepatide exerts its therapeutic effects on MAFLD by reducing fatty acid uptake, promoting cholesterol excretion, and enhancing mitochondrial-lysosomal function, providing a theoretical basis for a comprehensive understanding of tirzepatide. |
ArticleNumber | 8 |
Audience | Academic |
Author | Lv, Guo Liu, Huanyi Chen, Xiaotong Hu, Kunhua Sun, Hongyan Liang, Jinliang Yang, Zhaoshou |
Author_xml | – sequence: 1 givenname: Jinliang surname: Liang fullname: Liang, Jinliang – sequence: 2 givenname: Huanyi surname: Liu fullname: Liu, Huanyi – sequence: 3 givenname: Guo surname: Lv fullname: Lv, Guo – sequence: 4 givenname: Xiaotong surname: Chen fullname: Chen, Xiaotong – sequence: 5 givenname: Zhaoshou surname: Yang fullname: Yang, Zhaoshou – sequence: 6 givenname: Kunhua surname: Hu fullname: Hu, Kunhua – sequence: 7 givenname: Hongyan surname: Sun fullname: Sun, Hongyan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39794823$$D View this record in MEDLINE/PubMed |
BookMark | eNptks2KFDEUhQsZcX70BVxIwI0La0xSqVTVchhGHRhwo-Au3E5uujOkKm2SGqZ9L9_PdFc7KEgIyQ3fOfk759XJFCasqteMXjLWyw-J8UGImvJDZ7Lmz6ozJjpZt4x9P_lrflqdp3RPKaedlC-q02boBtHz5qz6dfO49SG6aU3yBskYPOrZQyQj6g1MLo2JBEuyiz9xC9kZJG4i4D0-uFIW2YgZVsE7Tcwu2XnS2YWphpSCLgQaYiHnHfHuAeNeOzqNZa8Y5vWm1BnXEfaS_TZHr1CY9L5Its4c5zAZso0h46F-WT234BO-Oo4X1bePN1-vP9d3Xz7dXl_d1Vo0LNeadthaKZoVl9wgSo6N0KjNSvRS9ppZ2vait6w1CK1klGHLGgqMcyo5QHNR3S6-JsC92kY3QtypAE4dFkJcK4jZaY_KmMGANGIQ1grdDAMMWjbGih7LGVZt8Xq3eJVr_JgxZTW6pNF7mDDMSTWsFYKyQbKCvl3QNRRnN9mQI-g9rq7Kr9G-Y91QqMv_UKUZLG9UomJdWf9H8OZ4gnk1onm6z580FIAvgI4hpYj2CWFU7SOnlsipEjd1iJzizW9yJMzd |
Cites_doi | 10.1136/gutjnl-2020-320622 10.1038/s41574-022-00783-3 10.1016/j.cmet.2013.01.003 10.1055/s-2001-12928 10.1016/j.cmet.2017.07.011 10.1016/j.apsb.2021.09.019 10.1016/s0140-6736(21)01324-6 10.1038/s41392-024-01811-6 10.1007/s00018-018-2860-6 10.1172/jci.insight.133429 10.1186/s13059-017-1215-1 10.1038/s41467-024-48956-0 10.1056/NEJMoa2206038 10.1146/annurev.nutr.012809.104810 10.1038/s42255-023-00811-0 10.1007/s13340-017-0317-z 10.1080/15548627.2019.1591672 10.1016/j.cmet.2018.04.015 10.1016/s2468-1253(21)00020-0 10.1016/j.jare.2023.01.008 10.1002/hep.21006 10.1053/j.gastro.2018.12.036 10.1038/s41591-023-02242-6 10.1080/15548627.2023.2196876 10.1016/s2468-1253(22)00338-7 10.1093/gerona/glab296 10.1080/15548627.2019.1635383 10.1016/s2468-1253(22)00165-0 10.1056/NEJMoa2208601 10.3390/cells10092502 10.1016/s2468-1253(23)00068-7 10.1016/s0140-6736(20)32511-3 10.1172/jci146353 10.1016/j.cmet.2021.01.015 10.3390/ijms15058713 10.1038/s41586-018-0466-7 10.1002/hep.26226 10.1136/gutjnl-2023-330595 10.1038/s41467-022-33025-1 10.1016/j.lfs.2020.118629 10.1038/s41591-023-02597-w 10.1186/s12859-017-1579-y 10.1038/s41586-022-05006-3 10.1016/j.ebiom.2023.104684 10.7150/ijbs.85443 10.1016/j.cmet.2019.07.013 10.1038/s41591-018-0104-9 10.1016/j.jhep.2024.04.034 10.1016/j.tem.2020.02.006 10.1038/s41421-020-0141-7 10.1016/j.cmet.2018.03.001 10.1080/15548627.2024.2366748 10.1016/j.jhep.2018.04.006 10.1007/s40265-022-01746-8 10.1038/s42255-023-00930-8 10.1172/jci75276 10.3389/fphar.2023.1146960 10.1038/nprot.2011.335 10.1021/ac051632c 10.1111/obr.13081 10.1016/j.molcel.2023.06.004 10.1136/gutjnl-2020-322572 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. |
Copyright_xml | – notice: 2024. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1186/s12944-024-02416-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1476-511X |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_dd9da6d494ff4c399a9c63df48ee5fb5 A823087179 39794823 10_1186_s12944_024_02416_2 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 82472868 and 82172585 – fundername: the Guangzhou Municipal Institute Enterprise Joint Funding Project grantid: 2024A03J0101 – fundername: the Science and Technology Program of Guangzhou grantid: 202103000051 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IGS IHR INH INR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB PJZUB PUEGO |
ID | FETCH-LOGICAL-c431t-c07e5f643b262dee62e34cecdb48668c1f05848f15dea56101e5130a122062aa3 |
IEDL.DBID | DOA |
ISSN | 1476-511X |
IngestDate | Wed Aug 27 01:30:17 EDT 2025 Fri Jul 11 11:48:05 EDT 2025 Tue Jun 17 21:59:45 EDT 2025 Tue Jun 10 20:53:59 EDT 2025 Fri May 02 01:41:26 EDT 2025 Tue Jul 01 00:23:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Metabolomics Lipidomics Tirzepatide Metabolic dysfunction-associated fatty liver disease Proteomics |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-c07e5f643b262dee62e34cecdb48668c1f05848f15dea56101e5130a122062aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/dd9da6d494ff4c399a9c63df48ee5fb5 |
PMID | 39794823 |
PQID | 3154401961 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dd9da6d494ff4c399a9c63df48ee5fb5 proquest_miscellaneous_3154401961 gale_infotracmisc_A823087179 gale_infotracacademiconefile_A823087179 pubmed_primary_39794823 crossref_primary_10_1186_s12944_024_02416_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-10 |
PublicationDateYYYYMMDD | 2025-01-10 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Lipids in health and disease |
PublicationTitleAlternate | Lipids Health Dis |
PublicationYear | 2025 |
Publisher | BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BMC |
References | 2416_CR17 XW Zhang (2416_CR55) 2020; 16 2416_CR57 R Hammoud (2416_CR8) 2023; 19 K El (2416_CR16) 2023; 5 RJ Samms (2416_CR15) 2020; 31 N Harada (2416_CR41) 2017; 8 F Dieterle (2416_CR24) 2006; 78 WW Yim (2416_CR53) 2020; 6 TM Chang (2416_CR54) 2024; 20 MS Rao (2416_CR45) 2001; 21 J Rosenstock (2416_CR37) 2021; 398 TA Wadden (2416_CR18) 2023; 29 SI Sayin (2416_CR60) 2013; 17 AM Jastreboff (2416_CR19) 2022; 387 X Guo (2416_CR20) 2023; 14 2416_CR48 G Targher (2416_CR7) 2021; 6 AS Tibbetts (2416_CR28) 2010; 30 EE Powell (2416_CR2) 2021; 397 L Verschuren (2416_CR5) 2024; 15 2416_CR42 K Riazi (2416_CR1) 2022; 7 2416_CR43 H-Y Li (2416_CR3) 2023; 52 2416_CR40 JS Fleishman (2416_CR62) 2024; 9 Q Zhang (2416_CR12) 2021; 33 G Eelen (2416_CR27) 2018; 561 A Mantovani (2416_CR33) 2021; 70 L Y (2416_CR61) 2023; 19 DH Ipsen (2416_CR46) 2018; 75 L Castera (2416_CR31) 2019; 156 L Zhao (2416_CR44) 2018; 69 K Begriche (2416_CR51) 2013; 58 SA Harrison (2416_CR4) 2023; 29 G Targher (2416_CR21) 2023; 8 2416_CR30 SA Harrison (2416_CR36) 2024 BL Baechler (2416_CR47) 2019; 15 Y Li (2416_CR56) 2023; 19 D Du (2416_CR49) 2022; 12 Z Ying (2416_CR38) 2023; 93 Y Hasin (2416_CR22) 2017; 18 I Preguiça (2416_CR29) 2020; 21 J Zhang (2416_CR58) 2023; 83 PJ White (2416_CR26) 2018; 27 G Targher (2416_CR6) 2020; 69 AE Adriaenssens (2416_CR11) 2019; 30 A Picca (2416_CR50) 2023; 5 JQ Wang (2416_CR63) 2022; 608 A Secher (2416_CR39) 2014; 124 F Nassir (2416_CR52) 2014; 15 G Targher (2416_CR32) 2024; 73 B Wen (2416_CR23) 2017; 18 R Loomba (2416_CR35) 2023; 8 YY Syed (2416_CR14) 2022; 82 SL Friedman (2416_CR34) 2018; 24 X Ding (2416_CR9) 2006; 43 DJ Drucker (2416_CR10) 2018; 27 D Weghuber (2416_CR13) 2022; 387 WB Dunn (2416_CR25) 2011; 6 W Zhang (2416_CR59) 2022; 13 |
References_xml | – volume: 69 start-page: 1691 issue: 9 year: 2020 ident: 2416_CR6 publication-title: Gut doi: 10.1136/gutjnl-2020-320622 – volume: 19 start-page: 201 issue: 4 year: 2023 ident: 2416_CR8 publication-title: Endocrinology doi: 10.1038/s41574-022-00783-3 – volume: 17 start-page: 225 issue: 2 year: 2013 ident: 2416_CR60 publication-title: Cell Metabol doi: 10.1016/j.cmet.2013.01.003 – volume: 21 start-page: 43 issue: 1 year: 2001 ident: 2416_CR45 publication-title: Semin Liver Dis doi: 10.1055/s-2001-12928 – ident: 2416_CR42 doi: 10.1016/j.cmet.2017.07.011 – volume: 12 start-page: 558 issue: 2 year: 2022 ident: 2416_CR49 publication-title: Acta Pharm Sinica B doi: 10.1016/j.apsb.2021.09.019 – volume: 398 start-page: 143 issue: 10295 year: 2021 ident: 2416_CR37 publication-title: Lancet (London England) doi: 10.1016/s0140-6736(21)01324-6 – volume: 9 start-page: 97 issue: 1 year: 2024 ident: 2416_CR62 publication-title: Signal Transduct Target Therapy doi: 10.1038/s41392-024-01811-6 – volume: 75 start-page: 3313 issue: 18 year: 2018 ident: 2416_CR46 publication-title: Cell Mol life Sci : CMLS doi: 10.1007/s00018-018-2860-6 – ident: 2416_CR40 doi: 10.1172/jci.insight.133429 – volume: 18 start-page: 83 issue: 1 year: 2017 ident: 2416_CR22 publication-title: Genome Biol doi: 10.1186/s13059-017-1215-1 – volume: 15 start-page: 4564 issue: 1 year: 2024 ident: 2416_CR5 publication-title: Nat Commun doi: 10.1038/s41467-024-48956-0 – volume: 387 start-page: 205 issue: 3 year: 2022 ident: 2416_CR19 publication-title: N Engl J Med doi: 10.1056/NEJMoa2206038 – volume: 30 start-page: 57 year: 2010 ident: 2416_CR28 publication-title: Annu Rev Nutr doi: 10.1146/annurev.nutr.012809.104810 – volume: 5 start-page: 945 issue: 6 year: 2023 ident: 2416_CR16 publication-title: Nat Metabolism doi: 10.1038/s42255-023-00811-0 – volume: 8 start-page: 137 issue: 2 year: 2017 ident: 2416_CR41 publication-title: Diabetol Int doi: 10.1007/s13340-017-0317-z – volume: 15 start-page: 1606 issue: 9 year: 2019 ident: 2416_CR47 publication-title: Autophagy doi: 10.1080/15548627.2019.1591672 – volume: 27 start-page: 1281 issue: 6 year: 2018 ident: 2416_CR26 publication-title: Cell Metabol doi: 10.1016/j.cmet.2018.04.015 – volume: 6 start-page: 578 issue: 7 year: 2021 ident: 2416_CR7 publication-title: Gastroenterol Hepatol doi: 10.1016/s2468-1253(21)00020-0 – volume: 52 start-page: 59 year: 2023 ident: 2416_CR3 publication-title: J Adv Res doi: 10.1016/j.jare.2023.01.008 – volume: 43 start-page: 173 issue: 1 year: 2006 ident: 2416_CR9 publication-title: Hepatology (Baltimore MD) doi: 10.1002/hep.21006 – volume: 156 start-page: 1264 issue: 5 year: 2019 ident: 2416_CR31 publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.12.036 – volume: 29 start-page: 562 issue: 3 year: 2023 ident: 2416_CR4 publication-title: Nat Med doi: 10.1038/s41591-023-02242-6 – volume: 19 start-page: 2504 issue: 9 year: 2023 ident: 2416_CR56 publication-title: Autophagy doi: 10.1080/15548627.2023.2196876 – volume: 8 start-page: 179 issue: 2 year: 2023 ident: 2416_CR21 publication-title: Gastroenterol Hepatol doi: 10.1016/s2468-1253(22)00338-7 – ident: 2416_CR48 doi: 10.1093/gerona/glab296 – volume: 16 start-page: 782 issue: 5 year: 2020 ident: 2416_CR55 publication-title: Autophagy doi: 10.1080/15548627.2019.1635383 – volume: 7 start-page: 851 issue: 9 year: 2022 ident: 2416_CR1 publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/s2468-1253(22)00165-0 – volume: 387 start-page: 2245 issue: 24 year: 2022 ident: 2416_CR13 publication-title: N Engl J Med doi: 10.1056/NEJMoa2208601 – volume: 19 start-page: 2504 issue: 9 year: 2023 ident: 2416_CR61 publication-title: - Autophagy doi: 10.1080/15548627.2023.2196876 – ident: 2416_CR30 doi: 10.3390/cells10092502 – volume: 8 start-page: 511 issue: 6 year: 2023 ident: 2416_CR35 publication-title: Gastroenterol Hepatol doi: 10.1016/s2468-1253(23)00068-7 – volume: 397 start-page: 2212 issue: 10290 year: 2021 ident: 2416_CR2 publication-title: Lancet doi: 10.1016/s0140-6736(20)32511-3 – ident: 2416_CR17 doi: 10.1172/jci146353 – volume: 33 start-page: 833 issue: 4 year: 2021 ident: 2416_CR12 publication-title: Cell Metabol doi: 10.1016/j.cmet.2021.01.015 – volume: 15 start-page: 8713 issue: 5 year: 2014 ident: 2416_CR52 publication-title: Int J Mol Sci doi: 10.3390/ijms15058713 – volume: 561 start-page: 63 issue: 7721 year: 2018 ident: 2416_CR27 publication-title: Nature doi: 10.1038/s41586-018-0466-7 – volume: 58 start-page: 1497 issue: 4 year: 2013 ident: 2416_CR51 publication-title: Hepatology (Baltimore MD) doi: 10.1002/hep.26226 – volume: 73 start-page: 691 issue: 4 year: 2024 ident: 2416_CR32 publication-title: Gut doi: 10.1136/gutjnl-2023-330595 – volume: 13 start-page: 5351 issue: 1 year: 2022 ident: 2416_CR59 publication-title: Nat Commun doi: 10.1038/s41467-022-33025-1 – ident: 2416_CR43 doi: 10.1016/j.lfs.2020.118629 – volume: 29 start-page: 2909 issue: 11 year: 2023 ident: 2416_CR18 publication-title: Nat Med doi: 10.1038/s41591-023-02597-w – volume: 18 start-page: 183 issue: 1 year: 2017 ident: 2416_CR23 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1579-y – volume: 608 start-page: 413 issue: 7922 year: 2022 ident: 2416_CR63 publication-title: Nature doi: 10.1038/s41586-022-05006-3 – volume: 93 start-page: 104684 year: 2023 ident: 2416_CR38 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2023.104684 – volume: 20 start-page: 1093 issue: 3 year: 2024 ident: 2416_CR54 publication-title: Int J Biol Sci doi: 10.7150/ijbs.85443 – volume: 30 start-page: 987 issue: 5 year: 2019 ident: 2416_CR11 publication-title: Cell Metabol doi: 10.1016/j.cmet.2019.07.013 – volume: 24 start-page: 908 issue: 7 year: 2018 ident: 2416_CR34 publication-title: Nat Med doi: 10.1038/s41591-018-0104-9 – year: 2024 ident: 2416_CR36 publication-title: J Hepatol doi: 10.1016/j.jhep.2024.04.034 – volume: 31 start-page: 410 issue: 6 year: 2020 ident: 2416_CR15 publication-title: TEM doi: 10.1016/j.tem.2020.02.006 – volume: 6 start-page: 6 year: 2020 ident: 2416_CR53 publication-title: Cell Discovery doi: 10.1038/s41421-020-0141-7 – volume: 27 start-page: 740 issue: 4 year: 2018 ident: 2416_CR10 publication-title: Cell Metabol doi: 10.1016/j.cmet.2018.03.001 – ident: 2416_CR57 doi: 10.1080/15548627.2024.2366748 – volume: 69 start-page: 705 issue: 3 year: 2018 ident: 2416_CR44 publication-title: J Hepatol doi: 10.1016/j.jhep.2018.04.006 – volume: 82 start-page: 1213 issue: 11 year: 2022 ident: 2416_CR14 publication-title: Tirzepatide: First Approval Drugs doi: 10.1007/s40265-022-01746-8 – volume: 5 start-page: 2047 issue: 12 year: 2023 ident: 2416_CR50 publication-title: Nat Metabolism doi: 10.1038/s42255-023-00930-8 – volume: 124 start-page: 4473 issue: 10 year: 2014 ident: 2416_CR39 publication-title: J Clin Investig doi: 10.1172/jci75276 – volume: 14 start-page: 1146960 year: 2023 ident: 2416_CR20 publication-title: Front Pharmacol doi: 10.3389/fphar.2023.1146960 – volume: 6 start-page: 1060 issue: 7 year: 2011 ident: 2416_CR25 publication-title: Nat Protoc doi: 10.1038/nprot.2011.335 – volume: 78 start-page: 4281 issue: 13 year: 2006 ident: 2416_CR24 publication-title: Anal Chem doi: 10.1021/ac051632c – volume: 21 start-page: e13081 issue: 12 year: 2020 ident: 2416_CR29 publication-title: Obes Reviews: Official J Int Association Study Obes doi: 10.1111/obr.13081 – volume: 83 start-page: 2524 issue: 14 year: 2023 ident: 2416_CR58 publication-title: Mol Cell doi: 10.1016/j.molcel.2023.06.004 – volume: 70 start-page: 962 issue: 5 year: 2021 ident: 2416_CR33 publication-title: Gut doi: 10.1136/gutjnl-2020-322572 |
SSID | ssj0020766 |
Score | 2.3816655 |
Snippet | Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association... Abstract Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 8 |
SubjectTerms | Alanine Transaminase - blood Animals Aspartate Aminotransferases - blood Cholesterol - metabolism Diet, High-Fat - adverse effects Drug therapy Fatty liver Fatty Liver - drug therapy Fatty Liver - metabolism Fatty Liver - pathology Lipid Metabolism - drug effects Lipidomics Liver - drug effects Liver - metabolism Liver - pathology Male Medical research Medicine, Experimental Metabolic dysfunction-associated fatty liver disease Metabolomics Mice Mice, Inbred C57BL Non-alcoholic Fatty Liver Disease - drug therapy Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology Pharmacokinetics Physiological aspects Proteomics Tirzepatide Triglycerides - metabolism |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA_HCeKL6J1_6p0SQfRBq202TdsHkVU8DmF9cuHeQppMpLDtnm1Pbv1efj9nsu3C6j36UGi3mWy7v5nMzM5khrEXJi8FFDlKWlL4GDUUxEYWEBdWWIP6zoOliO7iqzpfyi8X2cUBm9odjT9gf6NrR_2klt3q7fWPzQcU-PdB4Av1rkedJWWM2oaOVMW4JN_Ck5wEdSF3UQWBPruaNs7cSLennEIN_39X6r_sz6CHzu6xu6MByedbxO-zA2iP2PG8Ree52fCXPKR0hv_Kj9jtxRg5P2a_d8l2HE0-3kxdcXkDtPe37puerz0f6u4XUJK1A163nBqt_CTwkKyBARlmVVvuNj2pQ4I0NiO84Lg3w7DhK0r0IFrqc8_HNkB8qkqBJPQ141y0I7p_gySXtRvPTet4qB0Rrh-w5dnnb5_O47FlQ2wR5yG2SQ6ZRyunEko4ACVgJi1YV8lCqcKmPkGLp_Bp5sCQ6ZZChlrUpEIkShgze8gO23ULjxnH8YmrrJt5Yaiqm0mdpbCny3CNznwVsdcTVvpyW5lDB4-mUHqLrEZUdUBWi4h9JDh3I6mqdvhg3X3Xo5Bq50pnlJOl9F5aNN1MadXMeWRefKsqi9grYgZN3Dh0xppxCwM-MFXR0nOKWqIHmpcRO90biTJr924_n9hJ0y1KdGthfdXrGVVHoppFacQebfls98wUgpU4x5P_8S4n7I6gVsYJZTSessOhu4KnaF8N1bMgNH8AOMgnAg priority: 102 providerName: Scholars Portal |
Title | Exploring the molecular mechanisms of tirzepatide in alleviating metabolic dysfunction-associated fatty liver in mice through integration of metabolomics, lipidomics, and proteomics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39794823 https://www.proquest.com/docview/3154401961 https://doaj.org/article/dd9da6d494ff4c399a9c63df48ee5fb5 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagSIgLghZooKyMhOAAURPH6zjHFLWqVtoKAZX2Zjl-SJGabLVJkZb_xf9jxklWLBy4cNhnbK83M843kxl_Q8hbnRfMyRxWWiJ9DAjlYs2li6VhRgPeeWcworu8EpfXfLGar34r9YU5YQM98HDiTq0trBaWF9x7bgBOdWFEZj0M6Oa-CuylgHmTMzW6WuCdi2mLjBSnHaAa5zHgET5SEbM9GAps_X9fk_-wNAPiXDwhj0dTkZbDFJ-Se649JEdlC25ys6XvaEjeDHfFD8nD5RgjPyI_d2l1FIw72kz1b2njcJdv3TUdXXva15sfDtOpraN1S7GkyncUE3RrXA-qcVMbarcdAh8KL9ajIJ2lXvf9lt5gSgf2xYr2dCz4Qyf-CeiCPzOOhXufu4_Q5ba243vdWhpYIsLnZ-T64vzbp8t4LM4QG5BoH5skh_MP9kzFBLPOCeYybpyxFZdCSJP6BGwb6dO5dRqNtNTNAS91ylgimNbZc3LQrlt3TCi0T2xlbOaZRv42nVqDAU47h6sxyDgiHyZZqduBg0MF30UKNUhWgVRVkKxiETlDce5aIn92-AK0So1apf6lVRF5j8qgcJX3G230uFkBJox8WarE-CT4mnkRkZO9lrA6zd7hN5M6KTyEKW2tW991KkMeJGQnSiPyYtCz3Zwx2MphjJf_47-8Io8YFi0O941OyEG_uXOvwZLqqxm5n6_yGXlQlouvC3g9O7_6_GUWlhI8L7n8BVD6JSw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+molecular+mechanisms+of+tirzepatide+in+alleviating+metabolic+dysfunction-associated+fatty+liver+in+mice+through+integration+of+metabolomics%2C+lipidomics%2C+and+proteomics&rft.jtitle=Lipids+in+health+and+disease&rft.au=Jinliang+Liang&rft.au=Huanyi+Liu&rft.au=Guo+Lv&rft.au=Xiaotong+Chen&rft.date=2025-01-10&rft.pub=BMC&rft.eissn=1476-511X&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1186%2Fs12944-024-02416-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd9da6d494ff4c399a9c63df48ee5fb5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-511X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-511X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-511X&client=summon |