Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements
The mechanism of coffee eliciting erosion on teeth is unclear as few studies have investigated the direct effect of coffee on enamel and dentin structures. The present study identified how coffee, the most popular beverage worldwide, induces staining and erosion on teeth. We show the grade of erosio...
Saved in:
Published in | Talanta (Oxford) Vol. 189; pp. 550 - 559 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The mechanism of coffee eliciting erosion on teeth is unclear as few studies have investigated the direct effect of coffee on enamel and dentin structures. The present study identified how coffee, the most popular beverage worldwide, induces staining and erosion on teeth. We show the grade of erosion of molars and incisors in Sprague Dawley rats from two different age groups, young (four weeks) and old (six months). We quantified the concentration of metals contained in coffee by mass spectrometry (ICP-MS). To determine elemental content in enamel (i.e. superficial) and dentin (i.e. substructure), we used Laser-induced Breakdown Spectroscopy (LIBS) and X-ray fluorescence (XRF) spectroscopy, respectively. For LIBS, a significant decrease of Ca, P, and Na was observed in the young coffee group relative to age-matched controls, whereas a significant increase in Mn, Fe, and K was observed. In the old coffee group, a significant increase of Mg, Fe, and K was observed along with a decrease of Mg, Ca, P, Na, Sr and Zn. For XRF, a significant decrease of the Ca/P ratio in the coffee group was observed. Spectroscopy results were correlated with scanning electron microscopy (SEM) and histological analysis. The SEM analysis showed pores and open spaces between young and old coffee groups, respectively. Thinning of enamel layers, loss of continuity in the enamel-dentin-junction, and wide spaces in dentin tubules with coffee use was found histologically. Coffee induces decalcification of teeth that corresponds to erosion, exposing the dentin structure by reducing enamel. Coffee immersion demonstrated an intrinsic staining in dentin by metal deposition.
[Display omitted]
•No study has determined how coffee affects enamel and dentin in teeth.•Laser induced breakdown spectroscopy (LIBS) and X-ray fluorescent (XRF) measured enamel and dentin, respectively.•We compared LIBS and XRF with histological and electron microscopic analysis.•Weakened enamel results in sequestration of elements essential to dentin structure.•Superficial staining of teeth by coffee elicits demineralization by affecting hydroxyapatite matrix. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2018.07.032 |