Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling
Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of c...
Saved in:
Published in | Chinese journal of natural medicines Vol. 18; no. 5; pp. 345 - 355 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10−9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development. |
---|---|
AbstractList | Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10⁻⁹) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development. Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10-9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10-9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development. Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (K = 7.77 × 10 ) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development. Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10−9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development. Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo . Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (K ~D= 7.77 × 10 −9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development. |
Author | LI, Xue-Ying TAO, Homng LIAO, Wen-Feng DU, Zhen-Yun DING, Kan TANG, Qing-Jiu JIN, Can |
Author_xml | – sequence: 1 givenname: Xue-Ying surname: LI fullname: LI, Xue-Ying organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 2 givenname: Homng surname: TAO fullname: TAO, Homng organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 3 givenname: Can surname: JIN fullname: JIN, Can organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 4 givenname: Zhen-Yun surname: DU fullname: DU, Zhen-Yun organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 5 givenname: Wen-Feng surname: LIAO fullname: LIAO, Wen-Feng organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 6 givenname: Qing-Jiu surname: TANG fullname: TANG, Qing-Jiu email: tangqingjiu@saas.sh.cn organization: Institute of Edible Fungi, Shanghai Academy of Agricultural Science, Shanghai 201203, China – sequence: 7 givenname: Kan surname: DING fullname: DING, Kan email: dingkan@simm.ac.cn organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32451092$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1PGzEQtSoQUMpPaOUjPWzrz8VRDxWKCEVFqkThbHnt2eB2Y6e2k4p_X28CCHFJfRjPjN-b8cx7i_ZCDIDQe0o-UULbzz-pOpON5K04ZeQjJ0TQRr1BR8_pvRf-ITrJ-Repp5WU0_YAHXImJCUTdoRW05jcg4WlD9iHe9_5kvHSBJvAFG-xrS4kbGEY8DzFv-W-wvDalxSxCW4brGM1BheT5lB8mOPZ5eyGbd67IdrfY-ri5jvOfh7MUKN3aL83Q4aTx_sY3c0ubqffmusfl1fT8-vGCk5L03VGCtVR4Rwo23Nwbcuo6ztuhTUWoJcEDGVESXBcysmZrGP11DjGJYDgx-h0W3eZ4p8V5KIXPo-zmABxlTUb90OF4nw3VEwUa4lS9D-gpJ3IamWFfniErroFOL1MfmHSg34SoAK-bAE2xZwT9Nr6UjcfQ0nGD5oSPSquN4rr8buaEb1RXKvKlq_YTw128b5ueVCXv_aQdLYeqtLOJ7BFu-h3VPgHSvvB-g |
CitedBy_id | crossref_primary_10_1002_jcla_24584 crossref_primary_10_1097_HC9_0000000000000633 crossref_primary_10_1002_fsn3_2636 crossref_primary_10_3389_fphar_2024_1367820 crossref_primary_10_3389_fphar_2022_1051952 |
Cites_doi | 10.1016/j.bbamcr.2006.10.001 10.1016/j.cytogfr.2005.01.001 10.1016/S0092-8674(00)80252-4 10.1128/MCB.00630-10 10.1038/nrgastro.2012.115 10.3390/molecules21101267 10.1126/science.281.5381.1312 10.2147/OTT.S164670 10.1073/pnas.052138899 10.1016/j.bbrc.2016.06.149 10.1158/1078-0432.CCR-14-3212 10.1038/sj.onc.1210422 10.1158/1078-0432.CCR-11-0659 10.1016/0092-8674(93)90499-G 10.1126/science.7792600 10.1126/scisignal.2001034 10.1128/MCB.18.7.3966 10.1016/S1097-2765(02)00689-5 10.1016/S0092-8674(00)80434-1 10.1146/annurev.physiol.60.1.619 10.1074/jbc.M100913200 10.1089/107999000750053799 10.1038/bjc.2012.265 10.3322/caac.21332 10.1016/S1368-7646(02)00002-X 10.1038/nature05610 10.1016/j.jchromb.2016.08.025 10.3892/ol.2015.3273 10.1248/bpb.24.453 10.1016/j.tig.2004.08.007 10.3322/caac.21349 10.1016/j.ejphar.2014.07.041 10.1126/science.282.5395.1893 10.1016/0092-8674(95)90411-5 10.1096/fasebj.9.9.7601337 10.1038/srep13372 |
ContentType | Journal Article |
Copyright | 2020 China Pharmaceutical University Copyright © 2020 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 China Pharmaceutical University – notice: Copyright © 2020 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/S1875-5364(20)30041-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1875-5364 |
EndPage | 355 |
ExternalDocumentID | 32451092 10_1016_S1875_5364_20_30041_8 S1875536420300418 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA12010302 – fundername: Program of Shanghai Subject Chief Scientist grantid: 16XD1404500 – fundername: National Natural Science Foundation of China grantid: 31230022 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABBQC ABFNM ABLVK ABMAC ABMZM ABXDB ABYKQ ABZDS ACDAQ ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV EBS EFJIC EFLBG EJD EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OGGZJ OKI OZT P-8 P-9 PC. Q38 RIG ROL SDF SES SPCBC SSH SSP SSZ T5K ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ACIEU ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c431t-bba548b14dde8cf3ed6621dfb3c4caceef50ea12085ed355975510f1ad235ee43 |
IEDL.DBID | .~1 |
ISSN | 1875-5364 |
IngestDate | Tue Aug 05 10:43:15 EDT 2025 Fri Jul 11 02:49:22 EDT 2025 Fri Jul 11 08:11:23 EDT 2025 Wed Feb 19 02:30:13 EST 2025 Tue Jul 01 02:15:39 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Fri Feb 23 02:47:45 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Ras/Erk Pancreatic cancer Cordycepin FGFR2 Apoptosis |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2020 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-bba548b14dde8cf3ed6621dfb3c4caceef50ea12085ed355975510f1ad235ee43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32451092 |
PQID | 2406952405 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2536414833 proquest_miscellaneous_2498260881 proquest_miscellaneous_2406952405 pubmed_primary_32451092 crossref_citationtrail_10_1016_S1875_5364_20_30041_8 crossref_primary_10_1016_S1875_5364_20_30041_8 elsevier_sciencedirect_doi_10_1016_S1875_5364_20_30041_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Chinese journal of natural medicines |
PublicationTitleAlternate | Chin J Nat Med |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bensimon, Schmidt, Ziv (bib34) 2010; 3 Chibazakura, Kamachi, Ohara (bib24) 2011; 31 Lieu, Heymach, Overman (bib8) 2011; 17 Siegel, Miller, Jemal (bib2) 2016; 66 Matsuoka, Huang, Elledge (bib36) 1998; 282 Zhang, Zhang, Yuan (bib17) 2018; 11 Chae, Chae, An (bib30) 2001; 24 Chang, Pan, Wang (bib18) 2019; 00 Greenman, Stephens, Smith (bib9) 2007; 446 Erkan, Hausmann, Michalski (bib27) 2012; 9 Savitsky, Bar-Shira, Gilad (bib33) 1995; 268 Yanase, Ohshima, Ikegami (bib29) 2000; 20 de Sousa Cavalcante, Monteiro (bib4) 2014; 741 Baird, Esch, Mormede (bib7) 1986; 42 Li, Nijhawan, Budihardjo (bib22) 1997; 91 Kroemer, Dallaporta, Resche-Rigon (bib28) 1998; 60 Tian, Li, Shen (bib15) 2015; 10 Yang, Zha, Jockel (bib23) 1995; 80 Kuniyasu, Abbruzzese, Cleary (bib10) 2001; 19 Wu, Liu, Fu (bib26) 2016; 477 Lax, Wong, Lamothe (bib38) 2002; 10 Helsten, Elkin, Arthur (bib37) 2016; 22 Kouhara, Hadari, Spivak-Kroizman (bib11) 1997; 89 McCubrey, Steelman, Chappell (bib13) 2007; 1773 Hadari, Kouhara, Lax (bib19) 1998; 18 Zhang, Tudi, Liu (bib20) 2016; 1033–1034 Harper, Adami, Wei (bib25) 1993; 75 Seger, Krebs (bib32) 1995; 9 Wong, Lamothe, Lee (bib39) 2002; 99 Miller, Siegel, Lin (bib1) 2016; 66 Roberts, Der (bib12) 2007; 26 Chipuk, Bhat, Hsing (bib31) 2001; 276 Eswarakumar, Lax, Schlessinger (bib6) 2005; 16 Bergman, Pinedo, Peters (bib3) 2002; 5 Pan, Wang, Lai (bib14) 2015; 5 Itoh, Ornitz (bib5) 2004; 20 Wang, Wu, Liang (bib16) 2016; 21 Thornberry, Lazebnik (bib21) 1998; 281 Pires, Olcina, Anbalagan (bib35) 2012; 107 Lieu (10.1016/S1875-5364(20)30041-8_bib8) 2011; 17 de Sousa Cavalcante (10.1016/S1875-5364(20)30041-8_bib4) 2014; 741 Chipuk (10.1016/S1875-5364(20)30041-8_bib31) 2001; 276 Seger (10.1016/S1875-5364(20)30041-8_bib32) 1995; 9 Roberts (10.1016/S1875-5364(20)30041-8_bib12) 2007; 26 Savitsky (10.1016/S1875-5364(20)30041-8_bib33) 1995; 268 Zhang (10.1016/S1875-5364(20)30041-8_bib17) 2018; 11 Wang (10.1016/S1875-5364(20)30041-8_bib16) 2016; 21 Wu (10.1016/S1875-5364(20)30041-8_bib26) 2016; 477 Zhang (10.1016/S1875-5364(20)30041-8_bib20) 2016; 1033–1034 Greenman (10.1016/S1875-5364(20)30041-8_bib9) 2007; 446 Pan (10.1016/S1875-5364(20)30041-8_bib14) 2015; 5 Bergman (10.1016/S1875-5364(20)30041-8_bib3) 2002; 5 Erkan (10.1016/S1875-5364(20)30041-8_bib27) 2012; 9 Pires (10.1016/S1875-5364(20)30041-8_bib35) 2012; 107 Thornberry (10.1016/S1875-5364(20)30041-8_bib21) 1998; 281 Chibazakura (10.1016/S1875-5364(20)30041-8_bib24) 2011; 31 Harper (10.1016/S1875-5364(20)30041-8_bib25) 1993; 75 Hadari (10.1016/S1875-5364(20)30041-8_bib19) 1998; 18 Miller (10.1016/S1875-5364(20)30041-8_bib1) 2016; 66 Kuniyasu (10.1016/S1875-5364(20)30041-8_bib10) 2001; 19 Matsuoka (10.1016/S1875-5364(20)30041-8_bib36) 1998; 282 Kouhara (10.1016/S1875-5364(20)30041-8_bib11) 1997; 89 Chang (10.1016/S1875-5364(20)30041-8_bib18) 2019; 00 Itoh (10.1016/S1875-5364(20)30041-8_bib5) 2004; 20 McCubrey (10.1016/S1875-5364(20)30041-8_bib13) 2007; 1773 Li (10.1016/S1875-5364(20)30041-8_bib22) 1997; 91 Eswarakumar (10.1016/S1875-5364(20)30041-8_bib6) 2005; 16 Tian (10.1016/S1875-5364(20)30041-8_bib15) 2015; 10 Helsten (10.1016/S1875-5364(20)30041-8_bib37) 2016; 22 Kroemer (10.1016/S1875-5364(20)30041-8_bib28) 1998; 60 Yanase (10.1016/S1875-5364(20)30041-8_bib29) 2000; 20 Lax (10.1016/S1875-5364(20)30041-8_bib38) 2002; 10 Wong (10.1016/S1875-5364(20)30041-8_bib39) 2002; 99 Yang (10.1016/S1875-5364(20)30041-8_bib23) 1995; 80 Baird (10.1016/S1875-5364(20)30041-8_bib7) 1986; 42 Bensimon (10.1016/S1875-5364(20)30041-8_bib34) 2010; 3 Siegel (10.1016/S1875-5364(20)30041-8_bib2) 2016; 66 Chae (10.1016/S1875-5364(20)30041-8_bib30) 2001; 24 |
References_xml | – volume: 00 start-page: 1 year: 2019 end-page: 16 ident: bib18 article-title: Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells publication-title: Cancer Med – volume: 75 start-page: 805 year: 1993 end-page: 816 ident: bib25 article-title: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases publication-title: Cell – volume: 276 start-page: 26614 year: 2001 end-page: 26621 ident: bib31 article-title: Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells publication-title: J Biol Chem – volume: 26 start-page: 3291 year: 2007 end-page: 3310 ident: bib12 article-title: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer publication-title: Oncogene – volume: 19 start-page: 681 year: 2001 end-page: 685 ident: bib10 article-title: Induction of ductal and stromal hyperplasia by basic fibroblast growth factor produced by human pancreatic carcinoma publication-title: Int J Oncol – volume: 1033–1034 start-page: 218 year: 2016 end-page: 225 ident: bib20 article-title: Preparative isolation of cordycepin, N(6)-(2-hydroxyethyl)-adenosine and adenosine from Cordyceps militaris by macroporous resin and purification by recycling high-speed counter-current chromatography publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 10 start-page: 595 year: 2015 end-page: 599 ident: bib15 article-title: Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin publication-title: Oncol Lett – volume: 18 start-page: 3966 year: 1998 end-page: 3973 ident: bib19 article-title: Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation publication-title: Mol Cell Biol – volume: 10 start-page: 709 year: 2002 end-page: 719 ident: bib38 article-title: The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors publication-title: Mol Cell – volume: 281 start-page: 1312 year: 1998 end-page: 1316 ident: bib21 article-title: Caspases: enemies within publication-title: Science – volume: 42 start-page: 143 year: 1986 end-page: 205 ident: bib7 article-title: Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues publication-title: Recent Prog Horm Res – volume: 282 start-page: 1893 year: 1998 end-page: 1897 ident: bib36 article-title: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase publication-title: Science – volume: 91 start-page: 479 year: 1997 end-page: 489 ident: bib22 article-title: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade publication-title: Cell – volume: 60 start-page: 619 year: 1998 end-page: 642 ident: bib28 article-title: The mitochondrial death/life regulator in apoptosis and necrosis publication-title: Annu Rev Physiol – volume: 21 year: 2016 ident: bib16 article-title: Cordycepin induces apoptosis and inhibits proliferation of human lung cancer cell line H1975 via inhibiting the phosphorylation of EGFR publication-title: Molecules – volume: 66 start-page: 7 year: 2016 end-page: 30 ident: bib2 article-title: Cancer statistics, 2016 publication-title: CA Cancer J Clin – volume: 9 start-page: 726 year: 1995 end-page: 735 ident: bib32 article-title: The MAPK signaling cascade publication-title: FASEB J – volume: 99 start-page: 6684 year: 2002 end-page: 6689 ident: bib39 article-title: FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl publication-title: Proc Natl Acad Sci U S A – volume: 11 start-page: 4479 year: 2018 end-page: 4490 ident: bib17 article-title: Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth publication-title: Onco Targets Ther – volume: 9 start-page: 454 year: 2012 end-page: 467 ident: bib27 article-title: The role of stroma in pancreatic cancer: diagnostic and therapeutic implications publication-title: Nat Rev Gastroenterol Hepatol – volume: 1773 start-page: 1263 year: 2007 end-page: 1284 ident: bib13 article-title: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance publication-title: Biochim Biophys Acta – volume: 16 start-page: 139 year: 2005 end-page: 149 ident: bib6 article-title: Cellular signaling by fibroblast growth factor receptors publication-title: Cytokine Growth Factor Rev – volume: 20 start-page: 563 year: 2004 end-page: 569 ident: bib5 article-title: Evolution of the Fgf and Fgfr gene families publication-title: Trends Genet – volume: 20 start-page: 1121 year: 2000 end-page: 1129 ident: bib29 article-title: Cytochrome c release, mitochondrial membrane depolarization, caspase-3 activation, and Bax-alpha cleavage during IFN-alpha-induced apoptosis in Daudi B lymphoma cells publication-title: J Interferon Cytokine Res – volume: 80 start-page: 285 year: 1995 end-page: 291 ident: bib23 article-title: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death publication-title: Cell – volume: 268 start-page: 1749 year: 1995 end-page: 1753 ident: bib33 article-title: A single ataxia telangiectasia gene with a product similar to PI-3 kinase publication-title: Science – volume: 5 start-page: 19 year: 2002 end-page: 33 ident: bib3 article-title: Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine) publication-title: Drug Resist Updat – volume: 477 start-page: 861 year: 2016 end-page: 867 ident: bib26 article-title: Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity publication-title: Biochem Biophys Res Commun – volume: 24 start-page: 453 year: 2001 end-page: 460 ident: bib30 article-title: Cyclic-AMP inhibits nitric oxide-induced apoptosis in human osteoblast: the regulation of caspase-3,-6,-9 and the release of cytochrome c in nitric oxide-induced apoptosis by cAMP publication-title: Biol Pharm Bull – volume: 66 start-page: 271 year: 2016 end-page: 289 ident: bib1 article-title: Cancer treatment and survivorship statistics, 2016 publication-title: CA Cancer J Clin – volume: 89 start-page: 693 year: 1997 end-page: 702 ident: bib11 article-title: A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway publication-title: Cell – volume: 3 start-page: rs3 year: 2010 ident: bib34 article-title: ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage publication-title: Sci Signal – volume: 741 start-page: 8 year: 2014 end-page: 16 ident: bib4 article-title: Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer publication-title: Eur J Pharmacol – volume: 17 start-page: 6130 year: 2011 end-page: 6139 ident: bib8 article-title: Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis publication-title: Clin Cancer Res – volume: 22 start-page: 259 year: 2016 end-page: 267 ident: bib37 article-title: The FGFR landscape in cancer: analysis of 4853 tumors by next-generation sequencing publication-title: Clin Cancer Res – volume: 5 year: 2015 ident: bib14 article-title: Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways publication-title: Sci Rep – volume: 446 start-page: 153 year: 2007 end-page: 158 ident: bib9 article-title: Patterns of somatic mutation in human cancer genomes publication-title: Nature – volume: 107 start-page: 291 year: 2012 end-page: 299 ident: bib35 article-title: Targeting radiation-resistant hypoxic tumour cells through ATR inhibition publication-title: Br J Cancer – volume: 31 start-page: 248 year: 2011 end-page: 255 ident: bib24 article-title: Cyclin A promotes S-phase entry via interaction with the replication licensing factor Mcm7 publication-title: Mol Cell Biol – volume: 19 start-page: 681 year: 2001 ident: 10.1016/S1875-5364(20)30041-8_bib10 article-title: Induction of ductal and stromal hyperplasia by basic fibroblast growth factor produced by human pancreatic carcinoma publication-title: Int J Oncol – volume: 1773 start-page: 1263 issue: 8 year: 2007 ident: 10.1016/S1875-5364(20)30041-8_bib13 article-title: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2006.10.001 – volume: 16 start-page: 139 issue: 2 year: 2005 ident: 10.1016/S1875-5364(20)30041-8_bib6 article-title: Cellular signaling by fibroblast growth factor receptors publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2005.01.001 – volume: 89 start-page: 693 issue: 5 year: 1997 ident: 10.1016/S1875-5364(20)30041-8_bib11 article-title: A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway publication-title: Cell doi: 10.1016/S0092-8674(00)80252-4 – volume: 31 start-page: 248 issue: 2 year: 2011 ident: 10.1016/S1875-5364(20)30041-8_bib24 article-title: Cyclin A promotes S-phase entry via interaction with the replication licensing factor Mcm7 publication-title: Mol Cell Biol doi: 10.1128/MCB.00630-10 – volume: 9 start-page: 454 issue: 8 year: 2012 ident: 10.1016/S1875-5364(20)30041-8_bib27 article-title: The role of stroma in pancreatic cancer: diagnostic and therapeutic implications publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2012.115 – volume: 21 issue: 10 year: 2016 ident: 10.1016/S1875-5364(20)30041-8_bib16 article-title: Cordycepin induces apoptosis and inhibits proliferation of human lung cancer cell line H1975 via inhibiting the phosphorylation of EGFR publication-title: Molecules doi: 10.3390/molecules21101267 – volume: 00 start-page: 1 year: 2019 ident: 10.1016/S1875-5364(20)30041-8_bib18 article-title: Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells publication-title: Cancer Med – volume: 281 start-page: 1312 issue: 5381 year: 1998 ident: 10.1016/S1875-5364(20)30041-8_bib21 article-title: Caspases: enemies within publication-title: Science doi: 10.1126/science.281.5381.1312 – volume: 11 start-page: 4479 year: 2018 ident: 10.1016/S1875-5364(20)30041-8_bib17 article-title: Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo publication-title: Onco Targets Ther doi: 10.2147/OTT.S164670 – volume: 99 start-page: 6684 issue: 10 year: 2002 ident: 10.1016/S1875-5364(20)30041-8_bib39 article-title: FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.052138899 – volume: 477 start-page: 861 issue: 4 year: 2016 ident: 10.1016/S1875-5364(20)30041-8_bib26 article-title: Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2016.06.149 – volume: 22 start-page: 259 issue: 1 year: 2016 ident: 10.1016/S1875-5364(20)30041-8_bib37 article-title: The FGFR landscape in cancer: analysis of 4853 tumors by next-generation sequencing publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-3212 – volume: 26 start-page: 3291 issue: 22 year: 2007 ident: 10.1016/S1875-5364(20)30041-8_bib12 article-title: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer publication-title: Oncogene doi: 10.1038/sj.onc.1210422 – volume: 17 start-page: 6130 issue: 19 year: 2011 ident: 10.1016/S1875-5364(20)30041-8_bib8 article-title: Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-0659 – volume: 75 start-page: 805 issue: 4 year: 1993 ident: 10.1016/S1875-5364(20)30041-8_bib25 article-title: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases publication-title: Cell doi: 10.1016/0092-8674(93)90499-G – volume: 268 start-page: 1749 issue: 5218 year: 1995 ident: 10.1016/S1875-5364(20)30041-8_bib33 article-title: A single ataxia telangiectasia gene with a product similar to PI-3 kinase publication-title: Science doi: 10.1126/science.7792600 – volume: 3 start-page: rs3 issue: 151 year: 2010 ident: 10.1016/S1875-5364(20)30041-8_bib34 article-title: ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage publication-title: Sci Signal doi: 10.1126/scisignal.2001034 – volume: 18 start-page: 3966 issue: 7 year: 1998 ident: 10.1016/S1875-5364(20)30041-8_bib19 article-title: Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation publication-title: Mol Cell Biol doi: 10.1128/MCB.18.7.3966 – volume: 10 start-page: 709 issue: 4 year: 2002 ident: 10.1016/S1875-5364(20)30041-8_bib38 article-title: The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors publication-title: Mol Cell doi: 10.1016/S1097-2765(02)00689-5 – volume: 91 start-page: 479 issue: 4 year: 1997 ident: 10.1016/S1875-5364(20)30041-8_bib22 article-title: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade publication-title: Cell doi: 10.1016/S0092-8674(00)80434-1 – volume: 60 start-page: 619 year: 1998 ident: 10.1016/S1875-5364(20)30041-8_bib28 article-title: The mitochondrial death/life regulator in apoptosis and necrosis publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.60.1.619 – volume: 276 start-page: 26614 issue: 28 year: 2001 ident: 10.1016/S1875-5364(20)30041-8_bib31 article-title: Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells publication-title: J Biol Chem doi: 10.1074/jbc.M100913200 – volume: 20 start-page: 1121 issue: 12 year: 2000 ident: 10.1016/S1875-5364(20)30041-8_bib29 article-title: Cytochrome c release, mitochondrial membrane depolarization, caspase-3 activation, and Bax-alpha cleavage during IFN-alpha-induced apoptosis in Daudi B lymphoma cells publication-title: J Interferon Cytokine Res doi: 10.1089/107999000750053799 – volume: 107 start-page: 291 issue: 2 year: 2012 ident: 10.1016/S1875-5364(20)30041-8_bib35 article-title: Targeting radiation-resistant hypoxic tumour cells through ATR inhibition publication-title: Br J Cancer doi: 10.1038/bjc.2012.265 – volume: 66 start-page: 7 issue: 1 year: 2016 ident: 10.1016/S1875-5364(20)30041-8_bib2 article-title: Cancer statistics, 2016 publication-title: CA Cancer J Clin doi: 10.3322/caac.21332 – volume: 5 start-page: 19 issue: 1 year: 2002 ident: 10.1016/S1875-5364(20)30041-8_bib3 article-title: Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine) publication-title: Drug Resist Updat doi: 10.1016/S1368-7646(02)00002-X – volume: 446 start-page: 153 issue: 7132 year: 2007 ident: 10.1016/S1875-5364(20)30041-8_bib9 article-title: Patterns of somatic mutation in human cancer genomes publication-title: Nature doi: 10.1038/nature05610 – volume: 1033–1034 start-page: 218 year: 2016 ident: 10.1016/S1875-5364(20)30041-8_bib20 article-title: Preparative isolation of cordycepin, N(6)-(2-hydroxyethyl)-adenosine and adenosine from Cordyceps militaris by macroporous resin and purification by recycling high-speed counter-current chromatography publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2016.08.025 – volume: 10 start-page: 595 issue: 2 year: 2015 ident: 10.1016/S1875-5364(20)30041-8_bib15 article-title: Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin publication-title: Oncol Lett doi: 10.3892/ol.2015.3273 – volume: 24 start-page: 453 issue: 5 year: 2001 ident: 10.1016/S1875-5364(20)30041-8_bib30 article-title: Cyclic-AMP inhibits nitric oxide-induced apoptosis in human osteoblast: the regulation of caspase-3,-6,-9 and the release of cytochrome c in nitric oxide-induced apoptosis by cAMP publication-title: Biol Pharm Bull doi: 10.1248/bpb.24.453 – volume: 42 start-page: 143 year: 1986 ident: 10.1016/S1875-5364(20)30041-8_bib7 article-title: Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues publication-title: Recent Prog Horm Res – volume: 20 start-page: 563 issue: 11 year: 2004 ident: 10.1016/S1875-5364(20)30041-8_bib5 article-title: Evolution of the Fgf and Fgfr gene families publication-title: Trends Genet doi: 10.1016/j.tig.2004.08.007 – volume: 66 start-page: 271 issue: 4 year: 2016 ident: 10.1016/S1875-5364(20)30041-8_bib1 article-title: Cancer treatment and survivorship statistics, 2016 publication-title: CA Cancer J Clin doi: 10.3322/caac.21349 – volume: 741 start-page: 8 year: 2014 ident: 10.1016/S1875-5364(20)30041-8_bib4 article-title: Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2014.07.041 – volume: 282 start-page: 1893 issue: 5395 year: 1998 ident: 10.1016/S1875-5364(20)30041-8_bib36 article-title: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase publication-title: Science doi: 10.1126/science.282.5395.1893 – volume: 80 start-page: 285 issue: 2 year: 1995 ident: 10.1016/S1875-5364(20)30041-8_bib23 article-title: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death publication-title: Cell doi: 10.1016/0092-8674(95)90411-5 – volume: 9 start-page: 726 issue: 9 year: 1995 ident: 10.1016/S1875-5364(20)30041-8_bib32 article-title: The MAPK signaling cascade publication-title: FASEB J doi: 10.1096/fasebj.9.9.7601337 – volume: 5 year: 2015 ident: 10.1016/S1875-5364(20)30041-8_bib14 article-title: Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways publication-title: Sci Rep doi: 10.1038/srep13372 |
SSID | ssj0000651316 |
Score | 2.3075376 |
Snippet | Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying... Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 345 |
SubjectTerms | Animals antineoplastic activity Apoptosis Apoptosis - drug effects caspase-3 caspase-9 cell cycle checkpoints Cell Cycle Checkpoints - drug effects cell growth Cell Line, Tumor Cell Proliferation - drug effects Cordycepin Cordyceps - chemistry Cordyceps militaris cyclin-dependent kinase cyclins Deoxyadenosines - administration & dosage DNA damage drug development Drugs, Chinese Herbal - administration & dosage Female FGFR2 fibroblast growth factor receptor 2 Humans MAP Kinase Signaling System - drug effects Mice Mice, Inbred BALB C neoplasm cells Pancreatic cancer pancreatic neoplasms Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - physiopathology phosphorylation Ras/Erk Receptor, Fibroblast Growth Factor, Type 2 - genetics Receptor, Fibroblast Growth Factor, Type 2 - metabolism |
Title | Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling |
URI | https://dx.doi.org/10.1016/S1875-5364(20)30041-8 https://www.ncbi.nlm.nih.gov/pubmed/32451092 https://www.proquest.com/docview/2406952405 https://www.proquest.com/docview/2498260881 https://www.proquest.com/docview/2536414833 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFgQiFd5yUgMMKSNH0nDiCpKoaIDD6mbZTsOREJpVVIkFn47d05axACVWCwlsZP4zr77zroHIacx0ylzIg545mQgXSxgzwkTJFmMCfQ7micY73w3jPtP8nYUjRqkO4-FQbfKWvZXMt1L6_pOu6Zme5Ln7QcGUDsSgJ9DnzUKA36l7OAqb32yxTkLqFgmfAVU7B_ggO9Anuol_uYZD8_9e4LkNxX1GwT1qqi3QdZrDEkvq9_cJA1XbJFZF8zID-smeUHz4iU3eflGYatXqNBSi-ydUjyop89ge5cv0I2-5-V0THWRVhfvY2g0rdzDQanR3nXvnvvnBrQeHqvTq_sBRa8PjYHs2-Spd_XY7Qd1TYXAAlQoA2M02CiGSRBric2ES-OYszQzwkqrQWNmUeg0w8qdLhVobgCkCjPgKBeRc1LskJViXLg9QjvCmtAIYbBUR-ZCnQB4MpiOPs3AaJFNIudkVLZOOI51L17VwrMMqa-Q-oqHylNfJU3SWgybVBk3lg1I5jxSP5aOAq2wbOjJnKcKthWyQBduPHtTPiI4gjb6q88FzBPENPujD34RTE4hmmS3WjSLWQGWBdpe8P3_T-CArHE8APAemIdkpZzO3BGgpNIc-21wTFYvbwb94RekQgoP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHOCCQLzGM0gc4FDWJm0pRzQxBoMdeEjcoiRNWSXUTaND4t9jp90QB0DiUqlt3DZ2Y3-O_AA4igOVBlbEHs9s6IU2FrjmhPaSLKYC-meKJ5TvfNePu0_hzXP0PAftaS4MhVXWur_S6U5b11daNTdbozxvPQQItSOB-Nl3VaOSeVig6lRRAxYurnvd_myrBa1sIFwTVCLxiOYrl6d6jrt4zP0T9ygv-clK_YRCnTXqrMByDSPZRfWlqzBnizWYtNGT_DB2lBcsLwa5zss3hqu9AoaGGZLwmNFePXtB97sc4DD2npfjIVNFWp28D_GgWBUhjnaNda4699zd12j4aGedXd73GAV-KMplX4enzuVju-vVbRU8g2ih9LRW6KboIETNlphM2DSOeZBmWpjQKDSaWeRbFVDzTpsK8jgQVfkZCpWLyNpQbECjGBZ2C9iZMNrXQmjq1pFZXyWInzRVpE8z9FvCJoRTNkpT1xyn1hevchZcRtyXxH3Jfem4L5MmnM7IRlXRjb8IkqmM5Le_R6Jh-Iv0cCpTiSuLRKAKO5y8SZcUHOEx-m3MOc4TNXXwyxh6I3qdQjRhs_ppZrNCOIu8Pefb_5_AASx2H-9u5e11v7cDS5z2A1xA5i40yvHE7iFoKvV-vSg-AchzDMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cordycepin+inhibits+pancreatic+cancer+cell+growth+in+vitro+and+in+vivo+via+targeting+FGFR2+and+blocking+ERK+signaling&rft.jtitle=Chinese+journal+of+natural+medicines&rft.au=LI+X-Y&rft.au=Tao%2C+H&rft.au=Jin%2C+C&rft.au=Z-Y%2C+Du&rft.date=2020-05-01&rft.issn=1875-5364&rft.eissn=1875-5364&rft.volume=18&rft.issue=5&rft_id=info:doi/10.1016%2FS1875-5364%2820%2930041-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-5364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-5364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-5364&client=summon |