Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling

Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of c...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of natural medicines Vol. 18; no. 5; pp. 345 - 355
Main Authors LI, Xue-Ying, TAO, Homng, JIN, Can, DU, Zhen-Yun, LIAO, Wen-Feng, TANG, Qing-Jiu, DING, Kan
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10−9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.
AbstractList Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10⁻⁹) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.
Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10-9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10-9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.
Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (K = 7.77 × 10 ) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.
Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo. Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (KD = 7.77 × 10−9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.
Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying cordycepin impeding pancreatic cancer cell growth in vitro and in vivo remain vague. In this study, we reported functional target molecule of cordycepin which inhibited pancreatic cancer cells growth in vitro and in vivo . Cordycepin was confirmed to induce apoptosis by activating caspase-3, caspase-9 and cytochrome c. Further studies suggested that MAPK pathway was blocked by cordycepin via inhibiting the expression of Ras and the phosphorylation of Erk. Moreover, cordycepin caused S-phase arrest and DNA damage associated with activating Chk2 (checkpoint kinase 2) pathway and downregulating cyclin A2 and CDK2 phosphorylation. Very interestingly, we showed that cordycepin could bind to FGFR2 (K ~D= 7.77 × 10 −9) very potently to inhibit pancreatic cancer cells growth by blocking Ras/ErK pathway. These results suggest that cordycepin could potentially be a leading compound which targeted FGFR2 to inhibit pancreatic cells growth by inducing cell apoptosis and causing cell cycle arrest via blocking FGFR/Ras/ERK signaling for anti-pancreatic cancer new drug development.
Author LI, Xue-Ying
TAO, Homng
LIAO, Wen-Feng
DU, Zhen-Yun
DING, Kan
TANG, Qing-Jiu
JIN, Can
Author_xml – sequence: 1
  givenname: Xue-Ying
  surname: LI
  fullname: LI, Xue-Ying
  organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 2
  givenname: Homng
  surname: TAO
  fullname: TAO, Homng
  organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 3
  givenname: Can
  surname: JIN
  fullname: JIN, Can
  organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 4
  givenname: Zhen-Yun
  surname: DU
  fullname: DU, Zhen-Yun
  organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 5
  givenname: Wen-Feng
  surname: LIAO
  fullname: LIAO, Wen-Feng
  organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 6
  givenname: Qing-Jiu
  surname: TANG
  fullname: TANG, Qing-Jiu
  email: tangqingjiu@saas.sh.cn
  organization: Institute of Edible Fungi, Shanghai Academy of Agricultural Science, Shanghai 201203, China
– sequence: 7
  givenname: Kan
  surname: DING
  fullname: DING, Kan
  email: dingkan@simm.ac.cn
  organization: Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, University of Chinese Academy of Sciences, Beijing 100049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32451092$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1PGzEQtSoQUMpPaOUjPWzrz8VRDxWKCEVFqkThbHnt2eB2Y6e2k4p_X28CCHFJfRjPjN-b8cx7i_ZCDIDQe0o-UULbzz-pOpON5K04ZeQjJ0TQRr1BR8_pvRf-ITrJ-Repp5WU0_YAHXImJCUTdoRW05jcg4WlD9iHe9_5kvHSBJvAFG-xrS4kbGEY8DzFv-W-wvDalxSxCW4brGM1BheT5lB8mOPZ5eyGbd67IdrfY-ri5jvOfh7MUKN3aL83Q4aTx_sY3c0ubqffmusfl1fT8-vGCk5L03VGCtVR4Rwo23Nwbcuo6ztuhTUWoJcEDGVESXBcysmZrGP11DjGJYDgx-h0W3eZ4p8V5KIXPo-zmABxlTUb90OF4nw3VEwUa4lS9D-gpJ3IamWFfniErroFOL1MfmHSg34SoAK-bAE2xZwT9Nr6UjcfQ0nGD5oSPSquN4rr8buaEb1RXKvKlq_YTw128b5ueVCXv_aQdLYeqtLOJ7BFu-h3VPgHSvvB-g
CitedBy_id crossref_primary_10_1002_jcla_24584
crossref_primary_10_1097_HC9_0000000000000633
crossref_primary_10_1002_fsn3_2636
crossref_primary_10_3389_fphar_2024_1367820
crossref_primary_10_3389_fphar_2022_1051952
Cites_doi 10.1016/j.bbamcr.2006.10.001
10.1016/j.cytogfr.2005.01.001
10.1016/S0092-8674(00)80252-4
10.1128/MCB.00630-10
10.1038/nrgastro.2012.115
10.3390/molecules21101267
10.1126/science.281.5381.1312
10.2147/OTT.S164670
10.1073/pnas.052138899
10.1016/j.bbrc.2016.06.149
10.1158/1078-0432.CCR-14-3212
10.1038/sj.onc.1210422
10.1158/1078-0432.CCR-11-0659
10.1016/0092-8674(93)90499-G
10.1126/science.7792600
10.1126/scisignal.2001034
10.1128/MCB.18.7.3966
10.1016/S1097-2765(02)00689-5
10.1016/S0092-8674(00)80434-1
10.1146/annurev.physiol.60.1.619
10.1074/jbc.M100913200
10.1089/107999000750053799
10.1038/bjc.2012.265
10.3322/caac.21332
10.1016/S1368-7646(02)00002-X
10.1038/nature05610
10.1016/j.jchromb.2016.08.025
10.3892/ol.2015.3273
10.1248/bpb.24.453
10.1016/j.tig.2004.08.007
10.3322/caac.21349
10.1016/j.ejphar.2014.07.041
10.1126/science.282.5395.1893
10.1016/0092-8674(95)90411-5
10.1096/fasebj.9.9.7601337
10.1038/srep13372
ContentType Journal Article
Copyright 2020 China Pharmaceutical University
Copyright © 2020 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 China Pharmaceutical University
– notice: Copyright © 2020 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/S1875-5364(20)30041-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1875-5364
EndPage 355
ExternalDocumentID 32451092
10_1016_S1875_5364_20_30041_8
S1875536420300418
Genre Journal Article
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA12010302
– fundername: Program of Shanghai Subject Chief Scientist
  grantid: 16XD1404500
– fundername: National Natural Science Foundation of China
  grantid: 31230022
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABBQC
ABFNM
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OKI
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPCBC
SSH
SSP
SSZ
T5K
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACIEU
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c431t-bba548b14dde8cf3ed6621dfb3c4caceef50ea12085ed355975510f1ad235ee43
IEDL.DBID .~1
ISSN 1875-5364
IngestDate Tue Aug 05 10:43:15 EDT 2025
Fri Jul 11 02:49:22 EDT 2025
Fri Jul 11 08:11:23 EDT 2025
Wed Feb 19 02:30:13 EST 2025
Tue Jul 01 02:15:39 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Fri Feb 23 02:47:45 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Ras/Erk
Pancreatic cancer
Cordycepin
FGFR2
Apoptosis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2020 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-bba548b14dde8cf3ed6621dfb3c4caceef50ea12085ed355975510f1ad235ee43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32451092
PQID 2406952405
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2536414833
proquest_miscellaneous_2498260881
proquest_miscellaneous_2406952405
pubmed_primary_32451092
crossref_citationtrail_10_1016_S1875_5364_20_30041_8
crossref_primary_10_1016_S1875_5364_20_30041_8
elsevier_sciencedirect_doi_10_1016_S1875_5364_20_30041_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Chinese journal of natural medicines
PublicationTitleAlternate Chin J Nat Med
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bensimon, Schmidt, Ziv (bib34) 2010; 3
Chibazakura, Kamachi, Ohara (bib24) 2011; 31
Lieu, Heymach, Overman (bib8) 2011; 17
Siegel, Miller, Jemal (bib2) 2016; 66
Matsuoka, Huang, Elledge (bib36) 1998; 282
Zhang, Zhang, Yuan (bib17) 2018; 11
Chae, Chae, An (bib30) 2001; 24
Chang, Pan, Wang (bib18) 2019; 00
Greenman, Stephens, Smith (bib9) 2007; 446
Erkan, Hausmann, Michalski (bib27) 2012; 9
Savitsky, Bar-Shira, Gilad (bib33) 1995; 268
Yanase, Ohshima, Ikegami (bib29) 2000; 20
de Sousa Cavalcante, Monteiro (bib4) 2014; 741
Baird, Esch, Mormede (bib7) 1986; 42
Li, Nijhawan, Budihardjo (bib22) 1997; 91
Kroemer, Dallaporta, Resche-Rigon (bib28) 1998; 60
Tian, Li, Shen (bib15) 2015; 10
Yang, Zha, Jockel (bib23) 1995; 80
Kuniyasu, Abbruzzese, Cleary (bib10) 2001; 19
Wu, Liu, Fu (bib26) 2016; 477
Lax, Wong, Lamothe (bib38) 2002; 10
Helsten, Elkin, Arthur (bib37) 2016; 22
Kouhara, Hadari, Spivak-Kroizman (bib11) 1997; 89
McCubrey, Steelman, Chappell (bib13) 2007; 1773
Hadari, Kouhara, Lax (bib19) 1998; 18
Zhang, Tudi, Liu (bib20) 2016; 1033–1034
Harper, Adami, Wei (bib25) 1993; 75
Seger, Krebs (bib32) 1995; 9
Wong, Lamothe, Lee (bib39) 2002; 99
Miller, Siegel, Lin (bib1) 2016; 66
Roberts, Der (bib12) 2007; 26
Chipuk, Bhat, Hsing (bib31) 2001; 276
Eswarakumar, Lax, Schlessinger (bib6) 2005; 16
Bergman, Pinedo, Peters (bib3) 2002; 5
Pan, Wang, Lai (bib14) 2015; 5
Itoh, Ornitz (bib5) 2004; 20
Wang, Wu, Liang (bib16) 2016; 21
Thornberry, Lazebnik (bib21) 1998; 281
Pires, Olcina, Anbalagan (bib35) 2012; 107
Lieu (10.1016/S1875-5364(20)30041-8_bib8) 2011; 17
de Sousa Cavalcante (10.1016/S1875-5364(20)30041-8_bib4) 2014; 741
Chipuk (10.1016/S1875-5364(20)30041-8_bib31) 2001; 276
Seger (10.1016/S1875-5364(20)30041-8_bib32) 1995; 9
Roberts (10.1016/S1875-5364(20)30041-8_bib12) 2007; 26
Savitsky (10.1016/S1875-5364(20)30041-8_bib33) 1995; 268
Zhang (10.1016/S1875-5364(20)30041-8_bib17) 2018; 11
Wang (10.1016/S1875-5364(20)30041-8_bib16) 2016; 21
Wu (10.1016/S1875-5364(20)30041-8_bib26) 2016; 477
Zhang (10.1016/S1875-5364(20)30041-8_bib20) 2016; 1033–1034
Greenman (10.1016/S1875-5364(20)30041-8_bib9) 2007; 446
Pan (10.1016/S1875-5364(20)30041-8_bib14) 2015; 5
Bergman (10.1016/S1875-5364(20)30041-8_bib3) 2002; 5
Erkan (10.1016/S1875-5364(20)30041-8_bib27) 2012; 9
Pires (10.1016/S1875-5364(20)30041-8_bib35) 2012; 107
Thornberry (10.1016/S1875-5364(20)30041-8_bib21) 1998; 281
Chibazakura (10.1016/S1875-5364(20)30041-8_bib24) 2011; 31
Harper (10.1016/S1875-5364(20)30041-8_bib25) 1993; 75
Hadari (10.1016/S1875-5364(20)30041-8_bib19) 1998; 18
Miller (10.1016/S1875-5364(20)30041-8_bib1) 2016; 66
Kuniyasu (10.1016/S1875-5364(20)30041-8_bib10) 2001; 19
Matsuoka (10.1016/S1875-5364(20)30041-8_bib36) 1998; 282
Kouhara (10.1016/S1875-5364(20)30041-8_bib11) 1997; 89
Chang (10.1016/S1875-5364(20)30041-8_bib18) 2019; 00
Itoh (10.1016/S1875-5364(20)30041-8_bib5) 2004; 20
McCubrey (10.1016/S1875-5364(20)30041-8_bib13) 2007; 1773
Li (10.1016/S1875-5364(20)30041-8_bib22) 1997; 91
Eswarakumar (10.1016/S1875-5364(20)30041-8_bib6) 2005; 16
Tian (10.1016/S1875-5364(20)30041-8_bib15) 2015; 10
Helsten (10.1016/S1875-5364(20)30041-8_bib37) 2016; 22
Kroemer (10.1016/S1875-5364(20)30041-8_bib28) 1998; 60
Yanase (10.1016/S1875-5364(20)30041-8_bib29) 2000; 20
Lax (10.1016/S1875-5364(20)30041-8_bib38) 2002; 10
Wong (10.1016/S1875-5364(20)30041-8_bib39) 2002; 99
Yang (10.1016/S1875-5364(20)30041-8_bib23) 1995; 80
Baird (10.1016/S1875-5364(20)30041-8_bib7) 1986; 42
Bensimon (10.1016/S1875-5364(20)30041-8_bib34) 2010; 3
Siegel (10.1016/S1875-5364(20)30041-8_bib2) 2016; 66
Chae (10.1016/S1875-5364(20)30041-8_bib30) 2001; 24
References_xml – volume: 00
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib18
  article-title: Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells
  publication-title: Cancer Med
– volume: 75
  start-page: 805
  year: 1993
  end-page: 816
  ident: bib25
  article-title: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases
  publication-title: Cell
– volume: 276
  start-page: 26614
  year: 2001
  end-page: 26621
  ident: bib31
  article-title: Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells
  publication-title: J Biol Chem
– volume: 26
  start-page: 3291
  year: 2007
  end-page: 3310
  ident: bib12
  article-title: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer
  publication-title: Oncogene
– volume: 19
  start-page: 681
  year: 2001
  end-page: 685
  ident: bib10
  article-title: Induction of ductal and stromal hyperplasia by basic fibroblast growth factor produced by human pancreatic carcinoma
  publication-title: Int J Oncol
– volume: 1033–1034
  start-page: 218
  year: 2016
  end-page: 225
  ident: bib20
  article-title: Preparative isolation of cordycepin, N(6)-(2-hydroxyethyl)-adenosine and adenosine from Cordyceps militaris by macroporous resin and purification by recycling high-speed counter-current chromatography
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 10
  start-page: 595
  year: 2015
  end-page: 599
  ident: bib15
  article-title: Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin
  publication-title: Oncol Lett
– volume: 18
  start-page: 3966
  year: 1998
  end-page: 3973
  ident: bib19
  article-title: Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation
  publication-title: Mol Cell Biol
– volume: 10
  start-page: 709
  year: 2002
  end-page: 719
  ident: bib38
  article-title: The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors
  publication-title: Mol Cell
– volume: 281
  start-page: 1312
  year: 1998
  end-page: 1316
  ident: bib21
  article-title: Caspases: enemies within
  publication-title: Science
– volume: 42
  start-page: 143
  year: 1986
  end-page: 205
  ident: bib7
  article-title: Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues
  publication-title: Recent Prog Horm Res
– volume: 282
  start-page: 1893
  year: 1998
  end-page: 1897
  ident: bib36
  article-title: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase
  publication-title: Science
– volume: 91
  start-page: 479
  year: 1997
  end-page: 489
  ident: bib22
  article-title: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade
  publication-title: Cell
– volume: 60
  start-page: 619
  year: 1998
  end-page: 642
  ident: bib28
  article-title: The mitochondrial death/life regulator in apoptosis and necrosis
  publication-title: Annu Rev Physiol
– volume: 21
  year: 2016
  ident: bib16
  article-title: Cordycepin induces apoptosis and inhibits proliferation of human lung cancer cell line H1975 via inhibiting the phosphorylation of EGFR
  publication-title: Molecules
– volume: 66
  start-page: 7
  year: 2016
  end-page: 30
  ident: bib2
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J Clin
– volume: 9
  start-page: 726
  year: 1995
  end-page: 735
  ident: bib32
  article-title: The MAPK signaling cascade
  publication-title: FASEB J
– volume: 99
  start-page: 6684
  year: 2002
  end-page: 6689
  ident: bib39
  article-title: FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl
  publication-title: Proc Natl Acad Sci U S A
– volume: 11
  start-page: 4479
  year: 2018
  end-page: 4490
  ident: bib17
  article-title: Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth
  publication-title: Onco Targets Ther
– volume: 9
  start-page: 454
  year: 2012
  end-page: 467
  ident: bib27
  article-title: The role of stroma in pancreatic cancer: diagnostic and therapeutic implications
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 1773
  start-page: 1263
  year: 2007
  end-page: 1284
  ident: bib13
  article-title: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance
  publication-title: Biochim Biophys Acta
– volume: 16
  start-page: 139
  year: 2005
  end-page: 149
  ident: bib6
  article-title: Cellular signaling by fibroblast growth factor receptors
  publication-title: Cytokine Growth Factor Rev
– volume: 20
  start-page: 563
  year: 2004
  end-page: 569
  ident: bib5
  article-title: Evolution of the Fgf and Fgfr gene families
  publication-title: Trends Genet
– volume: 20
  start-page: 1121
  year: 2000
  end-page: 1129
  ident: bib29
  article-title: Cytochrome c release, mitochondrial membrane depolarization, caspase-3 activation, and Bax-alpha cleavage during IFN-alpha-induced apoptosis in Daudi B lymphoma cells
  publication-title: J Interferon Cytokine Res
– volume: 80
  start-page: 285
  year: 1995
  end-page: 291
  ident: bib23
  article-title: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death
  publication-title: Cell
– volume: 268
  start-page: 1749
  year: 1995
  end-page: 1753
  ident: bib33
  article-title: A single ataxia telangiectasia gene with a product similar to PI-3 kinase
  publication-title: Science
– volume: 5
  start-page: 19
  year: 2002
  end-page: 33
  ident: bib3
  article-title: Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine)
  publication-title: Drug Resist Updat
– volume: 477
  start-page: 861
  year: 2016
  end-page: 867
  ident: bib26
  article-title: Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity
  publication-title: Biochem Biophys Res Commun
– volume: 24
  start-page: 453
  year: 2001
  end-page: 460
  ident: bib30
  article-title: Cyclic-AMP inhibits nitric oxide-induced apoptosis in human osteoblast: the regulation of caspase-3,-6,-9 and the release of cytochrome c in nitric oxide-induced apoptosis by cAMP
  publication-title: Biol Pharm Bull
– volume: 66
  start-page: 271
  year: 2016
  end-page: 289
  ident: bib1
  article-title: Cancer treatment and survivorship statistics, 2016
  publication-title: CA Cancer J Clin
– volume: 89
  start-page: 693
  year: 1997
  end-page: 702
  ident: bib11
  article-title: A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway
  publication-title: Cell
– volume: 3
  start-page: rs3
  year: 2010
  ident: bib34
  article-title: ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage
  publication-title: Sci Signal
– volume: 741
  start-page: 8
  year: 2014
  end-page: 16
  ident: bib4
  article-title: Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer
  publication-title: Eur J Pharmacol
– volume: 17
  start-page: 6130
  year: 2011
  end-page: 6139
  ident: bib8
  article-title: Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis
  publication-title: Clin Cancer Res
– volume: 22
  start-page: 259
  year: 2016
  end-page: 267
  ident: bib37
  article-title: The FGFR landscape in cancer: analysis of 4853 tumors by next-generation sequencing
  publication-title: Clin Cancer Res
– volume: 5
  year: 2015
  ident: bib14
  article-title: Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways
  publication-title: Sci Rep
– volume: 446
  start-page: 153
  year: 2007
  end-page: 158
  ident: bib9
  article-title: Patterns of somatic mutation in human cancer genomes
  publication-title: Nature
– volume: 107
  start-page: 291
  year: 2012
  end-page: 299
  ident: bib35
  article-title: Targeting radiation-resistant hypoxic tumour cells through ATR inhibition
  publication-title: Br J Cancer
– volume: 31
  start-page: 248
  year: 2011
  end-page: 255
  ident: bib24
  article-title: Cyclin A promotes S-phase entry via interaction with the replication licensing factor Mcm7
  publication-title: Mol Cell Biol
– volume: 19
  start-page: 681
  year: 2001
  ident: 10.1016/S1875-5364(20)30041-8_bib10
  article-title: Induction of ductal and stromal hyperplasia by basic fibroblast growth factor produced by human pancreatic carcinoma
  publication-title: Int J Oncol
– volume: 1773
  start-page: 1263
  issue: 8
  year: 2007
  ident: 10.1016/S1875-5364(20)30041-8_bib13
  article-title: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2006.10.001
– volume: 16
  start-page: 139
  issue: 2
  year: 2005
  ident: 10.1016/S1875-5364(20)30041-8_bib6
  article-title: Cellular signaling by fibroblast growth factor receptors
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2005.01.001
– volume: 89
  start-page: 693
  issue: 5
  year: 1997
  ident: 10.1016/S1875-5364(20)30041-8_bib11
  article-title: A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80252-4
– volume: 31
  start-page: 248
  issue: 2
  year: 2011
  ident: 10.1016/S1875-5364(20)30041-8_bib24
  article-title: Cyclin A promotes S-phase entry via interaction with the replication licensing factor Mcm7
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00630-10
– volume: 9
  start-page: 454
  issue: 8
  year: 2012
  ident: 10.1016/S1875-5364(20)30041-8_bib27
  article-title: The role of stroma in pancreatic cancer: diagnostic and therapeutic implications
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2012.115
– volume: 21
  issue: 10
  year: 2016
  ident: 10.1016/S1875-5364(20)30041-8_bib16
  article-title: Cordycepin induces apoptosis and inhibits proliferation of human lung cancer cell line H1975 via inhibiting the phosphorylation of EGFR
  publication-title: Molecules
  doi: 10.3390/molecules21101267
– volume: 00
  start-page: 1
  year: 2019
  ident: 10.1016/S1875-5364(20)30041-8_bib18
  article-title: Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells
  publication-title: Cancer Med
– volume: 281
  start-page: 1312
  issue: 5381
  year: 1998
  ident: 10.1016/S1875-5364(20)30041-8_bib21
  article-title: Caspases: enemies within
  publication-title: Science
  doi: 10.1126/science.281.5381.1312
– volume: 11
  start-page: 4479
  year: 2018
  ident: 10.1016/S1875-5364(20)30041-8_bib17
  article-title: Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S164670
– volume: 99
  start-page: 6684
  issue: 10
  year: 2002
  ident: 10.1016/S1875-5364(20)30041-8_bib39
  article-title: FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.052138899
– volume: 477
  start-page: 861
  issue: 4
  year: 2016
  ident: 10.1016/S1875-5364(20)30041-8_bib26
  article-title: Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2016.06.149
– volume: 22
  start-page: 259
  issue: 1
  year: 2016
  ident: 10.1016/S1875-5364(20)30041-8_bib37
  article-title: The FGFR landscape in cancer: analysis of 4853 tumors by next-generation sequencing
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-3212
– volume: 26
  start-page: 3291
  issue: 22
  year: 2007
  ident: 10.1016/S1875-5364(20)30041-8_bib12
  article-title: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210422
– volume: 17
  start-page: 6130
  issue: 19
  year: 2011
  ident: 10.1016/S1875-5364(20)30041-8_bib8
  article-title: Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-0659
– volume: 75
  start-page: 805
  issue: 4
  year: 1993
  ident: 10.1016/S1875-5364(20)30041-8_bib25
  article-title: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90499-G
– volume: 268
  start-page: 1749
  issue: 5218
  year: 1995
  ident: 10.1016/S1875-5364(20)30041-8_bib33
  article-title: A single ataxia telangiectasia gene with a product similar to PI-3 kinase
  publication-title: Science
  doi: 10.1126/science.7792600
– volume: 3
  start-page: rs3
  issue: 151
  year: 2010
  ident: 10.1016/S1875-5364(20)30041-8_bib34
  article-title: ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2001034
– volume: 18
  start-page: 3966
  issue: 7
  year: 1998
  ident: 10.1016/S1875-5364(20)30041-8_bib19
  article-title: Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.7.3966
– volume: 10
  start-page: 709
  issue: 4
  year: 2002
  ident: 10.1016/S1875-5364(20)30041-8_bib38
  article-title: The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(02)00689-5
– volume: 91
  start-page: 479
  issue: 4
  year: 1997
  ident: 10.1016/S1875-5364(20)30041-8_bib22
  article-title: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80434-1
– volume: 60
  start-page: 619
  year: 1998
  ident: 10.1016/S1875-5364(20)30041-8_bib28
  article-title: The mitochondrial death/life regulator in apoptosis and necrosis
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.60.1.619
– volume: 276
  start-page: 26614
  issue: 28
  year: 2001
  ident: 10.1016/S1875-5364(20)30041-8_bib31
  article-title: Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M100913200
– volume: 20
  start-page: 1121
  issue: 12
  year: 2000
  ident: 10.1016/S1875-5364(20)30041-8_bib29
  article-title: Cytochrome c release, mitochondrial membrane depolarization, caspase-3 activation, and Bax-alpha cleavage during IFN-alpha-induced apoptosis in Daudi B lymphoma cells
  publication-title: J Interferon Cytokine Res
  doi: 10.1089/107999000750053799
– volume: 107
  start-page: 291
  issue: 2
  year: 2012
  ident: 10.1016/S1875-5364(20)30041-8_bib35
  article-title: Targeting radiation-resistant hypoxic tumour cells through ATR inhibition
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2012.265
– volume: 66
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/S1875-5364(20)30041-8_bib2
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21332
– volume: 5
  start-page: 19
  issue: 1
  year: 2002
  ident: 10.1016/S1875-5364(20)30041-8_bib3
  article-title: Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine)
  publication-title: Drug Resist Updat
  doi: 10.1016/S1368-7646(02)00002-X
– volume: 446
  start-page: 153
  issue: 7132
  year: 2007
  ident: 10.1016/S1875-5364(20)30041-8_bib9
  article-title: Patterns of somatic mutation in human cancer genomes
  publication-title: Nature
  doi: 10.1038/nature05610
– volume: 1033–1034
  start-page: 218
  year: 2016
  ident: 10.1016/S1875-5364(20)30041-8_bib20
  article-title: Preparative isolation of cordycepin, N(6)-(2-hydroxyethyl)-adenosine and adenosine from Cordyceps militaris by macroporous resin and purification by recycling high-speed counter-current chromatography
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2016.08.025
– volume: 10
  start-page: 595
  issue: 2
  year: 2015
  ident: 10.1016/S1875-5364(20)30041-8_bib15
  article-title: Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin
  publication-title: Oncol Lett
  doi: 10.3892/ol.2015.3273
– volume: 24
  start-page: 453
  issue: 5
  year: 2001
  ident: 10.1016/S1875-5364(20)30041-8_bib30
  article-title: Cyclic-AMP inhibits nitric oxide-induced apoptosis in human osteoblast: the regulation of caspase-3,-6,-9 and the release of cytochrome c in nitric oxide-induced apoptosis by cAMP
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.24.453
– volume: 42
  start-page: 143
  year: 1986
  ident: 10.1016/S1875-5364(20)30041-8_bib7
  article-title: Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues
  publication-title: Recent Prog Horm Res
– volume: 20
  start-page: 563
  issue: 11
  year: 2004
  ident: 10.1016/S1875-5364(20)30041-8_bib5
  article-title: Evolution of the Fgf and Fgfr gene families
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2004.08.007
– volume: 66
  start-page: 271
  issue: 4
  year: 2016
  ident: 10.1016/S1875-5364(20)30041-8_bib1
  article-title: Cancer treatment and survivorship statistics, 2016
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21349
– volume: 741
  start-page: 8
  year: 2014
  ident: 10.1016/S1875-5364(20)30041-8_bib4
  article-title: Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2014.07.041
– volume: 282
  start-page: 1893
  issue: 5395
  year: 1998
  ident: 10.1016/S1875-5364(20)30041-8_bib36
  article-title: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase
  publication-title: Science
  doi: 10.1126/science.282.5395.1893
– volume: 80
  start-page: 285
  issue: 2
  year: 1995
  ident: 10.1016/S1875-5364(20)30041-8_bib23
  article-title: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90411-5
– volume: 9
  start-page: 726
  issue: 9
  year: 1995
  ident: 10.1016/S1875-5364(20)30041-8_bib32
  article-title: The MAPK signaling cascade
  publication-title: FASEB J
  doi: 10.1096/fasebj.9.9.7601337
– volume: 5
  year: 2015
  ident: 10.1016/S1875-5364(20)30041-8_bib14
  article-title: Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways
  publication-title: Sci Rep
  doi: 10.1038/srep13372
SSID ssj0000651316
Score 2.3075376
Snippet Cordycepin (3′-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying...
Cordycepin (3'-deoxyadenosine) from Cordyceps militaris has been reported to have anti-tumor effects. However, the molecular target and mechanism underlying...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Animals
antineoplastic activity
Apoptosis
Apoptosis - drug effects
caspase-3
caspase-9
cell cycle checkpoints
Cell Cycle Checkpoints - drug effects
cell growth
Cell Line, Tumor
Cell Proliferation - drug effects
Cordycepin
Cordyceps - chemistry
Cordyceps militaris
cyclin-dependent kinase
cyclins
Deoxyadenosines - administration & dosage
DNA damage
drug development
Drugs, Chinese Herbal - administration & dosage
Female
FGFR2
fibroblast growth factor receptor 2
Humans
MAP Kinase Signaling System - drug effects
Mice
Mice, Inbred BALB C
neoplasm cells
Pancreatic cancer
pancreatic neoplasms
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - physiopathology
phosphorylation
Ras/Erk
Receptor, Fibroblast Growth Factor, Type 2 - genetics
Receptor, Fibroblast Growth Factor, Type 2 - metabolism
Title Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling
URI https://dx.doi.org/10.1016/S1875-5364(20)30041-8
https://www.ncbi.nlm.nih.gov/pubmed/32451092
https://www.proquest.com/docview/2406952405
https://www.proquest.com/docview/2498260881
https://www.proquest.com/docview/2536414833
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFgQiFd5yUgMMKSNH0nDiCpKoaIDD6mbZTsOREJpVVIkFn47d05axACVWCwlsZP4zr77zroHIacx0ylzIg545mQgXSxgzwkTJFmMCfQ7micY73w3jPtP8nYUjRqkO4-FQbfKWvZXMt1L6_pOu6Zme5Ln7QcGUDsSgJ9DnzUKA36l7OAqb32yxTkLqFgmfAVU7B_ggO9Anuol_uYZD8_9e4LkNxX1GwT1qqi3QdZrDEkvq9_cJA1XbJFZF8zID-smeUHz4iU3eflGYatXqNBSi-ydUjyop89ge5cv0I2-5-V0THWRVhfvY2g0rdzDQanR3nXvnvvnBrQeHqvTq_sBRa8PjYHs2-Spd_XY7Qd1TYXAAlQoA2M02CiGSRBric2ES-OYszQzwkqrQWNmUeg0w8qdLhVobgCkCjPgKBeRc1LskJViXLg9QjvCmtAIYbBUR-ZCnQB4MpiOPs3AaJFNIudkVLZOOI51L17VwrMMqa-Q-oqHylNfJU3SWgybVBk3lg1I5jxSP5aOAq2wbOjJnKcKthWyQBduPHtTPiI4gjb6q88FzBPENPujD34RTE4hmmS3WjSLWQGWBdpe8P3_T-CArHE8APAemIdkpZzO3BGgpNIc-21wTFYvbwb94RekQgoP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHOCCQLzGM0gc4FDWJm0pRzQxBoMdeEjcoiRNWSXUTaND4t9jp90QB0DiUqlt3DZ2Y3-O_AA4igOVBlbEHs9s6IU2FrjmhPaSLKYC-meKJ5TvfNePu0_hzXP0PAftaS4MhVXWur_S6U5b11daNTdbozxvPQQItSOB-Nl3VaOSeVig6lRRAxYurnvd_myrBa1sIFwTVCLxiOYrl6d6jrt4zP0T9ygv-clK_YRCnTXqrMByDSPZRfWlqzBnizWYtNGT_DB2lBcsLwa5zss3hqu9AoaGGZLwmNFePXtB97sc4DD2npfjIVNFWp28D_GgWBUhjnaNda4699zd12j4aGedXd73GAV-KMplX4enzuVju-vVbRU8g2ih9LRW6KboIETNlphM2DSOeZBmWpjQKDSaWeRbFVDzTpsK8jgQVfkZCpWLyNpQbECjGBZ2C9iZMNrXQmjq1pFZXyWInzRVpE8z9FvCJoRTNkpT1xyn1hevchZcRtyXxH3Jfem4L5MmnM7IRlXRjb8IkqmM5Le_R6Jh-Iv0cCpTiSuLRKAKO5y8SZcUHOEx-m3MOc4TNXXwyxh6I3qdQjRhs_ppZrNCOIu8Pefb_5_AASx2H-9u5e11v7cDS5z2A1xA5i40yvHE7iFoKvV-vSg-AchzDMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cordycepin+inhibits+pancreatic+cancer+cell+growth+in+vitro+and+in+vivo+via+targeting+FGFR2+and+blocking+ERK+signaling&rft.jtitle=Chinese+journal+of+natural+medicines&rft.au=LI+X-Y&rft.au=Tao%2C+H&rft.au=Jin%2C+C&rft.au=Z-Y%2C+Du&rft.date=2020-05-01&rft.issn=1875-5364&rft.eissn=1875-5364&rft.volume=18&rft.issue=5&rft_id=info:doi/10.1016%2FS1875-5364%2820%2930041-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-5364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-5364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-5364&client=summon