Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs

In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 20; no. 2; pp. 2131 - 2156
Main Authors Meng, Xiangfei, Zhang, Guichen, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published United States AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN1551-0018
1551-0018
DOI10.3934/mbe.2023099

Cover

Loading…
Abstract In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system.
AbstractList In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system.
In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system.In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system.
Author Meng, Xiangfei
Zhang, Guichen
Zhang, Qiang
Author_xml – sequence: 1
  givenname: Xiangfei
  surname: Meng
  fullname: Meng, Xiangfei
  organization: Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
– sequence: 2
  givenname: Guichen
  surname: Zhang
  fullname: Zhang, Guichen
  organization: Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
– sequence: 3
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: School of Navigation and Shipping, Shandong Jiaotong University, Weihai 264200, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36899526$$D View this record in MEDLINE/PubMed
BookMark eNptkcuLFDEQhxtZcR968i45CtJrXv3IURYfCwuC7D1UJ9Vt1kwyJulZ9l_xrzWzMy4inqqo-uqrw--8OQkxYNO8ZvRSKCHfbya85JQLqtSz5ox1HWspZePJX_1pc57zHaVCCiFfNKeiH5XqeH_W_PoWpzUXAha2xe2QBFwT-FrKfUw_iAsFlwQFLZlh9aUt0WOCUIiJoaToyRwTWYOtQ1PWRzCvaQaDZIc5o8_k3pXvZHbBFWyL2-D-dIdpwVAhCJbgDkM1J7csmKrAhe1a8svm-Qw-46tjvWhuP328vfrS3nz9fH314aY1UrDSTjBQw4TgakSQ1vacD7YTg5W9BYYTs7KTA9qRM0GxmwYJrJ-UtKouVC8umuuD1ka409vkNpAedASnHwcxLRpSccajHjhlklkmqWRS2AmkUIZ3HEagYORQXW8Prm2KP1fMRW9cNug9BIxr1nwYe6oGOezRN0d0nTZonx7_iaYC7w6ASTHnhPMTwqjeB69r8PoYfKXZP7RxBYrbhwTO__fmN4Q8s8M
CitedBy_id crossref_primary_10_1177_01423312231187008
crossref_primary_10_1177_01423312241263386
crossref_primary_10_3934_mbe_2023588
crossref_primary_10_2478_pomr_2024_0025
crossref_primary_10_2478_pomr_2024_0012
crossref_primary_10_1038_s41598_024_84420_1
crossref_primary_10_1016_j_jfranklin_2024_01_004
crossref_primary_10_1109_ACCESS_2024_3372415
crossref_primary_10_1177_09596518241273856
crossref_primary_10_1177_01423312231195657
Cites_doi 10.1016/j.oceaneng.2019.01.043
10.1109/TFUZZ.2020.3006562
10.1016/j.automatica.2005.07.001
10.1109/TITS.2021.3066366
10.1049/iet-cta.2017.0757
10.1109/TCYB.2021.3074396
10.1109/TFUZZ.2017.2717804
10.1016/j.oceaneng.2022.111659
10.1016/j.oceaneng.2022.110866
10.1109/9.486648
10.1109/MITS.2019.2903517
10.1109/TCYB.2021.3091580
10.1109/TNNLS.2019.2951709
10.1109/TIE.2019.2952786
10.1016/j.oceaneng.2022.110530
10.1002/acs.843
10.1016/j.oceaneng.2022.111169
10.1109/TITS.2021.3066461
10.1177/09596518211013155
10.1109/TITS.2020.2989352
10.1109/TCST.2004.833643
10.1016/j.automatica.2016.11.024
10.1109/72.165588
10.1109/TII.2016.2526648
10.1002/9781119994138
10.1109/TSMC.2017.2717850
10.1109/TMECH.2021.3066211
10.1016/j.oceaneng.2010.04.007
10.1109/TCST.2017.2728518
10.1016/j.oceaneng.2021.109416
10.1109/TAC.2013.2251795
10.1016/j.automatica.2017.07.061
10.1016/j.conengprac.2020.104652
10.1109/JOE.2018.2877895
10.1016/j.neucom.2021.04.133
10.1016/j.oceaneng.2019.02.031
10.1109/TNNLS.2020.3009214
10.1016/j.isatra.2018.03.016
10.1137/S0363012992232555
10.1016/j.automatica.2015.01.041
10.1016/j.isatra.2021.05.018
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3934/mbe.2023099
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 2156
ExternalDocumentID oai_doaj_org_article_720141d1404143dba439c252a8a0ac47
36899526
10_3934_mbe_2023099
Genre Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
NPM
7X8
ID FETCH-LOGICAL-c431t-ba70c133298ea4dd6227d537d46da1eb1d4547ed82130e5b74a16b94d9d45963
IEDL.DBID DOA
ISSN 1551-0018
IngestDate Wed Aug 27 01:27:10 EDT 2025
Fri Jul 11 16:50:02 EDT 2025
Thu Jan 02 22:52:16 EST 2025
Thu Apr 24 23:08:02 EDT 2025
Tue Jul 01 02:58:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords underactuated surface vessels
fault-tolerant control
single parameter
finite-time control
event-triggered inputs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-ba70c133298ea4dd6227d537d46da1eb1d4547ed82130e5b74a16b94d9d45963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/720141d1404143dba439c252a8a0ac47
PMID 36899526
PQID 2786097477
PQPubID 23479
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_720141d1404143dba439c252a8a0ac47
proquest_miscellaneous_2786097477
pubmed_primary_36899526
crossref_primary_10_3934_mbe_2023099
crossref_citationtrail_10_3934_mbe_2023099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2023099-31
key-10.3934/mbe.2023099-30
key-10.3934/mbe.2023099-5
key-10.3934/mbe.2023099-24
key-10.3934/mbe.2023099-6
key-10.3934/mbe.2023099-23
key-10.3934/mbe.2023099-7
key-10.3934/mbe.2023099-22
key-10.3934/mbe.2023099-8
key-10.3934/mbe.2023099-21
key-10.3934/mbe.2023099-1
key-10.3934/mbe.2023099-28
key-10.3934/mbe.2023099-2
key-10.3934/mbe.2023099-27
key-10.3934/mbe.2023099-3
key-10.3934/mbe.2023099-26
key-10.3934/mbe.2023099-4
key-10.3934/mbe.2023099-25
key-10.3934/mbe.2023099-29
key-10.3934/mbe.2023099-9
key-10.3934/mbe.2023099-20
key-10.3934/mbe.2023099-41
key-10.3934/mbe.2023099-40
key-10.3934/mbe.2023099-13
key-10.3934/mbe.2023099-35
key-10.3934/mbe.2023099-12
key-10.3934/mbe.2023099-34
key-10.3934/mbe.2023099-11
key-10.3934/mbe.2023099-33
key-10.3934/mbe.2023099-10
key-10.3934/mbe.2023099-32
key-10.3934/mbe.2023099-17
key-10.3934/mbe.2023099-39
key-10.3934/mbe.2023099-16
key-10.3934/mbe.2023099-38
key-10.3934/mbe.2023099-15
key-10.3934/mbe.2023099-37
key-10.3934/mbe.2023099-14
key-10.3934/mbe.2023099-36
key-10.3934/mbe.2023099-19
key-10.3934/mbe.2023099-18
References_xml – ident: key-10.3934/mbe.2023099-15
  doi: 10.1016/j.oceaneng.2019.01.043
– ident: key-10.3934/mbe.2023099-24
  doi: 10.1109/TFUZZ.2020.3006562
– ident: key-10.3934/mbe.2023099-36
  doi: 10.1016/j.automatica.2005.07.001
– ident: key-10.3934/mbe.2023099-4
  doi: 10.1109/TITS.2021.3066366
– ident: key-10.3934/mbe.2023099-14
  doi: 10.1049/iet-cta.2017.0757
– ident: key-10.3934/mbe.2023099-1
  doi: 10.1109/TCYB.2021.3074396
– ident: key-10.3934/mbe.2023099-34
  doi: 10.1109/TFUZZ.2017.2717804
– ident: key-10.3934/mbe.2023099-5
  doi: 10.1016/j.oceaneng.2022.111659
– ident: key-10.3934/mbe.2023099-28
  doi: 10.1016/j.oceaneng.2022.110866
– ident: key-10.3934/mbe.2023099-40
  doi: 10.1109/9.486648
– ident: key-10.3934/mbe.2023099-17
  doi: 10.1109/MITS.2019.2903517
– ident: key-10.3934/mbe.2023099-9
  doi: 10.1109/TCYB.2021.3091580
– ident: key-10.3934/mbe.2023099-22
  doi: 10.1109/TNNLS.2019.2951709
– ident: key-10.3934/mbe.2023099-31
  doi: 10.1109/TIE.2019.2952786
– ident: key-10.3934/mbe.2023099-32
  doi: 10.1016/j.oceaneng.2022.110530
– ident: key-10.3934/mbe.2023099-19
  doi: 10.1002/acs.843
– ident: key-10.3934/mbe.2023099-23
  doi: 10.1016/j.oceaneng.2022.111169
– ident: key-10.3934/mbe.2023099-27
  doi: 10.1109/TITS.2021.3066461
– ident: key-10.3934/mbe.2023099-26
  doi: 10.1177/09596518211013155
– ident: key-10.3934/mbe.2023099-2
  doi: 10.1109/TITS.2020.2989352
– ident: key-10.3934/mbe.2023099-7
  doi: 10.1109/TCST.2004.833643
– ident: key-10.3934/mbe.2023099-41
  doi: 10.1016/j.automatica.2016.11.024
– ident: key-10.3934/mbe.2023099-37
  doi: 10.1109/72.165588
– ident: key-10.3934/mbe.2023099-20
  doi: 10.1109/TII.2016.2526648
– ident: key-10.3934/mbe.2023099-33
  doi: 10.1002/9781119994138
– ident: key-10.3934/mbe.2023099-21
  doi: 10.1109/TSMC.2017.2717850
– ident: key-10.3934/mbe.2023099-30
  doi: 10.1109/TMECH.2021.3066211
– ident: key-10.3934/mbe.2023099-8
  doi: 10.1016/j.oceaneng.2010.04.007
– ident: key-10.3934/mbe.2023099-12
  doi: 10.1109/TCST.2017.2728518
– ident: key-10.3934/mbe.2023099-13
  doi: 10.1016/j.oceaneng.2021.109416
– ident: key-10.3934/mbe.2023099-18
  doi: 10.1109/TAC.2013.2251795
– ident: key-10.3934/mbe.2023099-25
  doi: 10.1016/j.automatica.2017.07.061
– ident: key-10.3934/mbe.2023099-10
  doi: 10.1016/j.conengprac.2020.104652
– ident: key-10.3934/mbe.2023099-11
  doi: 10.1109/JOE.2018.2877895
– ident: key-10.3934/mbe.2023099-29
  doi: 10.1016/j.neucom.2021.04.133
– ident: key-10.3934/mbe.2023099-16
  doi: 10.1016/j.oceaneng.2019.02.031
– ident: key-10.3934/mbe.2023099-3
  doi: 10.1109/TNNLS.2020.3009214
– ident: key-10.3934/mbe.2023099-35
  doi: 10.1016/j.isatra.2018.03.016
– ident: key-10.3934/mbe.2023099-38
  doi: 10.1137/S0363012992232555
– ident: key-10.3934/mbe.2023099-39
  doi: 10.1016/j.automatica.2015.01.041
– ident: key-10.3934/mbe.2023099-6
  doi: 10.1016/j.isatra.2021.05.018
SSID ssj0034334
Score 2.3410258
Snippet In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 2131
SubjectTerms event-triggered inputs
fault-tolerant control
finite-time control
single parameter
underactuated surface vessels
Title Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs
URI https://www.ncbi.nlm.nih.gov/pubmed/36899526
https://www.proquest.com/docview/2786097477
https://doaj.org/article/720141d1404143dba439c252a8a0ac47
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgRv31VS4SehNBtks1mjyotRdCDVOhtmXyJ8Nz36GYF_xX_WmeSfU8PSi9edweSzUwyv8nO_IaxEwfWODwchUZ3JXSfWmFDTCIZaJPvm9YBFSd_-GguP-v31-31H62-KCes0gPXhTvtJKUiBmKBQdceHKAH9bKVYKEBr0sdOfq8XTBVz2ClldK1Gk_1Sp9-c8SIiWi7ULz-9j-Fpv_f2LL4mIv77N4CDvmbOqkH7E4cH7LD2i7yxyP289PGzVPmEGBLpxQnMkqUH2sqN99TPwSeYF5nkTfriL4o8yUhnSNC5VQ1RqVRcxGc5psEPvLvxCG-njjdy_L0lZCooL7zvKSllwrNyGEMvDA-iYxB_Rdq84mDbuc8PWZXF-dX7y7F0ltBeIQMWTjoGo_xqextBB2CkbILreqCNgHO8AAPxPQVg5Xo5GLrOg1nxvU69PgCN-0TdjBuxviM8WiDi0l1HoGgRjU7UD5p62NjwSkXVuz1bsEHv_COU_uL9YDxB2lnQO0Mi3ZW7GQvvK10G38Xe0ua24sQR3Z5gJYzLJYz3GY5K_Zqp_cB9xT9KIExbuZpkJ01DQVaKPO0GsR-KGUwQm2lOfofU3jO7tIX1SudF-wg38zxJYKc7I6LPf8C4Bb-Kw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+adaptive+neural+network+integrated+fault-tolerant+control+for+underactuated+surface+vessels+with+finite-time+convergence+and+event-triggered+inputs&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Meng%2C+Xiangfei&rft.au=Zhang%2C+Guichen&rft.au=Zhang%2C+Qiang&rft.date=2023-01-01&rft.issn=1551-0018&rft.volume=20&rft.issue=2&rft.spage=2131&rft.epage=2156&rft_id=info:doi/10.3934%2Fmbe.2023099&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_mbe_2023099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon