Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs
In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 20; no. 2; pp. 2131 - 2156 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1551-0018 1551-0018 |
DOI | 10.3934/mbe.2023099 |
Cover
Loading…
Abstract | In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system. |
---|---|
AbstractList | In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system. In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system.In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system. |
Author | Meng, Xiangfei Zhang, Guichen Zhang, Qiang |
Author_xml | – sequence: 1 givenname: Xiangfei surname: Meng fullname: Meng, Xiangfei organization: Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China – sequence: 2 givenname: Guichen surname: Zhang fullname: Zhang, Guichen organization: Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China – sequence: 3 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: School of Navigation and Shipping, Shandong Jiaotong University, Weihai 264200, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36899526$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcuLFDEQhxtZcR968i45CtJrXv3IURYfCwuC7D1UJ9Vt1kwyJulZ9l_xrzWzMy4inqqo-uqrw--8OQkxYNO8ZvRSKCHfbya85JQLqtSz5ox1HWspZePJX_1pc57zHaVCCiFfNKeiH5XqeH_W_PoWpzUXAha2xe2QBFwT-FrKfUw_iAsFlwQFLZlh9aUt0WOCUIiJoaToyRwTWYOtQ1PWRzCvaQaDZIc5o8_k3pXvZHbBFWyL2-D-dIdpwVAhCJbgDkM1J7csmKrAhe1a8svm-Qw-46tjvWhuP328vfrS3nz9fH314aY1UrDSTjBQw4TgakSQ1vacD7YTg5W9BYYTs7KTA9qRM0GxmwYJrJ-UtKouVC8umuuD1ka409vkNpAedASnHwcxLRpSccajHjhlklkmqWRS2AmkUIZ3HEagYORQXW8Prm2KP1fMRW9cNug9BIxr1nwYe6oGOezRN0d0nTZonx7_iaYC7w6ASTHnhPMTwqjeB69r8PoYfKXZP7RxBYrbhwTO__fmN4Q8s8M |
CitedBy_id | crossref_primary_10_1177_01423312231187008 crossref_primary_10_1177_01423312241263386 crossref_primary_10_3934_mbe_2023588 crossref_primary_10_2478_pomr_2024_0025 crossref_primary_10_2478_pomr_2024_0012 crossref_primary_10_1038_s41598_024_84420_1 crossref_primary_10_1016_j_jfranklin_2024_01_004 crossref_primary_10_1109_ACCESS_2024_3372415 crossref_primary_10_1177_09596518241273856 crossref_primary_10_1177_01423312231195657 |
Cites_doi | 10.1016/j.oceaneng.2019.01.043 10.1109/TFUZZ.2020.3006562 10.1016/j.automatica.2005.07.001 10.1109/TITS.2021.3066366 10.1049/iet-cta.2017.0757 10.1109/TCYB.2021.3074396 10.1109/TFUZZ.2017.2717804 10.1016/j.oceaneng.2022.111659 10.1016/j.oceaneng.2022.110866 10.1109/9.486648 10.1109/MITS.2019.2903517 10.1109/TCYB.2021.3091580 10.1109/TNNLS.2019.2951709 10.1109/TIE.2019.2952786 10.1016/j.oceaneng.2022.110530 10.1002/acs.843 10.1016/j.oceaneng.2022.111169 10.1109/TITS.2021.3066461 10.1177/09596518211013155 10.1109/TITS.2020.2989352 10.1109/TCST.2004.833643 10.1016/j.automatica.2016.11.024 10.1109/72.165588 10.1109/TII.2016.2526648 10.1002/9781119994138 10.1109/TSMC.2017.2717850 10.1109/TMECH.2021.3066211 10.1016/j.oceaneng.2010.04.007 10.1109/TCST.2017.2728518 10.1016/j.oceaneng.2021.109416 10.1109/TAC.2013.2251795 10.1016/j.automatica.2017.07.061 10.1016/j.conengprac.2020.104652 10.1109/JOE.2018.2877895 10.1016/j.neucom.2021.04.133 10.1016/j.oceaneng.2019.02.031 10.1109/TNNLS.2020.3009214 10.1016/j.isatra.2018.03.016 10.1137/S0363012992232555 10.1016/j.automatica.2015.01.041 10.1016/j.isatra.2021.05.018 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3934/mbe.2023099 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 2156 |
ExternalDocumentID | oai_doaj_org_article_720141d1404143dba439c252a8a0ac47 36899526 10_3934_mbe_2023099 |
Genre | Journal Article |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS NPM 7X8 |
ID | FETCH-LOGICAL-c431t-ba70c133298ea4dd6227d537d46da1eb1d4547ed82130e5b74a16b94d9d45963 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 01:27:10 EDT 2025 Fri Jul 11 16:50:02 EDT 2025 Thu Jan 02 22:52:16 EST 2025 Thu Apr 24 23:08:02 EDT 2025 Tue Jul 01 02:58:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | underactuated surface vessels fault-tolerant control single parameter finite-time control event-triggered inputs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-ba70c133298ea4dd6227d537d46da1eb1d4547ed82130e5b74a16b94d9d45963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/720141d1404143dba439c252a8a0ac47 |
PMID | 36899526 |
PQID | 2786097477 |
PQPubID | 23479 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_720141d1404143dba439c252a8a0ac47 proquest_miscellaneous_2786097477 pubmed_primary_36899526 crossref_primary_10_3934_mbe_2023099 crossref_citationtrail_10_3934_mbe_2023099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationTitleAlternate | Math Biosci Eng |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2023099-31 key-10.3934/mbe.2023099-30 key-10.3934/mbe.2023099-5 key-10.3934/mbe.2023099-24 key-10.3934/mbe.2023099-6 key-10.3934/mbe.2023099-23 key-10.3934/mbe.2023099-7 key-10.3934/mbe.2023099-22 key-10.3934/mbe.2023099-8 key-10.3934/mbe.2023099-21 key-10.3934/mbe.2023099-1 key-10.3934/mbe.2023099-28 key-10.3934/mbe.2023099-2 key-10.3934/mbe.2023099-27 key-10.3934/mbe.2023099-3 key-10.3934/mbe.2023099-26 key-10.3934/mbe.2023099-4 key-10.3934/mbe.2023099-25 key-10.3934/mbe.2023099-29 key-10.3934/mbe.2023099-9 key-10.3934/mbe.2023099-20 key-10.3934/mbe.2023099-41 key-10.3934/mbe.2023099-40 key-10.3934/mbe.2023099-13 key-10.3934/mbe.2023099-35 key-10.3934/mbe.2023099-12 key-10.3934/mbe.2023099-34 key-10.3934/mbe.2023099-11 key-10.3934/mbe.2023099-33 key-10.3934/mbe.2023099-10 key-10.3934/mbe.2023099-32 key-10.3934/mbe.2023099-17 key-10.3934/mbe.2023099-39 key-10.3934/mbe.2023099-16 key-10.3934/mbe.2023099-38 key-10.3934/mbe.2023099-15 key-10.3934/mbe.2023099-37 key-10.3934/mbe.2023099-14 key-10.3934/mbe.2023099-36 key-10.3934/mbe.2023099-19 key-10.3934/mbe.2023099-18 |
References_xml | – ident: key-10.3934/mbe.2023099-15 doi: 10.1016/j.oceaneng.2019.01.043 – ident: key-10.3934/mbe.2023099-24 doi: 10.1109/TFUZZ.2020.3006562 – ident: key-10.3934/mbe.2023099-36 doi: 10.1016/j.automatica.2005.07.001 – ident: key-10.3934/mbe.2023099-4 doi: 10.1109/TITS.2021.3066366 – ident: key-10.3934/mbe.2023099-14 doi: 10.1049/iet-cta.2017.0757 – ident: key-10.3934/mbe.2023099-1 doi: 10.1109/TCYB.2021.3074396 – ident: key-10.3934/mbe.2023099-34 doi: 10.1109/TFUZZ.2017.2717804 – ident: key-10.3934/mbe.2023099-5 doi: 10.1016/j.oceaneng.2022.111659 – ident: key-10.3934/mbe.2023099-28 doi: 10.1016/j.oceaneng.2022.110866 – ident: key-10.3934/mbe.2023099-40 doi: 10.1109/9.486648 – ident: key-10.3934/mbe.2023099-17 doi: 10.1109/MITS.2019.2903517 – ident: key-10.3934/mbe.2023099-9 doi: 10.1109/TCYB.2021.3091580 – ident: key-10.3934/mbe.2023099-22 doi: 10.1109/TNNLS.2019.2951709 – ident: key-10.3934/mbe.2023099-31 doi: 10.1109/TIE.2019.2952786 – ident: key-10.3934/mbe.2023099-32 doi: 10.1016/j.oceaneng.2022.110530 – ident: key-10.3934/mbe.2023099-19 doi: 10.1002/acs.843 – ident: key-10.3934/mbe.2023099-23 doi: 10.1016/j.oceaneng.2022.111169 – ident: key-10.3934/mbe.2023099-27 doi: 10.1109/TITS.2021.3066461 – ident: key-10.3934/mbe.2023099-26 doi: 10.1177/09596518211013155 – ident: key-10.3934/mbe.2023099-2 doi: 10.1109/TITS.2020.2989352 – ident: key-10.3934/mbe.2023099-7 doi: 10.1109/TCST.2004.833643 – ident: key-10.3934/mbe.2023099-41 doi: 10.1016/j.automatica.2016.11.024 – ident: key-10.3934/mbe.2023099-37 doi: 10.1109/72.165588 – ident: key-10.3934/mbe.2023099-20 doi: 10.1109/TII.2016.2526648 – ident: key-10.3934/mbe.2023099-33 doi: 10.1002/9781119994138 – ident: key-10.3934/mbe.2023099-21 doi: 10.1109/TSMC.2017.2717850 – ident: key-10.3934/mbe.2023099-30 doi: 10.1109/TMECH.2021.3066211 – ident: key-10.3934/mbe.2023099-8 doi: 10.1016/j.oceaneng.2010.04.007 – ident: key-10.3934/mbe.2023099-12 doi: 10.1109/TCST.2017.2728518 – ident: key-10.3934/mbe.2023099-13 doi: 10.1016/j.oceaneng.2021.109416 – ident: key-10.3934/mbe.2023099-18 doi: 10.1109/TAC.2013.2251795 – ident: key-10.3934/mbe.2023099-25 doi: 10.1016/j.automatica.2017.07.061 – ident: key-10.3934/mbe.2023099-10 doi: 10.1016/j.conengprac.2020.104652 – ident: key-10.3934/mbe.2023099-11 doi: 10.1109/JOE.2018.2877895 – ident: key-10.3934/mbe.2023099-29 doi: 10.1016/j.neucom.2021.04.133 – ident: key-10.3934/mbe.2023099-16 doi: 10.1016/j.oceaneng.2019.02.031 – ident: key-10.3934/mbe.2023099-3 doi: 10.1109/TNNLS.2020.3009214 – ident: key-10.3934/mbe.2023099-35 doi: 10.1016/j.isatra.2018.03.016 – ident: key-10.3934/mbe.2023099-38 doi: 10.1137/S0363012992232555 – ident: key-10.3934/mbe.2023099-39 doi: 10.1016/j.automatica.2015.01.041 – ident: key-10.3934/mbe.2023099-6 doi: 10.1016/j.isatra.2021.05.018 |
SSID | ssj0034334 |
Score | 2.3410258 |
Snippet | In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 2131 |
SubjectTerms | event-triggered inputs fault-tolerant control finite-time control single parameter underactuated surface vessels |
Title | Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36899526 https://www.proquest.com/docview/2786097477 https://doaj.org/article/720141d1404143dba439c252a8a0ac47 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgRv31VS4SehNBtks1mjyotRdCDVOhtmXyJ8Nz36GYF_xX_WmeSfU8PSi9edweSzUwyv8nO_IaxEwfWODwchUZ3JXSfWmFDTCIZaJPvm9YBFSd_-GguP-v31-31H62-KCes0gPXhTvtJKUiBmKBQdceHKAH9bKVYKEBr0sdOfq8XTBVz2ClldK1Gk_1Sp9-c8SIiWi7ULz-9j-Fpv_f2LL4mIv77N4CDvmbOqkH7E4cH7LD2i7yxyP289PGzVPmEGBLpxQnMkqUH2sqN99TPwSeYF5nkTfriL4o8yUhnSNC5VQ1RqVRcxGc5psEPvLvxCG-njjdy_L0lZCooL7zvKSllwrNyGEMvDA-iYxB_Rdq84mDbuc8PWZXF-dX7y7F0ltBeIQMWTjoGo_xqextBB2CkbILreqCNgHO8AAPxPQVg5Xo5GLrOg1nxvU69PgCN-0TdjBuxviM8WiDi0l1HoGgRjU7UD5p62NjwSkXVuz1bsEHv_COU_uL9YDxB2lnQO0Mi3ZW7GQvvK10G38Xe0ua24sQR3Z5gJYzLJYz3GY5K_Zqp_cB9xT9KIExbuZpkJ01DQVaKPO0GsR-KGUwQm2lOfofU3jO7tIX1SudF-wg38zxJYKc7I6LPf8C4Bb-Kw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+adaptive+neural+network+integrated+fault-tolerant+control+for+underactuated+surface+vessels+with+finite-time+convergence+and+event-triggered+inputs&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Meng%2C+Xiangfei&rft.au=Zhang%2C+Guichen&rft.au=Zhang%2C+Qiang&rft.date=2023-01-01&rft.issn=1551-0018&rft.volume=20&rft.issue=2&rft.spage=2131&rft.epage=2156&rft_id=info:doi/10.3934%2Fmbe.2023099&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_mbe_2023099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |