Effects of congestion charging and subsidy policy on vehicle flow and revenue with user heterogeneity
Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this paper constructs a typical transit network consisting of three travel tools in four common travel modes...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 20; no. 7; pp. 12820 - 12842 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this paper constructs a typical transit network consisting of three travel tools in four common travel modes. Travelers' values of time affect their choice of transportation in the congestion network, thus a stochastic user equilibrium model is established by considering travelers' heterogenous values of time to evaluate the effects of different combinations of congestion charging and subsidy policies on vehicle flow and revenue. Numerical results indicate that the effectiveness of congestion charging and subsidy policy in alleviating traffic congestion depends on the object of charging or subsidizing. Congestion charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging for ridesharing cars does not reduce traffic flow and may even cause traffic congestion. Subsidizing public buses does not reduce traffic flow, but it can ease congestion by coordinating traffic flow on both edges of the dual-modal transport. The combination of no subsidy for public buses and charging for both private cars and ridesharing cars can obtain the greatest revenue, but it does not alleviate traffic congestion. Although the combination of charging for private cars and subsidizing public buses does not bring the most benefits, it can reduce traffic flow, and its revenue is also considerable. This study can provide quantitative decision support for the government to ease traffic congestion and improve government revenue. |
---|---|
AbstractList | Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this paper constructs a typical transit network consisting of three travel tools in four common travel modes. Travelers' values of time affect their choice of transportation in the congestion network, thus a stochastic user equilibrium model is established by considering travelers' heterogenous values of time to evaluate the effects of different combinations of congestion charging and subsidy policies on vehicle flow and revenue. Numerical results indicate that the effectiveness of congestion charging and subsidy policy in alleviating traffic congestion depends on the object of charging or subsidizing. Congestion charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging for ridesharing cars does not reduce traffic flow and may even cause traffic congestion. Subsidizing public buses does not reduce traffic flow, but it can ease congestion by coordinating traffic flow on both edges of the dual-modal transport. The combination of no subsidy for public buses and charging for both private cars and ridesharing cars can obtain the greatest revenue, but it does not alleviate traffic congestion. Although the combination of charging for private cars and subsidizing public buses does not bring the most benefits, it can reduce traffic flow, and its revenue is also considerable. This study can provide quantitative decision support for the government to ease traffic congestion and improve government revenue. Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this paper constructs a typical transit network consisting of three travel tools in four common travel modes. Travelers' values of time affect their choice of transportation in the congestion network, thus a stochastic user equilibrium model is established by considering travelers' heterogenous values of time to evaluate the effects of different combinations of congestion charging and subsidy policies on vehicle flow and revenue. Numerical results indicate that the effectiveness of congestion charging and subsidy policy in alleviating traffic congestion depends on the object of charging or subsidizing. Congestion charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging for ridesharing cars does not reduce traffic flow and may even cause traffic congestion. Subsidizing public buses does not reduce traffic flow, but it can ease congestion by coordinating traffic flow on both edges of the dual-modal transport. The combination of no subsidy for public buses and charging for both private cars and ridesharing cars can obtain the greatest revenue, but it does not alleviate traffic congestion. Although the combination of charging for private cars and subsidizing public buses does not bring the most benefits, it can reduce traffic flow, and its revenue is also considerable. This study can provide quantitative decision support for the government to ease traffic congestion and improve government revenue.Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but which one is better? Based on this, this paper constructs a typical transit network consisting of three travel tools in four common travel modes. Travelers' values of time affect their choice of transportation in the congestion network, thus a stochastic user equilibrium model is established by considering travelers' heterogenous values of time to evaluate the effects of different combinations of congestion charging and subsidy policies on vehicle flow and revenue. Numerical results indicate that the effectiveness of congestion charging and subsidy policy in alleviating traffic congestion depends on the object of charging or subsidizing. Congestion charging for private cars can reduce traffic flow and alleviate traffic congestion, but charging for ridesharing cars does not reduce traffic flow and may even cause traffic congestion. Subsidizing public buses does not reduce traffic flow, but it can ease congestion by coordinating traffic flow on both edges of the dual-modal transport. The combination of no subsidy for public buses and charging for both private cars and ridesharing cars can obtain the greatest revenue, but it does not alleviate traffic congestion. Although the combination of charging for private cars and subsidizing public buses does not bring the most benefits, it can reduce traffic flow, and its revenue is also considerable. This study can provide quantitative decision support for the government to ease traffic congestion and improve government revenue. |
Author | Li, Dawei Cheng, Fangzheng Fan, Dandan Fu, Guanghua |
Author_xml | – sequence: 1 givenname: Dandan surname: Fan fullname: Fan, Dandan organization: College of Economics and Management, Shanghai Ocean University, Shanghai 201306, China – sequence: 2 givenname: Dawei surname: Li fullname: Li, Dawei organization: College of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China – sequence: 3 givenname: Fangzheng surname: Cheng fullname: Cheng, Fangzheng organization: Shanghai Yunji Zhixing Intelligent Technology Co., Ltd, Shanghai 201114, China – sequence: 4 givenname: Guanghua surname: Fu fullname: Fu, Guanghua organization: Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37501468$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtrFDEUxoNU7EWffJc8CrI115nMo5RqCwVf9DnkcjKbMpusyUzL_vfNdtdSRAgknPPLdw7fd45OUk6A0EdKLvnAxdeNhUtGGJc9e4POqJR0RQhVJ6_ep-i81ntCuOBcvEOnvJeEik6dIbgOAdxccQ7Y5TRCnWNO2K1NGWMasUke18XW6Hd4m6fodri1H2Ad3QQ4TPnxGSnwAGkB_BjnNV4qFLyGGUoeIUGcd-_R22CmCh-O9wX6_f3619XN6u7nj9urb3crJzidV5ZZYNLITth2pGOh40qJ3jlPO6UM5dRwkHaw3nkiO9MJxXofPHVeWcf4Bbo96Pps7vW2xI0pO51N1M-FXEZtyrxfXQs2OEdB9CJYESQZrGsFwYErDtbLpvX5oLUt-c_SfNGbWB1Mk0mQl6qZkqLZKeXQ0E9HdLEb8C-D_9rcgC8HwJVca4HwglCi9yHqFqI-htho-g_t4mz2uczFxOm_f54AfY-gZg |
CitedBy_id | crossref_primary_10_1016_j_tranpol_2024_04_004 crossref_primary_10_1016_j_trd_2024_104294 |
Cites_doi | 10.1016/j.trb.2012.03.001 10.1016/j.tra.2017.11.001 10.3390/ijerph18031197 10.1016/j.trip.2021.100340 10.1016/j.trb.2015.08.013 10.1016/j.tra.2016.06.033 10.1016/j.tra.2009.09.004 10.1016/j.trb.2021.07.004 10.1080/15568318.2015.1083638 10.1109/VETECS.2007.15 10.1016/j.trb.2008.09.001 10.1016/j.tre.2022.102999 10.1016/j.tra.2012.02.013 10.4337/9781845420536.00014 10.1016/j.trc.2015.10.013 10.1016/j.tra.2019.11.021 10.1016/S0965-8564(99)00048-8 10.1016/j.trb.2019.07.012 10.1016/j.tra.2016.02.014 10.3141/2429-04 10.1016/j.tra.2016.10.005 10.1109/LCN.2009.5355052 10.1016/j.tranpol.2012.06.015 10.1016/j.tra.2016.11.003 10.1016/j.jue.2015.06.005 10.1016/j.trb.2020.05.007 10.1016/j.trb.2014.03.001 10.1007/s40534-017-0128-8 10.1109/ITSC.2015.243 10.1016/j.trb.2017.06.006 10.1016/j.tra.2018.08.005 10.1016/j.trc.2019.05.016 10.1016/j.trd.2016.07.002 10.1177/03611981211019737 10.1016/j.tra.2020.12.011 10.1007/s11066-008-9018-x 10.1016/j.tra.2016.04.013 10.1109/ITSC.2009.5309716 10.1155/2021/6627660 10.1287/trsc.27.2.133 10.1016/S0191-2615(98)00040-X 10.1016/j.trb.2018.02.005 10.1016/j.tra.2013.01.031 10.1007/s11067-019-9442-5 10.1016/j.regsciurbeco.2008.01.004 10.1016/j.tra.2015.06.008 10.1016/j.trb.2019.07.003 10.7307/ptt.v34i1.3815 10.1016/j.tra.2006.07.002 10.1016/j.trb.2021.01.004 10.1016/j.ecotra.2018.08.001 10.1016/j.trb.2020.02.001 10.1016/j.jue.2014.02.001 10.1016/j.tra.2019.06.005 10.1016/j.tra.2010.04.001 10.1080/00207721.2012.743617 10.1155/2014/634926 10.1016/j.trc.2017.10.022 10.1016/j.tranpol.2011.01.002 10.1016/j.tra.2008.09.007 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3934/mbe.2023572 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 12842 |
ExternalDocumentID | oai_doaj_org_article_429cc1e474fb4f509bc9cc43e383ebd5 37501468 10_3934_mbe_2023572 |
Genre | Journal Article |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS NPM 7X8 |
ID | FETCH-LOGICAL-c431t-b2be25a564b64b5c2f638847ccd1688a131a3e5b9bdcd056a64827dfd1cd8bc23 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 01:28:24 EDT 2025 Fri Jul 11 15:13:38 EDT 2025 Thu Jan 02 22:51:27 EST 2025 Thu Apr 24 23:02:15 EDT 2025 Tue Jul 01 02:58:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | transit subsidy traffic congestion private car public bus value of time ridesharing car |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-b2be25a564b64b5c2f638847ccd1688a131a3e5b9bdcd056a64827dfd1cd8bc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/429cc1e474fb4f509bc9cc43e383ebd5 |
PMID | 37501468 |
PQID | 2854433559 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_429cc1e474fb4f509bc9cc43e383ebd5 proquest_miscellaneous_2854433559 pubmed_primary_37501468 crossref_primary_10_3934_mbe_2023572 crossref_citationtrail_10_3934_mbe_2023572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Jun-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-Jun-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationTitleAlternate | Math Biosci Eng |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2023572-42 key-10.3934/mbe.2023572-41 key-10.3934/mbe.2023572-40 key-10.3934/mbe.2023572-35 key-10.3934/mbe.2023572-34 key-10.3934/mbe.2023572-33 key-10.3934/mbe.2023572-32 key-10.3934/mbe.2023572-39 key-10.3934/mbe.2023572-38 key-10.3934/mbe.2023572-37 key-10.3934/mbe.2023572-36 key-10.3934/mbe.2023572-31 key-10.3934/mbe.2023572-30 key-10.3934/mbe.2023572-29 key-10.3934/mbe.2023572-24 key-10.3934/mbe.2023572-23 key-10.3934/mbe.2023572-22 key-10.3934/mbe.2023572-21 key-10.3934/mbe.2023572-28 key-10.3934/mbe.2023572-27 key-10.3934/mbe.2023572-26 key-10.3934/mbe.2023572-25 key-10.3934/mbe.2023572-60 key-10.3934/mbe.2023572-20 key-10.3934/mbe.2023572-62 key-10.3934/mbe.2023572-61 key-10.3934/mbe.2023572-9 key-10.3934/mbe.2023572-19 key-10.3934/mbe.2023572-18 key-10.3934/mbe.2023572-3 key-10.3934/mbe.2023572-13 key-10.3934/mbe.2023572-57 key-10.3934/mbe.2023572-4 key-10.3934/mbe.2023572-12 key-10.3934/mbe.2023572-56 key-10.3934/mbe.2023572-1 key-10.3934/mbe.2023572-11 key-10.3934/mbe.2023572-55 key-10.3934/mbe.2023572-2 key-10.3934/mbe.2023572-10 key-10.3934/mbe.2023572-54 key-10.3934/mbe.2023572-7 key-10.3934/mbe.2023572-17 key-10.3934/mbe.2023572-8 key-10.3934/mbe.2023572-16 key-10.3934/mbe.2023572-5 key-10.3934/mbe.2023572-15 key-10.3934/mbe.2023572-59 key-10.3934/mbe.2023572-6 key-10.3934/mbe.2023572-14 key-10.3934/mbe.2023572-58 key-10.3934/mbe.2023572-53 key-10.3934/mbe.2023572-52 key-10.3934/mbe.2023572-51 key-10.3934/mbe.2023572-50 key-10.3934/mbe.2023572-46 key-10.3934/mbe.2023572-45 key-10.3934/mbe.2023572-44 key-10.3934/mbe.2023572-43 key-10.3934/mbe.2023572-49 key-10.3934/mbe.2023572-48 key-10.3934/mbe.2023572-47 |
References_xml | – ident: key-10.3934/mbe.2023572-16 doi: 10.1016/j.trb.2012.03.001 – ident: key-10.3934/mbe.2023572-18 doi: 10.1016/j.tra.2017.11.001 – ident: key-10.3934/mbe.2023572-35 doi: 10.3390/ijerph18031197 – ident: key-10.3934/mbe.2023572-24 doi: 10.1016/j.trip.2021.100340 – ident: key-10.3934/mbe.2023572-48 doi: 10.1016/j.trb.2015.08.013 – ident: key-10.3934/mbe.2023572-51 – ident: key-10.3934/mbe.2023572-5 doi: 10.1016/j.tra.2016.06.033 – ident: key-10.3934/mbe.2023572-15 doi: 10.1016/j.tra.2009.09.004 – ident: key-10.3934/mbe.2023572-28 doi: 10.1016/j.trb.2021.07.004 – ident: key-10.3934/mbe.2023572-20 doi: 10.1080/15568318.2015.1083638 – ident: key-10.3934/mbe.2023572-1 doi: 10.1109/VETECS.2007.15 – ident: key-10.3934/mbe.2023572-60 doi: 10.1016/j.trb.2008.09.001 – ident: key-10.3934/mbe.2023572-34 doi: 10.1016/j.tre.2022.102999 – ident: key-10.3934/mbe.2023572-31 doi: 10.1016/j.tra.2012.02.013 – ident: key-10.3934/mbe.2023572-29 doi: 10.4337/9781845420536.00014 – ident: key-10.3934/mbe.2023572-40 doi: 10.1016/j.trc.2015.10.013 – ident: key-10.3934/mbe.2023572-59 doi: 10.1016/j.tra.2019.11.021 – ident: key-10.3934/mbe.2023572-62 doi: 10.1016/S0965-8564(99)00048-8 – ident: key-10.3934/mbe.2023572-7 doi: 10.1016/j.trb.2019.07.012 – ident: key-10.3934/mbe.2023572-36 doi: 10.1016/j.tra.2016.02.014 – ident: key-10.3934/mbe.2023572-57 doi: 10.3141/2429-04 – ident: key-10.3934/mbe.2023572-14 doi: 10.1016/j.tra.2016.10.005 – ident: key-10.3934/mbe.2023572-8 doi: 10.1109/LCN.2009.5355052 – ident: key-10.3934/mbe.2023572-37 doi: 10.1016/j.tranpol.2012.06.015 – ident: key-10.3934/mbe.2023572-45 doi: 10.1016/j.tra.2016.11.003 – ident: key-10.3934/mbe.2023572-19 doi: 10.1016/j.jue.2015.06.005 – ident: key-10.3934/mbe.2023572-33 doi: 10.1016/j.trb.2020.05.007 – ident: key-10.3934/mbe.2023572-39 doi: 10.1016/j.trb.2014.03.001 – ident: key-10.3934/mbe.2023572-50 doi: 10.1007/s40534-017-0128-8 – ident: key-10.3934/mbe.2023572-10 doi: 10.1109/ITSC.2015.243 – ident: key-10.3934/mbe.2023572-3 doi: 10.1016/j.trb.2017.06.006 – ident: key-10.3934/mbe.2023572-23 doi: 10.1016/j.tra.2018.08.005 – ident: key-10.3934/mbe.2023572-47 doi: 10.1016/j.trc.2019.05.016 – ident: key-10.3934/mbe.2023572-56 doi: 10.1016/j.trd.2016.07.002 – ident: key-10.3934/mbe.2023572-42 doi: 10.1177/03611981211019737 – ident: key-10.3934/mbe.2023572-52 doi: 10.1016/j.tra.2020.12.011 – ident: key-10.3934/mbe.2023572-30 doi: 10.1007/s11066-008-9018-x – ident: key-10.3934/mbe.2023572-6 doi: 10.1016/j.tra.2016.04.013 – ident: key-10.3934/mbe.2023572-9 doi: 10.1109/ITSC.2009.5309716 – ident: key-10.3934/mbe.2023572-27 doi: 10.1155/2021/6627660 – ident: key-10.3934/mbe.2023572-53 doi: 10.1287/trsc.27.2.133 – ident: key-10.3934/mbe.2023572-54 doi: 10.1016/S0191-2615(98)00040-X – ident: key-10.3934/mbe.2023572-46 doi: 10.1016/j.trb.2018.02.005 – ident: key-10.3934/mbe.2023572-55 doi: 10.1016/j.tra.2013.01.031 – ident: key-10.3934/mbe.2023572-32 doi: 10.1007/s11067-019-9442-5 – ident: key-10.3934/mbe.2023572-43 doi: 10.1016/j.regsciurbeco.2008.01.004 – ident: key-10.3934/mbe.2023572-2 doi: 10.1016/j.tra.2015.06.008 – ident: key-10.3934/mbe.2023572-38 doi: 10.1016/j.trb.2019.07.003 – ident: key-10.3934/mbe.2023572-21 doi: 10.7307/ptt.v34i1.3815 – ident: key-10.3934/mbe.2023572-11 doi: 10.1016/j.tra.2006.07.002 – ident: key-10.3934/mbe.2023572-49 doi: 10.1016/j.trb.2021.01.004 – ident: key-10.3934/mbe.2023572-41 doi: 10.1016/j.ecotra.2018.08.001 – ident: key-10.3934/mbe.2023572-26 doi: 10.1016/j.trb.2020.02.001 – ident: key-10.3934/mbe.2023572-44 doi: 10.1016/j.jue.2014.02.001 – ident: key-10.3934/mbe.2023572-58 doi: 10.1016/j.tra.2019.06.005 – ident: key-10.3934/mbe.2023572-4 doi: 10.1016/j.tra.2010.04.001 – ident: key-10.3934/mbe.2023572-22 doi: 10.1080/00207721.2012.743617 – ident: key-10.3934/mbe.2023572-61 – ident: key-10.3934/mbe.2023572-12 doi: 10.1155/2014/634926 – ident: key-10.3934/mbe.2023572-25 doi: 10.1016/j.trc.2017.10.022 – ident: key-10.3934/mbe.2023572-13 doi: 10.1016/j.tranpol.2011.01.002 – ident: key-10.3934/mbe.2023572-17 doi: 10.1016/j.tra.2008.09.007 |
SSID | ssj0034334 |
Score | 2.301236 |
Snippet | Traffic congestion is a major issue in urban traffic networks. Both congestion charging and subsidy policy can solve traffic congestion to some extent, but... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 12820 |
SubjectTerms | private car public bus ridesharing car traffic congestion transit subsidy value of time |
Title | Effects of congestion charging and subsidy policy on vehicle flow and revenue with user heterogeneity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37501468 https://www.proquest.com/docview/2854433559 https://doaj.org/article/429cc1e474fb4f509bc9cc43e383ebd5 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIb-uLCD0JS9lNst0eVZQi6MlCb0sySahQd4ttlf57Z5JtUVC8CHvKDrvJZJJvJo9vGOsQqOkcZCKzHiTSe50YI1WiEPxzItCyju4OPz7lg6F8GKnRl1RfdCYs0gNHxXVxvgRInexJb6RHeDOABVI4DK2csYG9FDFvFUzFOVhIIWS8jSf6QnZfDTFiErNL9g1_Ak3_775lwJj7HbbdOIf8OlZql224ao9txnSRy33mItXwjNeeYxhLO0OoVR7IjhCBuK4sn-FE8GKXfBr4fjm-fndj-hr3k_ojiATSpoXjtATLaZGCj-lMTI2m5NAnP2DD-7vn20HSpElIUA3pPDGZcZnSKpcGHwWZxzGFoANg07wodCpSLZwyfWPBor-jc6L-tN6mYAsDmThkraqu3DHjSum-txJSS2tD4AswSmcOhM-lFxba7GqlvBIaDnFKZTEpMZYgTZeo6bLRdJt11sLTSJ3xs9gN9cJahPiuQwFaQdlYQfmXFbTZ5aoPSxwftOmhK1cvZiXdEEVrwMCpzY5i565_JXq0q5oXJ_9RhVO2RS2Kx8jOWGv-tnDn6LDMzUWwzU8du-wZ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+congestion+charging+and+subsidy+policy+on+vehicle+flow+and+revenue+with+user+heterogeneity&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Dandan+Fan&rft.au=Dawei+Li&rft.au=Fangzheng+Cheng&rft.au=Guanghua+Fu&rft.date=2023-06-01&rft.pub=AIMS+Press&rft.eissn=1551-0018&rft.volume=20&rft.issue=7&rft.spage=12820&rft.epage=12842&rft_id=info:doi/10.3934%2Fmbe.2023572&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_429cc1e474fb4f509bc9cc43e383ebd5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |