A decomposition for a stochastic matrix with an application to MANOVA
The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic...
Saved in:
Published in | Journal of multivariate analysis Vol. 92; no. 1; pp. 134 - 144 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
2005
Elsevier Taylor & Francis LLC |
Series | Journal of Multivariate Analysis |
Subjects | |
Online Access | Get full text |
ISSN | 0047-259X 1095-7243 |
DOI | 10.1016/S0047-259X(03)00135-0 |
Cover
Abstract | The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a
special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure. |
---|---|
AbstractList | The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure. [PUBLICATION ABSTRACT] The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure. The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure. |
Author | Mortarino, Cinzia |
Author_xml | – sequence: 1 givenname: Cinzia surname: Mortarino fullname: Mortarino, Cinzia email: mortarino@unimore.it organization: Dipartimento di Scienze Sociali, Cognitive e Quantitative, Università di Modena e Reggio Emilia, Via Giglioli Valleg, Reggio Emilia, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16451003$$DView record in Pascal Francis http://econpapers.repec.org/article/eeejmvana/v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134-144.htm$$DView record in RePEc |
BookMark | eNqFkU1rGzEQhkVJoU7an1AQhUJ72Ga0krxZeigmpB8hbQ79oLdhVithGe9qIylu8-8j28GHXHJ4NZdn3hnNe8yOxjBaxl4L-CBAzE9_AqimqnX79x3I9wBC6gqesZmAVldNreQRmx2QF-w4pVWBhG7UjF0seG9NGKaQfPZh5C5ETjzlYJaUsjd8oBz9f_7P5yWnkdM0rb2hHZsD_774cf1n8ZI9d7RO9tVDPWG_P1_8Ov9aXV1_-Xa-uKqMkiJXreuapquJdNuIXnfkmqa1c6Nq6bQpX6m1ao3rup7OAOpe6E70_RyMk62UbS9P2Ju97xTDza1NGVfhNo5lJNbirAFVVKDLPRTtZA1O0Q8U79Bauxo2NBJuUFJbl-euqAbQpfgiUTRtq1QolMJlHorZ24eJlAytXaTR-HQwFXOlBYAs3Mc9Z2JIKVqHxufdlXIkv0YBuM0Kd1nhNggEibuscLuyftR9GPBE36d9ny1H33gbMRlvR2N7H63J2Af_hMM9lPKsCg |
CODEN | JMVAAI |
CitedBy_id | crossref_primary_10_1109_TVT_2017_2727259 |
Cites_doi | 10.1016/0047-259X(89)90074-2 10.1080/03610928308828625 10.1214/aoms/1177697508 10.1080/00401706.1974.10489158 10.1080/03610929108830562 10.1006/jmva.1997.1665 10.1006/jmva.1994.1057 10.1029/WR026i011p02695 10.2307/3315206 10.1016/0378-3758(94)90166-X 10.1007/BF02293686 10.1006/jmva.1993.1008 10.1007/BF02294401 10.1016/S0047-259X(02)00012-X 10.1080/03610928608829342 10.1016/0047-259X(91)90011-P 10.1214/ss/1177013114 10.1016/S0378-3758(96)00084-5 |
ContentType | Journal Article |
Copyright | 2003 Elsevier Inc. 2005 INIST-CNRS Copyright Taylor & Francis Group Jan 2005 |
Copyright_xml | – notice: 2003 Elsevier Inc. – notice: 2005 INIST-CNRS – notice: Copyright Taylor & Francis Group Jan 2005 |
DBID | 6I. AAFTH AAYXX CITATION IQODW DKI X2L JQ2 |
DOI | 10.1016/S0047-259X(03)00135-0 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis RePEc IDEAS RePEc ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1095-7243 |
EndPage | 144 |
ExternalDocumentID | 736018121 eeejmvana_v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134_144_htm 16451003 10_1016_S0047_259X_03_00135_0 S0047259X03001350 |
Genre | Feature |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYJJ ABAOU ABEFU ABFNM ABIVO ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UHS WUQ XFK XOL XPP YHZ ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 0R 1 8P ABFLS ABPTK ADALY DKI EFJIC G- HZ IPNFZ K M OHM OVS PQEST X X2L Z JQ2 |
ID | FETCH-LOGICAL-c431t-9fb77b2aa5971d5baf779e6c423f5c0162549cfbbda8002d15b1dd60cf39339d3 |
IEDL.DBID | AIKHN |
ISSN | 0047-259X |
IngestDate | Wed Aug 13 06:25:06 EDT 2025 Wed Aug 18 03:51:20 EDT 2021 Mon Jul 21 09:16:56 EDT 2025 Tue Jul 01 01:21:42 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Fri Feb 23 02:27:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | primary 62H05 Multivariate split-plot model Multivariate Satterthwaite's approximation secondary 62H10 Wishart distribution Dihedral block symmetry covariance model Matrix quadratic form 62J10 Statistical method Linear combination Stochastic matrix Experimental design Factorization method Wishart matrix Split plot design Multivariate analysis Matrix decomposition Quadratic form Variance analysis |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-9fb77b2aa5971d5baf779e6c423f5c0162549cfbbda8002d15b1dd60cf39339d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0047259X03001350 |
PQID | 218704870 |
PQPubID | 27957 |
PageCount | 11 |
ParticipantIDs | proquest_journals_218704870 repec_primary_eeejmvana_v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134_144_htm pascalfrancis_primary_16451003 crossref_citationtrail_10_1016_S0047_259X_03_00135_0 crossref_primary_10_1016_S0047_259X_03_00135_0 elsevier_sciencedirect_doi_10_1016_S0047_259X_03_00135_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005 2005-01-00 20050101 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005 |
PublicationDecade | 2000 |
PublicationPlace | San Diego, CA |
PublicationPlace_xml | – name: San Diego, CA – name: New York |
PublicationSeriesTitle | Journal of Multivariate Analysis |
PublicationTitle | Journal of multivariate analysis |
PublicationYear | 2005 |
Publisher | Elsevier Inc Elsevier Taylor & Francis LLC |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Taylor & Francis LLC |
References | Thomas (BIB18) 1983; 48 Khuri, Mathew, Nel (BIB8) 1994; 51 Magnus, Neudecker (BIB9) 1988 Wong, Masaro, Wang (BIB21) 1991; 39 Eaton (BIB4) 1983 Gotway, Cressie (BIB5) 1990; 26 Mathew, Nordström (BIB12) 1997; 61 Tan, Gupta (BIB17) 1983; 12 Wang (BIB19) 1997; 58 Wang, Fu, Wong (BIB20) 1996; 58 Khattree, Naik (BIB7) 1994; 41 Mathew (BIB11) 1989; 29 Masaro, Wong (BIB10) 2003; 85 Khatri (BIB6) 1977 Nel, van der Merwe (BIB13) 1986; 15 Olkin, Press (BIB14) 1969; 40 Boik (BIB1) 1988; 53 Perlman (BIB16) 1987; 2 Pavur (BIB15) 1987; 15 Brown, Forsythe (BIB3) 1974; 16 Wong, Wang (BIB22) 1993; 44 Boik (BIB2) 1991; 20 Khuri (10.1016/S0047-259X(03)00135-0_BIB8) 1994; 51 Wang (10.1016/S0047-259X(03)00135-0_BIB20) 1996; 58 Eaton (10.1016/S0047-259X(03)00135-0_BIB4) 1983 Khattree (10.1016/S0047-259X(03)00135-0_BIB7) 1994; 41 Magnus (10.1016/S0047-259X(03)00135-0_BIB9) 1988 Masaro (10.1016/S0047-259X(03)00135-0_BIB10) 2003; 85 Boik (10.1016/S0047-259X(03)00135-0_BIB2) 1991; 20 Khatri (10.1016/S0047-259X(03)00135-0_BIB6) 1977 Thomas (10.1016/S0047-259X(03)00135-0_BIB18) 1983; 48 Boik (10.1016/S0047-259X(03)00135-0_BIB1) 1988; 53 Tan (10.1016/S0047-259X(03)00135-0_BIB17) 1983; 12 Mathew (10.1016/S0047-259X(03)00135-0_BIB12) 1997; 61 Nel (10.1016/S0047-259X(03)00135-0_BIB13) 1986; 15 Olkin (10.1016/S0047-259X(03)00135-0_BIB14) 1969; 40 Pavur (10.1016/S0047-259X(03)00135-0_BIB15) 1987; 15 Wong (10.1016/S0047-259X(03)00135-0_BIB22) 1993; 44 Mathew (10.1016/S0047-259X(03)00135-0_BIB11) 1989; 29 Brown (10.1016/S0047-259X(03)00135-0_BIB3) 1974; 16 Gotway (10.1016/S0047-259X(03)00135-0_BIB5) 1990; 26 Wang (10.1016/S0047-259X(03)00135-0_BIB19) 1997; 58 Wong (10.1016/S0047-259X(03)00135-0_BIB21) 1991; 39 Perlman (10.1016/S0047-259X(03)00135-0_BIB16) 1987; 2 |
References_xml | – volume: 12 start-page: 2589 year: 1983 end-page: 2600 ident: BIB17 article-title: On approximating a linear combination of central Wishart matrices with positive coefficients publication-title: Commun. Statist. Theory Methods – volume: 58 start-page: 283 year: 1997 end-page: 297 ident: BIB19 article-title: Versions of Cochran's theorem for general quadratic expressions in normal matrices publication-title: J. Statist. Plann. Inference – volume: 20 start-page: 1233 year: 1991 end-page: 1255 ident: BIB2 article-title: Scheffé's mixed model for multivariate repeated measures publication-title: Comm. Statist. Theory Methods – volume: 41 start-page: 231 year: 1994 end-page: 240 ident: BIB7 article-title: Optimal test for nested designs with circular stationary dependence publication-title: J. Statist. Plann. Inference – volume: 15 start-page: 3719 year: 1986 end-page: 3735 ident: BIB13 article-title: A solution to the multivariate Behrens–Fisher problem publication-title: Commun. Statist. Theory Methods – volume: 29 start-page: 30 year: 1989 end-page: 38 ident: BIB11 article-title: MANOVA in the multivariate components of variance model publication-title: J. Multivariate Anal – volume: 2 start-page: 421 year: 1987 end-page: 425 ident: BIB16 article-title: Group symmetry covariance models (comment to “A Review of Multivariate Analysis”, M. Schervish) publication-title: Statist. Sci – volume: 48 start-page: 451 year: 1983 end-page: 464 ident: BIB18 article-title: Univariate repeated measures techniques applied to multivariate data publication-title: Psychometrika – volume: 58 start-page: 328 year: 1996 end-page: 342 ident: BIB20 article-title: Cochran theorems for multivariate components of variance models publication-title: Sankhiā Ser. A – year: 1988 ident: BIB9 publication-title: Matrix Differential Calculus with Applications in Statistics and Econometrics – volume: 15 start-page: 169 year: 1987 end-page: 176 ident: BIB15 article-title: Distribution of multivariate quadratic forms under certain covariance structures publication-title: Canad. J. Statist – start-page: 79 year: 1977 end-page: 94 ident: BIB6 article-title: Quadratic forms and extension of Cochran theorem to normal vector variables publication-title: Multivariate Analysis IV – volume: 85 start-page: 1 year: 2003 end-page: 9 ident: BIB10 article-title: Wishart distributions associated with matrix quadratic forms publication-title: J. Multivariate Anal – volume: 61 start-page: 129 year: 1997 end-page: 143 ident: BIB12 article-title: Wishart and chi-square distributions associated with matrix quadratic forms publication-title: J. Multivariate Anal – year: 1983 ident: BIB4 publication-title: Multivariate Statistics. A Vector Space Approach – volume: 44 start-page: 146 year: 1993 end-page: 159 ident: BIB22 article-title: Multivariate versions of Cochran's theorems II publication-title: J. Multivariate Anal – volume: 16 start-page: 129 year: 1974 end-page: 132 ident: BIB3 article-title: The small sample behavior of some statistics which test the equality of several means publication-title: Technometrics – volume: 26 start-page: 2695 year: 1990 end-page: 2703 ident: BIB5 article-title: A spatial analysis of variance applied to soil-water infiltration publication-title: Water Resources Res – volume: 39 start-page: 154 year: 1991 end-page: 174 ident: BIB21 article-title: Multivariate versions of Cochran's theorems publication-title: J. Multivariate Anal – volume: 53 start-page: 469 year: 1988 end-page: 486 ident: BIB1 article-title: The mixed model for multivariate repeated measures publication-title: Psychometrika – volume: 51 start-page: 201 year: 1994 end-page: 209 ident: BIB8 article-title: A test to determine closeness of multivariate Satterthwaite's approximation publication-title: J. Multivariate Anal – volume: 40 start-page: 1358 year: 1969 end-page: 1373 ident: BIB14 article-title: Testing and estimation for a circular stationary model publication-title: Ann. Math. Statist – volume: 29 start-page: 30 year: 1989 ident: 10.1016/S0047-259X(03)00135-0_BIB11 article-title: MANOVA in the multivariate components of variance model publication-title: J. Multivariate Anal doi: 10.1016/0047-259X(89)90074-2 – volume: 12 start-page: 2589 year: 1983 ident: 10.1016/S0047-259X(03)00135-0_BIB17 article-title: On approximating a linear combination of central Wishart matrices with positive coefficients publication-title: Commun. Statist. Theory Methods doi: 10.1080/03610928308828625 – year: 1988 ident: 10.1016/S0047-259X(03)00135-0_BIB9 – volume: 40 start-page: 1358 year: 1969 ident: 10.1016/S0047-259X(03)00135-0_BIB14 article-title: Testing and estimation for a circular stationary model publication-title: Ann. Math. Statist doi: 10.1214/aoms/1177697508 – volume: 58 start-page: 328 year: 1996 ident: 10.1016/S0047-259X(03)00135-0_BIB20 article-title: Cochran theorems for multivariate components of variance models publication-title: Sankhiā Ser. A – year: 1983 ident: 10.1016/S0047-259X(03)00135-0_BIB4 – volume: 16 start-page: 129 year: 1974 ident: 10.1016/S0047-259X(03)00135-0_BIB3 article-title: The small sample behavior of some statistics which test the equality of several means publication-title: Technometrics doi: 10.1080/00401706.1974.10489158 – volume: 20 start-page: 1233 year: 1991 ident: 10.1016/S0047-259X(03)00135-0_BIB2 article-title: Scheffé's mixed model for multivariate repeated measures publication-title: Comm. Statist. Theory Methods doi: 10.1080/03610929108830562 – volume: 61 start-page: 129 year: 1997 ident: 10.1016/S0047-259X(03)00135-0_BIB12 article-title: Wishart and chi-square distributions associated with matrix quadratic forms publication-title: J. Multivariate Anal doi: 10.1006/jmva.1997.1665 – volume: 51 start-page: 201 year: 1994 ident: 10.1016/S0047-259X(03)00135-0_BIB8 article-title: A test to determine closeness of multivariate Satterthwaite's approximation publication-title: J. Multivariate Anal doi: 10.1006/jmva.1994.1057 – start-page: 79 year: 1977 ident: 10.1016/S0047-259X(03)00135-0_BIB6 article-title: Quadratic forms and extension of Cochran theorem to normal vector variables – volume: 26 start-page: 2695 year: 1990 ident: 10.1016/S0047-259X(03)00135-0_BIB5 article-title: A spatial analysis of variance applied to soil-water infiltration publication-title: Water Resources Res doi: 10.1029/WR026i011p02695 – volume: 15 start-page: 169 year: 1987 ident: 10.1016/S0047-259X(03)00135-0_BIB15 article-title: Distribution of multivariate quadratic forms under certain covariance structures publication-title: Canad. J. Statist doi: 10.2307/3315206 – volume: 41 start-page: 231 year: 1994 ident: 10.1016/S0047-259X(03)00135-0_BIB7 article-title: Optimal test for nested designs with circular stationary dependence publication-title: J. Statist. Plann. Inference doi: 10.1016/0378-3758(94)90166-X – volume: 48 start-page: 451 year: 1983 ident: 10.1016/S0047-259X(03)00135-0_BIB18 article-title: Univariate repeated measures techniques applied to multivariate data publication-title: Psychometrika doi: 10.1007/BF02293686 – volume: 44 start-page: 146 year: 1993 ident: 10.1016/S0047-259X(03)00135-0_BIB22 article-title: Multivariate versions of Cochran's theorems II publication-title: J. Multivariate Anal doi: 10.1006/jmva.1993.1008 – volume: 53 start-page: 469 year: 1988 ident: 10.1016/S0047-259X(03)00135-0_BIB1 article-title: The mixed model for multivariate repeated measures publication-title: Psychometrika doi: 10.1007/BF02294401 – volume: 85 start-page: 1 year: 2003 ident: 10.1016/S0047-259X(03)00135-0_BIB10 article-title: Wishart distributions associated with matrix quadratic forms publication-title: J. Multivariate Anal doi: 10.1016/S0047-259X(02)00012-X – volume: 15 start-page: 3719 year: 1986 ident: 10.1016/S0047-259X(03)00135-0_BIB13 article-title: A solution to the multivariate Behrens–Fisher problem publication-title: Commun. Statist. Theory Methods doi: 10.1080/03610928608829342 – volume: 39 start-page: 154 year: 1991 ident: 10.1016/S0047-259X(03)00135-0_BIB21 article-title: Multivariate versions of Cochran's theorems publication-title: J. Multivariate Anal doi: 10.1016/0047-259X(91)90011-P – volume: 2 start-page: 421 year: 1987 ident: 10.1016/S0047-259X(03)00135-0_BIB16 article-title: Group symmetry covariance models (comment to “A Review of Multivariate Analysis”, M. Schervish) publication-title: Statist. Sci doi: 10.1214/ss/1177013114 – volume: 58 start-page: 283 year: 1997 ident: 10.1016/S0047-259X(03)00135-0_BIB19 article-title: Versions of Cochran's theorem for general quadratic expressions in normal matrices publication-title: J. Statist. Plann. Inference doi: 10.1016/S0378-3758(96)00084-5 |
SSID | ssj0011574 |
Score | 1.6709031 |
Snippet | The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions... |
SourceID | proquest repec pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134 |
SubjectTerms | Algebra Dihedral block symmetry covariance model Distribution theory Exact sciences and technology Experimental design Linear and multilinear algebra, matrix theory Mathematical analysis Mathematics Matrix quadratic form Matrix quadratic form Wishart distribution Multivariate Satterthwaite's approximation Multivariate split-plot model Dihedral block symmetry covariance model Multivariate analysis Multivariate Satterthwaite's approximation Multivariate split-plot model Normal distribution Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics Stochastic models Studies Wishart distribution |
Title | A decomposition for a stochastic matrix with an application to MANOVA |
URI | https://dx.doi.org/10.1016/S0047-259X(03)00135-0 http://econpapers.repec.org/article/eeejmvana/v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134-144.htm https://www.proquest.com/docview/218704870 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9sgFEddctk0VfvU0nYRhx22g1swGJejm7VKViW7rJNviC-rmZbUatxpu-xv78MmSXOYKu0AyEgP4_fw4_fg8UDogyGpAcVoE-65TniV2URySxJaOSGI595XwVCczsT4in8ps3IPjdZnYYJbZdT9nU5vtXWsOYncPKnn83DGl-cA3ksYpoBjgt3eT5kUWQ_1i8nleLbZTKBZDMbcBiWQ5fYgT9dIW_mRsE9tOwn51xT1vNYrYFzV3XixA0n7t7729sHMdPEC7UdIiYuu1y_Rnl--Qs-mm3isq9fovMDOB-_x6KKFAapijQH42WsdIjXjRQjV_xuHZVmsl_jBvjZubvC0mH39XrxBVxfn30bjJF6gkFjABU0iK5PnJtUarAbqMqOrPJdeWIBQIBT4_mAd2soYpwNudDQz1DlBbMUkY9Kxt6i3vFn6dwjzUxq2CJ3TlvJKMJ0KaaANxjUgKGoHiK95pmyMLh4uufiptm5kwGoVWK0IUy2rFRmg4w1Z3YXXeIzgdC0QtTNOFEwBj5EOdwS4faHgoJkIG6DDtURV_JNXCiBQDlouB_JRK-QNmff-xyLcfK1-KaZlCtkfSGGZDoo5JAqpDiXjYGJxdd0sDv6__4foaRs3tl3_OUK95vbOvwdE1JghenL8lw7juIenz5cTyCfl2T2d7gS3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaK5NANQ9HugaWv6bDDdvAqRbJdH42gRbo22aUdchP0RDMsqdG4w_bvR9lK0hyKAj3IAgRQlkmZ-ihRJMBnTfsaFaNJhBMqET41SSEMTZi3WUadcM4HQ3E0zoY34vsknWzBYHkXJrhVRt3f6vRGW8eWk8jNk2o6DXd8RY7gfYLTFHFMsNu7IkVrrwPd8uJyOF4dJrA0BmNughIUk_VFnraTpvEL5V-bfhL61BL1plILZJxvM15sQNLuvaucebQyne_CToSUpGxHvQdbbv4WXo9W8VgX7-CsJNYF7_HookUQqhJFEPiZWxUiNZNZCNX_l4RtWaLm5NG5NqnvyKgc__hZvoeb87PrwTCJCRQSg7igTgqv81z3lUKrgdlUK5_nhcsMQigUCn5_sA6N19qqgBstSzWzNqPG84LzwvIP0Jnfzd1HIOKUhSNCa5Vhwmdc9bNCYx9cKERQzPRALHkmTYwuHpJc_JZrNzJktQyslpTLhtWS9uDbiqxqw2s8R3C6FIjcmCcSl4DnSI83BLh-YSZQM1Heg4OlRGX8kxcSIVCOWi5H8kEj5BWZc-7XLGS-ln8kV0UfH_-whG06rKZYGJYq1FygiSXkbT3bf_n4P8H28Hp0Ja8uxpcH8KqJIdvsBR1Cp75_cEeIjmp9HGf_f6UEBKk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition+for+a+stochastic+matrix+with+an+application+to+MANOVA&rft.jtitle=Journal+of+multivariate+analysis&rft.au=MORTARINO%2C+Cinzia&rft.date=2005&rft.pub=Elsevier&rft.issn=0047-259X&rft.volume=92&rft.issue=1&rft.spage=134&rft.epage=144&rft_id=info:doi/10.1016%2FS0047-259X%2803%2900135-0&rft.externalDBID=n%2Fa&rft.externalDocID=16451003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon |