A decomposition for a stochastic matrix with an application to MANOVA

The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic...

Full description

Saved in:
Bibliographic Details
Published inJournal of multivariate analysis Vol. 92; no. 1; pp. 134 - 144
Main Author Mortarino, Cinzia
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 2005
Elsevier
Taylor & Francis LLC
SeriesJournal of Multivariate Analysis
Subjects
Online AccessGet full text
ISSN0047-259X
1095-7243
DOI10.1016/S0047-259X(03)00135-0

Cover

Abstract The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure.
AbstractList The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure. [PUBLICATION ABSTRACT]
The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure.
The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions do not hold. The method is based upon a factorization of a general Gaussian stochastic matrix as a special linear combination of nonstochastic matrices with the standard Gaussian matrix. An application of previous result is proposed for matrix quadratic forms arising in MANOVA for a multivariate split-plot design with circular dependence structure.
Author Mortarino, Cinzia
Author_xml – sequence: 1
  givenname: Cinzia
  surname: Mortarino
  fullname: Mortarino, Cinzia
  email: mortarino@unimore.it
  organization: Dipartimento di Scienze Sociali, Cognitive e Quantitative, Università di Modena e Reggio Emilia, Via Giglioli Valleg, Reggio Emilia, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16451003$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeejmvana/v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134-144.htm$$DView record in RePEc
BookMark eNqFkU1rGzEQhkVJoU7an1AQhUJ72Ga0krxZeigmpB8hbQ79oLdhVithGe9qIylu8-8j28GHXHJ4NZdn3hnNe8yOxjBaxl4L-CBAzE9_AqimqnX79x3I9wBC6gqesZmAVldNreQRmx2QF-w4pVWBhG7UjF0seG9NGKaQfPZh5C5ETjzlYJaUsjd8oBz9f_7P5yWnkdM0rb2hHZsD_774cf1n8ZI9d7RO9tVDPWG_P1_8Ov9aXV1_-Xa-uKqMkiJXreuapquJdNuIXnfkmqa1c6Nq6bQpX6m1ao3rup7OAOpe6E70_RyMk62UbS9P2Ju97xTDza1NGVfhNo5lJNbirAFVVKDLPRTtZA1O0Q8U79Bauxo2NBJuUFJbl-euqAbQpfgiUTRtq1QolMJlHorZ24eJlAytXaTR-HQwFXOlBYAs3Mc9Z2JIKVqHxufdlXIkv0YBuM0Kd1nhNggEibuscLuyftR9GPBE36d9ny1H33gbMRlvR2N7H63J2Af_hMM9lPKsCg
CODEN JMVAAI
CitedBy_id crossref_primary_10_1109_TVT_2017_2727259
Cites_doi 10.1016/0047-259X(89)90074-2
10.1080/03610928308828625
10.1214/aoms/1177697508
10.1080/00401706.1974.10489158
10.1080/03610929108830562
10.1006/jmva.1997.1665
10.1006/jmva.1994.1057
10.1029/WR026i011p02695
10.2307/3315206
10.1016/0378-3758(94)90166-X
10.1007/BF02293686
10.1006/jmva.1993.1008
10.1007/BF02294401
10.1016/S0047-259X(02)00012-X
10.1080/03610928608829342
10.1016/0047-259X(91)90011-P
10.1214/ss/1177013114
10.1016/S0378-3758(96)00084-5
ContentType Journal Article
Copyright 2003 Elsevier Inc.
2005 INIST-CNRS
Copyright Taylor & Francis Group Jan 2005
Copyright_xml – notice: 2003 Elsevier Inc.
– notice: 2005 INIST-CNRS
– notice: Copyright Taylor & Francis Group Jan 2005
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DKI
X2L
JQ2
DOI 10.1016/S0047-259X(03)00135-0
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1095-7243
EndPage 144
ExternalDocumentID 736018121
eeejmvana_v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134_144_htm
16451003
10_1016_S0047_259X_03_00135_0
S0047259X03001350
Genre Feature
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEFU
ABFNM
ABIVO
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UHS
WUQ
XFK
XOL
XPP
YHZ
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
EFJIC
G-
HZ
IPNFZ
K
M
OHM
OVS
PQEST
X
X2L
Z
JQ2
ID FETCH-LOGICAL-c431t-9fb77b2aa5971d5baf779e6c423f5c0162549cfbbda8002d15b1dd60cf39339d3
IEDL.DBID AIKHN
ISSN 0047-259X
IngestDate Wed Aug 13 06:25:06 EDT 2025
Wed Aug 18 03:51:20 EDT 2021
Mon Jul 21 09:16:56 EDT 2025
Tue Jul 01 01:21:42 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Fri Feb 23 02:27:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords primary 62H05
Multivariate split-plot model
Multivariate Satterthwaite's approximation
secondary 62H10
Wishart distribution
Dihedral block symmetry covariance model
Matrix quadratic form
62J10
Statistical method
Linear combination
Stochastic matrix
Experimental design
Factorization method
Wishart matrix
Split plot design
Multivariate analysis
Matrix decomposition
Quadratic form
Variance analysis
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-9fb77b2aa5971d5baf779e6c423f5c0162549cfbbda8002d15b1dd60cf39339d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0047259X03001350
PQID 218704870
PQPubID 27957
PageCount 11
ParticipantIDs proquest_journals_218704870
repec_primary_eeejmvana_v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134_144_htm
pascalfrancis_primary_16451003
crossref_citationtrail_10_1016_S0047_259X_03_00135_0
crossref_primary_10_1016_S0047_259X_03_00135_0
elsevier_sciencedirect_doi_10_1016_S0047_259X_03_00135_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005
2005-01-00
20050101
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
– name: New York
PublicationSeriesTitle Journal of Multivariate Analysis
PublicationTitle Journal of multivariate analysis
PublicationYear 2005
Publisher Elsevier Inc
Elsevier
Taylor & Francis LLC
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Taylor & Francis LLC
References Thomas (BIB18) 1983; 48
Khuri, Mathew, Nel (BIB8) 1994; 51
Magnus, Neudecker (BIB9) 1988
Wong, Masaro, Wang (BIB21) 1991; 39
Eaton (BIB4) 1983
Gotway, Cressie (BIB5) 1990; 26
Mathew, Nordström (BIB12) 1997; 61
Tan, Gupta (BIB17) 1983; 12
Wang (BIB19) 1997; 58
Wang, Fu, Wong (BIB20) 1996; 58
Khattree, Naik (BIB7) 1994; 41
Mathew (BIB11) 1989; 29
Masaro, Wong (BIB10) 2003; 85
Khatri (BIB6) 1977
Nel, van der Merwe (BIB13) 1986; 15
Olkin, Press (BIB14) 1969; 40
Boik (BIB1) 1988; 53
Perlman (BIB16) 1987; 2
Pavur (BIB15) 1987; 15
Brown, Forsythe (BIB3) 1974; 16
Wong, Wang (BIB22) 1993; 44
Boik (BIB2) 1991; 20
Khuri (10.1016/S0047-259X(03)00135-0_BIB8) 1994; 51
Wang (10.1016/S0047-259X(03)00135-0_BIB20) 1996; 58
Eaton (10.1016/S0047-259X(03)00135-0_BIB4) 1983
Khattree (10.1016/S0047-259X(03)00135-0_BIB7) 1994; 41
Magnus (10.1016/S0047-259X(03)00135-0_BIB9) 1988
Masaro (10.1016/S0047-259X(03)00135-0_BIB10) 2003; 85
Boik (10.1016/S0047-259X(03)00135-0_BIB2) 1991; 20
Khatri (10.1016/S0047-259X(03)00135-0_BIB6) 1977
Thomas (10.1016/S0047-259X(03)00135-0_BIB18) 1983; 48
Boik (10.1016/S0047-259X(03)00135-0_BIB1) 1988; 53
Tan (10.1016/S0047-259X(03)00135-0_BIB17) 1983; 12
Mathew (10.1016/S0047-259X(03)00135-0_BIB12) 1997; 61
Nel (10.1016/S0047-259X(03)00135-0_BIB13) 1986; 15
Olkin (10.1016/S0047-259X(03)00135-0_BIB14) 1969; 40
Pavur (10.1016/S0047-259X(03)00135-0_BIB15) 1987; 15
Wong (10.1016/S0047-259X(03)00135-0_BIB22) 1993; 44
Mathew (10.1016/S0047-259X(03)00135-0_BIB11) 1989; 29
Brown (10.1016/S0047-259X(03)00135-0_BIB3) 1974; 16
Gotway (10.1016/S0047-259X(03)00135-0_BIB5) 1990; 26
Wang (10.1016/S0047-259X(03)00135-0_BIB19) 1997; 58
Wong (10.1016/S0047-259X(03)00135-0_BIB21) 1991; 39
Perlman (10.1016/S0047-259X(03)00135-0_BIB16) 1987; 2
References_xml – volume: 12
  start-page: 2589
  year: 1983
  end-page: 2600
  ident: BIB17
  article-title: On approximating a linear combination of central Wishart matrices with positive coefficients
  publication-title: Commun. Statist. Theory Methods
– volume: 58
  start-page: 283
  year: 1997
  end-page: 297
  ident: BIB19
  article-title: Versions of Cochran's theorem for general quadratic expressions in normal matrices
  publication-title: J. Statist. Plann. Inference
– volume: 20
  start-page: 1233
  year: 1991
  end-page: 1255
  ident: BIB2
  article-title: Scheffé's mixed model for multivariate repeated measures
  publication-title: Comm. Statist. Theory Methods
– volume: 41
  start-page: 231
  year: 1994
  end-page: 240
  ident: BIB7
  article-title: Optimal test for nested designs with circular stationary dependence
  publication-title: J. Statist. Plann. Inference
– volume: 15
  start-page: 3719
  year: 1986
  end-page: 3735
  ident: BIB13
  article-title: A solution to the multivariate Behrens–Fisher problem
  publication-title: Commun. Statist. Theory Methods
– volume: 29
  start-page: 30
  year: 1989
  end-page: 38
  ident: BIB11
  article-title: MANOVA in the multivariate components of variance model
  publication-title: J. Multivariate Anal
– volume: 2
  start-page: 421
  year: 1987
  end-page: 425
  ident: BIB16
  article-title: Group symmetry covariance models (comment to “A Review of Multivariate Analysis”, M. Schervish)
  publication-title: Statist. Sci
– volume: 48
  start-page: 451
  year: 1983
  end-page: 464
  ident: BIB18
  article-title: Univariate repeated measures techniques applied to multivariate data
  publication-title: Psychometrika
– volume: 58
  start-page: 328
  year: 1996
  end-page: 342
  ident: BIB20
  article-title: Cochran theorems for multivariate components of variance models
  publication-title: Sankhiā Ser. A
– year: 1988
  ident: BIB9
  publication-title: Matrix Differential Calculus with Applications in Statistics and Econometrics
– volume: 15
  start-page: 169
  year: 1987
  end-page: 176
  ident: BIB15
  article-title: Distribution of multivariate quadratic forms under certain covariance structures
  publication-title: Canad. J. Statist
– start-page: 79
  year: 1977
  end-page: 94
  ident: BIB6
  article-title: Quadratic forms and extension of Cochran theorem to normal vector variables
  publication-title: Multivariate Analysis IV
– volume: 85
  start-page: 1
  year: 2003
  end-page: 9
  ident: BIB10
  article-title: Wishart distributions associated with matrix quadratic forms
  publication-title: J. Multivariate Anal
– volume: 61
  start-page: 129
  year: 1997
  end-page: 143
  ident: BIB12
  article-title: Wishart and chi-square distributions associated with matrix quadratic forms
  publication-title: J. Multivariate Anal
– year: 1983
  ident: BIB4
  publication-title: Multivariate Statistics. A Vector Space Approach
– volume: 44
  start-page: 146
  year: 1993
  end-page: 159
  ident: BIB22
  article-title: Multivariate versions of Cochran's theorems II
  publication-title: J. Multivariate Anal
– volume: 16
  start-page: 129
  year: 1974
  end-page: 132
  ident: BIB3
  article-title: The small sample behavior of some statistics which test the equality of several means
  publication-title: Technometrics
– volume: 26
  start-page: 2695
  year: 1990
  end-page: 2703
  ident: BIB5
  article-title: A spatial analysis of variance applied to soil-water infiltration
  publication-title: Water Resources Res
– volume: 39
  start-page: 154
  year: 1991
  end-page: 174
  ident: BIB21
  article-title: Multivariate versions of Cochran's theorems
  publication-title: J. Multivariate Anal
– volume: 53
  start-page: 469
  year: 1988
  end-page: 486
  ident: BIB1
  article-title: The mixed model for multivariate repeated measures
  publication-title: Psychometrika
– volume: 51
  start-page: 201
  year: 1994
  end-page: 209
  ident: BIB8
  article-title: A test to determine closeness of multivariate Satterthwaite's approximation
  publication-title: J. Multivariate Anal
– volume: 40
  start-page: 1358
  year: 1969
  end-page: 1373
  ident: BIB14
  article-title: Testing and estimation for a circular stationary model
  publication-title: Ann. Math. Statist
– volume: 29
  start-page: 30
  year: 1989
  ident: 10.1016/S0047-259X(03)00135-0_BIB11
  article-title: MANOVA in the multivariate components of variance model
  publication-title: J. Multivariate Anal
  doi: 10.1016/0047-259X(89)90074-2
– volume: 12
  start-page: 2589
  year: 1983
  ident: 10.1016/S0047-259X(03)00135-0_BIB17
  article-title: On approximating a linear combination of central Wishart matrices with positive coefficients
  publication-title: Commun. Statist. Theory Methods
  doi: 10.1080/03610928308828625
– year: 1988
  ident: 10.1016/S0047-259X(03)00135-0_BIB9
– volume: 40
  start-page: 1358
  year: 1969
  ident: 10.1016/S0047-259X(03)00135-0_BIB14
  article-title: Testing and estimation for a circular stationary model
  publication-title: Ann. Math. Statist
  doi: 10.1214/aoms/1177697508
– volume: 58
  start-page: 328
  year: 1996
  ident: 10.1016/S0047-259X(03)00135-0_BIB20
  article-title: Cochran theorems for multivariate components of variance models
  publication-title: Sankhiā Ser. A
– year: 1983
  ident: 10.1016/S0047-259X(03)00135-0_BIB4
– volume: 16
  start-page: 129
  year: 1974
  ident: 10.1016/S0047-259X(03)00135-0_BIB3
  article-title: The small sample behavior of some statistics which test the equality of several means
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489158
– volume: 20
  start-page: 1233
  year: 1991
  ident: 10.1016/S0047-259X(03)00135-0_BIB2
  article-title: Scheffé's mixed model for multivariate repeated measures
  publication-title: Comm. Statist. Theory Methods
  doi: 10.1080/03610929108830562
– volume: 61
  start-page: 129
  year: 1997
  ident: 10.1016/S0047-259X(03)00135-0_BIB12
  article-title: Wishart and chi-square distributions associated with matrix quadratic forms
  publication-title: J. Multivariate Anal
  doi: 10.1006/jmva.1997.1665
– volume: 51
  start-page: 201
  year: 1994
  ident: 10.1016/S0047-259X(03)00135-0_BIB8
  article-title: A test to determine closeness of multivariate Satterthwaite's approximation
  publication-title: J. Multivariate Anal
  doi: 10.1006/jmva.1994.1057
– start-page: 79
  year: 1977
  ident: 10.1016/S0047-259X(03)00135-0_BIB6
  article-title: Quadratic forms and extension of Cochran theorem to normal vector variables
– volume: 26
  start-page: 2695
  year: 1990
  ident: 10.1016/S0047-259X(03)00135-0_BIB5
  article-title: A spatial analysis of variance applied to soil-water infiltration
  publication-title: Water Resources Res
  doi: 10.1029/WR026i011p02695
– volume: 15
  start-page: 169
  year: 1987
  ident: 10.1016/S0047-259X(03)00135-0_BIB15
  article-title: Distribution of multivariate quadratic forms under certain covariance structures
  publication-title: Canad. J. Statist
  doi: 10.2307/3315206
– volume: 41
  start-page: 231
  year: 1994
  ident: 10.1016/S0047-259X(03)00135-0_BIB7
  article-title: Optimal test for nested designs with circular stationary dependence
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/0378-3758(94)90166-X
– volume: 48
  start-page: 451
  year: 1983
  ident: 10.1016/S0047-259X(03)00135-0_BIB18
  article-title: Univariate repeated measures techniques applied to multivariate data
  publication-title: Psychometrika
  doi: 10.1007/BF02293686
– volume: 44
  start-page: 146
  year: 1993
  ident: 10.1016/S0047-259X(03)00135-0_BIB22
  article-title: Multivariate versions of Cochran's theorems II
  publication-title: J. Multivariate Anal
  doi: 10.1006/jmva.1993.1008
– volume: 53
  start-page: 469
  year: 1988
  ident: 10.1016/S0047-259X(03)00135-0_BIB1
  article-title: The mixed model for multivariate repeated measures
  publication-title: Psychometrika
  doi: 10.1007/BF02294401
– volume: 85
  start-page: 1
  year: 2003
  ident: 10.1016/S0047-259X(03)00135-0_BIB10
  article-title: Wishart distributions associated with matrix quadratic forms
  publication-title: J. Multivariate Anal
  doi: 10.1016/S0047-259X(02)00012-X
– volume: 15
  start-page: 3719
  year: 1986
  ident: 10.1016/S0047-259X(03)00135-0_BIB13
  article-title: A solution to the multivariate Behrens–Fisher problem
  publication-title: Commun. Statist. Theory Methods
  doi: 10.1080/03610928608829342
– volume: 39
  start-page: 154
  year: 1991
  ident: 10.1016/S0047-259X(03)00135-0_BIB21
  article-title: Multivariate versions of Cochran's theorems
  publication-title: J. Multivariate Anal
  doi: 10.1016/0047-259X(91)90011-P
– volume: 2
  start-page: 421
  year: 1987
  ident: 10.1016/S0047-259X(03)00135-0_BIB16
  article-title: Group symmetry covariance models (comment to “A Review of Multivariate Analysis”, M. Schervish)
  publication-title: Statist. Sci
  doi: 10.1214/ss/1177013114
– volume: 58
  start-page: 283
  year: 1997
  ident: 10.1016/S0047-259X(03)00135-0_BIB19
  article-title: Versions of Cochran's theorem for general quadratic expressions in normal matrices
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/S0378-3758(96)00084-5
SSID ssj0011574
Score 1.6709031
Snippet The aim of this paper is to propose a simple method in order to evaluate the (approximate) distribution of matrix quadratic forms when Wishartness conditions...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134
SubjectTerms Algebra
Dihedral block symmetry covariance model
Distribution theory
Exact sciences and technology
Experimental design
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematics
Matrix quadratic form
Matrix quadratic form Wishart distribution Multivariate Satterthwaite's approximation Multivariate split-plot model Dihedral block symmetry covariance model
Multivariate analysis
Multivariate Satterthwaite's approximation
Multivariate split-plot model
Normal distribution
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Stochastic models
Studies
Wishart distribution
Title A decomposition for a stochastic matrix with an application to MANOVA
URI https://dx.doi.org/10.1016/S0047-259X(03)00135-0
http://econpapers.repec.org/article/eeejmvana/v_3a92_3ay_3a2005_3ai_3a1_3ap_3a134-144.htm
https://www.proquest.com/docview/218704870
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9sgFEddctk0VfvU0nYRhx22g1swGJejm7VKViW7rJNviC-rmZbUatxpu-xv78MmSXOYKu0AyEgP4_fw4_fg8UDogyGpAcVoE-65TniV2URySxJaOSGI595XwVCczsT4in8ps3IPjdZnYYJbZdT9nU5vtXWsOYncPKnn83DGl-cA3ksYpoBjgt3eT5kUWQ_1i8nleLbZTKBZDMbcBiWQ5fYgT9dIW_mRsE9tOwn51xT1vNYrYFzV3XixA0n7t7729sHMdPEC7UdIiYuu1y_Rnl--Qs-mm3isq9fovMDOB-_x6KKFAapijQH42WsdIjXjRQjV_xuHZVmsl_jBvjZubvC0mH39XrxBVxfn30bjJF6gkFjABU0iK5PnJtUarAbqMqOrPJdeWIBQIBT4_mAd2soYpwNudDQz1DlBbMUkY9Kxt6i3vFn6dwjzUxq2CJ3TlvJKMJ0KaaANxjUgKGoHiK95pmyMLh4uufiptm5kwGoVWK0IUy2rFRmg4w1Z3YXXeIzgdC0QtTNOFEwBj5EOdwS4faHgoJkIG6DDtURV_JNXCiBQDlouB_JRK-QNmff-xyLcfK1-KaZlCtkfSGGZDoo5JAqpDiXjYGJxdd0sDv6__4foaRs3tl3_OUK95vbOvwdE1JghenL8lw7juIenz5cTyCfl2T2d7gS3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaK5NANQ9HugaWv6bDDdvAqRbJdH42gRbo22aUdchP0RDMsqdG4w_bvR9lK0hyKAj3IAgRQlkmZ-ihRJMBnTfsaFaNJhBMqET41SSEMTZi3WUadcM4HQ3E0zoY34vsknWzBYHkXJrhVRt3f6vRGW8eWk8jNk2o6DXd8RY7gfYLTFHFMsNu7IkVrrwPd8uJyOF4dJrA0BmNughIUk_VFnraTpvEL5V-bfhL61BL1plILZJxvM15sQNLuvaucebQyne_CToSUpGxHvQdbbv4WXo9W8VgX7-CsJNYF7_HookUQqhJFEPiZWxUiNZNZCNX_l4RtWaLm5NG5NqnvyKgc__hZvoeb87PrwTCJCRQSg7igTgqv81z3lUKrgdlUK5_nhcsMQigUCn5_sA6N19qqgBstSzWzNqPG84LzwvIP0Jnfzd1HIOKUhSNCa5Vhwmdc9bNCYx9cKERQzPRALHkmTYwuHpJc_JZrNzJktQyslpTLhtWS9uDbiqxqw2s8R3C6FIjcmCcSl4DnSI83BLh-YSZQM1Heg4OlRGX8kxcSIVCOWi5H8kEj5BWZc-7XLGS-ln8kV0UfH_-whG06rKZYGJYq1FygiSXkbT3bf_n4P8H28Hp0Ja8uxpcH8KqJIdvsBR1Cp75_cEeIjmp9HGf_f6UEBKk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition+for+a+stochastic+matrix+with+an+application+to+MANOVA&rft.jtitle=Journal+of+multivariate+analysis&rft.au=MORTARINO%2C+Cinzia&rft.date=2005&rft.pub=Elsevier&rft.issn=0047-259X&rft.volume=92&rft.issue=1&rft.spage=134&rft.epage=144&rft_id=info:doi/10.1016%2FS0047-259X%2803%2900135-0&rft.externalDBID=n%2Fa&rft.externalDocID=16451003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon