Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors
Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that...
Saved in:
Published in | Applied sciences Vol. 13; no. 9; p. 5317 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app13095317 |
Cover
Abstract | Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that have, in some instances, led to the loss of lives, disabilities, equipment damage, etc. The assessment of risk factors in underground mines is therefore considered a commendable initiative. Therefore, this research aimed to develop an efficient model for assessing and predicting safety risk factors in underground mines using existing data from the Xiaonan coal mine. A model for evaluating safety risks in underground coal mines was developed based on the optimized particle swarm optimization-backpropagation (PSO-BP) neural network. The results showed that the PSO-BP neural network model for safety risk assessment in underground coal mines was the most reliable and effective, with MSE, MAPE, and R2 values of 2.0 × 10−4, 4.3, and 0.92, respectively. Therefore, the study proposed the neural network model PSO-BP for underground coal mine safety risk assessment. The results of this study can be adopted by decision-makers for evaluating and predicting risk factors in underground coal mines. |
---|---|
AbstractList | Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that have, in some instances, led to the loss of lives, disabilities, equipment damage, etc. The assessment of risk factors in underground mines is therefore considered a commendable initiative. Therefore, this research aimed to develop an efficient model for assessing and predicting safety risk factors in underground mines using existing data from the Xiaonan coal mine. A model for evaluating safety risks in underground coal mines was developed based on the optimized particle swarm optimization-backpropagation (PSO-BP) neural network. The results showed that the PSO-BP neural network model for safety risk assessment in underground coal mines was the most reliable and effective, with MSE, MAPE, and R2 values of 2.0 × 10−4, 4.3, and 0.92, respectively. Therefore, the study proposed the neural network model PSO-BP for underground coal mine safety risk assessment. The results of this study can be adopted by decision-makers for evaluating and predicting risk factors in underground coal mines. Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that have, in some instances, led to the loss of lives, disabilities, equipment damage, etc. The assessment of risk factors in underground mines is therefore considered a commendable initiative. Therefore, this research aimed to develop an efficient model for assessing and predicting safety risk factors in underground mines using existing data from the Xiaonan coal mine. A model for evaluating safety risks in underground coal mines was developed based on the optimized particle swarm optimization-backpropagation (PSO-BP) neural network. The results showed that the PSO-BP neural network model for safety risk assessment in underground coal mines was the most reliable and effective, with MSE, MAPE, and R[sup.2] values of 2.0 × 10[sup.−4], 4.3, and 0.92, respectively. Therefore, the study proposed the neural network model PSO-BP for underground coal mine safety risk assessment. The results of this study can be adopted by decision-makers for evaluating and predicting risk factors in underground coal mines. |
Audience | Academic |
Author | Zheng, Yining Liu, Heqing Liu, Jiankang Hao, Jian Mulumba, Dorcas Muadi |
Author_xml | – sequence: 1 givenname: Dorcas Muadi surname: Mulumba fullname: Mulumba, Dorcas Muadi – sequence: 2 givenname: Jiankang surname: Liu fullname: Liu, Jiankang – sequence: 3 givenname: Jian surname: Hao fullname: Hao, Jian – sequence: 4 givenname: Yining surname: Zheng fullname: Zheng, Yining – sequence: 5 givenname: Heqing surname: Liu fullname: Liu, Heqing |
BookMark | eNptkl1vFCEUhiemJtbaK_8AiZdmKx_DAJfrxmqT6jbWXhMGDivbmWEENqbe9K8Xu35UU7g45PC8Lwc4z5uDKU7QNC8JPmFM4TdmngnDijMinjSHFItuwVoiDh6snzXHOW9xHYowSfBhc7uc5yFYU0KcUPTITGg9lzCGH-DQxeV68fYCfYJdMkMN5XtM16hEVL4CWuYMOY8wlSqqbAIX7G-bq8lB2qS4qzurWMUfwwTo0ngoN-hzyNfo1NgSU37RPPVmyHD8Kx41V6fvvqw-LM7X789Wy_OFbRkpC0Wk5bLrgVoPQDquGOkUph3nxAL3wlDMPBGtxL2hTgjCFXQt9M4azq1jR83Z3tdFs9VzCqNJNzqaoO8TMW20SSXYATSpryhVJ4lwou2U6CmWLW2tYEo4D331erX3mlP8toNc9Dbu0lTL11QSyqTAkv2lNqaahsnHkowdQ7Z6KThlpFaPK3XyCFWngzHY-sE-1Pw_gtd7gU0x5wT-z2UI1j_7QD_og0qT_2gbyv1n12PC8KjmDqjrtEc |
CitedBy_id | crossref_primary_10_1007_s11869_024_01570_x crossref_primary_10_3390_buildings14030641 crossref_primary_10_1016_j_heliyon_2024_e41262 crossref_primary_10_1007_s12517_024_12090_4 crossref_primary_10_3390_met14040381 crossref_primary_10_3390_app14188572 crossref_primary_10_3390_s23146614 crossref_primary_10_3390_pr12091890 crossref_primary_10_1177_16878132241305588 crossref_primary_10_3390_su151310086 crossref_primary_10_3390_w16060813 crossref_primary_10_1007_s11668_024_02004_7 crossref_primary_10_2298_TSCI230711027C crossref_primary_10_3390_app142311101 crossref_primary_10_3390_app142411996 crossref_primary_10_1016_j_conbuildmat_2024_135151 crossref_primary_10_1371_journal_pone_0317277 |
Cites_doi | 10.1243/09544054JEM1158 10.1007/s10462-019-09760-1 10.1016/j.bspc.2022.103479 10.1016/j.apenergy.2014.07.104 10.1164/rccm.201301-0042CI 10.3390/ijerph16101765 10.1016/j.psep.2022.04.054 10.1007/s00521-020-05420-6 10.1016/j.applthermaleng.2016.05.119 10.1023/A:1016568309421 10.1016/j.jsr.2022.07.016 10.1016/j.chaos.2006.09.063 10.1016/j.swevo.2020.100718 10.1016/j.apenergy.2018.02.131 10.1109/ACCESS.2020.3047936 10.1145/1569901.1570140 10.1016/j.knosys.2013.11.015 10.1016/j.eswa.2013.08.080 10.1016/j.energy.2021.122012 10.1038/s41598-022-18351-0 10.1016/j.psep.2019.10.002 10.3389/fpubh.2021.709987 10.1016/j.ssci.2021.105562 10.1016/j.ipl.2004.11.003 10.1016/j.sjbs.2019.06.016 10.1016/j.compag.2022.106929 10.1038/323533a0 10.1007/s00500-021-05886-z 10.1016/j.fuel.2022.125908 10.1016/j.clce.2022.100039 10.1109/SMC42975.2020.9283143 10.3390/app12178392 10.1016/j.pce.2022.103225 10.1016/j.ipm.2021.102728 10.1007/s12065-020-00486-6 10.1016/j.asoc.2018.11.050 10.1016/j.jad.2021.09.098 10.1016/j.biortech.2021.126433 10.1016/j.apenergy.2021.118438 10.1016/j.eswa.2021.114598 10.1007/s00170-016-9254-4 10.1007/978-3-540-69432-8_9 10.1007/s11440-022-01461-4 10.1109/JAS.2019.1911450 10.1016/j.asoc.2012.11.033 10.1109/4235.985692 10.1109/TNN.2006.890809 10.1007/s11069-019-03806-x 10.1155/2022/5233845 10.2514/1.48475 10.1016/j.eswa.2011.09.129 10.1016/j.ssci.2006.07.006 10.1016/j.enpol.2008.01.040 10.1016/j.geoen.2023.211451 10.1016/j.ijproman.2005.06.006 10.1016/j.cam.2019.112630 10.1016/j.tifs.2022.03.021 10.1007/s11721-019-00170-1 10.1016/j.eswa.2022.118463 10.1007/s10115-009-0242-y 10.1016/j.ijleo.2018.09.161 10.1109/TEVC.2005.857610 10.1016/j.watres.2022.118908 10.1016/j.autcon.2022.104711 10.1016/S0731-7085(99)00272-1 10.7717/peerj-cs.623 10.1007/s10064-022-02925-3 10.1016/j.chemolab.2015.08.020 10.1016/j.renene.2022.04.162 10.1016/j.ijpharm.2006.07.056 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13095317 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_1130896817d74697b208424c7397dfeb A752310260 10_3390_app13095317 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c431t-918c586be2cfee16593169026551ce5f7a203f17480ba2d77159e64ebdca55cd3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:25:28 EDT 2025 Mon Jun 30 07:44:53 EDT 2025 Tue Jun 17 21:08:48 EDT 2025 Tue Jun 10 20:36:19 EDT 2025 Tue Jul 01 04:33:10 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-918c586be2cfee16593169026551ce5f7a203f17480ba2d77159e64ebdca55cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/1130896817d74697b208424c7397dfeb |
PQID | 2812387083 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1130896817d74697b208424c7397dfeb proquest_journals_2812387083 gale_infotracmisc_A752310260 gale_infotracacademiconefile_A752310260 crossref_primary_10_3390_app13095317 crossref_citationtrail_10_3390_app13095317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 20230401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Feng (ref_35) 2022; 310 Yang (ref_26) 2021; 9 Clerc (ref_59) 2002; 6 Singh (ref_62) 2022; 15 Wu (ref_21) 2020; 133 Qi (ref_23) 2020; 369 ref_57 ref_11 He (ref_75) 2019; 76 Ren (ref_67) 2014; 56 Chong (ref_24) 2021; 25 Punyakum (ref_44) 2022; 197 Shen (ref_31) 2022; 17 Paul (ref_1) 2007; 45 Zheng (ref_14) 2023; 147 Ali (ref_17) 2022; 128 Zhu (ref_81) 2020; 100 Jiao (ref_56) 2008; 37 Lobo (ref_73) 2007; 54 Trivedi (ref_61) 2020; 14 Manzoor (ref_12) 2023; 222 Wang (ref_79) 2019; 179 Wang (ref_6) 2022; 81 Naji (ref_48) 2022; 32 Ma (ref_82) 2017; 89 Sovacool (ref_4) 2008; 36 Premkumar (ref_47) 2020; 9 Shi (ref_70) 2005; 93 Deng (ref_83) 2019; 26 Davide (ref_80) 2021; 7 Sahu (ref_13) 2023; 14 Marini (ref_50) 2015; 149 ref_29 Zheng (ref_22) 2019; 2019 Rumelhart (ref_28) 1986; 323 Lin (ref_84) 2009; 21 Zhang (ref_63) 2022; 74 Bai (ref_18) 2022; 2022 Fallahi (ref_42) 2022; 12 Senapati (ref_2) 2022; 146 Pontani (ref_40) 2010; 33 Chen (ref_27) 2021; 33 Hosseini (ref_32) 2023; 332 Lage (ref_69) 2002; 53 Saeed (ref_33) 2022; 238 Liang (ref_55) 2006; 10 ref_74 Song (ref_77) 2007; 18 Parsopoulos (ref_58) 2002; 1 Ayvaz (ref_10) 2021; 173 Jana (ref_30) 2022; 3 ref_39 ref_38 Han (ref_54) 2010; Volume 1 Zhong (ref_25) 2021; 58 Jiang (ref_85) 2020; 7 Rao (ref_76) 2008; 222 Gogtay (ref_78) 2017; 65 Sigarchian (ref_53) 2016; 109 Zhang (ref_72) 2006; 24 Petsonk (ref_3) 2013; 187 Deng (ref_60) 2012; 39 Yu (ref_64) 2014; 134 Beresford (ref_20) 2000; 22 Kharzi (ref_8) 2020; 11 Hassanien (ref_9) 2020; 53 ref_45 Robinson (ref_49) 2022; 296 Rodzin (ref_36) 2022; Volume 2 ref_41 Adam (ref_71) 2020; 58 Wen (ref_37) 2023; 211 Zhang (ref_34) 2022; 222 Li (ref_5) 2022; 162 Khare (ref_52) 2013; 13 Rodger (ref_66) 2014; 41 Kudashkina (ref_15) 2022; 123 Rahnamayan (ref_51) 2009; 8 Singh (ref_68) 2018; 217 Cruz (ref_19) 2022; 345 Sadeghi (ref_16) 2022; 83 Arrif (ref_43) 2022; 192 Ghaffari (ref_65) 2006; 327 ref_7 Lv (ref_46) 2019; 6 |
References_xml | – volume: 222 start-page: 949 year: 2008 ident: ref_76 article-title: Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. doi: 10.1243/09544054JEM1158 – volume: 53 start-page: 3201 year: 2020 ident: ref_9 article-title: Machine learning in telemetry data mining of space mission: Basics, challenging and future directions publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09760-1 – volume: 74 start-page: 103479 year: 2022 ident: ref_63 article-title: Detection of alertness-related EEG signals based on decision fused BP neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103479 – volume: 8 start-page: 355 year: 2009 ident: ref_51 article-title: Toward effective initialization for large-scale search spaces publication-title: Trans Syst. – volume: 14 start-page: 101233 year: 2023 ident: ref_13 article-title: Coal mine explosions in India: Management failure, safety lapses and mitigative measures publication-title: Extr. Ind. Soc. – volume: 134 start-page: 102 year: 2014 ident: ref_64 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.104 – ident: ref_39 – volume: 187 start-page: 1178 year: 2013 ident: ref_3 article-title: Coal mine dust lung disease. New lessons from an old exposure publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201301-0042CI – ident: ref_7 doi: 10.3390/ijerph16101765 – volume: 162 start-page: 1067 year: 2022 ident: ref_5 article-title: Identifying coal mine safety production risk factors by employing text mining and Bayesian network techniques publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.04.054 – volume: 33 start-page: 1007 year: 2021 ident: ref_27 article-title: Evaluation model of green supply chain cooperation credit based on BP neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05420-6 – volume: 109 start-page: 1031 year: 2016 ident: ref_53 article-title: Optimum design of a hybrid PV–CSP–LPG microgrid with Particle Swarm Optimization technique publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.05.119 – volume: 1 start-page: 235 year: 2002 ident: ref_58 article-title: Recent approaches to global optimization problems through particle swarm optimization publication-title: Nat. Comput. doi: 10.1023/A:1016568309421 – volume: 83 start-page: 8 year: 2022 ident: ref_16 article-title: Applications of wireless sensor networks to improve occupational safety and health in underground mines publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2022.07.016 – volume: 37 start-page: 698 year: 2008 ident: ref_56 article-title: A dynamic inertia weight particle swarm optimization algorithm publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.09.063 – volume: 58 start-page: 100718 year: 2020 ident: ref_71 article-title: Population size in particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100718 – volume: 217 start-page: 537 year: 2018 ident: ref_68 article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.131 – volume: 9 start-page: 3229 year: 2020 ident: ref_47 article-title: MOSMA: Multi-objective slime mould algorithm based on elitist non-dominated sorting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047936 – ident: ref_74 doi: 10.1145/1569901.1570140 – volume: 56 start-page: 226 year: 2014 ident: ref_67 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.11.015 – volume: 41 start-page: 1813 year: 2014 ident: ref_66 article-title: A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.080 – volume: 238 start-page: 122012 year: 2022 ident: ref_33 article-title: A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution publication-title: Energy doi: 10.1016/j.energy.2021.122012 – volume: 12 start-page: 13977 year: 2022 ident: ref_42 article-title: Quantum-behaved particle swarm optimization based on solitons publication-title: Sci. Rep. doi: 10.1038/s41598-022-18351-0 – volume: 133 start-page: 64 year: 2020 ident: ref_21 article-title: Prediction of coal and gas outburst: A method based on the BP neural network optimized by GASA publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.10.002 – volume: 9 start-page: 709987 year: 2021 ident: ref_26 article-title: Mining employees safety and the application of information technology in coal mining publication-title: Front. Public Health doi: 10.3389/fpubh.2021.709987 – volume: 146 start-page: 105562 year: 2022 ident: ref_2 article-title: Causal relationship of some personal and impersonal variates to occupational injuries at continuous miner worksites in underground coal mines publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105562 – volume: Volume 2 start-page: 121 year: 2022 ident: ref_36 article-title: Deep Learning Techniques for Natural Language Processing publication-title: Artificial Intelligence Trends in Systems, Proceedings of the 11th Computer Science On-line Conference, July 2022 – volume: 93 start-page: 255 year: 2005 ident: ref_70 article-title: An improved GA and a novel PSO-GA-based hybrid algorithm publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2004.11.003 – volume: 26 start-page: 1154 year: 2019 ident: ref_83 article-title: Prediction model of PSO-BP neural network on coliform amount in special food publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2019.06.016 – volume: 197 start-page: 106929 year: 2022 ident: ref_44 article-title: Hybrid differential evolution and particle swarm optimization for Multi-visit and Multi-period workforce scheduling and routing problems publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106929 – volume: 65 start-page: 78 year: 2017 ident: ref_78 article-title: Principles of correlation analysis publication-title: J. Assoc. Physicians India – volume: 323 start-page: 533 year: 1986 ident: ref_28 article-title: Learning Representations by Backpropagating Errors publication-title: Nature doi: 10.1038/323533a0 – ident: ref_38 – volume: 25 start-page: 11209 year: 2021 ident: ref_24 article-title: Advances of metaheuristic algorithms in training neural networks for industrial applications publication-title: Soft Comput. doi: 10.1007/s00500-021-05886-z – volume: 332 start-page: 125908 year: 2023 ident: ref_32 article-title: Application of a physics-informed neural network to solve the steady-state Bratu equation arising from solid biofuel combustion theory publication-title: Fuel doi: 10.1016/j.fuel.2022.125908 – volume: 3 start-page: 100039 year: 2022 ident: ref_30 article-title: Optimization of effluents using artificial neural network and support vector regression in detergent industrial wastewater treatment publication-title: Clean. Chem. Eng. doi: 10.1016/j.clce.2022.100039 – ident: ref_45 doi: 10.1109/SMC42975.2020.9283143 – ident: ref_41 doi: 10.3390/app12178392 – volume: 128 start-page: 103225 year: 2022 ident: ref_17 article-title: Improving coal mine safety with internet of things (IoT) based Dynamic Sensor Information Control System publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/j.pce.2022.103225 – volume: 2019 start-page: 34 year: 2019 ident: ref_22 article-title: Rockburst prediction model based on entropy weight integrated with grey relational BP neural network publication-title: Adv. Civ. Eng. – volume: 58 start-page: 102728 year: 2021 ident: ref_25 article-title: Super efficiency SBM-DEA and neural network for performance evaluation publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102728 – volume: 15 start-page: 1 year: 2022 ident: ref_62 article-title: Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions publication-title: Evol. Intell. doi: 10.1007/s12065-020-00486-6 – volume: 76 start-page: 45 year: 2019 ident: ref_75 article-title: Particle swarm optimization with damping factor and cooperative mechanism publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.050 – volume: 7 start-page: 1 year: 2020 ident: ref_85 article-title: Optimization of online teaching quality evaluation model based on hierarchical PSO-BP neural network publication-title: Complexity – volume: 296 start-page: 567 year: 2022 ident: ref_49 article-title: A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in 2020 publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2021.09.098 – ident: ref_11 – volume: 32 start-page: 101077 year: 2022 ident: ref_48 article-title: Accelerating sailfish optimization applied to unconstrained optimization problems on graphical processing unit publication-title: Eng. Sci. Technol. Int. J. – volume: 11 start-page: 363 year: 2020 ident: ref_8 article-title: A Safe and Sustainable Development in a Hygiene and Healthy Company Using Decision Matrix Risk Assessment Technique: A case study publication-title: J. Min. Environ. – volume: 345 start-page: 126433 year: 2022 ident: ref_19 article-title: Application of machine learning in anaerobic digestion: Perspectives and challenges publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126433 – volume: 310 start-page: 118438 year: 2022 ident: ref_35 article-title: Convolutional neural networks for intra-hour solar forecasting based on sky image sequences publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118438 – volume: 173 start-page: 114598 year: 2021 ident: ref_10 article-title: Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114598 – volume: 89 start-page: 3071 year: 2017 ident: ref_82 article-title: Thermal error compensation of high-speed spindle system based on a modified BP neural network publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9254-4 – volume: 54 start-page: 185 year: 2007 ident: ref_73 article-title: Adaptive Population Sizing Schemes in Genetic Algorithms publication-title: Parameter Setting Evol. Algorithms doi: 10.1007/978-3-540-69432-8_9 – volume: 17 start-page: 1533 year: 2022 ident: ref_31 article-title: Real-time prediction of shield moving trajectory during tunnelling publication-title: Acta Geotech. doi: 10.1007/s11440-022-01461-4 – volume: 6 start-page: 838 year: 2019 ident: ref_46 article-title: Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911450 – volume: 13 start-page: 2997 year: 2013 ident: ref_52 article-title: A review of particle swarm optimization and its applications in solar photovoltaic system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.033 – volume: 6 start-page: 58 year: 2002 ident: ref_59 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 18 start-page: 595 year: 2007 ident: ref_77 article-title: New chaotic PSO-based neural network predictive control for nonlinear process publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.890809 – volume: 100 start-page: 173 year: 2020 ident: ref_81 article-title: Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: A case study in Sichuan, China publication-title: Nat. Hazards doi: 10.1007/s11069-019-03806-x – volume: 2022 start-page: 5233845 year: 2022 ident: ref_18 article-title: Coal mine safety evaluation based on machine learning: A BP neural network model publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/5233845 – volume: 33 start-page: 1429 year: 2010 ident: ref_40 article-title: Particle swarm optimization applied to space trajectories publication-title: J. Guid. Control Dyn. doi: 10.2514/1.48475 – ident: ref_29 – volume: 39 start-page: 4558 year: 2012 ident: ref_60 article-title: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.129 – volume: 45 start-page: 449 year: 2007 ident: ref_1 article-title: The role of behavioral factors on safety management in underground mines publication-title: Saf. Sci. doi: 10.1016/j.ssci.2006.07.006 – volume: 36 start-page: 1802 year: 2008 ident: ref_4 article-title: The costs of failure: A preliminary assessment of major energy accidents, 1907–2007 publication-title: Energy Policy doi: 10.1016/j.enpol.2008.01.040 – volume: 222 start-page: 211451 year: 2023 ident: ref_12 article-title: Seismic driven reservoir classification using advanced machine learning algorithms: A case study from the lower Ranikot/Khadro sandstone gas reservoir, Kirthar fold belt, lower Indus Basin, Pakistan publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2023.211451 – volume: 24 start-page: 83 year: 2006 ident: ref_72 article-title: Particle swarm optimization for resource-constrained project scheduling publication-title: Int. J. Proj. Manag. doi: 10.1016/j.ijproman.2005.06.006 – volume: 369 start-page: 112630 year: 2020 ident: ref_23 article-title: The exploration of internet finance by using neural network publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112630 – volume: 123 start-page: 36 year: 2022 ident: ref_15 article-title: Artificial Intelligence technology in food safety: A behavioral approach publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2022.03.021 – volume: 14 start-page: 83 year: 2020 ident: ref_61 article-title: A simplified multi-objective particle swarm optimization algorithm publication-title: Swarm Intell. doi: 10.1007/s11721-019-00170-1 – volume: 211 start-page: 118463 year: 2023 ident: ref_37 article-title: A novel hybrid feature fusion model for detecting phishing scam on Ethereum using deep neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118463 – volume: 21 start-page: 249 year: 2009 ident: ref_84 article-title: Parameter determination and feature selection for back-propagation network by particle swarm optimization publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-009-0242-y – volume: 179 start-page: 780 year: 2019 ident: ref_79 article-title: A Back Propagation neural network based optimizing model of space-based large mirror structure publication-title: Optik doi: 10.1016/j.ijleo.2018.09.161 – volume: 53 start-page: 599 year: 2002 ident: ref_69 article-title: An analytical solution to the population balance equation with coalescence and breakage-the special case with constant number of particles publication-title: Chem. Eng. Sci. – volume: Volume 1 start-page: 280 year: 2010 ident: ref_54 article-title: Comparison study of several kinds of inertia weights for PSO publication-title: Proceedings of the 2010 IEEE International Conference on Progress in Informatics and Computing – volume: 10 start-page: 281 year: 2006 ident: ref_55 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 222 start-page: 118908 year: 2022 ident: ref_34 article-title: A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes publication-title: Water Res. doi: 10.1016/j.watres.2022.118908 – volume: 147 start-page: 104711 year: 2023 ident: ref_14 article-title: Intelligent technologies for construction machinery using data-driven methods publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104711 – volume: 22 start-page: 717 year: 2000 ident: ref_20 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(99)00272-1 – volume: 7 start-page: e623 year: 2021 ident: ref_80 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.623 – volume: 81 start-page: 421 year: 2022 ident: ref_6 article-title: Hazard identification and risk assessment of groundwater inrush from a coal mine: A review publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-022-02925-3 – ident: ref_57 – volume: 149 start-page: 153 year: 2015 ident: ref_50 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.020 – volume: 192 start-page: 745 year: 2022 ident: ref_43 article-title: GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design publication-title: Renew. Energy doi: 10.1016/j.renene.2022.04.162 – volume: 327 start-page: 126 year: 2006 ident: ref_65 article-title: Performance comparison of neural network training algorithms in modeling of bimodal drug delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.07.056 |
SSID | ssj0000913810 |
Score | 2.3678286 |
Snippet | Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5317 |
SubjectTerms | Accident prevention Algorithms Back propagation coal Coal industry Coal mining Computational linguistics Geospatial data Language processing Machine learning Medical research Medicine, Experimental Mine safety Mines Mining accidents & safety Natural language interfaces Neural networks Neurons prediction PSO-BP neural network Risk assessment Risk factors safety risk factors underground coal mines Workers |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ0QJioSAfKvGQIpL4mRPaVmwrpD5EqdRb5IztqgI27W44tBf-OjOJd9uVoNd4bCWZ8fgbj_0NY9tEQWLzaDIfQGdSW8icDzJTOgotETG4_pLYwaHeP5Vfz9RZ2nCbp2OVC5_YO2rfAu2RfypxJRJoXFZ8vrzKqGoUZVdTCY2H7FGBKw3ZuZ3sLfdYiPPSFvlwLU9gdE9ZYXTaFRqeWVmIer7-_3nlfqmZPGXrCSPy8aDUDfYgTDfZkzvMgZtsI83JOX-fiKM_PGN_xrfZaN5G7qb8CD3Cr4ub4PnxyVG2c8yJjAPHPhxOf_Ou5YgA-XjJz4mdUHZG6ZvFMH1pJLr9gS27LXY-wPfgJy6G7pp_u5j_4JOhaM9zdjr58n13P0sFFjJA3NCho7OgrG5CCTGEQqtKUNas1AijIKhoXJmLiDGLzRtXemMQ-wQtQ-PBKQVevGBr03YaXjJe-KIgZheVO5DeBBfAVFUUYCsI0pcj9nHxt2tI7ONUBONnjVEIqaa-o5oR214KXw6kG_8W2yG1LUWIKbt_0M7O6zTxMMIRua20LYw3UlemKXMrSwkGgZiPoRmxd6T0muYzvhC4dC0BP4uYseqxUQSBMewbsa0VSZyHsNq8MJs6-YF5fWu1r-5vfs0eUyH74UzQFlvrZr_DG4Q7XfO2t-m_weH8vQ priority: 102 providerName: ProQuest |
Title | Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors |
URI | https://www.proquest.com/docview/2812387083 https://doaj.org/article/1130896817d74697b208424c7397dfeb |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7a9NIeSpK21E1idAgkDSzdh157tEPcUIhj8oDchFYPCG3tEm8PzSV_PTO7a8eGlF56XY2EVpoZfYM03wDsEwWJTqNKfHAy4VK7xPrAEyFjITkiBtskiZ2N5ek1_3YjblZKfdGbsJYeuF24Lxk6WV1KnSmvMJRTVZ5qnnOn8CD1MVTkfdMyXQmmGh9cZkRd1SbkFRjX030wjlSiyqm1I6hh6v-bP24OmdEmvO3QIRu0s9qCF2G6DW9WOAO3Yauzxjk77CijP7-Dh8HTPTSbRWan7Bx9wc_b--DZ5PI8GU4Y0XDg2OP23TerZwyxHxssmTmxE8re0cXNYpimKBLlfWDL8Qw7n-E82KWNof7DLm7n39moLdfzHq5HJ1fHp0lXWiFxiBhqdHHaCS2rkLsYQiZFWdB9WS4RQLkgorJ5WkSMVnRa2dwrhagnSB4q76wQzhcfYGM6m4aPwDKfZcTpIlLruFfBBqfKMhZOly5wn_fgaLHaxnW841T-4ofB-IO2xqxsTQ_2l8K_WrqN58WGtG1LEeLIbj6g5phOc8y_NKcHB7TphiwZJ-Rsl5CAv0WcWGagBIFfDPh6sLsmiRbo1psXamM6DzA3OSKnAp2hLj79j8nuwGsqdN--GdqFjfrud9hDOFRXfXipR1_78Gp4Mp5c9Bs7eATy9gYu |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IFpALBTwoYiHFJE4ju0cENotXW1pd7vqQ-otJLZTVYVN2Q1C5cI_4jcyk8e2KwG3XuOx5WSezni-AdgkCBLt58qzzkhPSG281DrhRTIPpcCIIa2KxEZjOTwWn06ikxX43dbC0LXK1iZWhtoWhv6Rv-PoiUIULh1-uPjmUdcoyq62LTRqsdh1lz_wyDZ_v_MR-fuS88H20dbQa7oKeAadZYnarU2kZea4yZ0LZBSHlCriEmMH46JcpdwPcwzUtZ-l3CqFDt9J4TJr0igyNsR1b8GqoIrWDqz2t8eTg8VfHULZ1IFfFwKGYexTHhrdRIyirpZcX9Uh4F9-oHJug_twr4lKWa8WozVYcdN1uHsNq3Ad1horMGevG6jqNw_gV-8q_82KnKVTto826OvZT2fZ5HDf608YwX_g2uP6vjkrC4YxJ-stEEFxEtLOKGHULlM1Y6J6ExzZKnDyCPfBDtPclZfs4Gx-zgZ1m6CHcHwjH_8RdKbF1D0GFtggICyZyE-NsMqlzqg4zkOjY-OE5V14237txDR459R240uC5x5iTXKNNV3YXBBf1DAffyfrE9sWJITNXT0oZqdJo-p4pgp9HUsdKKuEjFXGfS24MApDP5u7rAuviOkJWRDckEmbQgh8LcLiSnoqoqAbD5pd2FiiRM03y8Ot2CSN5ZknV3ry5P_DL-D28Gi0l-ztjHefwh2OwVt9I2kDOuXsu3uGwVaZPW8knMHnm1aqP_szOo8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEC0gFgr4UMRDiprYju0cENq2hJbS7YpSqbfg-IEqYFN2g1C58L_4dczkse1KwK3XeGIlmXfG8w0h6whBouOgIuetjITUNjLOiyiVgUsBEYNpmsT2R3LnSLw9To-XyO--FwaPVfY2sTHUrrL4j3yDgSfiIFyab4TuWMR4O391-i3CCVJYae3HabQisufPfkD6Nnu5uw28fsJY_vrD1k7UTRiILDjOGjRd21TL0jMbvE9kmnEsGzEJcYT1aVCGxTxA0K7j0jCnFDh_L4UvnTVpah2Hfa-Qq4qrDBM_nb-Z_99BvE2dxG1LIOdZjBVpcBgZCL1acILNrIB_eYTGzeW3yM0uPqXDVqBWyJKfrJIbF1ALV8lKZw9m9FkHWv38Nvk1PK-E0ypQM6EHYI2-nvz0jo4PD6LNMUUgENh71J48p3VFIfqkwzk2KNwEtFMsHfXbNGOZsPMEVrYquHkfnoMemuDrM_r-ZPaZ5u3AoDvk6FI-_V2yPKkm_h6hiUsSRJVJY2OFU954q7IscKsz64VjA_Ki_9qF7ZDPcQDHlwIyIGRNcYE1A7I-Jz5tAT_-TraJbJuTIEp3c6Gafio6pYfsisc6kzpRTgmZqZLFWjBhFQSBLvhyQJ4i0wu0JfBA1nQtEfBaiMpVDFWK4TeknAOytkAJNsAuLvdiU3Q2aFaca8z9_y8_JtdAlYp3u6O9B-Q6gyiuPZq0Rpbr6Xf_EKKuunzUiDclHy9bn_4AP6Q9Xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+Optimized+PSO-BP+Neural+Network+to+the+Assessment+and+Prediction+of+Underground+Coal+Mine+Safety+Risk+Factors&rft.jtitle=Applied+sciences&rft.au=Dorcas+Muadi+Mulumba&rft.au=Jiankang+Liu&rft.au=Jian+Hao&rft.au=Yining+Zheng&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=9&rft.spage=5317&rft_id=info:doi/10.3390%2Fapp13095317&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1130896817d74697b208424c7397dfeb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |