Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors

Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 9; p. 5317
Main Authors Mulumba, Dorcas Muadi, Liu, Jiankang, Hao, Jian, Zheng, Yining, Liu, Heqing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app13095317

Cover

Abstract Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that have, in some instances, led to the loss of lives, disabilities, equipment damage, etc. The assessment of risk factors in underground mines is therefore considered a commendable initiative. Therefore, this research aimed to develop an efficient model for assessing and predicting safety risk factors in underground mines using existing data from the Xiaonan coal mine. A model for evaluating safety risks in underground coal mines was developed based on the optimized particle swarm optimization-backpropagation (PSO-BP) neural network. The results showed that the PSO-BP neural network model for safety risk assessment in underground coal mines was the most reliable and effective, with MSE, MAPE, and R2 values of 2.0 × 10−4, 4.3, and 0.92, respectively. Therefore, the study proposed the neural network model PSO-BP for underground coal mine safety risk assessment. The results of this study can be adopted by decision-makers for evaluating and predicting risk factors in underground coal mines.
AbstractList Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that have, in some instances, led to the loss of lives, disabilities, equipment damage, etc. The assessment of risk factors in underground mines is therefore considered a commendable initiative. Therefore, this research aimed to develop an efficient model for assessing and predicting safety risk factors in underground mines using existing data from the Xiaonan coal mine. A model for evaluating safety risks in underground coal mines was developed based on the optimized particle swarm optimization-backpropagation (PSO-BP) neural network. The results showed that the PSO-BP neural network model for safety risk assessment in underground coal mines was the most reliable and effective, with MSE, MAPE, and R2 values of 2.0 × 10−4, 4.3, and 0.92, respectively. Therefore, the study proposed the neural network model PSO-BP for underground coal mine safety risk assessment. The results of this study can be adopted by decision-makers for evaluating and predicting risk factors in underground coal mines.
Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that have, in some instances, led to the loss of lives, disabilities, equipment damage, etc. The assessment of risk factors in underground mines is therefore considered a commendable initiative. Therefore, this research aimed to develop an efficient model for assessing and predicting safety risk factors in underground mines using existing data from the Xiaonan coal mine. A model for evaluating safety risks in underground coal mines was developed based on the optimized particle swarm optimization-backpropagation (PSO-BP) neural network. The results showed that the PSO-BP neural network model for safety risk assessment in underground coal mines was the most reliable and effective, with MSE, MAPE, and R[sup.2] values of 2.0 × 10[sup.−4], 4.3, and 0.92, respectively. Therefore, the study proposed the neural network model PSO-BP for underground coal mine safety risk assessment. The results of this study can be adopted by decision-makers for evaluating and predicting risk factors in underground coal mines.
Audience Academic
Author Zheng, Yining
Liu, Heqing
Liu, Jiankang
Hao, Jian
Mulumba, Dorcas Muadi
Author_xml – sequence: 1
  givenname: Dorcas Muadi
  surname: Mulumba
  fullname: Mulumba, Dorcas Muadi
– sequence: 2
  givenname: Jiankang
  surname: Liu
  fullname: Liu, Jiankang
– sequence: 3
  givenname: Jian
  surname: Hao
  fullname: Hao, Jian
– sequence: 4
  givenname: Yining
  surname: Zheng
  fullname: Zheng, Yining
– sequence: 5
  givenname: Heqing
  surname: Liu
  fullname: Liu, Heqing
BookMark eNptkl1vFCEUhiemJtbaK_8AiZdmKx_DAJfrxmqT6jbWXhMGDivbmWEENqbe9K8Xu35UU7g45PC8Lwc4z5uDKU7QNC8JPmFM4TdmngnDijMinjSHFItuwVoiDh6snzXHOW9xHYowSfBhc7uc5yFYU0KcUPTITGg9lzCGH-DQxeV68fYCfYJdMkMN5XtM16hEVL4CWuYMOY8wlSqqbAIX7G-bq8lB2qS4qzurWMUfwwTo0ngoN-hzyNfo1NgSU37RPPVmyHD8Kx41V6fvvqw-LM7X789Wy_OFbRkpC0Wk5bLrgVoPQDquGOkUph3nxAL3wlDMPBGtxL2hTgjCFXQt9M4azq1jR83Z3tdFs9VzCqNJNzqaoO8TMW20SSXYATSpryhVJ4lwou2U6CmWLW2tYEo4D331erX3mlP8toNc9Dbu0lTL11QSyqTAkv2lNqaahsnHkowdQ7Z6KThlpFaPK3XyCFWngzHY-sE-1Pw_gtd7gU0x5wT-z2UI1j_7QD_og0qT_2gbyv1n12PC8KjmDqjrtEc
CitedBy_id crossref_primary_10_1007_s11869_024_01570_x
crossref_primary_10_3390_buildings14030641
crossref_primary_10_1016_j_heliyon_2024_e41262
crossref_primary_10_1007_s12517_024_12090_4
crossref_primary_10_3390_met14040381
crossref_primary_10_3390_app14188572
crossref_primary_10_3390_s23146614
crossref_primary_10_3390_pr12091890
crossref_primary_10_1177_16878132241305588
crossref_primary_10_3390_su151310086
crossref_primary_10_3390_w16060813
crossref_primary_10_1007_s11668_024_02004_7
crossref_primary_10_2298_TSCI230711027C
crossref_primary_10_3390_app142311101
crossref_primary_10_3390_app142411996
crossref_primary_10_1016_j_conbuildmat_2024_135151
crossref_primary_10_1371_journal_pone_0317277
Cites_doi 10.1243/09544054JEM1158
10.1007/s10462-019-09760-1
10.1016/j.bspc.2022.103479
10.1016/j.apenergy.2014.07.104
10.1164/rccm.201301-0042CI
10.3390/ijerph16101765
10.1016/j.psep.2022.04.054
10.1007/s00521-020-05420-6
10.1016/j.applthermaleng.2016.05.119
10.1023/A:1016568309421
10.1016/j.jsr.2022.07.016
10.1016/j.chaos.2006.09.063
10.1016/j.swevo.2020.100718
10.1016/j.apenergy.2018.02.131
10.1109/ACCESS.2020.3047936
10.1145/1569901.1570140
10.1016/j.knosys.2013.11.015
10.1016/j.eswa.2013.08.080
10.1016/j.energy.2021.122012
10.1038/s41598-022-18351-0
10.1016/j.psep.2019.10.002
10.3389/fpubh.2021.709987
10.1016/j.ssci.2021.105562
10.1016/j.ipl.2004.11.003
10.1016/j.sjbs.2019.06.016
10.1016/j.compag.2022.106929
10.1038/323533a0
10.1007/s00500-021-05886-z
10.1016/j.fuel.2022.125908
10.1016/j.clce.2022.100039
10.1109/SMC42975.2020.9283143
10.3390/app12178392
10.1016/j.pce.2022.103225
10.1016/j.ipm.2021.102728
10.1007/s12065-020-00486-6
10.1016/j.asoc.2018.11.050
10.1016/j.jad.2021.09.098
10.1016/j.biortech.2021.126433
10.1016/j.apenergy.2021.118438
10.1016/j.eswa.2021.114598
10.1007/s00170-016-9254-4
10.1007/978-3-540-69432-8_9
10.1007/s11440-022-01461-4
10.1109/JAS.2019.1911450
10.1016/j.asoc.2012.11.033
10.1109/4235.985692
10.1109/TNN.2006.890809
10.1007/s11069-019-03806-x
10.1155/2022/5233845
10.2514/1.48475
10.1016/j.eswa.2011.09.129
10.1016/j.ssci.2006.07.006
10.1016/j.enpol.2008.01.040
10.1016/j.geoen.2023.211451
10.1016/j.ijproman.2005.06.006
10.1016/j.cam.2019.112630
10.1016/j.tifs.2022.03.021
10.1007/s11721-019-00170-1
10.1016/j.eswa.2022.118463
10.1007/s10115-009-0242-y
10.1016/j.ijleo.2018.09.161
10.1109/TEVC.2005.857610
10.1016/j.watres.2022.118908
10.1016/j.autcon.2022.104711
10.1016/S0731-7085(99)00272-1
10.7717/peerj-cs.623
10.1007/s10064-022-02925-3
10.1016/j.chemolab.2015.08.020
10.1016/j.renene.2022.04.162
10.1016/j.ijpharm.2006.07.056
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13095317
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1130896817d74697b208424c7397dfeb
A752310260
10_3390_app13095317
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c431t-918c586be2cfee16593169026551ce5f7a203f17480ba2d77159e64ebdca55cd3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:25:28 EDT 2025
Mon Jun 30 07:44:53 EDT 2025
Tue Jun 17 21:08:48 EDT 2025
Tue Jun 10 20:36:19 EDT 2025
Tue Jul 01 04:33:10 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-918c586be2cfee16593169026551ce5f7a203f17480ba2d77159e64ebdca55cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/1130896817d74697b208424c7397dfeb
PQID 2812387083
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_1130896817d74697b208424c7397dfeb
proquest_journals_2812387083
gale_infotracmisc_A752310260
gale_infotracacademiconefile_A752310260
crossref_primary_10_3390_app13095317
crossref_citationtrail_10_3390_app13095317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 20230401
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Feng (ref_35) 2022; 310
Yang (ref_26) 2021; 9
Clerc (ref_59) 2002; 6
Singh (ref_62) 2022; 15
Wu (ref_21) 2020; 133
Qi (ref_23) 2020; 369
ref_57
ref_11
He (ref_75) 2019; 76
Ren (ref_67) 2014; 56
Chong (ref_24) 2021; 25
Punyakum (ref_44) 2022; 197
Shen (ref_31) 2022; 17
Paul (ref_1) 2007; 45
Zheng (ref_14) 2023; 147
Ali (ref_17) 2022; 128
Zhu (ref_81) 2020; 100
Jiao (ref_56) 2008; 37
Lobo (ref_73) 2007; 54
Trivedi (ref_61) 2020; 14
Manzoor (ref_12) 2023; 222
Wang (ref_79) 2019; 179
Wang (ref_6) 2022; 81
Naji (ref_48) 2022; 32
Ma (ref_82) 2017; 89
Sovacool (ref_4) 2008; 36
Premkumar (ref_47) 2020; 9
Shi (ref_70) 2005; 93
Deng (ref_83) 2019; 26
Davide (ref_80) 2021; 7
Sahu (ref_13) 2023; 14
Marini (ref_50) 2015; 149
ref_29
Zheng (ref_22) 2019; 2019
Rumelhart (ref_28) 1986; 323
Lin (ref_84) 2009; 21
Zhang (ref_63) 2022; 74
Bai (ref_18) 2022; 2022
Fallahi (ref_42) 2022; 12
Senapati (ref_2) 2022; 146
Pontani (ref_40) 2010; 33
Chen (ref_27) 2021; 33
Hosseini (ref_32) 2023; 332
Lage (ref_69) 2002; 53
Saeed (ref_33) 2022; 238
Liang (ref_55) 2006; 10
ref_74
Song (ref_77) 2007; 18
Parsopoulos (ref_58) 2002; 1
Ayvaz (ref_10) 2021; 173
Jana (ref_30) 2022; 3
ref_39
ref_38
Han (ref_54) 2010; Volume 1
Zhong (ref_25) 2021; 58
Jiang (ref_85) 2020; 7
Rao (ref_76) 2008; 222
Gogtay (ref_78) 2017; 65
Sigarchian (ref_53) 2016; 109
Zhang (ref_72) 2006; 24
Petsonk (ref_3) 2013; 187
Deng (ref_60) 2012; 39
Yu (ref_64) 2014; 134
Beresford (ref_20) 2000; 22
Kharzi (ref_8) 2020; 11
Hassanien (ref_9) 2020; 53
ref_45
Robinson (ref_49) 2022; 296
Rodzin (ref_36) 2022; Volume 2
ref_41
Adam (ref_71) 2020; 58
Wen (ref_37) 2023; 211
Zhang (ref_34) 2022; 222
Li (ref_5) 2022; 162
Khare (ref_52) 2013; 13
Rodger (ref_66) 2014; 41
Kudashkina (ref_15) 2022; 123
Rahnamayan (ref_51) 2009; 8
Singh (ref_68) 2018; 217
Cruz (ref_19) 2022; 345
Sadeghi (ref_16) 2022; 83
Arrif (ref_43) 2022; 192
Ghaffari (ref_65) 2006; 327
ref_7
Lv (ref_46) 2019; 6
References_xml – volume: 222
  start-page: 949
  year: 2008
  ident: ref_76
  article-title: Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1243/09544054JEM1158
– volume: 53
  start-page: 3201
  year: 2020
  ident: ref_9
  article-title: Machine learning in telemetry data mining of space mission: Basics, challenging and future directions
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09760-1
– volume: 74
  start-page: 103479
  year: 2022
  ident: ref_63
  article-title: Detection of alertness-related EEG signals based on decision fused BP neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103479
– volume: 8
  start-page: 355
  year: 2009
  ident: ref_51
  article-title: Toward effective initialization for large-scale search spaces
  publication-title: Trans Syst.
– volume: 14
  start-page: 101233
  year: 2023
  ident: ref_13
  article-title: Coal mine explosions in India: Management failure, safety lapses and mitigative measures
  publication-title: Extr. Ind. Soc.
– volume: 134
  start-page: 102
  year: 2014
  ident: ref_64
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.104
– ident: ref_39
– volume: 187
  start-page: 1178
  year: 2013
  ident: ref_3
  article-title: Coal mine dust lung disease. New lessons from an old exposure
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201301-0042CI
– ident: ref_7
  doi: 10.3390/ijerph16101765
– volume: 162
  start-page: 1067
  year: 2022
  ident: ref_5
  article-title: Identifying coal mine safety production risk factors by employing text mining and Bayesian network techniques
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.04.054
– volume: 33
  start-page: 1007
  year: 2021
  ident: ref_27
  article-title: Evaluation model of green supply chain cooperation credit based on BP neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05420-6
– volume: 109
  start-page: 1031
  year: 2016
  ident: ref_53
  article-title: Optimum design of a hybrid PV–CSP–LPG microgrid with Particle Swarm Optimization technique
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.05.119
– volume: 1
  start-page: 235
  year: 2002
  ident: ref_58
  article-title: Recent approaches to global optimization problems through particle swarm optimization
  publication-title: Nat. Comput.
  doi: 10.1023/A:1016568309421
– volume: 83
  start-page: 8
  year: 2022
  ident: ref_16
  article-title: Applications of wireless sensor networks to improve occupational safety and health in underground mines
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2022.07.016
– volume: 37
  start-page: 698
  year: 2008
  ident: ref_56
  article-title: A dynamic inertia weight particle swarm optimization algorithm
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.09.063
– volume: 58
  start-page: 100718
  year: 2020
  ident: ref_71
  article-title: Population size in particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100718
– volume: 217
  start-page: 537
  year: 2018
  ident: ref_68
  article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.131
– volume: 9
  start-page: 3229
  year: 2020
  ident: ref_47
  article-title: MOSMA: Multi-objective slime mould algorithm based on elitist non-dominated sorting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047936
– ident: ref_74
  doi: 10.1145/1569901.1570140
– volume: 56
  start-page: 226
  year: 2014
  ident: ref_67
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.11.015
– volume: 41
  start-page: 1813
  year: 2014
  ident: ref_66
  article-title: A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.080
– volume: 238
  start-page: 122012
  year: 2022
  ident: ref_33
  article-title: A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122012
– volume: 12
  start-page: 13977
  year: 2022
  ident: ref_42
  article-title: Quantum-behaved particle swarm optimization based on solitons
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-18351-0
– volume: 133
  start-page: 64
  year: 2020
  ident: ref_21
  article-title: Prediction of coal and gas outburst: A method based on the BP neural network optimized by GASA
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.10.002
– volume: 9
  start-page: 709987
  year: 2021
  ident: ref_26
  article-title: Mining employees safety and the application of information technology in coal mining
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2021.709987
– volume: 146
  start-page: 105562
  year: 2022
  ident: ref_2
  article-title: Causal relationship of some personal and impersonal variates to occupational injuries at continuous miner worksites in underground coal mines
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2021.105562
– volume: Volume 2
  start-page: 121
  year: 2022
  ident: ref_36
  article-title: Deep Learning Techniques for Natural Language Processing
  publication-title: Artificial Intelligence Trends in Systems, Proceedings of the 11th Computer Science On-line Conference, July 2022
– volume: 93
  start-page: 255
  year: 2005
  ident: ref_70
  article-title: An improved GA and a novel PSO-GA-based hybrid algorithm
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2004.11.003
– volume: 26
  start-page: 1154
  year: 2019
  ident: ref_83
  article-title: Prediction model of PSO-BP neural network on coliform amount in special food
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2019.06.016
– volume: 197
  start-page: 106929
  year: 2022
  ident: ref_44
  article-title: Hybrid differential evolution and particle swarm optimization for Multi-visit and Multi-period workforce scheduling and routing problems
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106929
– volume: 65
  start-page: 78
  year: 2017
  ident: ref_78
  article-title: Principles of correlation analysis
  publication-title: J. Assoc. Physicians India
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_28
  article-title: Learning Representations by Backpropagating Errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref_38
– volume: 25
  start-page: 11209
  year: 2021
  ident: ref_24
  article-title: Advances of metaheuristic algorithms in training neural networks for industrial applications
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05886-z
– volume: 332
  start-page: 125908
  year: 2023
  ident: ref_32
  article-title: Application of a physics-informed neural network to solve the steady-state Bratu equation arising from solid biofuel combustion theory
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125908
– volume: 3
  start-page: 100039
  year: 2022
  ident: ref_30
  article-title: Optimization of effluents using artificial neural network and support vector regression in detergent industrial wastewater treatment
  publication-title: Clean. Chem. Eng.
  doi: 10.1016/j.clce.2022.100039
– ident: ref_45
  doi: 10.1109/SMC42975.2020.9283143
– ident: ref_41
  doi: 10.3390/app12178392
– volume: 128
  start-page: 103225
  year: 2022
  ident: ref_17
  article-title: Improving coal mine safety with internet of things (IoT) based Dynamic Sensor Information Control System
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2022.103225
– volume: 2019
  start-page: 34
  year: 2019
  ident: ref_22
  article-title: Rockburst prediction model based on entropy weight integrated with grey relational BP neural network
  publication-title: Adv. Civ. Eng.
– volume: 58
  start-page: 102728
  year: 2021
  ident: ref_25
  article-title: Super efficiency SBM-DEA and neural network for performance evaluation
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102728
– volume: 15
  start-page: 1
  year: 2022
  ident: ref_62
  article-title: Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-020-00486-6
– volume: 76
  start-page: 45
  year: 2019
  ident: ref_75
  article-title: Particle swarm optimization with damping factor and cooperative mechanism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.050
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_85
  article-title: Optimization of online teaching quality evaluation model based on hierarchical PSO-BP neural network
  publication-title: Complexity
– volume: 296
  start-page: 567
  year: 2022
  ident: ref_49
  article-title: A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in 2020
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2021.09.098
– ident: ref_11
– volume: 32
  start-page: 101077
  year: 2022
  ident: ref_48
  article-title: Accelerating sailfish optimization applied to unconstrained optimization problems on graphical processing unit
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 11
  start-page: 363
  year: 2020
  ident: ref_8
  article-title: A Safe and Sustainable Development in a Hygiene and Healthy Company Using Decision Matrix Risk Assessment Technique: A case study
  publication-title: J. Min. Environ.
– volume: 345
  start-page: 126433
  year: 2022
  ident: ref_19
  article-title: Application of machine learning in anaerobic digestion: Perspectives and challenges
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126433
– volume: 310
  start-page: 118438
  year: 2022
  ident: ref_35
  article-title: Convolutional neural networks for intra-hour solar forecasting based on sky image sequences
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118438
– volume: 173
  start-page: 114598
  year: 2021
  ident: ref_10
  article-title: Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114598
– volume: 89
  start-page: 3071
  year: 2017
  ident: ref_82
  article-title: Thermal error compensation of high-speed spindle system based on a modified BP neural network
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9254-4
– volume: 54
  start-page: 185
  year: 2007
  ident: ref_73
  article-title: Adaptive Population Sizing Schemes in Genetic Algorithms
  publication-title: Parameter Setting Evol. Algorithms
  doi: 10.1007/978-3-540-69432-8_9
– volume: 17
  start-page: 1533
  year: 2022
  ident: ref_31
  article-title: Real-time prediction of shield moving trajectory during tunnelling
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-022-01461-4
– volume: 6
  start-page: 838
  year: 2019
  ident: ref_46
  article-title: Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911450
– volume: 13
  start-page: 2997
  year: 2013
  ident: ref_52
  article-title: A review of particle swarm optimization and its applications in solar photovoltaic system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.033
– volume: 6
  start-page: 58
  year: 2002
  ident: ref_59
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 18
  start-page: 595
  year: 2007
  ident: ref_77
  article-title: New chaotic PSO-based neural network predictive control for nonlinear process
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.890809
– volume: 100
  start-page: 173
  year: 2020
  ident: ref_81
  article-title: Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: A case study in Sichuan, China
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-019-03806-x
– volume: 2022
  start-page: 5233845
  year: 2022
  ident: ref_18
  article-title: Coal mine safety evaluation based on machine learning: A BP neural network model
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/5233845
– volume: 33
  start-page: 1429
  year: 2010
  ident: ref_40
  article-title: Particle swarm optimization applied to space trajectories
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.48475
– ident: ref_29
– volume: 39
  start-page: 4558
  year: 2012
  ident: ref_60
  article-title: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.129
– volume: 45
  start-page: 449
  year: 2007
  ident: ref_1
  article-title: The role of behavioral factors on safety management in underground mines
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2006.07.006
– volume: 36
  start-page: 1802
  year: 2008
  ident: ref_4
  article-title: The costs of failure: A preliminary assessment of major energy accidents, 1907–2007
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.01.040
– volume: 222
  start-page: 211451
  year: 2023
  ident: ref_12
  article-title: Seismic driven reservoir classification using advanced machine learning algorithms: A case study from the lower Ranikot/Khadro sandstone gas reservoir, Kirthar fold belt, lower Indus Basin, Pakistan
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.211451
– volume: 24
  start-page: 83
  year: 2006
  ident: ref_72
  article-title: Particle swarm optimization for resource-constrained project scheduling
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/j.ijproman.2005.06.006
– volume: 369
  start-page: 112630
  year: 2020
  ident: ref_23
  article-title: The exploration of internet finance by using neural network
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112630
– volume: 123
  start-page: 36
  year: 2022
  ident: ref_15
  article-title: Artificial Intelligence technology in food safety: A behavioral approach
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2022.03.021
– volume: 14
  start-page: 83
  year: 2020
  ident: ref_61
  article-title: A simplified multi-objective particle swarm optimization algorithm
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-019-00170-1
– volume: 211
  start-page: 118463
  year: 2023
  ident: ref_37
  article-title: A novel hybrid feature fusion model for detecting phishing scam on Ethereum using deep neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118463
– volume: 21
  start-page: 249
  year: 2009
  ident: ref_84
  article-title: Parameter determination and feature selection for back-propagation network by particle swarm optimization
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0242-y
– volume: 179
  start-page: 780
  year: 2019
  ident: ref_79
  article-title: A Back Propagation neural network based optimizing model of space-based large mirror structure
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.09.161
– volume: 53
  start-page: 599
  year: 2002
  ident: ref_69
  article-title: An analytical solution to the population balance equation with coalescence and breakage-the special case with constant number of particles
  publication-title: Chem. Eng. Sci.
– volume: Volume 1
  start-page: 280
  year: 2010
  ident: ref_54
  article-title: Comparison study of several kinds of inertia weights for PSO
  publication-title: Proceedings of the 2010 IEEE International Conference on Progress in Informatics and Computing
– volume: 10
  start-page: 281
  year: 2006
  ident: ref_55
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857610
– volume: 222
  start-page: 118908
  year: 2022
  ident: ref_34
  article-title: A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118908
– volume: 147
  start-page: 104711
  year: 2023
  ident: ref_14
  article-title: Intelligent technologies for construction machinery using data-driven methods
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104711
– volume: 22
  start-page: 717
  year: 2000
  ident: ref_20
  article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(99)00272-1
– volume: 7
  start-page: e623
  year: 2021
  ident: ref_80
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.623
– volume: 81
  start-page: 421
  year: 2022
  ident: ref_6
  article-title: Hazard identification and risk assessment of groundwater inrush from a coal mine: A review
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-022-02925-3
– ident: ref_57
– volume: 149
  start-page: 153
  year: 2015
  ident: ref_50
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.020
– volume: 192
  start-page: 745
  year: 2022
  ident: ref_43
  article-title: GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.04.162
– volume: 327
  start-page: 126
  year: 2006
  ident: ref_65
  article-title: Performance comparison of neural network training algorithms in modeling of bimodal drug delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2006.07.056
SSID ssj0000913810
Score 2.3678286
Snippet Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5317
SubjectTerms Accident prevention
Algorithms
Back propagation
coal
Coal industry
Coal mining
Computational linguistics
Geospatial data
Language processing
Machine learning
Medical research
Medicine, Experimental
Mine safety
Mines
Mining accidents & safety
Natural language interfaces
Neural networks
Neurons
prediction
PSO-BP neural network
Risk assessment
Risk factors
safety risk factors
underground coal mines
Workers
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ0QJioSAfKvGQIpL4mRPaVmwrpD5EqdRb5IztqgI27W44tBf-OjOJd9uVoNd4bCWZ8fgbj_0NY9tEQWLzaDIfQGdSW8icDzJTOgotETG4_pLYwaHeP5Vfz9RZ2nCbp2OVC5_YO2rfAu2RfypxJRJoXFZ8vrzKqGoUZVdTCY2H7FGBKw3ZuZ3sLfdYiPPSFvlwLU9gdE9ZYXTaFRqeWVmIer7-_3nlfqmZPGXrCSPy8aDUDfYgTDfZkzvMgZtsI83JOX-fiKM_PGN_xrfZaN5G7qb8CD3Cr4ub4PnxyVG2c8yJjAPHPhxOf_Ou5YgA-XjJz4mdUHZG6ZvFMH1pJLr9gS27LXY-wPfgJy6G7pp_u5j_4JOhaM9zdjr58n13P0sFFjJA3NCho7OgrG5CCTGEQqtKUNas1AijIKhoXJmLiDGLzRtXemMQ-wQtQ-PBKQVevGBr03YaXjJe-KIgZheVO5DeBBfAVFUUYCsI0pcj9nHxt2tI7ONUBONnjVEIqaa-o5oR214KXw6kG_8W2yG1LUWIKbt_0M7O6zTxMMIRua20LYw3UlemKXMrSwkGgZiPoRmxd6T0muYzvhC4dC0BP4uYseqxUQSBMewbsa0VSZyHsNq8MJs6-YF5fWu1r-5vfs0eUyH74UzQFlvrZr_DG4Q7XfO2t-m_weH8vQ
  priority: 102
  providerName: ProQuest
Title Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors
URI https://www.proquest.com/docview/2812387083
https://doaj.org/article/1130896817d74697b208424c7397dfeb
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7a9NIeSpK21E1idAgkDSzdh157tEPcUIhj8oDchFYPCG3tEm8PzSV_PTO7a8eGlF56XY2EVpoZfYM03wDsEwWJTqNKfHAy4VK7xPrAEyFjITkiBtskiZ2N5ek1_3YjblZKfdGbsJYeuF24Lxk6WV1KnSmvMJRTVZ5qnnOn8CD1MVTkfdMyXQmmGh9cZkRd1SbkFRjX030wjlSiyqm1I6hh6v-bP24OmdEmvO3QIRu0s9qCF2G6DW9WOAO3Yauzxjk77CijP7-Dh8HTPTSbRWan7Bx9wc_b--DZ5PI8GU4Y0XDg2OP23TerZwyxHxssmTmxE8re0cXNYpimKBLlfWDL8Qw7n-E82KWNof7DLm7n39moLdfzHq5HJ1fHp0lXWiFxiBhqdHHaCS2rkLsYQiZFWdB9WS4RQLkgorJ5WkSMVnRa2dwrhagnSB4q76wQzhcfYGM6m4aPwDKfZcTpIlLruFfBBqfKMhZOly5wn_fgaLHaxnW841T-4ofB-IO2xqxsTQ_2l8K_WrqN58WGtG1LEeLIbj6g5phOc8y_NKcHB7TphiwZJ-Rsl5CAv0WcWGagBIFfDPh6sLsmiRbo1psXamM6DzA3OSKnAp2hLj79j8nuwGsqdN--GdqFjfrud9hDOFRXfXipR1_78Gp4Mp5c9Bs7eATy9gYu
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IFpALBTwoYiHFJE4ju0cENotXW1pd7vqQ-otJLZTVYVN2Q1C5cI_4jcyk8e2KwG3XuOx5WSezni-AdgkCBLt58qzzkhPSG281DrhRTIPpcCIIa2KxEZjOTwWn06ikxX43dbC0LXK1iZWhtoWhv6Rv-PoiUIULh1-uPjmUdcoyq62LTRqsdh1lz_wyDZ_v_MR-fuS88H20dbQa7oKeAadZYnarU2kZea4yZ0LZBSHlCriEmMH46JcpdwPcwzUtZ-l3CqFDt9J4TJr0igyNsR1b8GqoIrWDqz2t8eTg8VfHULZ1IFfFwKGYexTHhrdRIyirpZcX9Uh4F9-oHJug_twr4lKWa8WozVYcdN1uHsNq3Ad1horMGevG6jqNw_gV-8q_82KnKVTto826OvZT2fZ5HDf608YwX_g2uP6vjkrC4YxJ-stEEFxEtLOKGHULlM1Y6J6ExzZKnDyCPfBDtPclZfs4Gx-zgZ1m6CHcHwjH_8RdKbF1D0GFtggICyZyE-NsMqlzqg4zkOjY-OE5V14237txDR459R240uC5x5iTXKNNV3YXBBf1DAffyfrE9sWJITNXT0oZqdJo-p4pgp9HUsdKKuEjFXGfS24MApDP5u7rAuviOkJWRDckEmbQgh8LcLiSnoqoqAbD5pd2FiiRM03y8Ot2CSN5ZknV3ry5P_DL-D28Gi0l-ztjHefwh2OwVt9I2kDOuXsu3uGwVaZPW8knMHnm1aqP_szOo8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEC0gFgr4UMRDiprYju0cENq2hJbS7YpSqbfg-IEqYFN2g1C58L_4dczkse1KwK3XeGIlmXfG8w0h6whBouOgIuetjITUNjLOiyiVgUsBEYNpmsT2R3LnSLw9To-XyO--FwaPVfY2sTHUrrL4j3yDgSfiIFyab4TuWMR4O391-i3CCVJYae3HabQisufPfkD6Nnu5uw28fsJY_vrD1k7UTRiILDjOGjRd21TL0jMbvE9kmnEsGzEJcYT1aVCGxTxA0K7j0jCnFDh_L4UvnTVpah2Hfa-Qq4qrDBM_nb-Z_99BvE2dxG1LIOdZjBVpcBgZCL1acILNrIB_eYTGzeW3yM0uPqXDVqBWyJKfrJIbF1ALV8lKZw9m9FkHWv38Nvk1PK-E0ypQM6EHYI2-nvz0jo4PD6LNMUUgENh71J48p3VFIfqkwzk2KNwEtFMsHfXbNGOZsPMEVrYquHkfnoMemuDrM_r-ZPaZ5u3AoDvk6FI-_V2yPKkm_h6hiUsSRJVJY2OFU954q7IscKsz64VjA_Ki_9qF7ZDPcQDHlwIyIGRNcYE1A7I-Jz5tAT_-TraJbJuTIEp3c6Gafio6pYfsisc6kzpRTgmZqZLFWjBhFQSBLvhyQJ4i0wu0JfBA1nQtEfBaiMpVDFWK4TeknAOytkAJNsAuLvdiU3Q2aFaca8z9_y8_JtdAlYp3u6O9B-Q6gyiuPZq0Rpbr6Xf_EKKuunzUiDclHy9bn_4AP6Q9Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+Optimized+PSO-BP+Neural+Network+to+the+Assessment+and+Prediction+of+Underground+Coal+Mine+Safety+Risk+Factors&rft.jtitle=Applied+sciences&rft.au=Dorcas+Muadi+Mulumba&rft.au=Jiankang+Liu&rft.au=Jian+Hao&rft.au=Yining+Zheng&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=9&rft.spage=5317&rft_id=info:doi/10.3390%2Fapp13095317&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1130896817d74697b208424c7397dfeb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon