High pressure sorption of various hydrocarbons and carbon dioxide in Kimmeridge Blackstone and isolated kerogen

•CH4, C2H6, C3H8, n-C4H10, i-C4H10 and CO2 sorption in shale and kerogen is studied.•Pronounced hysteresis in sorption under high pressure is presented.•Molecular simulations are provided for the estimation of the absolute adsorption.•Sorption isotherms are significantly different between n-C4H10 an...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 224; pp. 412 - 423
Main Authors Zhao, Huangjing, Wu, Tianhao, Firoozabadi, Abbas
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.07.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0016-2361
1873-7153
DOI10.1016/j.fuel.2018.02.186

Cover

Loading…
Abstract •CH4, C2H6, C3H8, n-C4H10, i-C4H10 and CO2 sorption in shale and kerogen is studied.•Pronounced hysteresis in sorption under high pressure is presented.•Molecular simulations are provided for the estimation of the absolute adsorption.•Sorption isotherms are significantly different between n-C4H10 and i-C4H10. We have measured adsorption and desorption of methane, ethane, propane, n-butane, iso-butane and carbon dioxide in Kimmeridge Blackstone at high pressures at temperatures of 60, 90 and 120 °C. Sorption of various light hydrocarbons and carbon dioxide in the isolated kerogen at 60 °C was also investigated. In our measurements, we used the gravimetric method. Physical and chemical properties of samples were measured to provide insight into sorption. Methane, ethane and carbon dioxide sorption was measured to 150 bar. Due to low vapor pressure of propane at 60 and 90 °C, the sorption was measured to 15 bar at 60 °C and 30 bar at 90 °C, respectively. At 120 °C, propane sorption was measured to 30 bar. Similarly, n-butane and iso-butane sorption was studied to 5, 9.5 and 15 bar at 60, 90 and 120 °C, respectively. Compared to sorption of these gases at moderate pressure in our recent work, high pressure sorption shows more pronounced hysteresis and non-monotonic excess sorption. In this work, we use the adsorbed layer density, estimated from grand canonical Monte Carlo (GCMC) simulations, and the liquid density to compute the absolute adsorption and examine the difference between the two. The results show that the absolute adsorption estimated with the two densities is significantly different in methane but similar in the other species. The butanes, n-butane and iso-butane, despite close bulk densities have very different adsorption. The adsorbed layer densities by GCMC simulations are different by about 10% which partly account for the adsorption difference. Other mechanisms may be at play due to different shape of the two molecules.
AbstractList We have measured adsorption and desorption of methane, ethane, propane, n-butane, iso-butane and carbon dioxide in Kimmeridge Blackstone at high pressures at temperatures of 60, 90 and 120 °C. Sorption of various light hydrocarbons and carbon dioxide in the isolated kerogen at 60 °C was also investigated. In our measurements, we used the gravimetric method. Physical and chemical properties of samples were measured to provide insight into sorption. Methane, ethane and carbon dioxide sorption was measured to 150 bar. Due to low vapor pressure of propane at 60 and 90 °C, the sorption was measured to 15 bar at 60 °C and 30 bar at 90 °C, respectively. At 120 °C, propane sorption was measured to 30 bar. Similarly, n-butane and iso-butane sorption was studied to 5, 9.5 and 15 bar at 60, 90 and 120 °C, respectively. Compared to sorption of these gases at moderate pressure in our recent work, high pressure sorption shows more pronounced hysteresis and non-monotonic excess sorption. In this work, we use the adsorbed layer density, estimated from grand canonical Monte Carlo (GCMC) simulations, and the liquid density to compute the absolute adsorption and examine the difference between the two. The results show that the absolute adsorption estimated with the two densities is significantly different in methane but similar in the other species. The butanes, n-butane and iso-butane, despite close bulk densities have very different adsorption. The adsorbed layer densities by GCMC simulations are different by about 10% which partly account for the adsorption difference. Other mechanisms may be at play due to different shape of the two molecules.
•CH4, C2H6, C3H8, n-C4H10, i-C4H10 and CO2 sorption in shale and kerogen is studied.•Pronounced hysteresis in sorption under high pressure is presented.•Molecular simulations are provided for the estimation of the absolute adsorption.•Sorption isotherms are significantly different between n-C4H10 and i-C4H10. We have measured adsorption and desorption of methane, ethane, propane, n-butane, iso-butane and carbon dioxide in Kimmeridge Blackstone at high pressures at temperatures of 60, 90 and 120 °C. Sorption of various light hydrocarbons and carbon dioxide in the isolated kerogen at 60 °C was also investigated. In our measurements, we used the gravimetric method. Physical and chemical properties of samples were measured to provide insight into sorption. Methane, ethane and carbon dioxide sorption was measured to 150 bar. Due to low vapor pressure of propane at 60 and 90 °C, the sorption was measured to 15 bar at 60 °C and 30 bar at 90 °C, respectively. At 120 °C, propane sorption was measured to 30 bar. Similarly, n-butane and iso-butane sorption was studied to 5, 9.5 and 15 bar at 60, 90 and 120 °C, respectively. Compared to sorption of these gases at moderate pressure in our recent work, high pressure sorption shows more pronounced hysteresis and non-monotonic excess sorption. In this work, we use the adsorbed layer density, estimated from grand canonical Monte Carlo (GCMC) simulations, and the liquid density to compute the absolute adsorption and examine the difference between the two. The results show that the absolute adsorption estimated with the two densities is significantly different in methane but similar in the other species. The butanes, n-butane and iso-butane, despite close bulk densities have very different adsorption. The adsorbed layer densities by GCMC simulations are different by about 10% which partly account for the adsorption difference. Other mechanisms may be at play due to different shape of the two molecules.
Author Zhao, Huangjing
Firoozabadi, Abbas
Wu, Tianhao
Author_xml – sequence: 1
  givenname: Huangjing
  surname: Zhao
  fullname: Zhao, Huangjing
– sequence: 2
  givenname: Tianhao
  surname: Wu
  fullname: Wu, Tianhao
– sequence: 3
  givenname: Abbas
  surname: Firoozabadi
  fullname: Firoozabadi, Abbas
  email: af@rerinst.org
BookMark eNp9kD1PHDEQhq2ISDkO_gCVpdS7jO398EppCAofAomG1JbPnj187NnHeBfBv2cvl4oCTTFTvM-M_Ryzo5giMnYmoBQgmvNN2U84lBKELkGWQjff2ELoVhWtqNURW8CcKqRqxA92nPMGAFpdVwuWbsL6ie8Ic54IeU60G0OKPPX81VJIU-ZP756Ss7RKMXMbPT_M3If0FjzyEPld2G6Rgl8j_z1Y95zH-Xn_siGnwY7o-TNSWmM8Yd97O2Q8_d-X7O_Vn8fLm-L-4fr28uK-cJUSY9EB1o2rXC-w8tKryotOinpVd12jeoVgdaMUQNOozlZW1mIFoOdaiba1EtWS_Tzs3VF6mTCPZpMmivNJI0ErDa2cNy2ZPKQcpZwJe7OjsLX0bgSYvVizMXuxZi_WgDSz2BnSnyAXRru3NpINw9forwOK89dfA5LJLmB06AOhG41P4Sv8A_zfltM
CitedBy_id crossref_primary_10_1002_aic_17396
crossref_primary_10_1021_acs_energyfuels_0c02584
crossref_primary_10_1016_j_fuel_2019_01_059
crossref_primary_10_1016_j_cej_2021_131495
crossref_primary_10_1021_acs_energyfuels_1c02077
crossref_primary_10_1021_acs_energyfuels_0c04205
crossref_primary_10_1021_acs_energyfuels_0c01886
crossref_primary_10_1016_j_fuel_2022_123666
crossref_primary_10_1021_acs_langmuir_4c01916
crossref_primary_10_1021_acs_langmuir_0c01191
crossref_primary_10_1021_acs_jpcc_0c10362
crossref_primary_10_1021_acs_langmuir_4c00829
crossref_primary_10_1021_acs_energyfuels_2c03965
crossref_primary_10_1016_j_fuel_2020_117247
crossref_primary_10_1021_acs_langmuir_9b03244
crossref_primary_10_1080_09593330_2024_2398810
crossref_primary_10_1016_j_petrol_2019_106460
crossref_primary_10_1021_acs_energyfuels_9b00708
crossref_primary_10_1016_j_cej_2024_150225
crossref_primary_10_1016_j_cej_2024_150742
crossref_primary_10_1021_acs_energyfuels_1c02167
crossref_primary_10_1016_j_uncres_2023_100071
crossref_primary_10_1016_j_fuel_2018_07_104
crossref_primary_10_1021_acs_energyfuels_0c03501
crossref_primary_10_1016_j_cej_2021_130292
crossref_primary_10_1016_j_fuel_2018_08_023
crossref_primary_10_1063_5_0090157
crossref_primary_10_1016_j_cej_2022_138105
crossref_primary_10_2139_ssrn_4117025
crossref_primary_10_1021_acs_energyfuels_9b01116
crossref_primary_10_1016_j_fuel_2018_10_034
crossref_primary_10_1016_j_fuel_2023_130294
crossref_primary_10_1016_j_apenergy_2020_114575
crossref_primary_10_2118_205886_PA
crossref_primary_10_1016_j_cej_2020_124989
crossref_primary_10_1016_j_fuel_2018_07_098
crossref_primary_10_1016_j_coal_2018_09_001
crossref_primary_10_1021_acs_jpcc_8b07123
crossref_primary_10_1016_j_cej_2020_127690
crossref_primary_10_1016_j_fuel_2020_119254
crossref_primary_10_1016_j_fuel_2023_130332
crossref_primary_10_1021_acs_energyfuels_2c01603
crossref_primary_10_1016_j_fuel_2019_115632
crossref_primary_10_1016_j_jcou_2022_102105
crossref_primary_10_1021_acs_energyfuels_9b00409
crossref_primary_10_1016_j_coal_2022_104113
crossref_primary_10_3390_su16114831
crossref_primary_10_1016_j_fuel_2018_07_086
crossref_primary_10_1016_j_ijggc_2023_103930
crossref_primary_10_1016_j_cej_2021_134183
crossref_primary_10_1016_j_cej_2022_138242
crossref_primary_10_1016_j_cej_2024_155322
crossref_primary_10_1016_j_fuel_2022_124741
crossref_primary_10_1021_acs_energyfuels_1c00357
crossref_primary_10_1016_j_jiec_2019_06_015
crossref_primary_10_1007_s40789_023_00629_x
crossref_primary_10_1021_acs_est_9b03638
crossref_primary_10_1021_acs_jpcc_9b04592
crossref_primary_10_1021_acs_energyfuels_3c01661
Cites_doi 10.1063/1.469563
10.1016/j.fluid.2013.09.047
10.1021/jp984742e
10.1021/jp972543+
10.1016/j.orggeochem.2007.01.001
10.1016/j.fuel.2013.09.046
10.1016/j.coal.2014.07.010
10.1021/j100031a034
10.1016/j.coal.2013.10.007
10.1063/1.443321
10.1038/s41598-017-13123-7
10.1021/ef0580218
10.1021/jp990988n
10.1016/0039-6028(73)90264-1
10.2118/169819-PA
10.1016/j.coal.2014.08.004
10.1021/jp8073915
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2018
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2018.02.186
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
EndPage 423
ExternalDocumentID 10_1016_j_fuel_2018_02_186
S001623611830379X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
SSH
VH1
WUQ
XPP
ZY4
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c431t-90e56c4cf1e4d2d34d19215b59963f3e0a8633006639a4a251b008080b177a2e3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Wed Aug 13 02:59:54 EDT 2025
Thu Apr 24 23:03:07 EDT 2025
Tue Jul 01 03:27:13 EDT 2025
Fri Feb 23 02:50:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kimmeridge Blackstone
Kerogen
Hysteresis
Absolute adsorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-90e56c4cf1e4d2d34d19215b59963f3e0a8633006639a4a251b008080b177a2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2083807296
PQPubID 2045474
PageCount 12
ParticipantIDs proquest_journals_2083807296
crossref_primary_10_1016_j_fuel_2018_02_186
crossref_citationtrail_10_1016_j_fuel_2018_02_186
elsevier_sciencedirect_doi_10_1016_j_fuel_2018_02_186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-15
PublicationDateYYYYMMDD 2018-07-15
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Bureau of Mineral Resources, Geology and Geophysics; 1981.
Horvath Z, Jackson K. Procedure for the Isolation of Kerogen from Sedimentary Rocks
Gallois (b0005) 1979
Martin, Siepmann (b0080) 1999; 103
Vandenbroucke, Largeau (b0010) 2007; 38
Etminan, Javadpour, Maini, Chen (b0025) 2014; 123
Harris, Yung (b0090) 1995; 99
Martin, Siepmann (b0060) 1998; 102
Steele (b0095) 1973; 36
Linstrom P, Mallard W. NIST chemistry webbook; NIST standard reference database No. 69; 2010.
.
Zhao, Lai, Firoozabadi (b0030) 2017; 7
Yuan, Pan, Li, Yang, Zhao, Connell (b0040) 2014; 117
Gasparik, Rexer, Aplin, Billemont, De Weireld, Gensterblum (b0035) 2014; 132
Errington, Panagiotopoulos (b0065) 1999; 103
Li, Jin, Firoozabadi (b0015) 2014; 19
Smit, Karaborni, Siepmann (b0085) 1995; 102
Wang, Wang, Ren, Cheng (b0045) 2014; 132
Jin, Firoozabadi (b0020) 2013; 360
Peters, Walters, Moldowan (b0100) 2005
Singh, Sinha, Deo, Singh (b0070) 2009; 113
Kelemen, Kwiatek, Siskin, Lee (b0055) 2006; 20
Van der Ploeg, Berendsen (b0075) 1982; 76
Steele (10.1016/j.fuel.2018.02.186_b0095) 1973; 36
Peters (10.1016/j.fuel.2018.02.186_b0100) 2005
Smit (10.1016/j.fuel.2018.02.186_b0085) 1995; 102
Vandenbroucke (10.1016/j.fuel.2018.02.186_b0010) 2007; 38
Wang (10.1016/j.fuel.2018.02.186_b0045) 2014; 132
Singh (10.1016/j.fuel.2018.02.186_b0070) 2009; 113
Zhao (10.1016/j.fuel.2018.02.186_b0030) 2017; 7
Yuan (10.1016/j.fuel.2018.02.186_b0040) 2014; 117
10.1016/j.fuel.2018.02.186_b0050
Martin (10.1016/j.fuel.2018.02.186_b0060) 1998; 102
Kelemen (10.1016/j.fuel.2018.02.186_b0055) 2006; 20
10.1016/j.fuel.2018.02.186_b0105
Gallois (10.1016/j.fuel.2018.02.186_b0005) 1979
Martin (10.1016/j.fuel.2018.02.186_b0080) 1999; 103
Jin (10.1016/j.fuel.2018.02.186_b0020) 2013; 360
Errington (10.1016/j.fuel.2018.02.186_b0065) 1999; 103
Harris (10.1016/j.fuel.2018.02.186_b0090) 1995; 99
Van der Ploeg (10.1016/j.fuel.2018.02.186_b0075) 1982; 76
Etminan (10.1016/j.fuel.2018.02.186_b0025) 2014; 123
Gasparik (10.1016/j.fuel.2018.02.186_b0035) 2014; 132
Li (10.1016/j.fuel.2018.02.186_b0015) 2014; 19
References_xml – volume: 20
  start-page: 205
  year: 2006
  end-page: 213
  ident: b0055
  article-title: Structural response of coal to drying and pentane sorption
  publication-title: Energy Fuels
– volume: 103
  start-page: 6314
  year: 1999
  end-page: 6322
  ident: b0065
  article-title: A new intermolecular potential model for the n-alkane homologous series
  publication-title: J Phys Chem B
– volume: 99
  start-page: 12021
  year: 1995
  end-page: 12024
  ident: b0090
  article-title: Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model
  publication-title: J Phys Chem
– volume: 36
  start-page: 317
  year: 1973
  end-page: 352
  ident: b0095
  article-title: The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms
  publication-title: Surf Sci
– volume: 132
  start-page: 131
  year: 2014
  end-page: 146
  ident: b0035
  article-title: First international inter-laboratory comparison of high-pressure CH4, CO2 and C2H6 sorption isotherms on carbonaceous shales
  publication-title: Int J Coal Geol
– volume: 102
  start-page: 2569
  year: 1998
  end-page: 2577
  ident: b0060
  article-title: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
  publication-title: J Phys Chem B
– volume: 7
  start-page: 16209
  year: 2017
  ident: b0030
  article-title: Sorption hysteresis of light hydrocarbons and carbon dioxide in shales and kerogens
  publication-title: Sci Rep
– volume: 117
  start-page: 509
  year: 2014
  end-page: 519
  ident: b0040
  article-title: Experimental study and modelling of methane adsorption and diffusion in shale
  publication-title: Fuel
– volume: 19
  year: 2014
  ident: b0015
  article-title: Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory
  publication-title: SPE J
– volume: 103
  start-page: 4508
  year: 1999
  end-page: 4517
  ident: b0080
  article-title: Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes
  publication-title: J Phys Chem B
– volume: 102
  start-page: 2126
  year: 1995
  end-page: 2140
  ident: b0085
  article-title: Computer simulations of vapor–liquid phase equilibria of n-alkanes
  publication-title: J Chem Phys
– volume: 123
  start-page: 10
  year: 2014
  end-page: 19
  ident: b0025
  article-title: Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen
  publication-title: Int J Coal Geol
– reference: Horvath Z, Jackson K. Procedure for the Isolation of Kerogen from Sedimentary Rocks
– volume: 113
  start-page: 7170
  year: 2009
  end-page: 7180
  ident: b0070
  article-title: Vapor−liquid phase coexistence, critical properties, and surface tension of confined alkanes
  publication-title: J Phys Chem C
– reference: .
– reference: Linstrom P, Mallard W. NIST chemistry webbook; NIST standard reference database No. 69; 2010.
– year: 2005
  ident: b0100
  article-title: The biomarker guide
– volume: 38
  start-page: 719
  year: 2007
  end-page: 833
  ident: b0010
  article-title: Kerogen origin, evolution and structure
  publication-title: Org Geochem
– volume: 132
  start-page: 60
  year: 2014
  end-page: 80
  ident: b0045
  article-title: Methane and CO2 sorption hysteresis on coal: a critical review
  publication-title: Int J Coal Geol
– reference: Bureau of Mineral Resources, Geology and Geophysics; 1981.
– start-page: 2
  year: 1979
  ident: b0005
  article-title: Oil shale resources in Great Britain
– volume: 360
  start-page: 456
  year: 2013
  end-page: 465
  ident: b0020
  article-title: Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations
  publication-title: Fluid Phase Equilib
– volume: 76
  start-page: 3271
  year: 1982
  end-page: 3276
  ident: b0075
  article-title: Molecular dynamics simulation of a bilayer membrane
  publication-title: J Chem Phys
– ident: 10.1016/j.fuel.2018.02.186_b0050
– volume: 102
  start-page: 2126
  issue: 5
  year: 1995
  ident: 10.1016/j.fuel.2018.02.186_b0085
  article-title: Computer simulations of vapor–liquid phase equilibria of n-alkanes
  publication-title: J Chem Phys
  doi: 10.1063/1.469563
– volume: 360
  start-page: 456
  year: 2013
  ident: 10.1016/j.fuel.2018.02.186_b0020
  article-title: Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations
  publication-title: Fluid Phase Equilib
  doi: 10.1016/j.fluid.2013.09.047
– year: 2005
  ident: 10.1016/j.fuel.2018.02.186_b0100
– volume: 103
  start-page: 4508
  issue: 21
  year: 1999
  ident: 10.1016/j.fuel.2018.02.186_b0080
  article-title: Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes
  publication-title: J Phys Chem B
  doi: 10.1021/jp984742e
– volume: 102
  start-page: 2569
  issue: 14
  year: 1998
  ident: 10.1016/j.fuel.2018.02.186_b0060
  article-title: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
  publication-title: J Phys Chem B
  doi: 10.1021/jp972543+
– volume: 38
  start-page: 719
  issue: 5
  year: 2007
  ident: 10.1016/j.fuel.2018.02.186_b0010
  article-title: Kerogen origin, evolution and structure
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2007.01.001
– volume: 117
  start-page: 509
  issue: Part A
  year: 2014
  ident: 10.1016/j.fuel.2018.02.186_b0040
  article-title: Experimental study and modelling of methane adsorption and diffusion in shale
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.09.046
– start-page: 2
  year: 1979
  ident: 10.1016/j.fuel.2018.02.186_b0005
– volume: 132
  start-page: 131
  year: 2014
  ident: 10.1016/j.fuel.2018.02.186_b0035
  article-title: First international inter-laboratory comparison of high-pressure CH4, CO2 and C2H6 sorption isotherms on carbonaceous shales
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2014.07.010
– volume: 99
  start-page: 12021
  issue: 31
  year: 1995
  ident: 10.1016/j.fuel.2018.02.186_b0090
  article-title: Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model
  publication-title: J Phys Chem
  doi: 10.1021/j100031a034
– volume: 123
  start-page: 10
  year: 2014
  ident: 10.1016/j.fuel.2018.02.186_b0025
  article-title: Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2013.10.007
– volume: 76
  start-page: 3271
  issue: 6
  year: 1982
  ident: 10.1016/j.fuel.2018.02.186_b0075
  article-title: Molecular dynamics simulation of a bilayer membrane
  publication-title: J Chem Phys
  doi: 10.1063/1.443321
– volume: 7
  start-page: 16209
  issue: 1
  year: 2017
  ident: 10.1016/j.fuel.2018.02.186_b0030
  article-title: Sorption hysteresis of light hydrocarbons and carbon dioxide in shales and kerogens
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13123-7
– volume: 20
  start-page: 205
  issue: 1
  year: 2006
  ident: 10.1016/j.fuel.2018.02.186_b0055
  article-title: Structural response of coal to drying and pentane sorption
  publication-title: Energy Fuels
  doi: 10.1021/ef0580218
– volume: 103
  start-page: 6314
  issue: 30
  year: 1999
  ident: 10.1016/j.fuel.2018.02.186_b0065
  article-title: A new intermolecular potential model for the n-alkane homologous series
  publication-title: J Phys Chem B
  doi: 10.1021/jp990988n
– volume: 36
  start-page: 317
  issue: 1
  year: 1973
  ident: 10.1016/j.fuel.2018.02.186_b0095
  article-title: The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms
  publication-title: Surf Sci
  doi: 10.1016/0039-6028(73)90264-1
– volume: 19
  issue: 06
  year: 2014
  ident: 10.1016/j.fuel.2018.02.186_b0015
  article-title: Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory
  publication-title: SPE J
  doi: 10.2118/169819-PA
– ident: 10.1016/j.fuel.2018.02.186_b0105
– volume: 132
  start-page: 60
  year: 2014
  ident: 10.1016/j.fuel.2018.02.186_b0045
  article-title: Methane and CO2 sorption hysteresis on coal: a critical review
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2014.08.004
– volume: 113
  start-page: 7170
  issue: 17
  year: 2009
  ident: 10.1016/j.fuel.2018.02.186_b0070
  article-title: Vapor−liquid phase coexistence, critical properties, and surface tension of confined alkanes
  publication-title: J Phys Chem C
  doi: 10.1021/jp8073915
SSID ssj0007854
Score 2.492031
Snippet •CH4, C2H6, C3H8, n-C4H10, i-C4H10 and CO2 sorption in shale and kerogen is studied.•Pronounced hysteresis in sorption under high pressure is...
We have measured adsorption and desorption of methane, ethane, propane, n-butane, iso-butane and carbon dioxide in Kimmeridge Blackstone at high pressures at...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms Absolute adsorption
Adsorption
Bulk density
Butane
Butanes
Carbon dioxide
Chemical properties
Computer simulation
Desorption
Ethane
Gases
Gravimetry
High pressure
Hydrocarbons
Hysteresis
Kerogen
Kimmeridge Blackstone
Methane
Organic chemistry
Pressure
Propane
Sorption
Vapor pressure
Title High pressure sorption of various hydrocarbons and carbon dioxide in Kimmeridge Blackstone and isolated kerogen
URI https://dx.doi.org/10.1016/j.fuel.2018.02.186
https://www.proquest.com/docview/2083807296
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywoVAnjp1krCqqQkUnKnWznNoRAdRUaYtg4bdzlwcvoQ5seTgPnS93n53vPhNywThmNc84JmCJAwHPONrwmSOtjeXM50HCsTj5biyHE_92KqYN0q9rYZBWWcX-MqYX0bo60q2s2V2kKdb4uhKlQ8ApGQ-iKVaw-wHS-q7ev2geQShKJWZXOti6KpwpOV7J2uLvBzdE3U4X66n_Tk6_wnSRewZ7ZLcCjbRXvtc-adj5Adn5JiV4SDIkbNCC1brOLV1meRELaJbQFxgOw_iePrwZyFY6j8HRqJ4bWm5Tk2avqbE0ndNRivPYWMJFi5k9RIa2aJuCjwIsNfTJ5hk43RGZDK7v-0OnWkzBAYu7KydiVoDxZ4lrfeMZ7htUQhMxyrPwhFumQ8l5gUAi7WuAPTGiyZChPpX2LD8mzTk884RQkUQyCa3QPI58gB9RGGjhG20ki1lsohZxayuqWaU0jgtePKuaUvao0PIKLa-Yp8DyLXL5ec2i1NnY2FrUnaN-eIuCRLDxunbdk6r6VpdwPkTVfS-Sp_-87RnZxj2c8nVFmzRX-dqeA1ZZxZ3CGTtkq3czGo4_APX_6U8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH7q2gPbAY3BNKDbfOA2RXXi2EmOCIHatfQEUm-WUztatqlBoZ3g3_Ne4lSAUA-7RYmdRJ9f3vvsvPcZ4IwLimqRDWzCiwAdng2MFctAOZerZSySQlBx8vVcjW_jnwu56MFFVwtDaZXe97c-vfHW_szIozm6K0uq8Q0VSYegUXKRZIt3MCB1qrgPg_PJdDzfOuQkla0Yc6gC6uBrZ9o0r2Lj6A9EmJJ0Z0gl1W_Hp1eeugk_Vx9h3_NGdt6-2gH03OoTfHimJngIFeVssCaxdVM7dl_VjTtgVcH-4YwYp_js16PFgGXqHG2NmZVl7TGzZfVQWsfKFZuWtJRNVVysWdwjcuiatiWaKTJTy_64ukK7O4Lbq8ubi3Hg91MIEPRwHWTcScR_WYQutpEVsSUxNJmTQosohOMmVUI0JCQzsUHmkxOhTDlJVJnIic_QX-EzvwCTRaaK1Ekj8ixGBpKliZGxNVbxnOc2O4awQ1Evvdg47XnxV3dZZb81Ia8Jec0jjcgfw49tn7tWamNna9kNjn5hMBpjwc5-w24ktf9c7_F6SsL7UaZO_vO232FvfHM907PJfHoK7-kKrQCHcgj9db1xX5G6rPNv3jSfAPlt7AA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+pressure+sorption+of+various+hydrocarbons+and+carbon+dioxide+in+Kimmeridge+Blackstone+and+isolated+kerogen&rft.jtitle=Fuel+%28Guildford%29&rft.au=Zhao%2C+Huangjing&rft.au=Wu%2C+Tianhao&rft.au=Firoozabadi%2C+Abbas&rft.date=2018-07-15&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=224&rft.spage=412&rft.epage=423&rft_id=info:doi/10.1016%2Fj.fuel.2018.02.186&rft.externalDocID=S001623611830379X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon